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2. SDP Relaxations for Quadratic Programming

• LQR with binary inputs

• Boolean optimization

• Primal and dual SDP relaxations

• Interpretations

• Examples

• S-procedure
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LQR with Binary Inputs

Consider the discrete-time LQR problem

minimize ‖y(t)− yr(t)‖2 subject to

{
x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t)

where yr is the reference output trajectory, and the input u(t) is constrained
by |u(t)| = 1 for all t = 0, . . . , N .

An open-loop LQR-type problem, but
with a bang-bang input.
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LQR with Binary Inputs (continued)

The objective ‖y(t)− yr(t)‖2 is a quadratic function of the input u:



y(0)
y(1)
y(2)

...
y(t)




=




0 0 0 . . . 0
CB 0 0 . . . 0
CAB CB 0 . . . 0
. . . . . . . . . . . . ...

CAtB CAt−1B . . . CB 0







u(0)
u(1)
u(2)

...
u(t)




So the problem can be written as:

minimize

[
u
1

]T [Q r

rT s

] [
u
1

]

subject to ui ∈ {+1,−1} for all i

where Q, r, s are functions of the problem data.

This is a quadratic boolean optimization problem.
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Boolean Minimization

A classic combinatorial problem:

minimize xTQx

subject to xi ∈ {−1, 1}

• Examples: MAX CUT, knapsack, LQR with binary inputs, etc.

• Can model the constraints with quadratic equations:

x2
i − 1 = 0 ⇐⇒ xi ∈ {−1, 1}

• An exponential number of points. Cannot check them all!

• The problem is NP-hard (even if Q º 0).

Despite the hardness of the problem, there are some very good approaches...
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SDP Relaxations

minimize xTQx

subject to x2
i − 1 = 0

The Lagrangian function:

L(x, λ) = xTQx−
n∑

i=1

λi(x
2
i − 1) = xT (Q− Λ)x + trace Λ

For the Lagrangian to be bounded below, we require Q− Λ º 0.

The dual is therefore an SDP:

maximize trace Λ

subject to Q− Λ º 0

From this SDP we obtain a primal-dual pair of SDP relaxations
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SDP Relaxations

minimize xTQx

subject to x2
i = 1

minimize traceQX
subject to X º 0

Xii = 1

maximize trace Λ
subject to Q º Λ

Λ diagonal

• We derived them from Lagrangian and SDP duality

• But, these SDP relaxations arise in many other ways

• Well-known in combinatorial optimization, graph theory, etc.

• Several interpretations
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SDP Relaxations: Dual Side

Gives an easy, “provable” underestimator of the objective function.

maximize trace Λ

subject to Q º Λ

Λ diagonal

Directly provides a lower bound on the objective: for any feasible x:

xTQx ≥ xTΛx =

n∑

i=1

Λiix
2
i = trace Λ

• The first inequality follows from Q º Λ

• The second equation from Λ being diagonal

• The third, from xi ∈ {+1,−1}
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SDP Relaxations: Primal Side

The original problem is:

minimize xTQx

subject to x2
i = 1

Let X := xxT . Then

xTQx = traceQxxT = traceQX

Therefore, X º 0, has rank one, and Xii = x2
i = 1.

Conversely, any matrix X with

X º 0, Xii = 1, rankX = 1

necessarily has the form X = xxT for some ±1 vector x.
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Primal Side (continued)

Therefore, the original problem can be exactly rewritten as:

minimize traceQX

subject to X º 0

Xii = 1

rank(X) = 1

Interpretation: “lift” to a higher dimensional space, from Rn to Sn.

Dropping the (nonconvex) rank constraint, we obtain the relaxation.

If the solution X has rank 1, then we have solved the original problem.

Otherwise, rounding schemes to project solutions. In some cases, approxi-
mation guarantees (e.g. Goemans-Williamson for MAX CUT).
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minimize traceQX
subject to X º 0

Xii = 1

maximize trace Λ
subject to Q º Λ

Λ diagonal

• Dual relaxations give certified bounds.

• Primal relaxations give information about possible feasible points.

• Both are solved simultaneously by primal-dual SDP solvers
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Example

minimize 2x1x2 + 4x1x3 + 6x2x3

subject to x2
i = 1

The associated matrix is Q =




0 1 2
1 0 3
2 3 0


. The SDP solutions are:

X =




1 1 −1
1 1 −1
−1 −1 1


 , Λ =



−1 0 0

0 −2 0
0 0 −5




We have X º 0, Xii = 1, Q− Λ º 0, and

traceQX = trace Λ = −8

Since X is rank 1, from X = xxT we recover the optimal x =
[
1 1 −1

]T
,
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We can visualize this (in 3× 3):

X =




1 p1 p2
p1 1 p3
p2 p3 1


 º 0

in (p1, p2, p3) space.
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When optimizing the linear objective function

traceQX = 2p1 + 4p2 + 6p3,

the optimal solution is at the “vertex” (1,−1,−1).
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We can solve SDP relaxations of boolean QPs for problems of fairly large
size (approx. 500 vars with interior point, 5000+ with special techniques).

Random example in 50 vars, computation time is around 1.5 sec.
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SDP lower bound: −476.3198. G-W expected value: −352.9414.
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A General Scheme

Boolean Minimization

Relaxed X Dual-Bound ¤
SDP

Duality

Primal
Relaxation

Lagrangian
Duality

• The “relaxed” X suggests candidate points.

• The diagonal matrix Λ certifies a lower bound.

Ubiquitous scheme in optimization (convex hulls, fractional colorings, etc. . . )
We will learn systematic ways of constructing these, and more. . .



2 - 15 SDP Relaxations for Quadratic Programming P. Parrilo and S. Lall, ECC 2003 2003.09.02.03

LQR with Binary Inputs (continued)

minimize

[
u
1

]T [Q r

rT s

] [
u
1

]

subject to ui ∈ {+1,−1} for all i

for some matrices (Q, r, s) function of the problem data (A,B,C,N).

An SDP dual bound:

maximize trace(Λ) + µ

subject to

[
Q− Λ r

rT s− µ

]
º 0, Λ diagonal

Let q∗, q∗ be the optimal value of both problems. Then, q∗ ≥ q∗:
[
u
1

]T [Q r

rT s

] [
u
1

]
≥
[
u
1

]T [
Λ 0
0 µ

] [
u
1

]
= trace Λ + µ
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LQR with Binary Inputs (continued)

maximize trace(Λ) + µ

subject to

[
Q− Λ r

rT s− µ

]
º 0, Λ diagonal

Since (Λ, µ) = (0, 0) is always feasible, q∗ ≥ 0.

Furthermore, the bound is never worse than the LQR solution obtained by
dropping the ±1 constraint, since

Λ = 0, µ = s− rTQ−1r

is a feasible point.

Example:

N LQR cost SDP bound Bang Bang
10 14.005 15.803 15.803
15 15.216 16.698 16.705
20 15.364 16.905 16.927
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The S-procedure

A sufficient condition for the infeasibility of quadratic inequalities:

{x ∈ Rn | xTAix ≥ 0}

Again, a primal-dual pair of SDP relaxations:

X º 0
traceX = 1

traceAiX ≥ 0

∑
i λiAi ¹ −I

λi ≥ 0

The basis of many important results in control theory.
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Structured Singular Value

• A central paradigm in robust control.

• µ is a measure of robustness: how big
can a structured perturbation ∆ be,
without losing stability.

∆

M

xy

Do the loop equations admit nontrivial solutions?

y = Mx, y2
i − x2

i ≥ 0

Applying the standard SDP relaxation:
∑

i

di(y
2
i − x2

i ) = xT (MTDM −D)x < 0, D = diag(di), di ≥ 0

We obtain the standard µ upper bound:

MTDM −D ≺ 0, D diagonal, D º 0


