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Abstract. In this paper, we present substantial progress towards formalizing and general-
izing the biologically-motivated pathogenesis signal processing method introduced in 2022 by
Thakkar and Famulare for COVID-19 modeling. In particular, we describe a generalization
of this signal processing method, the accuracy of which relies on having the right notion of
the effective rank of a matrix. Rather than adopting the Roy-Vetterli effective rank (which
was used by Thakkar and Famulare for COVID-19), we introduce an alternative notion of
effective rank and argue that it is the correct notion of effective rank for the purposes of
pathogenesis signal processing. This generalized approach has the potential to be used in
the analysis of other infectious diseases (besides COVID-19) as well as for multipathogen
analysis.

1. Introduction and Motivation – Situational Awareness

Situational awareness (sometimes even at the level of deciding if trends are rising or
falling) is a consistent challenge in infectious disease modeling. Part of the challenge is that
the available data typically address the situation on a variety of levels: individual-level data
like the progression of symptoms are separated in scale from population-level data like time-
series of the number of cases. The aspiration for situational awareness is understanding how
all these pieces fit together in a consistent epidemiology.

In [7], Thakkar and Famulare provide some guiding principles for situational awareness
in the case of COVID-19. One of the key tenets of their paper is the importance of in-
corporating data from a variety of levels in our disease models. As they explain, it is not
enough to only understand the data at one level. If we, for example, look at population-level
data alone, we might get a noisy model that ignores or is even incompatible with important
individual-level biology. However, relating these different levels of data is easier said than
done: It’s sometimes conceptually appealing to build from the ground up (i.e. to try to
obtain a population-level understanding by using individual-level data in conjunction with
an interaction model), but population dynamics are usually poorly constrained by tractable
interaction models. Instead, Thakkar and Famulare develop formal mathematical relation-
ships between population-level data and individual-level data directly, ultimately building a
pathogenesis signal processing approach for COVID-19 modeling.
While Thakkar and Famulare’s work was focused on developing a fast, real-time model

specific to COVID-19, their core pathogenesis signal processing idea has much more general
promise. The goal of this paper is to formalize and generalize the approach introduced in
[7] so that it can be applied to: (1) other infectious diseases (besides COVID-19), and (2)
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Figure 1. The pathogenesis distribution of the time from COVID-19 infection
to symptom onset, characterizing individual-level pathogenesis, estimated in
[4] using data on travel from Wuhan.

situations where we have data for multiple pathogens collected from the same locations,
times, and/or people, where we expect there to be some commonality in the noise observed.

In Section 2, we introduce Thakkar and Famulare’s mathematical relationships between
population- and individual-level data and define a Toeplitz matrix Lπ that can be associated
to a given pathogenesis distribution π(τ). In Section 3, we describe the idea behind Thakkar
and Famulare’s pathogenesis signal processing approach, which relies on a notion of the
effective rank of the matrix Lπ. In Section 4, we define an alternative notion of effective
rank (different than the one used by Thakkar and Famulare for COVID-19 signal processing)
and argue that this alternative notion is the correct notion of effective rank for the purposes
of pathogenesis signal processing. We conclude in Section 5 with some open questions and
directions for future work.

2. Mathematical Relationships Between Individual and Population Levels

In this section, we will start by explaining the intuitive mathematical relationships be-
tween individual- and population-level data as derived in [7]. While derived with COVID-19
in mind, these relationships hold for any infectious disease. We will then combine these rela-
tionships and will analyze the explicit form of the primary operator involved in the resulting
combined relationship.

For individual-level data, we will consider a pathogenesis distribution π(τ), where π(τ) is
the probability that, for an infected individual, the duration between the time of infection
and the time of symptom onset equals τ . This is a typical measurable input; Figure 1 shows
the distribution for COVID-19, as estimated by [4]. We will also consider dE and dI , the
expected durations of the latent and infectious states, respectively. For COVID-19, these
are estimated as dE = 5 and dI = 4 in [6].

For population-level data, we will consider the following values:

• N̂t: the expected number of new infections on day t.
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• Êt: the expected number of people who, on day t, have been exposed and infected
but aren’t yet infectious.

• Ît: the expected number of people who, on day t, are infectious.

To illustrate the distinction between the individual- and population-level data, we will use
blue to indicate individual-level information and red to indicate population-level information
in the offset equations that follow.

2.1. First mathematical relationship. With hats indicating expected values, we have
the following familiar relationships:

Êt =

(
1− 1

dE

)
Êt−1 + N̂t−1(1)

Ît =

(
1− 1

dI

)
Ît−1 +

1

dE
Êt−1(2)

Rearranging these equations and combining the results into vector formulas (where we the
time period of interest ranges over days t = 0, . . . , T ), we get

N̂t−1 = Êt −
(
1− 1

dE

)
Êt−1 =⇒ N̂T−2 = DEÊT−1(3)

Êt−1 = dE

[
Ît −

(
1− 1

dI

)
Ît−1

]
=⇒ ÊT−1 = DI ÎT ,(4)

where the boldface indicates matrices or column vectors, where the subscripts of the column
vectors indicates dimension, and where DE and DI are weighted differencing matrices of
sizes (T − 2)× (T − 1) and (T − 1)× T , respectively. Combining these expressions, we get
that

(5) N̂T−2 = DEDI ÎT

2.2. Second mathematical relationship. Moving forward, we make the assumption that
symptom onset marks the mid-point of the infectious period.1 (In particular, we assume that
everyone who becomes infected becomes symptomatic.) The midpoint assumption implies
that

(6) Ît = dI

t∑
s=1

π(t− s)N̂s =⇒ ÎT−1 = PπN̂T−2

where the (T−1)×(T−2) matrix Pπ has entries (Pπ)t,s = dIπ(t−s), and where π(t−s) = 0
for all t ≤ s (since infection has to happen before infectiousness). To see why this relationship
holds, notice that from a point in time t, π(t − s) represents the probability that a person
who was exposed on day s becomes symptomatic (or, equivalently, is at the mid-point of

their infectious period) on day t. The number dIπ(t− s)N̂s therefore estimates the number

1For diseases in which this assumption is not reasonable, the distribution π(τ) should instead be defined
directly as the probability distribution of the duration between the time of infection and the midpoint of
the infectious period, rather than the duration between the time of infection and the time of symptom
onset. For the purposes of this paper, we will stick with the original definition of π(τ) so that we can easily
cross-reference and pull examples from [7].
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of people who were exposed on day s and are infectious on day t.2 Summing over s therefore
gives an estimate for the total number of people who are infectious on day t.
We will assume that π(τ) → 0 as τ becomes large. In particular, we will assume that

π(τ) = 0 for τ ≥ T − 3. We choose T − 3 specifically merely because it will be a convenient
choice in some calculations later on in the paper, but all we are assuming here is that someone
exposed on day 1 will reach the midpoint of their infectious period on or before day T − 3
(where T is chosen to be plenty large).

2.3. Combining mathematical relationships. Combining (5) and (6), we get that

(7) ÎT−1 = PπDEDI ÎT

whereAπ := PπDEDI is a (T−1)×T matrix. At first this may look like a boring relationship:

If we apply the weighted differencing matrices DI and DE to ÎT and then aggregate with
Pπ, we recover ÎT−1. But for a given pathogenesis distribution π(τ) and consistent latent

and infectious durations dE and dI , only certain time series ÎT satisfy this equation. In other
words, the individual-level data {π(τ), dE, dI} constrains the population-level data Ît via the
intuitive mathematical relationship (7).

2.4. Mathematical details: writing Aπ explicitly and approximating with a Toeplitz
matrix. The goal of this subsection is to derive from ÎT−1 = Aπ ÎT an approximate rela-
tionship

(8) Î′T ≈ A′′
π Î

′
T ,

where Î′T := [Î3 Î4 · · · ÎT−1], and whereA′′
π is a (T−3)×(T−3) Toeplitz matrix (i.e. a matrix

in which the values along any given diagonal are equal). This implies that any reasonable

time series Î′T is necessarily approximately in the nullspace of the Toeplitz operator A′′
π − 1,

where 1 denotes the (T − 3) × (T − 3) identity matrix. This will inform a pathogenesis

signal processing method for reducing noise in models of the population-level time series Î′T ,
defined by the constraints imposed by the individual-level data {π(τ), dE, dI}. In particular,
this signal processing method will utilize the singular value decomposition of the operator
A′′

π − 1 (see Section 3 for more details). (The reason we approximate Aπ with the Toeplitz
operator A′′

π is that a lot more can be said about the singular values of Toeplitz matrices
than the singular values of non-Toeplitz matrices.)

To start, let us explicitly write out the (T −1)×T matrix Aπ. For notational convenience,
set

(9) D1 :=

(
1− 1

dE

)(
1− 1

dI

)
and D2 := 2− 1

dE
− 1

dI
.

Then Aπ can be written as follows:

2This estimate might not work well for diseases with long duration of infection dI .
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dEdI ·



0 0 0 0 0 · · · 0 0

π(1)D1 −π(1)D2 π(1) 0 0 · · · 0 0

π(2)D1 −π(2)D2 π(2) π(1) 0 · · · 0 0
+π(1)D1 −π(1)D2

π(3)D1 −π(3)D2 π(3) π(2)
+π(2)D1 −π(2)D2 −π(1)D2 π(1) · · · 0 0

+π(1)D1

π(4)D1 −π(4)D2 π(4) π(3) π(2)
+π(3)D1 −π(3)D2 −π(2)D2 −π(1)D2 · · · 0 0

+π(2)D1 +π(1)D1

...
...

...
...

...
. . .

...
...

π(T − 2)D1 −π(T − 2)D2 π(T − 2) π(T − 3) π(T − 4) π(2) π(1)
+π(T − 3)D1 −π(T − 3)D2 −π(T − 4)D2 −π(T − 5)D2 · · · −π(1)D2

+π(T − 4)D1 +π(T − 5)D1 +π(T − 6)D1


Here, since π(0) = 0, all of the entries in the first row of Aπ are zero. Additionally, for

any time series, we have Î1 = π(0)N̂1 = 0, meaning the first column of Aπ does not provide
any meaningful information. It follows that the first row and column of Aπ can be removed
without losing any information.

Let us therefore remove the first row and column of Aπ; in addition, let us remove the
last column [0 · · · 0 π(1)]t from Aπ. Call the resulting (T − 2)× (T − 2) matrix A′

π. Then
A′

π satisfies the approximate relationship

(10) [Î2 Î3 · · · ÎT−1]
t ≈ A′

π · [Î2 Î3 · · · ÎT−1]
t.

Here, by removing the last column from Aπ, we are approximating the equation

(11) ÎT−1 = [−π(T − 2)D2 + π(T − 3)D1]Î1 + · · ·+ [π(2)− π(1)D2]ÎT−1 + π(1)ÎT

from the last row of ÎT−1 = Aπ ÎT by

(12) ÎT−1 ≈ [−π(T − 2)D2 + π(T − 3)D1]Î1 + · · ·+ [π(2)− π(1)D2]ÎT−1.

For most pathogenesis distributions, π(1) is very small (since it is typically rare for an
individual to experience a latent infection period of only one day), so this is a reasonable
approximation.

To obtain a square Toeplitz matrix, we will further remove the first row and column of
A′

π (equivalently the second row and column of Aπ), yielding a (T − 3) × (T − 3) matrix
which we’ll call A′′

π. The resulting matrix A′′
π satisfies the approximate relationship

(13) [Î3 Î4 · · · ÎT−1]
t ≈ A′′

π · [Î3 Î4 · · · ÎT−1]
t

Notice that this approximation might not be great for the early values of the time series
(since the removed column adds a more significant term to these equations). However, later



6 PATHOGENESIS SIGNAL PROCESSING USING TOEPLITZ PROPAGATION OPERATORS

in the time series, the removed terms become negligible (since π(τ) quickly approaches zero
as τ becomes large). The matrix A′′

π can easily be seen to be Toeplitz:

dEdI ·



π(2) π(1) 0 0 · · · 0
−π(1)D2

π(3) π(2)
−π(2)D2 −π(1)D2 π(1) 0 · · · 0
+π(1)D1

π(4) π(3) π(2)
−π(3)D2 −π(2)D2 −π(1)D2 π(1) · · · 0
+π(2)D1 +π(1)D1

...
...

...
. . . . . .

...

π(T − 3) π(T − 4) π(T − 5)
−π(T − 4)D2 −π(T − 5)D2 −π(T − 6)D2 · · · · · · π(1)
+π(T − 5)D1 +π(T − 6)D1 +π(T − 7)D1

π(T − 2) π(T − 3) π(T − 4) π(T − 5) π(2)
−π(T − 3)D2 −π(T − 4)D2 −π(T − 5)D2 −π(T − 6)D2 · · · −π(1)D2

+π(T − 4)D1 +π(T − 5)D1 +π(T − 6)D1 +π(T − 7)D1


Here, the entries of A′′

π are given by

(14) (A′′
π)s,t = dEdE(π(s− t+ 2)− π(s− t+ 1)D2 + π(s− t)D1).

Finally, define

(15) Lπ := A′′
π − 1

where 1 denotes the (T − 3)× (T − 3) identity matrix, and set

(16) Î′T := [Î3 Î4 · · · ÎT−1].

Then Lπ is a (T − 3)× (T − 3) Toeplitz matrix such that

(17) Lπ Î
′
T ≈ 0

3. Signal Processing Using the Effective Rank of Lπ

What we have established above is that any realistic time series Î′T should approximately
be in the nullspace of the Toeplitz operator Lπ, which is defined in terms of the pathogenesis
distribution π(τ) of durations between the time of infection and the time of symptom onset.

In other words, a “reasonable” time series ÎT (population-level data) should be in some sense
“compatible” with the pathogenesis distribution π(τ) (individual-level), and the relationship

Lπ Î
′
T ≈ 0 encodes this compatibility condition.

This suggests a powerful pathogenesis signal processing approach for noise reduction in
our models of Î′T . In particular, suppose we have an epi-curve modeling Î′T , built from
some population-level data (e.g. reported case and hospitalization numbers). (A preliminary

model of Î′T using population-level data is typically relatively straightforward to obtain,

since Î′T lives on the population level.) However, an epi-curve built from population-level
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data alone will likely have a lot of noise that is not compatible with individual-level biology.
However, from the relationship Lπ Î

′
T ≈ 0, we know that any reasonable model of Î′T must

approximately live in the nullspace of Lπ. By projecting our epi-curve onto the nullspace of
Lπ, we should therefore expect to obtain a new “smoothed out” curve that both models the
population-level data and is compatible with the individual-level pathogenesis.

An issue remains: Lπ is typically, strictly speaking, a full-rank (or close to full-rank)
matrix, so there’s no well-defined nullspace on which to project the raw epi-curve. This is
because projecting onto the exact nullspace of Lπ is too strict of a requirement: instead
of just checking reasonable compatibility with the individual-level biology, projecting onto
the exact nullspace would remove anything that doesn’t fit exactly with our pathogenesis
distribution. What we need are the right notions of effective rank and effective nullspace
that help us understand when a time series model is close enough to being in the nullspace
of Lπ that it is still reasonably compatible with individual-level biology.

One possible notion of effective rank – introduced by Roy and Vetterli in [5] – entails
viewing the symmetric positive-definite matrix Lt

πLπ as the covariance matrix of a Gaussian
process and calculating the exponential entropy of the resulting Gaussian process:

Definition 1 (Roy-Vetterli effective rank [5]). Let σj(Lπ) denote the j-th singular value
of Lπ, where the singular values are arranged in descending order. Then the Roy-Vetterli
effective rank of Lπ is defined as

(18) reff(Lπ) := exp

(
T−2∑
j=1

(
−σj(Lπ)∑T−2
j=1 σj(Lπ)

· ln

(
σj(Lπ)∑T−2
j=1 σj(Lπ)

)))
.

The idea behind this definition is as follows: since the rank of Lπ equals the number of
nonzero singular values of Lπ, the effective rank of Lπ should equal the number of singular of
Lπ that are statistically distinguishable from zero. The exponential entropy characterizes the
number of uncorrelated degrees of freedom, and therefore gives one way to define/estimate
the number of singular values that are statistically distinguishable from zero.

Example. In [7], Thakkar and Famulare use COVID-19 data on reported cases Ct and hos-
pitalizations Ht from Washington state between January 2020 and March 2021 (spanning
T = 437 days) to construct a compartmental, stochastic process model of COVID-19 infec-
tion rates. This results in a raw epi-curve that is proportional to the number of infectious
people over time (see [7] for the details of the COVID-19 epi-curve construction). Since this
model does not incorporate any individual-level biology, the resulting curve has a lot of noise
arising from phenomena such as weekend effects.

Using the Roy-Vetterli notion of effective rank and the pathogenesis distribution from [4],
Thakkar and Famulare get that reff(Lπ) = 371. With this, they project their raw epi-curve
onto the resulting 66-dimensional effective nullspace, yielding the following smoothed curve:
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Figure 2. The raw epi-curve (black) and the projection of the raw epi-curve
onto the effective nullspace of Lπ (purple), as computed in [7].

While this clearly accomplishes a reduction of noise and demonstrates the power of this
signal processing approach, a concern remains: The Roy-Vetterli effective rank definition
proposed by [5] is very general and the application of the Roy-Vetterli effective rank to
this setting is not very well-motivated. As a result, in doing this projection onto the Roy-
Vetterli effective nullspace, Thakkar and Famulare might be classifying some parts of the
raw epi-curve as noise that should in fact be considered trend (or vice versa). Moreover, as
we will soon see, the singular value distributions of the possible Lπ operators are extremely
structured. This suggests that there should be a way to make a more informed estimate of
the effective rank of Lπ that is more specific to our setting. The next section of this paper
is dedicated to proposing such an alternative notion of effective rank.

4. An Alternative Notion of Effective Rank

In Subsection 4.1, we establish a property that we should expect an appropriate notion
of effective rank to satisfy. In Subsection 4.2, we show that the Roy-Vetterli effective rank
does not satisfy this desired property. Motivated by this discussion, we define an alternative
notion of effective rank in Subsection 4.3; this alternative notion is essentially defined in
terms of an “elbow test” on the graph of the singular value decomposition of Lπ. To help
provide some mathematical rigor and justification for this alternative notion, we discuss the
singular values of Toeplitz matrices (and specifically the singular values of Lπ) in Subsection
4.4. Based on results and observations about these singular values, we formulate our primary
conjecture in Subsection 4.5; if proved, this conjecture would show that this “elbow test”
notion of effective rank has an equivalent mathematically rigorous formulation, and that
this notion of effective rank satisfies the desired property outlined in Subsection 4.1. In
Subsection 4.6, we conclude the section with a discussion of some potential drawbacks to
this alternative notion of effective rank.

4.1. A desired property of the effective rank. Since Lπ is a (T − 3)× (T − 3) matrix,
the last T −3−reff(Lπ) right singular vectors of Lπ form a basis for the Roy-Vetterli effective

nullspace of Lπ. Since any “reasonable” time series Î′T is in the effective nullspace of Lπ, any
such time series can be written as a linear combination of these right singular vectors. We
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should therefore expect that the right singular vectors in the effective nullspace of Lπ are rel-
atively “smooth,” since they are coming from a signal in our biological data; otherwise, they
will contribute to noise in our model. Likewise, we should expect the right singular vectors in
the effective range of Lπ to look “noisy”; otherwise, we might be omitting meaningful data.
Putting this all together, we should expect / hope for the following: the effective rank of
Lπ should delineate between “noisy” and “smooth” right singular vectors (more
commonly called modes).

Example (continued). To see what this looks like in practice, let’s revisit the example
above from [7], where we saw a raw epi-curve modeling COVID-19 cases and its projection
onto Lπ’s Roy-Vetterli effective nullspace. Below we’ve plotted again this epi-curve and
projection, along with some of the modes in the Roy-Vetterli effective nullspace (purple) and
in the Roy-Vetterli effective range (black). As we can see, the purple modes are relatively
“smooth,” while the black modes are relatively “noisy” (as expected).

Figure 3. A COVID-19 epi-curve and projection onto the Roy-Vetterli effec-
tive nullspace of Lπ [7] (top), modes in the effective nullspace of Lπ (middle),
and modes in the effective range of Lπ (bottom).

While these specific modes look as expected, they were sampled from singular value indices
comfortably above and comfortably below where we expect the effective rank to be. There
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Figure 4. (a) the log-normal pathogenesis distribution π(τ) with mean µ =
8.06 and variance σ2 = 18, (b) the singular value distribution of Lπ, and (c)
some of the modes of Lπ.

is a potential “problem area” at singular value indices near where we expect the effective
rank to be. The following subsection aims to answer the following question: How good of
a job does the Roy-Vetterli effective rank do at delineating between “noisy” and “smooth”
modes?

4.2. Testing the Roy-Vetterli effective rank against this desired property. In this
subsection, we look at some example pathogenesis distributions, and see whether the Roy-
Vetterli effective rank provides a good delineation between “noisy” and “smooth” modes.
To start, let’s consider a log-normal pathogenesis distribution π(τ) with mean µ = 8.06
and variance σ2 = 18 (roughly the mean and variance of the distribution proposed in [4]
for COVID-19), shown in Figure 4. In this case, the Roy-Vetterli effective rank of Lπ is
reff(Lπ) = 402. However, we see that there is a clear delineation between “noisy” and
“smooth” modes that occurs around index 330.

Continuing with the log-normal pathogenesis distribution with mean µ = 8.06 and in-
creasing the variance to σ2 = 40, we obtain the plots shown in Figure 5. In this case,
reff(Lπ) = 392. However, there is again a clear delineation between “noisy” and “smooth”
modes that occurs around index 420.
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Figure 5. (a) the log-normal pathogenesis distribution π(τ) with mean µ =
8.06 and variance σ2 = 40, (b) the singular value distribution of Lπ, and (c)
some of the modes of Lπ.

This phenomenon is not unique to log-normal pathogenesis distributions. For example,
we can consider the following mixture sensitivity forward time model proposed in [4]:

(19) π(τ) = αλ

(
µ(τλ)α−1 +

1− µ

Γ(1/α)

)
e−(τλ)α .

Taking µ = 1, α = 2.5, and λ = .11, we obtain the plots shown in Figure 6. In this case,
reff(Lπ) = 410. However, there again appears to be a clear delineation between “noisy” and
“smooth” modes, this time occurring around index 375.

In all of these examples (as well as in plenty more that are not included here), it appears
that the Roy-Vetterli effective rank does not do a good job of delineating between “noisy”
and “smooth” modes, suggesting that it might not be a great notion of effective rank for
our purposes. Fortunately, these examples suggest an alternative notion that might be more
appropriate.

4.3. Defining an alternative notion of effective rank. In all of the examples from
the previous subsection, notice that the plots of the singular value distributions have sharp
“elbows” after which point the singular values quickly drop off. Moreover, this elbow appears
to occur exactly at the point of delineation between “noisy” and “smooth” modes. These
observations suggest an alternative possibility for a definition of effective rank.
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Figure 6. (a) the mixture sensitivity pathogenesis distribution π(τ) with
mean µ = 1, α = 2.5, and λ = .11, (b) the singular value distribution of Lπ,
and (c) some of the modes of Lπ.

Definition 2 (Pathogenesis effective rank). Let π be a pathogenesis distribution with cor-
responding Toeplitz matrix Lπ. Suppose that the singular value distribution of Lπ has an
“elbow” at singular value index j. Then j is the pathogenesis effective rank of Lπ.

3

There is a strong precedent for using “elbow” tests in mathematical optimization, cluster
analysis, and multivariate statistics. In cluster analysis, the “elbow method” is used to
determine a number of clusters at which including another cluster doesn’t provide much
better modeling of the data [1]. In multivariate statistics, “elbows” arising in “Scree plots”
are used to determine the number of factors to retain in an exploratory factor analysis (FA)
or the number of principal components to keep in a principal component analysis (PCA) [2].

However, elbow methods are widely criticized as being subjective and unreliable, especially
in cases where the plot does not appear to have a sharp elbow. Therefore, in order to justify
this “elbow” notion of effective rank, it would be extremely helpful to connect this approach
to something more mathematically rigorous. This is where we will make use of results about
the singular value decompositions of Toeplitz matrices.

4.4. Singular values of Toeplitz matrices. While the Roy-Vetterli effective rank can be
defined for any matrix, recall that Lπ is a Toeplitz matrix (i.e. the values along any given
diagonal of Lπ are equal). The singular values of Toeplitz matrices are very well-studied due
to the wide range of applications of Toeplitz matrices to mathematical modelling problems
where some sort of shift invariance occurs. For example, Toeplitz matrices are used in

3Note that the pathogenesis effective rank is not defined for π such that there is no “elbow” present in
the graph of the corresponding singular value distribution.
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modeling the numerical solutions of certain differential equations, time series analysis, signal
and image processing, Markov chains and queueing theory, and polynomial and power series
computations.

In this subsection, we largely follow [3], which describes a method for studying the singular
values of a Toeplitz matrix in terms of the generating function associated to the Toeplitz
matrix. Given an n×n Toeplitz matrix An, one can define f̂k to be the value along the k-th
diagonal of An (for k = 1− n, . . . , n− 1) and f̂k to be 0 for |k| > n− 1. Then (An)s,t = f̂s−t

(for s, t = 1, . . . , n). The Fourier series

(20) f(x) :=
∞∑
−∞

f̂k · eikx =
n−1∑

k=1−n

f̂k · eikx

is called the generating function of the Toeplitz matrix An. Representing a Toeplitz matrix
by its generating function allows us to use results from calculus and Fourier analysis while
studying its spectrum and singular values.

Remark 1. Note that mathematicians typically define this correspondence in the opposite
order, beginning with a generating function f ∈ L1(−π, π), and defining the associated

Toeplitz matrix An(f) so that (An(f))s,t = f̂s−t (for s, t = 1, . . . , n), where f̂k is the k-th
Fourier coefficient of f :

(21) f̂k =
1

2π

∫ π

−π

f(θ)e−ikθ dθ, k ∈ Z.

This relationship between a Toeplitz matrix and its associated generating function is a
very natural one-to-one correspondence: truncating a Toeplitz matrix corresponds to trun-
cating the associated Fourier series, and taking the product of two Toeplitz matrices also
has an analog on the function side. If the generating function f is real-valued, then the
corresponding Toeplitz matrix is symmetric and several spectral properties are known. If
f is complex-valued (which will be the case for our Toeplitz matrix Lπ), certain properties
about the singular values are known, while the eigenvalues have “wild” behavior in some
cases and regular behavior in other cases.

The paper [3] establishes upper and lower bounds for the singular values of a Toeplitz
matrix in terms of properties of its associated generating function:

Proposition 1 ([3, Corollary 2]). Let f ∈ L1(−π, π) be such that f̂k ∈ R for any integer
k. Let d be the distance of the essential range of f from the complex zero, and let M be the
essential supremum of |f |. Then all of the singular values of An(f) belong to [d,M ] for any
size n.

For Lπ, the associated generating function fπ is a Fourier series with coefficients

(22)

(f̂π)0 = dEdI(π(2)− π(1)D2)− 1

(f̂π)k = dEdI(π(k + 2)− π(k + 1)D2 + π(k)D1) (0 < |k| ≤ T − 4)

(f̂π)k = 0 (|k| > T − 4)

Since π(τ) = 0 for τ ≤ 0, we also get that (f̂π)k = 0 for k ≤ −2, and hence that

(23) fπ(x) =
∞∑
−∞

(f̂π)k · eikx =
T−4∑
k=−1

(f̂π)k · eikx.
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Therefore, we have that

(24) |fπ(x)| =

[ T−4∑
k=−1

(f̂π)k · sin(kx)

]2
+

[
T−4∑
k=−1

(f̂π)k · cos(kx)

]21/2

.

It is not hard to see that this is a continuous 2π-periodic function. Therefore, by the
extreme value theorem, |fπ(x)| has a minimum and maximum value in the interval [0, 2π],
so the phrase “essential supremum” in Proposition 1 can be replaced with “maximum” for
our purposes.

We can prove that the distance d of the essential range of fπ from the complex zero is
always 0. For this, it suffices to show that fπ(0) = 0. To this end, note that we have

fπ(0) =
T−4∑
k=−1

(f̂π)k = −1 + dEdI ·
[
π(1) + π(2)− π(1)D2

+ π(3)− π(2)D2 + π(1)D1

+ π(4)− π(3)D2 + π(2)D1

...

+ π(T − 3)− π(T − 4)D2 + π(T − 5)D1

+ π(T − 2)− π(T − 3)D2 + π(T − 4)D1

]
.

Noting that dEdI(1−D2 +D1) = 1 and recalling that π(τ) = 0 for τ ≥ T − 3, we see that

(25) fπ(0) = −1 +
T−4∑
τ=1

π(τ) = −1 + 1 = 0,

where we have used that π(τ) is a probability distribution. With this, we see that Proposition
1 tells us the following about the singular values of Lπ:

Corollary 1. Let M = max[0,2π](|fπ(x)|). Then all of the singular values of Lπ belong to
the interval [0,M ].

We can verify this by plotting the singular value distribution of Lπ along side the graph
of |fπ(x)| for various pathogenesis distributions π. For consistency, let’s consider again the
examples considered above.

To start, let’s consider the log-normal pathogenesis distribution with mean µ = 8.06 and
variance σ2 = 18, shown in Figure 7. As we can see, the singular values of Lπ indeed fall
between the minimum of |fπ(x)| (i.e. zero) and the maximum of |fπ(x)|. Notice also that
the singular value at which the “elbow” in the graph of the singular value distribution of Lπ

occurs appears to be equal to the value of |fπ(x)| at its local minimum (x = π).4

Next, let’s consider the plots for a log-normal pathogenesis distribution with mean µ = 8.06
and variance σ2 = 40, shown in Figure 8. We again see that the singular values of Lπ fall
between the minimum of |fπ(x)| (i.e. zero) and the maximum of |fπ(x)|. We also again see

4Note that π is being used in two different ways here: as the pathogenesis distribution π(τ) and as the
value π = 3.14.... To stay consistent with convention, we’ll maintain this potentially confusing notation and
hope that the meaning is always clear from context.
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Figure 7. The singular value decomposition of Lπ (left) and the generating
function |fπ(x)| (right) for the log-normal pathogenesis distribution π(τ) with
mean µ = 8.06 and variance σ2 = 18.

Figure 8. The singular value decomposition of Lπ (left) and the generating
function |fπ(x)| (right) for the log-normal pathogenesis distribution π(τ) with
mean µ = 8.06 and variance σ2 = 40.

that the singular value at which the “elbow” in the graph of the singular value distribution of
Lπ occurs appears to be equal to the value of |fπ(x)| at its local minimum. Moreover, there
appears to be another sharp point in the graph of the singular value distribution, roughly
around singular value index 40; the singular value at this index appears to be equal to the
value of |fπ(x)| at one of its local maxima (the one slightly below its global maximum).
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Figure 9. The singular value decomposition of Lπ (left) and the generating
function |fπ(x)| (right) for the mixture sensitivity pathogenesis distribution
π(τ) with µ = 1, α = 2.5, and λ = .11.

Finally, let’s consider the plots for the mixure sensitivity forward time model (19) with
µ = 1, α = 2.5, and λ = .11, shown in Figure 9. Again, the singular values of Lπ fall within
the range of |fπ(x)|, and the “elbow” in the graph of the singular value distribution of Lπ

coincides with the local minimum of |fπ(x)|. There also again appears to be an additional
sharp point in the graph of the singular value distribution, which appears to coincide with
one of the local maxima of |fπ(x)|.

4.5. Our primary conjecture. Based on the discussion in the previous subsection (as well
as numerous other examples not included in this paper), we can formulate the following
conjecture:

Conjecture 1. Let π be a pathogenesis distribution with corresponding Toeplitz matrix Lπ

such that the graph of the singular value distribution of Lπ has an “elbow” at singular value
index j. Then we have the following:

(i) the y-value of the smallest nonzero local minimum of |fπ| equals σj(Lπ);
(ii) at singular value index j, the modes of Lπ switch from “noisy” to “smooth.”

Now, if proved, why would this conjecture be useful? As things stand, our definition
of pathogenesis effective rank (Definition 2) is somewhat subjective: it relies on visually
identifying an “elbow” in the graph of the singular value distribution of Lπ and estimating
(by “eye-balling”) the singular value index at which it occurs. If part (i) of the above
conjecture was proved, we would have the following precise (and not at all subjective) method
for calculating the effective rank of Lπ:

(a) Calculate the roots ri of the derivative of |fπ(x)|.
(b) For each 0 < ri < 2π, calculate |fπ(ri)|, and take the minimum resulting value, m.
(c) The effective rank of Lπ is the cardinality of the set {σj(Lπ) : σj(Lπ) > m}.
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Figure 10. The mixture sensitivity pathogenesis distribution π(τ) with µ =
1, α = 1.97, and λ = .11 (top left), the singular value decomposition of Lπ

(middle left), the generating function |fπ(x)| (bottom left), and some modes
of Lπ (right).

This provides some mathematical rigor that is often lacking in “elbow” test methods.
Additionally, if part (ii) of the above conjecture was proved, we would know for certain

that the pathogenesis effective rank satisfies the desired property that we outlined at the
beginning of this section for a notion of effective rank. This would give strong justification
for using the pathogensis effective rank instead of the Roy-Vetterli effective rank for the
purposes of pathogenesis signal processing (when an “elbow” occurs in the graph of the
singular value distribution of Lπ).

4.6. Potential drawbacks of the pathogenesis effective rank. While the conjecture
in the previous subsection would give strong justification for the use of the pathogenesis
effective rank in pathogenesis signal processing, there are some potential drawbacks to this
notion of effective rank.

4.6.1. “Edge cases” in which the pathogenesis effective rank is not defined. The most signifi-
cant potential drawback is that the pathogenesis effective rank is only defined for pathogen-
esis distributions π(τ) such that the graph of the singular value distribution of Lπ has an
“elbow” (or, equivalently – if Conjecture 1 is true – such that |fπ(x)| has a local minimum).
While most of the log-normal distributions and mixture sensitivity distributions do seem
to yield an “elbow,” there are some examples that lack “elbows.” These examples seem to
be “edge cases” in the sense that slightly modifying the parameters in any direction causes
“elbows” to appear.
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Figure 11. The mixture sensitivity pathogenesis distribution π(τ) with µ =
1, α = 1.97, and λ = .112 (top left), the singular value decomposition of Lπ

(middle left), the generating function |fπ(x)| (bottom left), and some modes
of Lπ (right).

The pathogenesis distribution for COVID-19 introduced in [4] and used in [7] is one of
these “edge case” examples. In particular, for modeling COVID-19, [4] suggests the mixture
sensitivity model (19) with µ = 1, α = 1.97, and λ = .11, shown in Figure 10. As we can see,
the graph of the singular value distribution of Lπ does not contain an “elbow,” and |fπ(x)|
does not have any local extrema besides the global minima at even multiples of π and the
global maxima at odd multiples of π. As we might expect in this situation, there is also no
clear delineation between “noisy” and “smooth” modes.

Next, let’s consider the mixture sensitivity pathogenesis distribution with µ and α un-
changed, and with λ slightly increased to .112, shown in Figure 11. In this case, we still
do not observe any “elbows,” local extrema, or “noisy” modes. However, compared to the
previous set of plots, this graph of the singular value distribution of Lπ appears slightly
closer to having an “elbow,” and the graph of |fπ(x)| appears slightly closer to having local
extrema.

Next, let’s consider what happens when we again leave µ and α unchanged and slightly
increase λ to .114, shown in Figure 12. In this case, we see that there now is something more
“elbow”-like in the graph of the singular value distribution of Lπ near singular value index
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Figure 12. The mixture sensitivity pathogenesis distribution π(τ) with µ =
1, α = 1.97, and λ = .114 (top left), the singular value decomposition of Lπ

(middle left), the generating function |fπ(x)| (bottom left), and some modes
of Lπ (right).

405. There is also now local extrema in the graph of |fπ(x)|, as well as “noisy” modes at
and below singular value index 405.

Similarly, if we instead keep µ and λ as they were originally (µ = 1 and λ = .11) and
slightly decrease α from 1.97 to 1.88, we get the plots shown in Figure 13. This again
looks very similar to our original pathogenesis distribution and would suggest a pathogenesis
effective rank of around 405.

So, by very slightly modifying the starting pathogenesis distribution (in two different
ways), we get two new similar distributions with pathogenesis effective rank ∼ 405. It’s
possible that this alteration/approximation method could be formalized so that the patho-
genesis effective rank could be defined even in cases where “elbows” and local extrema are
not present. In this case, we would have a pathogenesis effective rank of ∼ 405 instead of
the Roy-Vetterli effective rank of 371, meaning we could cut out even more of the noise in
Figure 2 by projecting onto a smaller effective nullspace.

4.6.2. Unexplained “smooth” modes with low singular value index. Another potential draw-
back to the use of the pathogenesis effective rank is that there are occasionally “smooth”
modes with really low singular value index. Since we know that every “reasonable” time
series is necessarily in the effective nullspace of Lπ (which has a basis of modes with high
singular value index), this is not a huge issue. However, based on the intuition we laid out
in Subsection 4.1, a “smooth” mode with low singular value index would be indicative of
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Figure 13. The mixture sensitivity pathogenesis distribution π(τ) with µ =
1, α = 1.88, and λ = .11 (top left), the singular value decomposition of Lπ

(middle left), the generating function |fπ(x)| (bottom left), and some modes
of Lπ (right).

a “signal” that would be cut out by the projection onto the effective nullspace. This goes
against the intuition that the effective rank should delineate between “noisy” and “smooth”
modes. To better justify this intuition (which motivated our definition of pathogenesis ef-
fective rank), we should hope to better understand these unexplained “smooth” modes.

5. Future Work

5.1. Proving Conjecture 1. The first priority for future work related to pathogenesis sig-
nal processing should be to prove Conjecture 1, and in doing so, verify that the pathogenesis
effective rank is the correct notion of effective rank for the purposes of pathogenesis signal
processing. Through this process, we would also like to better understand – on an intu-
itive level – why the singular value distribution of Lπ typically has an “elbow,” and what is
different about the “edge cases” in which there is no “elbow.”

5.2. Resolving the potential drawbacks of the pathogenesis effective rank. With
an understanding of why the “elbows” in the singular value distributions of the Lπ operators
are (or are not) occurring, we would like to understand how to best define effective rank in
the event that there is no “elbow.” One approach could be to formalize the estimation-by-
slight-modification process outlined in Subsection 4.6. Otherwise, we could default to the
Roy-Vetterli effective rank or come up with some other definition for these cases.

As mentioned in Subsection 4.6, we would also like to better understand the unexplained
“smooth” modes occurring occasionally with low singular value index.
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Figure 14. The log-normal pathogenesis distribution π(τ) with mean µ =
8.06 and variance σ2 = 30 (top left), the singular value decomposition of Lπ

(middle left), the generating function |fπ(x)| (botton left), and some modes of
Lπ (right).

5.3. Generalizing Conjecture 1. Recall from Figures 8 and 9 that there can sometimes
be an additional sharp point in the graph of the singular value distribution of Lπ (besides the
“elbow”). These additional sharp points seem to correspond to the local extrema of |fπ(x)|
in the same way that the “elbows” do. Additionally, there often seems to be a change in
behavior in the modes of Lπ at the singular value index corresponding to the sharp point. For
example, in Figure 14, there is a sharp point around singular value index 250, at which point
the modes switch from “smooth” (albeit of high frequency) to “noisy”; there also appears to
be an “elbow” around singular value index 370, at which point the modes become “smooth”
again.

To frame this all more precisely, we have the following conjecture which generalizes Con-
jecture 1:

Conjecture 2. Let π be a pathogenesis distribution with corresponding Toeplitz matrix Lπ.
Let j be a singular value index at which a “sharp” point in the graph of the singular value
distribution of Lπ occurs. Then we have the following:

(i) σj(Lπ) equals the y-value of some local extremum of |fπ|;
(ii) at singular value index j, there is a change in behavior in modes of Lπ.

In other words, it appears that “elbows” are just specific instances of sharp points in the
graph of the singular value distribution of Lπ. Perhaps there is more we can say about the
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relationship between the singular value distribution of Lπ, the local extrema of |fπ(x)|, and
the behavior of the modes of Lπ (beyond the relevance to questions about effective rank).

5.4. Apply pathogenesis signal processing to multipathogen analysis. Finally, in
future work we would like to apply pathogenesis signal processing to situations where we
have data for multiple pathogens collected from the same locations, times, and/or people. In
these situations, we would expect there to be commonality in the noise observed across the
data for different pathogens. Supposing we had pathogenesis distributions π1, . . . , πr for the
different pathogens along with raw epi-curves φ1, . . . , φr, this means we would expect the
projections of φ1, . . . , φr onto the effective ranges of Lπ1 , . . . ,Lπr to be similarly structured.
This could be a fascinating way to study the common causes of noise, and would allow
us to identify and remove noise from our models for these pathogens with extremely high
confidence.
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