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Schedule

Topics

• Convexity and duality

• Algebra and duality

• Applications

• Computation

• Complexity

Guest Speakers

• Lieven Vandenberghe, UCLA Interior-point methods

• Stephen Prajna, Caltech Applications
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Overview

Mathematical and computational theory, and applications to combinatorial,
non-convex and nonlinear problems

• Semidefinite programming

• Real algebraic geometry

• Duality and certificates
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Schedule

• Introduction

• Convexity and Duality

• Quadratically Constrained
Quadratic Programming

• Algebra and Duality

• Linear Inequalities and
Elimination

• Complexity

• The Algebraic-Geometric
Dictionary

• Sums of Squares

• Interpretations, Liftings,
SOS and Moments

• The Positivstellensatz

• Applications

• Semialgebraic Liftings

• Further Applications

• Interior-Point Methods

• Summary
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Optimization Problems

A familiar problem

minimize f0(x)

subject to fi(x) ≤ 0 for all i = 1, . . . ,m

hi(x) = 0 for all i = 1, . . . , p

• x ∈ Rn is the variable

• f0 : Rn→ R is the objective function

• fi : Rn→ R for i = 1, . . . ,m define inequality constraints

• hi : Rn→ R for i = 1, . . . , p define equality constraints
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Discrete Problems: LQR with Binary Inputs

• linear discrete-time system x(t + 1) = Ax(t) + Bu(t) on interval
t = 0, . . . , N

• objective is to minimize the quadratic tracking error

N−1∑

t=0

(
x(t)− r(t)

)T
Q
(
x(t)− r(t)

)

• using binary inputs

ui(t) ∈ {−1, 1} for all i = 1, . . . ,m, and t = 0, . . . , N − 1
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Nonlinear Problems: Lyapunov Stability
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Lyapunov Functions

ẋ = y

ẏ = −4x3 − 2x2y − 15

2
x2 − 4x

• Nonlinear mass-spring system

• Sublevel sets of Lyapunov
function are not convex



1 - 8 Introduction P. Parrilo and S. Lall, CDC 2003 2003.12.07.03

Entanglement and Quantum Mechanics

• Entanglement is a behavior of quantum states, which cannot be ex-
plained classically.

• Responsible for many of the non-intuitive properties, and computa-
tional power of quantum devices.

A bipartite mixed quantum state ρ is separable (not entangled) if

ρ =
∑

i

pi|ψi〉〈ψi| ⊗ |φi〉〈φi|
∑

pi = 1

for some ψi, φi.

Given ρ, how to decide and certify if it is entangled?
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Graph problems

Graph problems appear in many areas: MAX-CUT, independent set, cliques,
etc.

MAX CUT partitioning

• Partition the nodes of a graph in two disjoint
sets, maximizing the number of edges between
sets.

• Practical applications (circuit layout, etc.)

• NP-complete.

How to compute bounds, or exact solutions, for this kind of problems?
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Facility Location

• Given a set of n cities

• We’d like to open at most m facilities

• And assign each city to exactly one facility


