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9. Interpretations, Lifting, SOS and Moments
e Polynomial nonnegativity
e Sum of squares (SOS) decomposition
e Example of SOS decomposition
e Computing SOS using semidefinite programming
e Convexity
e Positivity in one variable
e Background
e Global optimization
e Optimizing in parameter space

e Lyapunov functions
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Interpretations

e So far, we have seen how to compute certificates of polynomial non-
negativity

e As we will see, these are dual SDP relaxations
e We can also interpret the corresponding primal SDPs

e These arise through liftings
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A General Method: Liftings

Consider this polytope in R3 (a zonotope).
It has 56 facets, and 58 vertices.

Optimizing a linear function over this set, re-
quires a linear program with 56 constraints
(one per face).

However, this polyhedron is a three-
dimensional projection of the 8-dimensional

hypercube {z € R®, —1 < z; < 1}.

Therefore, by using additional variables, we
can solve the same problem, by using an LP
with only 16 constraints.

P. Parrilo and S. Lall, CDC 2003 2003.12.07.04
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Liftings
By going to higher dimensional representations, things may become easier:

e “Complicated” sets can be the projection of much simpler ones.

e A polyhedron in R" with a “small” number of faces can project to a
lower dimensional space with exponentially many faces.

e Basic semialgebraic sets can project into non-basic semialgebraic sets.
e Feasible sets of SDPs may project to non-spectrahedral sets.

An essential technique in integer programming.

Advantages: compact representations, avoiding “case distinctions,” etc.
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Example

minimize (z — 3)°

subject to x(x —4) >0

The feasible set is |[—00, 0] U |4, 0o]. Not convex, or even connected.
Consider the lifting L : R — R?, with L(z) = (z,2%) = (x, 7).

Rewrite the problem in terms of the lifted variables.

y

1 x
Ty

e Constraint becomes: y — 4x > 0

e For every lifted point, [ ] = 0.

e Objective is now: y — 6z + 9

We “get around” nonconvexity: interior points are now on the boundary.
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Quadratically Constrained Quadratic Programming

A general QCQP is

- 1T
. 1 1
minimize 5 Q :1:]
NEE

subject to A; ]:O forallz=1,...,m
|z x

The Lagrangian is
117 " 11t
L) =[] (@~ leA) !
1=

so the dual feasible set is defined by semidefinite constraints
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QCQP Dual
The dual is the SDP

and the dual of the dual is
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[ ] e
Lifting

Lifting is a general approach for constructing primal relaxations; the idea is

e Introduce new variables Y which are polynomial in x
This embeds the problem in a higher dimensional space

e Write valid inequalities in the new variables

e The feasible set of the original problem is the projection of the lifted
feasible set
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Lifting QCQP
We have the QCQP

- T
L 1 1
minimize © Q) x]
117 N
subject to A ] =0 foralli=1,....m
X T
11 1117
Use lifted variables Y € S", defined by Y = [x] .

We have valid constraints
Y ~ 0, Y11 =1, rankY =1

Every such Y corresponds to a unique x
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Lifted QCQP
The lifted problem is

minimize trace QY
subject to trace A;)Y =0 foralli=1,...,m
Y >0
Yi1=1
rank Y =1

Again, we can drop the non-convex constraint to obtain a relaxation

This (happens to) give the same as the dual of the dual
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QCQP Interpretation of Polynomial Programs

We can also lift polynomial programs; consider the example

§
minimize Z akajk
k=0
We'll choose lifted variables
-
y= |27

then the cost function is

[ = ap + ary1 + asys + agys + aqy1ys + asyoys + &6y§

a quadratic function of y (many other choices possible)
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QCQP Interpretation of Polynomial Programs

We have the equivalent QCQP
T

aj @2 437 1
. Y1 0 0 % |n
minimize 0
Y2 0 o | (Y2
Y31 L ag| LY3_
subject to Yo — y% = (
Y3 —y1y2 =0

to make the Lagrange dual tighter, we can add the valid constraint

2
Y5 —y1y3 =0

Every polynomial program can be expressed as an equivalent QCQP
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Quadratic Constraints

The above quadratic constraints are

- 17 r - - -

1 0 0 0 0 1
U1 0 0 0—1[ [y _ 0
Y2 00 2 0] [y
y3| |0—=10 0] [ys]
11 o 0—10][1°
U1 0 2 0 0] |y _ 0
Yo —10 0 0f |y
y3] |0 0 0 0] [ys]
117 o0 0 1] [1°
Y1 00 =10} fy1| _ 0
Y9 0—1 0 0 |y
y3| [L O 0 0] [ys]
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Relaxations

P. Parrilo and S. Lall, CDC 2003 2003.12.07.04

We can now construct the SDP primal and dual relaxations of this QCQP

Example

Suppose f = 29 + 422 4+ 1, then the SDP dual relaxation is

maximize t
1 —¢
subject to 0
. 2+ Ao
A3

this is exactly the condition that f — ¢ be sum of squares

0
—2X9
A3
Al

24+ Ao —A3]
A3 A
—2X1 0
0 1
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The Primal Relaxation of a Polynomial Program

Since we have a QCQP, there is also an SDP primal relaxation, constructed
via the lifting

T
=Ll
yl |y
It is the SDP
_CLQ aél 0J22 a,23-
0 0 %
minimize trace (12 Y

0 %
2
_ ag

subject to Y =0
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The Primal Relaxation of a Polynomial Program

This is constructed by

171117t 1 x 22 2°

Yz[l 1T= xz xz = $2x§xzx§
yl 1y X x 9 () P VY

_xg_ _xg_ 23t 20 20

e One may construct this directly from the polynomial program
e Direct extensions to the multivariable case
e The feasible set of Y may be projected to give a feasible set of x

e |f the optimal Y has rank Y = 1 then the relaxation is exact
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[ ] e
Lifting

Higher dimensional representations have several possible advantages
e One may find simpler representations, e.g., polytopes
e Basic semialgebraic sets may project to non-basic ones

e Adding new variables via lifting allows new valid inequalities, which
tightens the dual

e Using polynomial lifting allows more constraints to be represented in

LP or SDP form

e Lifting wraps the feasible set onto a higher dimensional variety; this
tends to map interior points to boundary points
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Outer Approximation of Semialgebraic Sets

The primal SDP relaxation allows us to construct outer approximation of
a semialgebraic set

For example, one can compute an outer approximation of the epigraph

S:{(:):l,xg) | @y > f@l)}

In one variable, the SDP relaxation gives exactly the convex hull, since S
Is contained in a halfspace

{:UERQIaTxgb}
if and only if the following polynomial inequality holds

a1xr + agf(x) < b for all x
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Example: Outer Approximation of the Epigraph

Let's look at the univariate example

1 4

f=5(e =1 = 2)(z - 3)(x - 5)

If y > f(x) then the following SDP

is feasible

— :

! 60 —61 41 ] o\§ ,,,,,,,,,,,,,,,,,,,,,,
y > trace |61 0 —11| X §§ :
41 —11 2 oMM\

' ] NN \
X =0 ‘Zi: %
Xy =2X19 Xy1=1 = N %
X12 = & | 1\ Y —
- S

0 1 2 3 4 5
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Moments Interpretation of the Primal Relaxation

Instead of trying to minimize directly f, we can solve

minimize Ef = f(x)p(x)dx
RTL

subject to p is a probability distribution on R"

e This is a dual problem to minimizing f

e If f has a unique minimum at x(, then the optimal will be a point
measure at I

e Essentially due to Lasserre
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Moments Interpretation of the Primal Relaxation
suppose Yy = [1 Ty xy T ]T then f = ¢!y and

Ef:cTEy

E y is the vector of moments of the distribution

so we have the equivalent problem

minimize CTZ

subject to Z is a vector of moments of y
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Example

Since Eny >~ 0 for any distribution, we have valid inequalities

1] 177 1z vy
E|z| |z|] =E |z 22 xy|l =0
v |y VR

so to find a lower bound z2 4 22y + 3y° we solve the SDP
minimize [1 2 3} z
subject to M =0

21 = Moo, 290 = Myo, 23 = Moo

e This is exactly the primal SDP relaxation; the dual of SOS

e Similar to MAXCUT, where the SDP relaxation may be viewed as a
covariance matrix
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A General Scheme

Polynomial Program

XT
y= %
1:3

QCQP

Lifting
and Valid

Constraints

Lagrangian

Lifting 7117 Relaxation
and | v=| ]}
Relaxation 1LY

Primal SDP Relaxation SDP Dual SDP Relaxation
Moments Duality Sum of Squares

e Primal: the solution to the lifted problem may suggest candidate points
where the polynomial is negative.

e Dual: the sum of squares certifies or proves polynomial nonnegativity.



