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Abstract

How do children begin to use language to say things they have never heard before? The

origins of linguistic productivity have been a subject of heated debate: While generativist

accounts posit that children’s early language reflects the presence of syntactic

abstractions, constructivist approaches instead emphasize gradual generalization over

frequently-heard forms. Here we develop a Bayesian statistical model that measures the

degree of abstraction implicit in children’s early use of the determiners “a” and “the.”

Our work reveals that many previously-used corpora are too small to adjudicate between

these theoretical positions. Several datasets, including the Speechome Corpus—a new

ultra-dense dataset for one child—show evidence of low initial levels of productivity and

higher levels later in development, however. These findings are consistent with the

hypothesis that children lack rich grammatical knowledge at the outset of language

learning, but rapidly begin to generalize on the basis of structural regularities in their

input.

Keywords: language acquisition; Bayesian models; corpus linguistics
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One of the most astonishing parts of children’s language acquisition is the

emergence of the ability to say and understand things that they have never heard before.

This ability, known as productivity, is a hallmark of human language (von Humboldt,

1970/1836; Hockett, 1959). Indeed, adults’ linguistic representations are almost

universally described in terms of syntactic abstractions such as “determiner,” “verb,” and

“noun phrase” (e.g., Chomsky, 1981; Sag, Wasow, & Bender, 1999). But do these same

adult-like abstractions guide how children produce and comprehend language?

Some researchers have suggested a generativist view of syntactic acquisition:

adult-like abstractions guide children’s comprehension and production from as early as it

can be measured (Pinker, 1984; Valian, 1986; Yang, 2013). Others have argued that

adult-like syntactic categories—or at least their guiding role in behavior—emerge

gradually, with the accumulation of experience. On such constructivist views, children’s

representations progress over time from memorized multi-word expressions to specific

item-based constructions and eventually generalize to abstract combinatorial rules

(Braine, 1976; Pine & Martindale, 1996; Pine & Lieven, 1997; Tomasello, 2003).

Here we focus on a key case study for this debate: the emergence of the capacity in

English to produce a noun phrase (NP) by combining a determiner (Det, such as “the” or

“a”) with a noun (N). This capacity is exemplified for adult English by the context-free

rule

NP → Det N

Using this knowledge, when adult native English speakers hear a novel count noun with

“a,” e.g. “a blicket,” they know that combining the novel noun with “the” will also

produce a permissible noun phrase, e.g. “the blicket.” Adult-like knowledge and use of

this part of English syntax requires the category Det, the category N, and the rule

specifying how they are combined.

In recent years, this case study—noun phrase productivity, with a focus on the use
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of determiners—has played an increasingly prominent role in the

generativist–constructivist child language acquisition debate (Valian, 1986; Pine &

Martindale, 1996; Pine & Lieven, 1997; Valian, Solt, & Stewart, 2009; Yang, 2013; Pine,

Freudenthal, Krajewski, & Gobet, 2013). Whereas nouns often have referents in the

child’s environment, the semantic contribution of determiners to utterance meaning is

more subtle (Fenson et al., 1994; Tardif et al., 2008). Thus one might expect determiners

to be learned late (Valian et al., 2009). Yet children produce them relatively early, and

their uses are overwhelmingly correct by the standards of adult grammar. Is this because

children deploy adult-like syntactic knowledge, or because they memorize and reuse

specific noun phrases, creating the illusion of full productivity?

Experimental methods have been of limited utility in resolving this question.

Tomasello and Olguin (1993) found evidence for the presence of a noun-like productive

object word category in children between 20 and 26 months, presenting objects with nonce

labels and eliciting reuse in novel syntactic contexts and morphological forms (using a

“wug” test; Berko, 1958). But these data do not resolve the extent to which syntactic

abstractions guide children’s everyday speech. Instead, most work on early syntactic

productivity has relied on observational language samples (Valian, 1986; Pine &

Martindale, 1996; Pine & Lieven, 1997; Valian et al., 2009; Yang, 2013; Pine et al., 2013).

Making inferences about children’s knowledge from observational evidence is

difficult for a number of reasons, however. First, individual child language corpora have

typically been small—consisting of weekly or monthly recordings of only a couple of hours.

Second, nouns (like other words) follow a Zipfian frequency distribution (Zipf, 1935), in

which a small number of words are heard often, but most are heard only a handful of

times. As a result, evidence regarding the range of syntactic contexts in which a given

child uses an individual noun is weak for most nouns (Yang, 2013). These inferential

challenges are sufficiently severe that within the past several years, researchers on
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opposing sides of the productivity debate have drawn opposite conclusions from similar

datasets (Pine et al., 2013; Yang, 2013). Making progress on children’s syntactic

productivity requires overcoming these challenges.

Here we present a new, model-based framework for drawing inferences about

syntactic productivity, differing from previous work in two critical respects. First,

previous approaches assessed productivity via a summary statistic, the overlap score,

computed from a child language sample. This statistic is difficult to interpret because it

may be biased by the size and composition of the sample (discussed below). Here, in

contrast, we model productivity as one feature of a model of child language whose

parameters can be estimated from a sample and whose overall fit to the data can be

assessed. Second, we explicitly model item-based memorization and reuse of specific

determiner–noun pairs from caregiver speech in the child’s environment as an additional

contributor to child language production alongside syntactic productivity. Our framework

encodes a continuum of hypotheses ranging between fully productive and fully item-based,

and allows us to assess how a child at any given point in development balances these two

knowledge sources in their production of determiner–noun combinations.

We apply this model to a wide range of longitudinal corpora of child speech,

including the Speechome Corpus (Roy, Frank, DeCamp, Miller, & Roy, 2015), a new

high-density set of recordings of one child’s early input and productions. Our model

reveals that many of the conventional corpora analyzed in previous research (Valian, 1986;

Pine & Martindale, 1996; Pine & Lieven, 1997; Valian et al., 2009; Pine et al., 2013) are

too small to draw high-confidence inferences. An exploratory analysis of the Speechome

data, both denser and from earlier in development, provides evidence for low initial levels

of productivity followed by a rapid increase starting around 24 months. Several other

datasets provide corroboratory evidence. Contra full-productivity accounts, syntactic

productivity is very low in the first months of determiner use in these datasets. At the
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same time, the current work constrains the timeline of constructivist accounts. We find a

rapid early increase in productivity—in Speechome this increase occurs within a few

months of the onset of combinatorial speech, prior to the beginning of many of the

datasets that have been used previously to address this question. We conclude by

discussing the need for denser datasets to provide conclusive evidence on questions about

the roots of syntactic abstraction.

Previous Work and Present Goals

Previous investigations have focused on the overlap score, a summary statistic of

productivity (Pine & Martindale, 1996; Pine & Lieven, 1997; Pine et al., 2013). Overlap is

calculated from the distribution of determiner–noun pairings in a sample, as the

proportion of nouns that appear with both “a” and “the” out of the total number of

nouns used with either. While initial investigations suggested that young children use

comparatively fewer nouns with both determiners (Pine & Martindale, 1996; Pine &

Lieven, 1997), overlap scores are highly dependent on sample size due to the Zipfian

distribution of noun frequencies (Valian et al., 2009; Yang, 2013). In addition, this

statistic is not well-suited for distinguishing increases in direct experience—greater

exposure to the relevant words (e.g., hearing both “the dog” and “a dog” independently

and subsequently repeating these, even without abstraction)—from true changes in

grammatical productivity (Valian et al., 2009; Yang, 2013).

Two recent investigations have used more sophisticated techniques to address issues

of sample size. Yang (2013) constructed a null-hypothesis “full productivity” model in

which each noun has the same distribution over determiner pairings (no item-specific

preferences) and showed that it predicted overlap score well for six children in the

CHILDES database. Pine et al. (2013), in contrast, developed a noun-controlled method

for comparing adult and child productivity scores in a given sample, and rejected a
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full-productivity null hypothesis. Neither of these methods, however, is well suited to

tracking developmental changes in productivity, because of their focus on the overlap

score. If item-based knowledge plays a role in children’s productions, overlap might

increase over time even without any changes in productivity, simply because children have

heard more determiner+noun pairs.

Here we take a fundamentally different approach from previous work, to address the

challenge of decoupling genuinely productive behavior from what might be expected on

the basis of experience. We proceed from the observation that there are two sources of

information by which a speaker could know that a particular determiner–noun pair

belongs to English, and thus potentially produce it: (1) direct experience with that

specific determiner–noun pair and (2) a productive inference using knowledge abstracted

from experience with different determiner–noun pairs (and perhaps other input as well).

Measuring a given speaker’s productivity from corpus data requires assessing the extent to

which the speaker’s language use reflects productivity above and beyond what can be

attributed to direct experience.

We define a probabilistic model of determiner+noun production that considers both

knowledge sources. In our model, the contribution of productive knowledge can range

along a continuum from none (a child capable only of imitating caregiver input, like an

idealized version of an “island” learner as described in Tomasello, 1992) to complete (a

“total generalizer” equivalent to the null-hypothesis model in Yang, 2013). Specific model

parameters correspond to the contributions of these two information sources, and we use

Bayesian inference to infer likely values of these parameters for a corpus sample given

both the child’s determiner–noun productions and caregiver input. By comparing

temporally successive samples for a given child, we can use this model to estimate the

child’s change in syntactic productivity over time. Because our model is fully Bayesian, we

are also able to estimate the level of certainty in our estimates, critically allowing us to
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avoid overly confident inferences when data are too sparse.

Method

Model

We model the use of each noun token with a specific determiner as the output of a

probabilistic generative process. We assume that each noun has its own determiner

preference ranging from 0 (a noun used only with “a”) to 1 (a noun used only with “the”).

We then explicitly model cross-noun variability by assuming some underlying distribution

of determiner preferences across all nouns. Lower cross-noun variability indicates that

nouns behave in a more class-like fashion, while higher variability indicates little

generalization of determiner use across nouns.

Formally, each noun type can be thought of as a coin whose weight corresponds to

its determiner preference. Each use of that noun type with a determiner is thus analogous

to the flip of that weighted coin, where heads indicate the use of the definite determiner

and tails correspond to the indefinite. A sequence of noun uses are thus draws from a

binomial distribution with success parameter µ corresponding to the determiner

preference. The determiner preference for each noun is drawn from a beta distribution

with mean µ0 (the underlying “average” preference across all nouns) and scale ν, giving us

a hierarchical beta-binomial model (Gelman, Carlin, Stern, & Rubin, 2004).1

Under this model, a child’s determiner productions for each noun she uses are

guided by a combination of the two information sources mentioned above—(1) direct

experience, and (2) productive knowledge—and the strength of each information source’s

contribution to the child’s productions is determined by a weighting parameter. For (1), a

parameter η determines how effectively the child learns from noun-specific determiner

1Many readers may be more familiar with the more common parameterization of the beta distribution
in terms of shape parameters α = µν and β = (1 − µ)ν.
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productions in its linguistic input; for (2), a parameter ν determines how strongly the

child applies productive knowledge of determiner use across all nouns. These parameters

η and ν do not trade off against each other, but rather play complementary roles in

accounting for a child’s productions: As η increases, the variability across nouns in a

child’s determiner productions can more closely match the variability in her input, while

as ν increases, the child is increasingly able to produce determiner–noun pairs for which

she has not received sufficient evidence from caregiver input.

At the heart of the model are the contributions of direct experience and productive

knowledge. Both contribute to the rate at which a child uses “the” as opposed to “a” for

each noun. This rate, µi, is taken to be beta-distributed and corresponds to a

beta-binomial Bayesian update of a prior of mean µ0 and concentration ν with count data

corresponding to the caregiver input, weighted by a factor of η. Thus, larger ν indicates

stronger influence from the child’s productive knowledge, while larger η indicates that the

child learns the noun-specific nuances of caregiver input more effectively. For more details

see SOM: Parameters of Beta-Binomial Model ; Our complete hierarchical Bayesian model

and variable definitions are presented in Fig. S1.

Since we lack exhaustive recordings of caregiver input, we treat unrecorded caregiver

input as a latent variable drawn from the same distribution as aggregated caregiver input

and infer it jointly with model parameters (see SOM: Details of the Imputation). The

theoretically critical target of inference is ν, the strength of the child’s productive

knowledge of determiner–noun combinatorial potential, which can range from ν = 0 (an

extreme “island” learner whose determiner preference for a given noun is guided

exclusively by its direct experience with that noun, and whose noun-specific determiner

preferences are likely to be skewed toward 0 or 1) to ν approaching infinity (an extreme

over-generalizer who has identical determiner preference for all nouns, Fig. 1A).

We use Markov chain Monte Carlo to infer confidence intervals over η, µ0, and ν
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Figure 1. : A: Interpretation of the ν parameter, a concise metric of grammatical

productivity. At low values of ν, little or no information is shared between nouns. At

higher ν values, nouns exhibit more consistent usage as a class, indicating the existence

of a productive rule governing the combination of determiners and nouns. µ0 represents

the mean proportion of definite determiner usage across nouns, set here at .5 in all three

panels. B: Schematized trajectories for the development of grammatical productivity under

two competing theories.
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from a child’s recorded productions and linguistic input. But a single recording of a child

typically does not yield high confidence in these estimates because of the relatively low

numbers of productions for individual nouns. To overcome this issue, we use two different

methods for constructing sufficiently large samples of child and caregiver tokens to

evaluate the developmental trajectory of the ν parameter: split-half and sliding window

analyses.

First, in the split-half analysis, we divide the data for each child into distinct early

and late time windows with an equal number of tokens, denoted with the subscripts t1

and t2. Separate parameter sets (µ, ν, η) are maintained for the first and second windows;

for a given sample from the joint posterior, the changes in parameters from the first

window to the second can be calculated as:

∆ν = νt2 − νt1 , ∆µ = µt2 − µt1 , ∆η = ηt2 − ηt1 . (1)

These variables may be treated as targets of inference, over which highest posterior

density (HPD) intervals may be computed. Our principal target of inference is ∆ν, the

change in the contribution of productive knowledge to the child’s determiner use. This

two-window approach maximizes statistical power, but does so at the expense of a

detailed time-related trajectory: for those children with longer periods of coverage, this

estimate may group together several distinct developmental time periods.

Second, as an exploratory technique, we also use our model to measure finer-grained

changes in parameter estimates across development via a sliding window approach in

which the model is fit to successively later subsections of the corpus of child productions.

Each window also includes the corresponding adult productions that occur prior to or

during that subsection. In this case we fit the model to successive 1024 token windows of

the child’s speech, advancing by 256 tokens for each sample. This method yields a higher
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Figure 2. : Number of recorded determiner+noun uses per week for children (top) and

corresponding caregivers (bottom) before three years of age for the child with the most

determiner+noun pairs for each of the nine corpora analyzed here. Note that the number

of weekly observations from children and caregivers are presented on differing scales (0-800

and 0-6,000 respectively).

resolution timecourse than the split-half analysis, though at the expense of

less-constrained parameter estimates, especially for the smaller corpora. For more details

on inferring model parameters, see SOM: Model Fitting Procedure.

Our approach is an example of “Bayesian data analysis” (Gelman, Carlin, Stern, &

Rubin, 2003). We create a cognitively interpretable model that captures the spectrum of

different hypotheses, from item-based learning to full productivity. We can then infer, for

a particular dataset, where on the spectrum the data fall. In a classic predictive model,

parameters are fit–or overfit—to some external performance standard. In contrast, our

model summarizes a particular aspect of the dataset and gives an estimate of the relative

certainty we have in this summary measurement.

Data

We used a large set of publicly-available longitudinal developmental corpora of

recordings of children and their caregivers from the CHILDES archive (MacWhinney,

2000). Four of these corpora have been examined previously for early evidence of

grammatical productivity: the Providence Corpus (Demuth, Culbertson, & Alter, 2006),
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the Manchester Corpus (Theakston, Lieven, Pine, & Rowland, 2001), the Brown Corpus

(Brown, 1973), and the Sachs Corpus (Sachs, 1983). We additionally analyze four

single-child corpora: Bloom (Bloom, Hood, & Lightbown, 1974), Kuczaj (Kuczaj, 1977),

Suppes (Suppes, 1974), and Thomas (Lieven, Salomo, & Tomasello, 2009). These eight

corpora yield usable data for a total of 26 children. While high-density data with rich

annotations exist for all of these corpora, coverage starts in most cases well after the onset

of combinatorial speech and is sparse under two years of age, the time interval necessary

for characterizing initial levels of grammatical productivity.

To address these shortcomings, we additionally analyze the densest longitudinal

developmental corpus in existence, the Speechome Corpus (Roy et al., 2015). The

Speechome Corpus covers the period 9 through 25 months in the life of a single child, and

contains video and audio recordings of nearly 70% of the child’s waking hours, with

transcripts for a substantial portion of these (Vosoughi & Roy, 2012). While transcription

of the Speechome Corpus is a work in progress, the version used here contains

approximately 4,300 noun phrases with articles produced by the child before 25 months of

age and includes dense coverage of child-accessible caregiver speech, with some

196,300 noun phrases in the same time period. The Speechome Corpus supports more

detailed inferences about developmental timecourse in the second year of life. The

Speechome Corpus is also distinguished in the quantity of child-available adult speech,

with nearly 80% more caregiver tokens than the next best-represented child, Thomas. Fig.

2 shows comparative densities for adult and child determiner+noun pairs for the child

with the most data in each corpus.2

We assess our model using seven different methods for extracting determiner+noun

2Datasets that capture large amounts of an individual family’s experience like Speechome pose unique
privacy risks. In order to share reproducible data while maintaining privacy, we are distributing
determiner+noun count data from the Speechome corpus while obfuscating the identities of the specific
nouns the child produced.
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data from each corpus. These data treatments reflect a range of assumptions regarding

the availability of phrase structure for identifying which noun corresponds to each

determiner, whether information can be shared between morphologically inflected forms,

and whether the child is considering only singular forms in the language. In the absence of

reliable morphological tags, the Thomas and Speechome corpora were assessed on four

data treatments each. For additional technical details refer to Supplementary Material:

Data Preparation. We have made available model code, noun-anonymized Speechome

data, and auxiliary code necessary to reproduce our research in a public GitHub

repository accessible at https://github.com/smeylan/determiner learning.

Results

The two hypotheses represented in the literature—full productivity or gradual

abstraction over item-based knowledge (Fig. 1B)—make contrasting predictions regarding

initial productivity and the effects of developmental change. Full productivity predicts a

nonzero initial level combined with a negligible effect of developmental time—productivity

does not increase with exposure to more data. Gradual abstraction over item-based

knowledge, in contrast, predicts near-zero initial productivity indicating the absence of

syntactic category knowledge in the earliest productions, and a positive relationship with

developmental time corresponding to the gradual induction of abstract categories

throughout childhood.

Split-Half Method

To test for changes in productivity, we assess the null hypothesis that 0 (no change)

is within the 99.9% HPD interval for the posterior estimate of ∆ν, the difference in ν

estimates between the first and second half of tokens each child. (We use the 99.9%

criterion because of the large number of independent comparisons implied by this

analysis—one for each of the 27 children.) By this standard, only one child (Speechome,
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Figure 3. : Posterior estimates for change in productivity between first and second half

of children’s corpora (∆ν) for each child (n = 11). Longest horizontal lines indicate the

median of the posterior, and shorter horizontal lines the 95% HPD. Points indicate the

99.9% HPD. The remainder of the children (n=16) are not displayed on the basis of poorly

constrained posteriors (99.9% HPD for ν outside [0,3] for either time period).

in 3 of 4 data treatments) shows a significant increase in productivity (Fig. 3 and Fig. 4).

The remaining data treatment for Speechome is strictly positive within the 95% HPD

interval. Three other children—Liz (in 3 of 7 data treatments), Naima (1 of 7 treatments)

and Warr (1 of 7 treatments)—have at least one data treatment where change is strictly

positive within the 95% HPD. These findings suggest some early increases in productivity.

Results across all seven data preparations are presented in Figure S4.

We also found apparent decreases in grammatical productivity for several of the

older children. Thomas (2 of 4 treatments within the 99.9% HPD interval, 1 in the 95%

HPD interval), Sarah (1 in the 99.9% and 4 in the 95% HPD interval), and Nina (2 in the

99.9% and 2 in the 95 % HPD interval) show strictly negative changes. The timing of

these decreases are consistent with a phase of overregularization, during which they are
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Figure 4. : The inferred developmental trajectory for determiner productivity, ν, across

children (n = 11). Each line shows a two-point productivity trajectory for a single child,

plotted by age in months. Marker size corresponds to the number of child tokens used

for each child. Gray horizontal lines indicate the temporal extent of the tokens used to

parameterize the model at each point; vertical lines indicate the SD of the posterior. The

best fitting quadratic trend is shown as a dashed black line.

more willing to use determiner noun-combinations that are rare or unattested in adult

speech like a sky, followed by a decrease towards adult-like levels. Consistent with this

hypothesis, increases in ν tended to occur in datasets from younger children (p=0.009 by

rank sum test on the children in Fig. 3).

Together these results are broadly consistent with constructivist hypotheses, in that

we find minimal evidence of productivity in the earliest multiword utterance coupled with

a development-related increase in productivity soon thereafter. However, our results
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deviate slightly from the proposal of gradual emergence of abstract schema from

item-specific exemplars, as set forth in (Abbot-Smith & Tomasello, 2006). The possibility

of a decrease in determiner productivity later in development suggests that while children

may construct abstract generalizations from their input, they may also use input later in

development to constrain overly general abstract schema (along the lines schematized in

Figure 1B, right, top two trajectories).

Our model is defined independently from overlap score, the primary measure of

productivity used in previous literature. We can take advantage of this independence to

use overlap as a model validation method. Although a simple overlap measure is not

useful for characterizing productivity and comparing across children, we can use it to

validate our model within individuals. We do this by sampling new simulated determiner

productions from the fitted model’s distribution on child determiners for each time

window, computing overlap, and then comparing the results to the empirical values from

that same child. Empirical overlap falls within the 95% range of simulated overlap scores

for all children, validating the model’s overall fit to the data. For additional details see

Supplementary Material: Results.

Sliding Window Method

The higher temporal resolution sliding window method reveals changes in

grammatical productivity consistent with the split-half analysis, with major increases in

productivity for Speechome and Warr and major decreases for Thomas, Adam, and Sarah

(Figure 5, column 1). The sliding window models also reveal significant variability in ν

not related to age (e.g., Naima from the Providence Corpus). In addition, using the same

validation technique described above, simulated overlap from sliding window estimates

was strongly correlated with empirical values (Pearson’s r of 0.940 – 0.951 across data

treatments).
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Figure 5. : Child determiner productivity ν, child mean determiner preference µ, and

predicted and empirical overlap scores for the 11 children presented in the split half analysis.

Vertical lines show the 99% HPD for ν, µ, and overlap predicted by the current model.

Horizontal lines indicate the temporal extent of the tokens used to fit the model at each

point.
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Discussion

The model-based statistical approach presented here for analyzing child language is

the first method that allows the respective contributions of productivity and item-based

knowledge to be teased apart. Our analysis reveals two key findings. First, children’s

syntactic productivity changes over development. Several of the youngest children show

increases in productivity, with evidence strongest in the largest dataset, Speechome. In

addition, some older children show decreases in productivity. This trend might suggest a

period of particularly strong generalization followed by a retreat, similar to the pattern

observed in morphological domains (e.g., Rumelhart & McClelland, 1985; Pinker, 1991),

as well as verb argument structure (Bowerman, 1988; Ambridge, Pine, & Rowland, 2011).

Second, for the majority of children, our model placed wide confidence intervals on

productivity estimates, indicating that the available data were likely not sufficient to draw

precise developmental conclusions. The data for these children typically included a

maximum of one hour per week of transcripts; furthermore, most of the child productions

in these datasets were collected after the child’s second birthday. If adult-like categories

are constructed early—soon after the onset of word combination—many of these datasets

begin too late to provide decisive evidence regarding the trajectory of early development.

The trend line obtained in Figure 4 is suggestive rather than conclusive; additional

datasets would be required to test whether the pattern is robust within the developmental

trajectory of a single child. These results underscore the critical importance of dense,

naturalistic data for understanding the development of linguistic knowledge in early

childhood.

Debates about the emergence of syntactic productivity have typically oscillated

between two poles: Immediate, full productivity early in development, or accumulation of

item-specific knowledge with gradually increasing levels of productivity. Our approach

parameterizes the space of models between these poles. In the future it can be adapted to
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characterize productivity in other simple morphosyntactic phenomena and in other

languages. In the key case study of English determiner productivity, applying our model

to new, dense data yields support for constructivist accounts and further constrains the

developmental timeline within these accounts. While children’s earliest multiword

utterances may be island-like, grammatical productivity emerges rapidly thereafter.
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Supplementary Material

Model

Parameters of the Beta-Binomial Model. The rate at which a child uses “the” rather

than “a” for each noun i, is treated as a beta-distributed random variable, µi. µi has

mean
µ0ν+η(rAi +RA

i )
ν+η(nA

i +NA
i )

and concentration ν + η
(
nAi +NA

i

)
, where the child has experienced

rAi researcher-observed and RAi researcher-unobserved uses of noun i with “the” and,

respectively, nAi − rAi and NA
i −RAi with “a.” µ0 and ν describe the prior over determiner

preferences across all nouns. Specifically, µ0 indicates the mean determiner preference and

ν indicates the concentration (higher values imply that µi values are closer to µ0). η

mediates how effectively the child learns from caregiver input the noun-specific determiner

preference for each noun. See Figure S1 for the complete graphical model.

Details of the Imputation. In our model the child learns from the totality of the

linguistic input in his or her lifetime, of which the caregiver speech in our datasets

represents only a sample. A side effect of Bayesian inference in our model is the

imputation of unobserved caregiver input—DA in Fig. 1. For a window starting at time t

and ending at time t′, we estimate the child’s total lifetime number of {a,the}+noun input

tokens from birth through t′ based on a rate of 15 million total words of input per year

(Hart & Risley, 1995; Mehl, Vazire, Ramı́rez-Esparza, Slatcher, & Pennebaker, 2007; Roy,

Frank, & Roy, 2009) and 20 determiner–noun pairs per 1,000 words (Godfrey, Holliman,

& McDaniel, 1992), and assume that nouns occur in the same relative frequencies in the

observed and unobserved portions of this total lifetime input. As can be seen in the

graphical model in Fig. 1, inferences about the distribution of determiners for noun i in

unobserved caregiver input is constrained by three information sources: Observed

caregiver utterances involving noun i, observed caregiver utterances involving other nouns,

which carry information about the “top-level” caregiver determiner preference (modeled
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MC

n

nA

A

NA

A

A

A 0

dA

d

DA

adult priors child priors

noise term

imputed and observed 
adult data

 observed 
child data

0

MA

Model equations for noun i:

µAi ∼ Beta
(
µA0 , ν

A
)

µi ∼ Beta

(
µ0ν + η

(
rAi +RAi

)
ν + η

(
nAi +NA

i

) , ν + η
(
nAi +NA

i

))
rAi ∼ Binom

(
nAi , µ

A
i

)
ri ∼ Binom (ni, µi)

RAi ∼ Binom
(
NA
i , µ

A
i

)

Variable definitions:

ν Strength of child’s generalized
knowledge regarding determiner
preference

µ0 Child’s generalized determiner
preference

µ Child’s noun-specific determiner
preferences

η Noise parameter indicating child’s
effectiveness at learning noun-specific
determiner preferences from input

νA Dispersion of caregivers’ noun-specific
determiner preferences

µA0 Caregivers’ generalized determiner
preference

µA Caregivers’ noun-specific determiner
preferences

α Uninformative prior over µ0, ν
αη Uninformative prior over η
αA Uninformative prior over µA0 , ν

A

d Child-produced determiner-noun
pairs observed in dataset (comprised
of ri “the” instances and ni − ri “a”
instances for noun i)

dA Caregiver-produced determiner-noun
pairs observed in dataset (comprised
of rAi “the” instances and nAi −rAi “a”
instances for noun i)

DA Caregiver-produced determiner-
noun pairs not observed in dataset
(comprised of RAi “the” instances and
NA
i −RAi “a” instances for noun i)

Figure 1. : Graphical representation of our model. Variables with A superscripts (e.g., µA)

are “adult” (caregiver) parameters; unsuperscripted variables are child parameters. Shaded

nodes indicate observed data (adult and child determiner+noun productions dA and d)

or uninformative priors set by the researcher (αA, α, and αη ).The MA and MC plates

correspond to noun types used by the caregiver(s) and the child, respectively; the NA plate

corresponds to adult imputed uses of a given noun, nA to observed adult uses, and n to

observed child uses.
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as a beta prior with mean µA0 and concentration νA on noun-specific caregiver determiner

preferences), and observed child utterances, which are in part guided by caregiver input.

Model Fitting Procedure. We implemented this model using JAGS for Markov chain

Monte Carlo based Bayesian inference (Plummer, 2003). For each model, we took 5 chains

of 5000 samples after a burn-in of 2000 adaptive samples and 2000 updates, with thinning

of 5 samples (yielding 1000 samples per chain, and 5000 samples total). If the Gelman and

Rubin Diagnostic—that the 99th percentile of the potential scale reduction factor, R̂ was

below 1.1, we considered the model to have converged (Gelman, Carlin, Stern, & Rubin,

2004), otherwise we ran the chains until convergence in 1000 sample increments. If the

model did not meet these convergence criteria by 20,000 samples (100,000 without

thinning), we report it as non-converging. Low autocorrelation and good mixing were

confirmed through spot visual inspection.

To determine the expectation and distribution of overlap scores predicted by our

fitted model for a given child’s productions in some time window where each noun i is

observed Ni times with either a or the, we first draw a sample vector of noun-specific child

determiner preferences {µ̂} from our MCMC-chain approximation to the posterior over

{µ}, and then draw for each noun i a new binomially distributed sample of size Ni with

mean µ̂i. The proportion of such samples with at least one instance of both a and the

constitutes a single predicted overlap score for that window. By repeating this process

over many sample vectors from the chain, we approximate the posterior predictive

distribution on the overlap score for that window, and use it to compute expectations and

corresponding HPD intervals.

Data Extraction and Preparation

Corpus work at the scale we describe here is necessarily noisy: poor audio quality,

annotator idiosyncrasies, and probabilistic methods for extracting hundreds of thousands
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of tokens mean that the input to our model inevitably deviates from an ideal data source.

Our strategy was thus to test our model across a variety of data preparations to confirm

that deviations are of acceptably small magnitude to provide reliable input to the model;

indeed, none of the analyses provide us with evidence of systemic problems that might

compromise the integrity of our results.

Data Sources. Transcripts for eight developmental corpora (Brown, 1973; Suppes,

1974; Bloom, Hood, & Lightbown, 1974; Kuczaj, 1977; Sachs, 1983; Theakston, Lieven,

Pine, & Rowland, 2001; Demuth, Culbertson, & Alter, 2006; Lieven, Salomo, &

Tomasello, 2009) were downloaded from the CHILDES project at childes.psy.cmu.edu.

Utterances from these children (n = 26) and their respective caregivers—typically

mothers, but also including fathers—were extracted from CHAT-formatted transcripts

(MacWhinney, 2000). These specific corpora were selected because they provide

longitudinal coverage within the developmental time period of interest, contain annotated

samples of both child and caregiver speech, and in many cases have been used extensively

in previous research on grammatical productivity.

To test the model on higher-density data than the corpora available in the

CHILDES database, we additionally extracted noun phrases from a ninth corpus, the

Speechome Corpus (Roy, Frank, DeCamp, Miller, & Roy, 2015). This annotated corpus

spans the 9 through 24 month age range of a child’s life (n=1). Embedded cameras and

microphones located throughout the child’s house were used to achieve an unprecedented

level of coverage of language learning in a naturalistic context (Figure S2). Annotating

the Speechome Corpus was accomplished using new, semi-automatic tools designed for

speed and efficiency. Speech from approximately 10 hours per day of raw audio were

preprocessed using BlitzScribe, an automated system that uses machine learning

techniques to detect and segment speech and assign speaker identities. These samples

were then manually transcribed. An estimated 72% (3,618 of 5,000 utterances) of
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Figure 2. : The Human Speechome Project consists of dense, longitudinal data collection

from cameras and microphones embedded in each room of a single child’s house. These

recordings were transcribed using the custom BlitzScribe transcription tool. The corpus

consists of more than 8 million words of transcribed speech and 200,000 hours of audio and

video, comprising more than 200 terabytes of media.

caregiver speech from a balanced sample across time is child-directed, while the remainder

is spoken in the presence of the child but not to the child (Vosoughi & Roy, 2012).

Data Preparation. Determine-noun pairs were extracted from the corpora using

three alternative processing pipelines. In the first pipeline (“CLAN”), we extracted

determiner and noun pairs from all corpora with CHILDES-compliant annotations using

either manually-annotated or, more commonly, machine-generated dependency parses

(Sagae, Davis, Lavie, MacWhinney, & Wintner, 2010). While CLAN is a simple rule-based

dependency parser, it incorporates significant domain knowledge and uses special

annotations available in CHILDES-formatted files in generating parses. As such, it avoids

some of the pitfalls that undermine statistical part-of-speech taggers, often trained on

adult speech, when run on samples of early child language.

The two largest datasets, Thomas and Speechome, lack canonical CHILDES

annotation, and can only be processed using a statistical part of speech tagger. For this

reason we employed two alternative pipelines for extracting determiner+noun pairs, both

using a state-of-the-art statistical part-of-speech tagger (Toutanova, Klein, Manning, &
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Singer, 2003). Determiners that appear without nouns because of interruptions in

conversational turn-taking or speech errors were discarded. When the POS tagger

identified a series of nouns, we took the first noun as the head of the phrase (the “FN”

pipeline) or the last noun as the head of the phrase (the “LN” pipeline).

For all three data extraction pipelines, unrecognizable nouns (“xxx” and “yyy” in

CHILDES-formatted files), proper names,1 and types shorter than three characters were

discarded. Both extraction methods accommodate words intervening between the

determiner and noun (e.g. an adjective).

The correct treatment of grammatical variants of similar nouns is not immediately

obvious. For example, should a model of determiner productivity track separate counts for

“dog” and “dogs,” or should these be merged into counts for a single noun? For the

CLAN extraction pipeline, we produced three variants of the determiner+noun pairs for

each CHILDES dataset. The “Complete” morphology treatment maintained separate

counts for all variants; for example, “dog,” “doggy,” and “dogs” were treated as separate

nouns, and their counts were tracked separately. In the “Lemmatized” morphology

treatment, records were merged by the lemmatized stem—tokens for any of the three

above noun types would be counted as the noun “dog”. In the “Singulars” treatment, only

singular, unmarked nouns were kept (i.e. counts for “dogs” and “doggy” were discarded).

Because the Lemmatized morphology treatment requires morphological parses of the

nouns from the CLAN-parsed files, only the Complete and Singulars morphology

treatments were available for the LN and FN pipelines.

The combination extraction pipelines and morphology treatments produced seven

datasets for each child with fully compliant CHILDES-annotated data, and four datasets

for the remaining datasets (Speechome and Thomas). These include 1: Complete-FN, 2:

1While proper names are generally unlikely to prepended by a determiner, there are many exceptions,
including family names (”The Johnsons”), toponyms (“The Gambia”,“The Hamptons”), historical eras (’The
Great Depression’), and publications (“The New York Times”).



7

Complete-LN, 3: Complete-CLAN, 4: Lemmatized-CLAN, 5: Singulars-FN, 6:

Singulars-LN (the data preparation presented in the main text), and 7: Singulars-CLAN.

We conduct our model-based analysis on all available variants for each child, but stress in

the main text the results of the model run on singular nouns from the LN extraction

pipeline for both consistency with previous work (Yang, 2013) and high accuracy and

precision when compared with gold-standard manual annotation (described below).

Descriptive properties for all datasets (LN-Singulars treatment) are provided in Table 1.

Extraction Procedure Validation. To test the accuracy of the automated extraction

pipelines, we compared the lists of identified determiner+noun tokens (before filtering by

morphological criteria) with a gold-standard set identified by human annotators. Three

paid annotators on Amazon Mechanical Turk found determiner+noun pairs in the first

1000 lines in the first and last corpora for three children: Alex from the Providence

corpus, Eve from the Brown Corpus, and Warr from the Manchester Corpus.

Discrepancies between annotators were resolved by majority rule.

The three automated extraction pipelines generally provide similar lists of

determiner+noun pairs compared to the manual annotations (Table 2). Both the CLAN

and LN extraction pipelines outperform the FN extraction stack in terms of recall on the

twelve transcripts (p = .012 and p = .011 respectively, per one-tailed Wilcoxon signed rank

tests2). The LN extraction pipeline outperforms the FN extraction stack on precision as

well (p = .005 following the same test).

Imputing Determiner+Noun Counts In Adult Speech. For the imputation procedure

in the model, unigram probabilities for nouns in the CHILDES American English datasets

were obtained by counting all nouns used with a definite or indefinite determiner by

maternal or paternal caregivers in all CHILDES American English corpora as of December

2Normal approximations of p values were computed using a continuity correction; zero differences were
discarded before ranking absolute differences.
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Corpus Child
Age Range Distinct Interval Child Caregiver Child %

Yr;Mo Days in Days Tokens (Types) Tokens (Types) After Filter
Bloom Peter 1;9–3;1 20 492 4,357 (540) 7,824 (731) 82.2
Brown Adam* 2;3–5;2 53 1,070 6,370 (911) 5,852 (1,005) 78.4
Brown Eve* 1;6–2;3 10 275 1,304 (332) 2,890 (483) 70.6
Brown Sarah* 2;3–5;1 131 1,037 3,958 (773) 8,454 (1,181) 82.1
Kuczaj Abe 2;4–5;0 190 972 6,360 (1,070) 4,935 (1,070) 81.0
Manch. Anne 1;10–2;9 31 336 1,515 (369) 6,514 (711) 79.5
Manch. Aran 1;11–2;10 33 340 2,194 (419) 8,168 (996) 77.3
Manch. Becky 2;0–2;11 33 338 1,787 (424) 4,335 (638) 75.8
Manch. Carl 1;8–2;8 33 364 4,392 (410) 4,206 (516) 71.0
Manch. Domin 1;10–2;10 35 363 467 (147) 4,752 (532) 81.9
Manch. Gail 1;11–2;11 34 362 1,145 (386) 4,404 (870) 79.1
Manch. Joel 1;11–2;10 35 339 1,429 (402) 4,694 (846) 78.1
Manch. John* 1;11–2;10 32 338 2,081 (363) 4,561 (753) 71.1
Manch. Liz* 1;11–2;10 34 338 1,632 (348) 3,716 (624) 70.8
Manch. Nic 2;0–3;0 33 362 936 (279) 5,312 (850) 71.9
Manch. Ruth 1;11–2;11 33 367 928 (226) 5,377 (696) 81.5
Manch. Warr* 1;10–2;9 33 340 2,901 (438) 6,748 (833) 73.0
Prov. Alex* 1;4–3;5 51 759 1,706 (367) 6,618 (1,063) 77.7
Prov. Ethan 0;11–2;11 50 731 1,750 (570) 10,299 (1,225) 79.3
Prov. Lily 1;1–4;0 80 1,067 3,425 (864) 19,077 (2,287) 80.7
Prov. Naima* 0;11–3;10 85 1,062 5,710 (1,030) 18,478 (1,880) 76.9
Prov. Violet 1;2–3;11 51 1,014 1,325 (428) 6,562 (1,315) 76.0
Prov. William 1;4–3;4 44 733 1,332 (355) 6,164 (952) 76.1
Sachs Naomi 1;2–4;9 65 1,304 1,472 (438) 2,784 (634) 71.9
Speech. Speech.* 0;9–2;1 419 488 4,281 (448) 196,331 (6,212) 71.0
Suppes Nina* 1;11–3;3 48 489 6,367 (704) 11,830 (878) 70.1
Thomas Thomas* 2;0–5;0 376 1,076 18,989 (1,870) 110,720 (3,958) 85.5

Table 1: Age range, type and token counts and other properties of corpora analyzed. Counts

reflect a data preparation in which only singular nouns are retained and the last noun of

any automatically-identified sequence of nouns is assumed to be the head (”Singulars-LN”).

Starred children meet the model’s convergence criterion in the main analysis (n=11). Child

% After Filter indicates the proportion of tokens retained after the application of repetition

and imitation filters similar to those used in Yang (2013).
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CLAN LN FN
Transcript Child Speaker Precision Recall Precision Recall Precision Recall

First

Alex
Child — — — — — —

Caregiver 0.93 0.95 0.95 0.90 0.93 0.88

Eve
Child 0.80 1.00 1.00 1.00 1.00 1.00

Caregiver 1.00 0.97 0.91 0.91 0.91 0.91

Warr
Child 1.00 1.00 1.00 1.00 0.92 0.92

Caregiver 1.00 1.00 0.96 0.96 0.93 0.93

Last

Alex
Child 0.95 0.95 0.76 0.94 0.67 0.70

Caregiver 0.94 0.93 0.84 0.88 0.75 0.79

Eve
Child 0.94 0.94 0.93 0.93 0.93 0.87

Caregiver 0.85 0.92 0.92 0.96 0.92 0.88

Warr
Child 0.59 0.78 0.92 0.94 0.81 0.83

Caregiver 0.80 0.89 0.94 0.94 0.84 0.84

Table 2: Performance of the three automated extraction pipelines compared to gold-

standard human annotations for six corpus samples. Recall, the proportion of

determiner+noun pairs found by the extraction scripts out of those found by human

annotators, reflects the completeness of the extraction method. Precision, the proportion

of determiner+noun pairs that were found by human annotators out of those found by

the extraction script, reflects the number of false positives. Alex (the child) had no

determiner+noun pairs in his first transcript.

2013. Imputation data for the Manchester datasets from the CLAN pipeline are from

Manchester alone; for the LN and FN pipeline both British English datasets (Manchester

and Thomas) were used. Dialectal differences and conflicting orthographic conventions

motivated this decision to maintain separate counts for the imputation. Counts used in

the Speechome dataset are from that dataset alone. The imputed caregiver count for each

noun is defined as bp(n)rdc, where p(n) the probability of that noun in the relevant

dataset (normalized by the total number of nouns), r is the daily rate of caregiver

determiner+noun tokens (here 822), and d is the child age in days.

The coverage provided by the Speechome Corpus allows for an evaluation of the

estimated daily rate of determiner+noun pairs used in the imputation step. Given a rate
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Figure 3. : The observed daily rate of caregiver determiner+noun tokens from the

Speechome corpus (blue) is slightly lower than the rate of 822 tokens per day used in

the imputation of adult data (marked in red). Loess lines for child and caregiver speech

have a span of .67.

of 15 million total words of input per year (Hart & Risley, 1995; Mehl et al., 2007) and 20

determiner+noun pairs per 1,000 words in the Switchboard Corpus (Godfrey et al., 1992),

we estimated that a child hears 822 determiner+noun pairs per day. Daily totals of

caregiver tokens from Speechome are higher than this estimate (Figure S3). Given that

the Speechome corpus is thought to contain approximately 50% of the daily experiences of

the target child (∼70% captured, of which ∼70% of the determiner+noun tokens have

been annotated), an average of 480 recorded tokens per day corresponds to approximately

960 total determiner+noun tokens per day. We retain the 822 tokens per day as a more

conservative estimate.

Additional Analyses of the Speechome Corpus. One potential issue in this particular

source data is a bias in the assignment of determiner labels on the annotation process.

Portions of the audio from the Speechome dataset were periodically assigned and
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transcribed by multiple annotators, providing a way to assess the quality of the

annotations in this dataset. Each speech segment has a primary transcript, but may also

have a list of alternate transcripts. These alternates can be used to assess quality by

computing inter-annotator agreement, the degree to which multiple annotators

independently produce the same transcript for a speech segment.

Our analyses are based on a probabilistic model of determiner choice and are thus

robust to some level of annotation error. However, we wished to determine if there are

biases in annotation errors in that a strong bias in determiner classification toward one of

the two determiners could artificially inflate ν. Determiner classification can be technically

challenging for automated methods and human annotators alike because it involves

distinguishing between highly similar, phonetically reduced segments in fluent speech.

Both human annotators and automated methods can take advantage of high-level cues to

infer a determiner identity different than that present in the audio signal. Since our main

concern here is the child’s use of determiners, we selected the subset of child speech

segments used in our analyses where alternates were available.

Each alternate transcript is first coded as having either none, “a”, “the”, or both

determiners present. The latter “both” category is required, since in some cases a

transcript contains both determiners and it is not always possible to align the determiner

to the same target noun used in the primary transcript. The primary transcript, on the

other hand, is labeled with the determiner that was linked to the target noun in our

analysis (but note that a primary transcript containing multiple determiner+noun pairs

may enter into this accuracy calculation multiple times with both “a” and “the” labels.)

For a speech segment with k > 0 alternates, the counts across the above four categories

are accumulated, including the primary transcript category, and normalized by the total

number of transcripts k + 1. These count vectors are grouped by the primary determiner

label, accumulated, and again normalized to yield a confusion matrix shown in Table 3.
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Primary Label None “the” “a” Both Total Segments

“the” .22 .74 .03 .00 353
“a” .28 .03 .67 .03 137

Table 3: Determiner annotation agreement scores for speech segments with multiple

transcripts in the Speechome dataset.

The vast majority of alternates agree with the determiner label on the primary

transcription; the discrepancies are largely cases where the determiner is dropped.

Crucially, there are very few confusions between “the” and “a”, and there is no evidence of

bias either to switch “the” labels to “a” labels or to switch labels in the opposite direction.

Misclassifications remain symmetric over time while the monthly rate of misclassifications

decreases with age. This lends support to the analyses and conclusions based on this data.

A second potential issue—in this case also specific to the Speechome dataset given

its reliance on automated speaker identification—is the erroneous assignment of caregiver

determiner+noun tokens to the child and vice versa. Low precision in automated speaker

identification, corresponding to the attribution of caregiver determiner+noun tokens to

the child, would inflate the child’s ν estimate. To address this concern, two of the

co-authors (MCF and BCR) assessed the accuracy of the speaker identification of all child

determiner+noun tokens from the Speechome dataset using clips of the original audio

data. Of 9,898 machine-identified determiners attributed to the child, 6,875 were

confirmed by manual review (Cohen’s κ = 0.979; discrepancies were resolved by

discussion). Of these 6,875 tokens, 2,594 were excluded in the LN treatment, and 2,664 in

the FN treatment because of determiners without corresponding nouns (i.e. from

reformulations), fragmented words, or out-of-vocabulary words. For Speechome,

utterances from all adult speakers were aggregated into a single “caregiver” speaker (14%

from father, 18% from the mother, 14% from the nanny, 39% attributed to multiple adult
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Figure 4. : Posterior distribution of ∆ν for all children under all data preparations, 1:

Complete-FN, 2: Complete-LN, 3: Complete-CLAN, 4: Lemmatized-CLAN, 5: Singulars-

FN, 6: Singulars-LN (the data preparation presented in the main text), 7: Singulars-

CLAN . Children are ordered by the mean age of their first interval under the singulars-LN

treatment; color indicates the corpus. Vertical lines, from longest to shortest indicate the

median of the posterior, the 95% HPD, and the 99% HPD. Points indicate the 99.9% HPD.

speakers, and 13% unsure).

Results

Model Convergence. All split-half models converged. Most sliding window models

converged (minimum of 267 out of 279 models, in the Complete-LN data preparation).

Predicted vs. Empirical Overlap. Overlap predicted by forward sampling from our

model is presented in Table S4. For each data preparation, we performed a Wilcoxon rank

sum test comparing the empirical overlap with the overlap computed over forward-sampled

det+noun tokens. In no condition did the rank sum test reach significance.



14

Current Model

Data Preparation r RMSE < 30 mo. > 30 mo.

(1) Complete-FN 0.947 0.024 0.023 0.025

(2) Complete-LN 0.941 0.025 0.027 0.024

(3) Complete-CLAN 0.957 0.027 0.027 0.027

(4) Lemmatized-CLAN 0.958 0.032 0.032 0.032

(5) Singulars-FN 0.960 0.028 0.028 0.027

(6) Singulars-LN 0.954 0.029 0.032 0.026

(7) Singulars-CLAN 0.961 0.034 0.036 0.032

Table 4: Pearson’s r and root mean squared error for the current model on the split-half

data.

Imitation and Repetition Filters for Data. Yang (2013) excluded from analysis child

determiner+noun tokens if they were tagged as imitations of the parental speech, as well

as within-utterance repetitions by the child. For example, the second instance of “a

puzzle” would be discarded if the child said “a puzzle, a puzzle;” if the parent had said “a

puzzle” in the preceding utterances both would be discarded. A high proportion of

repetition and imitation of parental speech on the part of the child could mask initial

productivity. On the other hand, such behavior can also be interpreted as genuinely

reflecting the child’s knowledge at that point, in which case excluding such instances from

the analysis constitutes an artificial thinning of the data. Constructivist positions assert

that the prevalence of rote repetition is itself an important characteristic of children’s

early speech, rather than noise that must be filtered out to discover some underlying

knowledge state (Lieven et al., 2009; Pine & Lieven, 1997). Additionally, imitative and

non-imitative uses are hard to distinguish in the real world. Conventions of joint reference

in English often lead to cases where two adults use the definite determiner with a noun to
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refer to some salient discourse referent; to say that one adult speaker imitates the other in

such cases is notably problematic.

We chose not to apply this same filter in our primary analysis in that we consider it

to be overly conservative for the reasons outlined above, but we report here the results

following an approximation to the data preparation in Yang (2013). Because some

CHILDES datasets are not annotated with imitation tags and others may follow different

classification convention for imitative vs. non-imitative speech, we applied a uniform filter

based on repetition of identical tokens in successive utterances. For CHILDES datasets, a

child determiner+noun token was omitted from the analysis if it was used by a caregiver

in one of the three immediately preceding caregiver utterances in the same file. CHILDES

datasets generally lack timestamps, so this method may erroneously exclude child tokens

that follow long intervals without annotated material. The Speechome dataset includes

high-resolution temporal information that allows for the application of a more fine-grained

filter, in which a token was omitted if it occurred within 15 seconds of a caregiver use or

another instance of a child use. The proportion of tokens omitted through these filters

ranges from 15-30%, with a strong inverse relationship between mean age and the

proportion of tokens omitted (see the rightmost column in Table 1).

Crucially, the results of our analysis with these filters are consistent with those

presented in the main analysis, though confidence intervals for the estimates are

substantially wider (compare Figures 3 and S5). For the Singulars+LN data preparation,

only Naima from the Providence corpus reaches the convergence criteria used in the main

analysis of 99.9% HPDs for ν in the interval [0,3] in both the first and second half of

tokens. Only five children reach convergence when the criteria are weakened to include

children with 99.9% HPDs for ν in the interval [0,9]

These children (Speechome, Eve and Adam from the Brown Corpus, Naima from

the Providence Corpus, and Thomas) exhibit similar changes in ν from the first to the
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second period as in the primary analysis, revealing an overall similar pattern of change

(Figure S6). In that HPD intervals are significantly wider, in no case can we reject the

null hypothesis of no change between developmental time periods (the decrease for

Thomas is marginally significant, however, with no change outside of the 90% HPD). For

all children, ν estimates are higher than those reported in the main analysis, suggesting

that including repetitions and imitations does indeed produce lower productivity

estimates; however, the time-related trends remain robust. We obtain similarly high

correlations between predicted and observed overlap (.961–.976 across data preparations),

suggesting that this model is equally appropriate for imitation- and repetition- filtered

datasets as for unfiltered datasets.
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Figure 5. : Posterior estimates for change in productivity between first and second half

of childrens corpora (∆ν) after applying repetition and imitation filters similar to those

used in Yang (2013). Longest horizontal lines indicate the median of the posterior, and

shorter horizontal lines the 95% HPD. Points indicate the 99.9% HPD. The remainder of

the children (n=22) are omitted on the basis of poorly constrained posteriors relating to

small sample sizes (99.9% HPD for ν exceeding [0,9] for either time period).
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Figure 6. : The inferred developmental trajectory for determiner productivity, ν, across

children reaching the convergence criterion after imitations and repetitions are filtered out

(n = 5). Each line shows a two-point productivity trajectory for a single child, plotted

by age in months. Marker size corresponds to the number of child tokens used for each

child. Gray horizontal lines indicate the temporal extent of the tokens used to parameterize

the model at each point; vertical lines indicate the SD of the posterior. The best fitting

quadratic trend is shown as a dashed black line.
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