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Model Validation

• Model validation provides a way to assess the quality of a proposed model.

• Previous work e.g. in the robust control paradigm (Doyle, Dullerud, Poolla, Smith,

and others).

• However, “model validation” is a misnomer : it is impossible to validate a model.

Its proper role is to invalidate a model.

• Invalidating a model serves several purposes, e.g.:

– Pointing out the inadequacy of a model in explaining an observed behavior

– Showing that a priori information on the parameters is inconsistent with some

experimental results

– For finding a parameter range which may be consistent with the experimental

results.
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Basic Model Validation Setting

• Nonlinear model:

ẋ(t) = f(x(t), p, t),

where x(t) ∈ Rn is the state and p ∈ P ⊆ Rm is the parameter.

• Some measurements are performed with the real system, indicating that

x(0) ∈ X0, x(T ) ∈ XT , and x(t) ∈ X for all t ∈ [0, T ]

• X0, XT and X are sets in Rn, and necessarily X0, XT ⊆ X .

• We use sets as X0 and XT for handling measurement uncertainty .

• Information on X may come from the experiment, or from a priori knowledge

about the system.
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Problem Statement

• Given the model ẋ = f(x, p, t), parameter set P , and trajectory information

{X0, XT , X}, provide a proof that the model and its parameter set are incon-

sistent with the trajectory information.

• That is:

Prove that for all possible parameter p ∈ P , the model cannot produce a trajec-

tory x(t) such that

x(0) ∈ X0,

x(T ) ∈ XT ,

x(t) ∈ X ∀t ∈ [0, T ].



CDC 2003 6

• Traditional approaches for solving this problem include exhaustive simulation

with many p and x(0) sampled randomly from P and X0.

• Indeed simulation (possibly after parameter fitting) is a good way for proving that

a model can reproduce some behaviors of the system.

• However, for proving inconsistency, the required number of simulation runs soon

becomes prohibitive.

• Moreover, a proof by simulation alone is never exact.

• With our method, we can prove inconsistency without running simulation, and

the proof is exact.
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Invalidation using Barrier Certificates

• Theorem: Suppose that there exists B(x, p, t) — a barrier certificate — such

that the following two conditions hold:

B(xT , p, T )−B(x0, p, 0) > 0 ∀xT ∈ XT , x0 ∈ X0, p ∈ P,

∂B

∂x
f(x, p, t) +

∂B

∂t
(x, p, t) ≤ 0 ∀t ∈ [0, T ], x ∈ X, p ∈ P.

Then, the model ẋ = f(x, p, t) and parameter set P are inconsistent with

{X0, XT , X}.
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Example 1

• Consider the model ẋ = −px3, with X = R and p ∈ P = [0.5, 2].

• The measurement data are X0 = [0.85, 0.95] and XT = [0.55, 0.65] at

T = 4.

• We found the following barrier certificate, which proves inconsistency.

B(x, t) = 8.35x + 10.4x2 − 21.5x3

+ 9.86x4 − 1.78t + 6.58tx

− 4.12tx2 − 1.19tx3 + 1.54tx4.
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Computational Methods

• Similar to the case of Lyapunov functions, construction of barrier certificates is

generally not easy.

• However, if the vector field is polynomial and the parameter and data sets are

semialgebraic, sum of squares techniques can be directly used in this construc-

tion.

• More concretely, consider ẋ = f(x, p, t) with f being a polynomial.

Assume that P is defined as P = {p ∈ Rm : gP (p) ≥ 0}, where gP (p) is a

vector of polynomials. Define X0, XT , and X in a similar manner.
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• Proposition: Let the model and the various set descriptions be given. Suppose

there exist a polynomial B(x, p, t), a positive number ε, and vectors of sums of

squares M ’s and N ’s such that

B(xT , p, T )−B(x0, p, 0)− ε−MT
P (·)gP (·)−MT

X0
(·)gX0(·)−MT

XT
(·)gXT (·)

and

− ∂B

∂x
f(x, p, t)− ∂B

∂t
(x, p, t)−NT

P (·)gP (·)−NT
X(·)gX(·)−Nt(·)(Tt− t2)

are sums of squares. Then the solution B(x, p, t) satisfies the required condi-

tions, and therefore it is a barrier certificate.

• This can be solved using semidefinite programming, e.g. with the help of the

software SOSTOOLS.
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Extension: Three or More Measurements

• For brevity and w.l.o.g., assume now that measurements are performed at

t = 0, 1, 2, indicating that

x(0) ∈ X0, x(1) ∈ X1, x(2) ∈ X2.

• A direct, computationally less expensive way for invalidation is to consider the

measurements pairwise.

• Unfortunately, it may give conservative results, because each pair of measure-

ments may be consistent with the model, while the three measurements consid-

ered simultaneously yield inconsistency.
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Example 2

• Consider the system ẋ = −px3, with p ∈ P = [1, 4], and X = R.

• Let X0 = [0.85, 0.95], X1 = [0.55, 0.65], X2 = [0.2, 0.3].

• Pairwise test will not be able to invalidate the model. In fact, each pair is consis-

tent with the model.
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Extended Method

• To avoid this conservatism, we need to take into account two factors:

– two trajectory segments involved in

this setting are generated using the

same parameter.

– there is a coupling between the two

trajectory segments, namely

lim
t→1−

x(t) = lim
t→1+

x(t) = x(1).
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

x



CDC 2003 14

• Use a model that captures the evolution of both segments simultaneously.

˙̃x = f̃(x̃, p, t) =


 f(x̃1, p, t)

f(x̃2, p, t + 1)


 ,

where x̃ = (x̃1, x̃2), and x̃1, x̃2 ∈ Rn are the first and second segments.

• Also ask that x̃1(1) = x̃2(0).

• Theorem: Suppose there exists B̃(x̃, p, t) such that

B̃(x̂1, x̂2, p, 1)− B̃(x̂0, x̂1, p, 0) > 0 ∀x̂i ∈ Xi, p ∈ P

∂B̃

∂x̃
f̃(x̃, p, t) +

∂B̃

∂t
(x̃, p, t) ≤ 0 ∀t ∈ [0, 1], x̃ ∈ X2, p ∈ P.

Then the model and its parameter set P are inconsistent with the measurement

data. Moreover, this test is always at least as powerful as the pairwise test.
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Example 2 (Continued)

• The system is ẋ = −px3, with p ∈ P = [1, 4], and X = R.

• X0 = [0.85, 0.95], X1 = [0.55, 0.65], X2 = [0.2, 0.3].

• Using the extended test, a barrier certificate can be found:

B(x̃, t) = 6.81x̃1 − 57.9x̃2 + 13.4x̃2
1 − 50.3x̃1x̃2

+ 94.4x̃2
2 − 3.66t + 2.53tx̃1 + 9.05tx̃2

+ .758tx̃2
1 + 7.25tx̃1x̃2 − 25.9tx̃2

2

• Thus the model and parameter set are inconsistent with the measurement data

{X0, X1, X2}.
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Extension: Model with Constraints

• Consider the following model:

ẋ = f(x, v, p, t),

0 = g(x, v, p, t),

0 ≤ h(x, v, p, t),

0 ≤
∫ T

0
φ(x, v, p, t)dt ∀T ≥ 0,

where v ∈ V ⊆ R` are some auxiliary signals.

• This formulation includes a very large class of models, including differential-

algebraic models, models with uncertain inputs, and models with memoryless

and dynamic uncertainties.



CDC 2003 17

• Theorem: Suppose there exist B(x, p, t) and λ1(x, v, p, t), λ2(x, v, p, t),

λ3(p) such that

B(xT , p, T )−B(x0, p, 0) > 0 ∀xT ∈ XT , x0 ∈ X0, p ∈ P,

∂B

∂x
(·)f(·) +

∂B

∂t
(·) + λT

1 (·)g(·) + λT
2 (·)h(·) + λT

3 (·)φ(·) ≤ 0

∀x ∈ X, v ∈ V, p ∈ P, t ∈ [0, T ],

λ2(·) ≥ 0 ∀x ∈ X, v ∈ V, p ∈ P, t ∈ [0, T ],

λ3(·) ≥ 0 ∀p ∈ P.

Then the model and its associated parameter set inconsistent with the measure-

ment data.
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Extension: Hybrid Model (Sketch)

• Consider the following model:

ẋ = fi(t)(x, p, t),

i(t) = φ(x(t), i(t−)),

where i denotes the modes of the system.

• For a hybrid model like this, a piecewise differentiable barrier certificate can be

used to reduce conservatism:

B(x, p, t) = Bi(t)(x, p, t),

– Bi satisfies the required conditions only inside the invariant of mode i.

– Bj(x, p, t) ≤ Bi(x, p, t) during transition from mode i to mode j.
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Biological Example: Genetic Circuit

• Consider a genetic regulatory circuit consisting of two transcription units in se-

ries.

Gene x1 Gene x2

x1

x1

switch-like 
activation

x2

x2

repression

• The product of the first gene, x1, is a positive transcriptional activator of the sec-

ond gene, and the product of the second gene, x2, is a transcriptional repressor

of the first gene.

• If the activation of the second gene by x1 is highly cooperative, then the reaction

can be modelled as a switch.
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Mathematical Model

• Mathematically, we model the system as a switched system:

ẋ1 =
20u

1 + x2
− kx1, ẋ2 =




−kx2, if x1 < 1,

10− kx2, if x1 ≥ 1,

where u is a signal from some signal transduction pathway.

• We will now do a toy experiment, with the non-hybrid equations

ẋ1 =
20u

1 + x2
− kx1, ẋ2 = 10

xm
1

1 + xm
1

− kx2

as the “real system”, and use them to generate some measurement data.

• When the Hill coefficient m in
xm
1

1+xm
1

is not high enough, a switched model may

be inadequate. Let us choose m = 4.
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A Priori Knowledge

• Assume we know that the parameter ranges are

9.8 ≤ k ≤ 10.2,

1.4 ≤ u ≤ 1.6,

(say that the nominal values are 10 and 1.5).

• We also know possible values of the states:

0 ≤ x1(t) ≤ 4,

0 ≤ x2(t) ≤ 4,

(they can be neither negative nor too large, to be physically meaningful).
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Measurement Data

• Our trajectory data are:

X0 : 0 ≤ x1(0) ≤ 0.1; 0 ≤ x2(0) ≤ 0.1

X3 : 0 ≤ x1(3) ≤ 4; 0.85 ≤ x2(3) ≤ 0.9.

Interpretation:

– The initial conditions are known quite accurately.

– x2(3) is measured, therefore its uncertainty is small.

– x1(3) is not measured. The uncertainty is big.

• We will show that these data cannot be generated by the hybrid model, by con-

structing a barrier certificate.
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Invalidation

• Indeed, a piecewise polynomial barrier certificate can be found, showing that the

measurement data is inconsistent with the hybrid model.

• This indicates that a model with switch is inadequate, and suggests that another

model (e.g. with saturation function) is needed.
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• The barrier certificate acts as a barrier in the space (x1, x2, k, u, t),

separating measurement data from trajectories.
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Conclusions

• We have presented a methodology for invalidation of nonlinear models using

barrier certificates.

• Various sources of uncertainties can be taken into account.

• Construction of barrier certificates can be performed using the sum of squares

decomposition and semidefinite programming.

• Many open research directions.
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