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3. Quadratically Constrained Quadratic Programming
e Quadratic programming
e MAXCUT
e Boolean optimization
e Primal and dual SDP relaxations
e Randomization
e Interpretations
e Examples
e LQR with binary inputs

e Rounding schemes
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Quadratic Programming

A quadratically constrained quadratic program (QCQP) has the form
minimize  fy(x)
subject to filz) <0 foralli=1,...,m

where the functions f; : R" — R have the form

filx) = ZCTPZ'ZI? + qZ-T:L‘ + r;

e A very general problem

o If all the f; are convex then the QCQP may be solved by SDP;

but specialized software for second-order cone programming is more
efficient
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Example: LQR with Binary Inputs

Consider the discrete-time LQR problem
minimize ||y(t) — yr(¢)||°  subject to

where 1, is the reference output trajectory, and the input u(t) is constrained
by |u(t)| =1forallt=0,..., N.

T =20 Bang-Bang—-Cost = 16.927000
T T T T

An open-loop LQR-type problem, but = = v =
with a bang-bang input.
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LQR with Binary Inputs

The objective ||y(t) — y-(t)||? is a quadratic function of the input u:

y(0) ] 0 0 0 ... 0} [u(0)
y(1) CB 0 0 ... 0 Ju(l)
y(2)| = |CAB CB 0 ... 0| |u(2)

y(t) CA'B CA™'B ... CB 0| |u(t)
So the problem can be written as:
T
minimize [ ]

U
1 1

subject to  w; € {+1, —1} for all ¢

Q r
rl s

where (), r, s are functions of the problem data.

This is a quadratic boolean optimization problem.
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MAXCUT

given an undirected graph, with no self-loops

o vertexset V={1,...,n}

o
\ \
\ 0
o
oedgesetEC{{i,j}\i,jEV,i;éj} /
o

For a subset S C V/, the capacity of S is the number of edges connecting
a node in S to a node not in S

the MAXCUT problem

find S C V' with maximum capacity

the example above shows a cut with capacity 15; this is the maximum
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Example

a graph with 12 nodes, 24 edges; the maximum capacity cmax = 20

o//.
f o
o
o
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Problem Formulation

the graph is defined by its adjacency matrix

1 if{i,j} e E
0 otherwise

Qij =

and specify a cut S by a vector x € R"

1 fze S
€T =
! —1 otherwise

then 1 — z;2; = 2 if {4, j} is a cut, so the capacity of z is

n n

c(z) = iz Z(l — ;75)Qi;

i=1 j=1
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Optimization Formulation

so we'd like to solve

minimize ZCTQCC

subject to v, €{—-1,1} foralli=1,...,n

call the optimal value p*, then the maximum cut is

] e 1
Cmax:ZZZsz—Zp*

i=1 j=1
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Boolean Optimization

A classic combinatorial problem:
minimize ZCTQCC

subjectto  x; € {—1,1}

e Many other examples; knapsack, LQR with binary inputs, etc.

e Can model the constraints with quadratic equations:

2 —1=0 <= z;€{-1,1}

e An exponential number of points. Cannot check them all!

e The problem is NP-complete (even if () = 0).

Despite the hardness of the problem, there are some very good approaches. . .
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SDP Relaxations

We can find a lower bound via the dual; the primal is

minimize ITQx

subject to %2 —1=0

Let A = diag(\q, ..., An), then the Lagrangian is

n
Lz, \) =21 Qz — Z )\Z(wg —1) =21 (Q — A)z + trace A
1=1

The dual is therefore the SDP

maximize trace A\
subjectto @ — A >0
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SDP Relaxations

From this SDP we obtain a primal-dual pair of SDP relaxations

minimize trace QX maximize trace A\
subjectto X >0 subjectto @ = A
X =1 A diagonal

e We derived them from Lagrangian and SDP duality
e But, these SDP relaxations arise in many other ways
e Well-known in combinatorial optimization, graph theory, etc.

e Several interpretations
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SDP Relaxations: Dual Side
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Gives a simple underestimator of the objective function.

maximize trace\
subjectto () =~ A
A diagonal

Directly provides a lower bound on the objective: for any feasible x:

n
ZETQLE >l Az = Z Amx% = trace A
1=1

e The first inequality follows from () =~ A
e The second equation from A being diagonal

e The third, from x; € {+1,—1}
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SDP Relaxations: Primal Side

The original problem is:
minimize xTQ:U
subject to x; =1
Let X := zzl. Then
T _ T
x- Qx = trace Qxrx” = trace QX

Therefore, X > 0, has rank one, and X;; = :z:ZQ = 1.

Conversely, any matrix X with
X =0, X;=1 rankX =1

necessarily has the form X = zal for some +1 vector .
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Primal Side

Therefore, the original problem can be exactly rewritten as:

minimize trace QX
subjectto X >~ 0
X;; =1
rank(X) =1

Interpretation: /ift to a higher dimensional space, from R" to S".

Dropping the (nonconvex) rank constraint, we obtain the relaxation.
If the solution X has rank 1, then we have solved the original problem.

Otherwise, rounding schemes to project solutions. In some cases, approxi-
mation guarantees (e.g. Goemans-Williamson for MAX CUT).
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Feasible Points and Certificates

minimize trace QX maximize trace\
subjectto X >0 subjectto @ >~ A
X;; =1 A diagonal

e Dual relaxations give certified bounds.

e Primal relaxations give information about possible feasible points.

e Both are solved simultaneously by primal-dual SDP solvers
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Example
minimize 2x1x9 + 4x173 4 61973

subject to :z:,% =1

01 2]
The associated matrix is () = |1 0 3|. The SDP solutions are:
230
11 —1] —1 0 0]
X = 1 1-1}, A= 0-=-2 0
-1 -1 1] 0 0 -5

We have X >0, X;; =1, Q@ —A >0, and
trace QX = trace A\ = —§

Since X is rank 1, from X = za! we recover the optimal z = [1 1 —1}T,
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Spectrahedron

We can visualize this (in 3 x 3):

1 p1 po
X = D1 1 3 > ()

p2 p3 1]

in (p1,p2,p3) space.

When optimizing the linear objective function
trace QX = 2p1 + 4py + 6p3,

the optimal solution is at the vertex (1, —1,—1).
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Primalization
After solving the SDP for X € S", we'd like to map back to z € {—1,1}"

There may not exist an = € {—1,1}" such that X = zz!

We can interpret this
e algebraically: rank X # 1

e geometrically: X is not a lifted point

We need a procedure for finding a good x given X; called rounding,
primalization, or projection.

This is hard in general, but for MAXCUT good methods are known
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Randomization

Suppose we solve the primal relaxation

minimize trace QX
subject to X =0
X =1 forallz=1,...,n

and the optimal X is not rank 1. Goemans and Williamson developed the
following randomized algorithm for finding a feasible point

o Factorize X as X = VIV, where V = [vl e vn] c R <"

e Then X, = ”UZ-TU]', and since X;; = 1 this factorization gives n vectors
on the unit sphere in R"
e Instead of assigning either 1 or —1 to each vertex, we have assigned

a point on the unit sphere in R" to each vertex
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Randomized Slicing

Pick a random vector ¢ € R", and choose cut

S={ilvig=0}

Then the probability that {z, j} is a cut edge is

angle between v; and v; 1 T
= —arccos v; v;
™ ™
1
= — arccos Xj;
-

So the expected cut capacity is

non
1 1
Csdp-expected = 5 Z Z ;QZ] arccos Xij
i—1 j—1



3-21 Quadratically Constrained Quadratic Programming P. Parrilo and S. Lall, CDC 2003 2003.12.07.01

Randomization (MAXCUT only)

SDP gives an upper bound on the cut capacity

25F

Csdp-upper-bound = Z Z Xij sz |

1=1 7= 1 s}
With a = 0.878, we have i}
a(l — t)g < arccos(t)  forallt e |[—1,1]

So we have

Csdp-upper-bound = S Z Z sz arccos X’L]
1=1 g=1

1

— a Csdp-expected
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Randomization
So far, we have
< 1

® Csdp-upper-bound = ¢ Csdp-expected

e Also clearly ¢gqy expected < Cmax

® And ¢max < Csdp-upper-bound

After solving the SDP, we slice randomly to generate a random family of
feasible points.

We can sandwich the expected value of this family as follows. (o = 0.878)

X Csdp-upper-bound < Csdp-expected < Cmax < Csdp-upper-bound
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Coin-Flipping Approach

Suppose we just randomly assigned vertices to S with probability %; then

n n
1
Ccoinflip-expected — 1 Z Z Qij
i=1 j=1
A trivial upper bound on the maximum cut is just the total number of edges
1 n n
Ctrivial-upper-bound = 9 Z Z Qz’j

i=1 j=1

1
and so Ccoinflip-expected = 2Ctrivial-upper-bound
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Coin-Flipping Approach
We have

® Ccoinflip-expected = 3Ctrivial-upper-bound
® Ccoinflip-expected = Cmax

® Cmax < Ctrivial-upper-bound

Again, we have a sandwich result

1 _
5Ctrivial-upper-bound = Ccoinflip-expected = Cmax < Ctrivial-upper-bound
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Example

e 04 vertices, 126 edges
e SDP upper bound 116
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A General Scheme

Boolean Minimization

Lagrangian

Primal Duality
Relaxation

Relaxed X < Db 7> Dual-Bound A
Duality

e The relaxed X suggests candidate points.

e The diagonal matrix A certifies a lower bound.

Ubiquitous scheme in optimization (convex hulls, fractional colorings, etc. . .)

We will learn systematic ways of constructing these relaxations, and more. . .
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LQR with Binary Inputs
T
minimize “ Y
1 1
subject to  u; € {41, —1} for all 4
for some matrices (@), r, s) function of the problem data (A, B,C, N).

Q r
rl s

An SDP dual bound-

maximize trace(\) + p

— A
subject to @ T g ] >~ 0, A diagonal

r S — [

Let ¢, g« be the optimal value of both problems. Then, ¢* > q,:

T T
[ﬂ Q7 ﬂ > A O] [u] = trace A + 1

u

rl g 1 0 wf (1
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LQR with Binary Inputs

maximize trace(\) + p

— A
subject to ¢ T : ] >~ 0, A diagonal

r s — |

Since (A, 1) = (0,0) is always feasible, g« > 0.

Furthermore, the bound is never worse than the LQR solution obtained by
dropping the 41 constraint, since

A =0, ,uzs—?“TQ_lfr

iIs a feasible point.

N LQR cost  SDP bound Optimal
10| 14.005 15.803 15.803
15 15.216 16.698 16.705
20 15.364 16.905 16.927

Example:
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The S-procedure

A sufficient condition for the infeasibility of quadratic inequalities:
{zeR" | 2l Az >0

Again, a primal-dual pair of SDP relaxations:

X >0
trace X =1
trace A, X > 0

D oiNA =2 =1
A >0

The basis of many important results in control theory.
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Structured Singular Value

A

e A central paradigm in robust control.

e /i is a measure of robustness: how big
can a structured perturbation A be, M
without losing stability.

Do the loop equations admit nontrivial solutions?

y= Mz, y%—mgz()
Applying the standard SDP relaxation:

Z di(y? — 27) = (M DM — D)z < 0, D = diag(d;), d; > 0
1

We obtain the standard p upper bound:

MYDM — D <0, D diagonal, D=0



