
THE NONABELIAN HODGE CORRESPONDENCE

KENTA SUZUKI

Abstract. We review the basics of the Hodge structures and variations of Hodge structures,
including a proof of Griffiths transversality. We then explain the nonabelian Hodge correspondence,
which is a correspondence between Higgs bundles and representations of the fundamental group of
a compact Kähler manifold.

1. The Hodge decomposition and Hodge structures

Let us first recall the Hodge decomposition. For a d-dimensional smooth projective variety X/C,
there is a canonical decomposition of the (algebraic) de Rham cohomology

Hn
dR(X,C) =

⊕
p+q=n

Hp,q(X).

There are several perspectives on the decomposition:

• (complex-analytic) letting Xan := X(C) viewed as a compact Kähler variety, by GAGA
(for more details, see [Gro66]), the algebraic and analytic de Rham cohomology coincides:
Hn

dR(X,C) = Hn
dR(X

an,C). Then by the theory of harmonic forms,

(1.1) Hn
dR(X

an,C) =
⊕

p+q=n

Hp,q(Xan),

where Hp,q(Xan) is the subgroup of cohomology classes which are represented by (p, q)-
forms, i.e., they can locally be written as finite sums of the form

fdz1 ∧ · · · ∧ dzp ∧ dw1 ∧ · · · ∧ dwq.

• (algebraic) recall that the algebraic de Rham cohomology is the hypercohomology of the

complex of sheaves Ω• = [OX
d−→ Ω1

X
d−→ · · · d−→ Ωd

X ]. It has a Hodge filtration,

(1.2) F pΩ• = [0 → · · · 0 → Ωp
X

d−→ Ωp+1
X

d−→ · · · ].

The spectral sequence attached to this filtration is the Hodge to de Rham spectral sequence

(1.3) Ep,q
1 = Hq(X,Ωp

X) =⇒ Hp+q
dR (X/C),

which degenerates at the E1-page, which gives a decomposition

Hn
dR(X,C) =

⊕
p+q=n

Hq(X,Ωp
X).

Note that since in the complex-analytic setting, the analytic de Rham complex

Ω•
Xan = [OXan

d−→ ΩXan
d−→ · · · ]

is quasi-isomorphic to the constant sheaf C sitting in degree zero, the de Rham cohomology is
isomorphic to the singular cohomology (the de Rham theorem):

Hn
dR(X,C) ≃ Hn

sing(X,C).
1
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Thus we in fact have an abelian group Hn = Hn
sing(X,Z) whose base change Hn

C := Hn ⊗Z C
decomposes as a direct sum as in (1.1). Our goal is to provide an abstract framework to work with
such decompositions.

Definition 1.1. A (pure) Hodge structure of weight n is an abelian group H and a direct sum
decomposition known as a Hodge decomposition

HC := H ⊗Z C =
⊕

p+q=n

Hp,q

into complex subspaces Hp,q such that Hp,q = Hq,p.

However, the following equivalent definition will behave better in families:

Definition 1.2. A (pure) Hodge structure of weight n is an abelian groupH and a finite1 decreasing
filtration known as a Hodge filtration

· · · ⊂ F p+1HC ⊂ F pHC ⊂ F p−1HC ⊂ · · · ,
such that for any p,

HC = F pHC ⊕ Fn−p+1HC.

Remark 1.3. Given a Hodge decomposition, we obtain a Hodge filtration by

F pHC :=
⊕
i≥p

H i,n−i.

Conversely, given a Hodge filtration, we obtain a Hodge decomposition by

(1.4) Hp,q := F pHC ∩ F qHC.

Remark 1.4. Hodge filtrations behave better in families because it directly comes from the spectral
sequence (1.3);

F pHC :=
⊕
i≥p

Hn−i(X,Ωi
X)

is simply the image of the hypercohomology of the Hodge filtration F pΩ•
Xan from (1.2) inHn

dR(X,C).

There is a natural notion of a morphism of Hodge structures:

Definition 1.5. Let (H,F ) and (H ′, F ) be two Hodge structures of weight n. Then a homomor-
phism f : H → H ′ is a homomorphism of Hodge structures when

f(F pHC) ⊂ F pH ′
C.

Remark 1.6. By (1.4) a homomorphism of Hodge structures automatically also satisfies f(Hp,q) ⊂
Hp,q. However, for complex Hodge structures (i.e., without choosing an integral form H of HC)
this need not hold.

1.7. Polarization of Hodge structures. The cohomology of compact Kähler manifolds carry an
additional piece of structure, which is abstractly the following:

Definition 1.8. A polarization on a Hodge structure (H,F ) of weight n is a bilinear form S on
HC such that:

• if n is even S is symmetric, and if n is odd S is anti-symmetric;
• when p+ p′ ̸= n,

S(Hp,n−p, Hp′,n−p′) = 0,

• if v ∈ Hp,n−p is nonzero, √
−1

n−2p
S(v, v) > 0.

1i.e., such that for p ≫ 0, F pHC = 0 and F−pHC = HC.
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A polarization on the cohomology of compact Kähler mainfolds is provided by the Hodge-
Riemann form:

Theorem 1.9. Let (X,ω) be a d-dimensional Kähler manifold. The Hodge-Riemann form is the
bilinear form

S(α, β) := (−1)n(n−1)/2

∫
X
α ∧ β ∧ ωd−n

for [α], [β] ∈ Hn
dR(X,C). Then S provides a polarization of the Hodge structure on Hn

dR(X,Z).

Remark 1.10. Given a complex variation of Hodge structures, we may not be able to recover Hp,q

from F pH; we cannot use (1.4) since F qH does not make sense. But given a polarization, we may
let

Hp,q = F pH ∩ (F p+1H)⊥ =
⊕
i≥p

H i,n−i ∩
⊕

i<p+1

H i,n−i.

2. Variations of Hodge structures

Given a smooth morphism f : X → Y of smooth proper varieties over C, the pushforward

Rnf∗ZXan

is a local system on Y an, whose stalk at x ∈ X(C) is the cohomology Hn(f−1(x)an,Z), each of
which carries a Hodge structure of weight n by our discussion above. Thus, we want a notion of
Hodge structures for local systems on varieties. Let us work with local systems over C from now
on:

Definition 2.1. A variation of Hodge structures on a complex manifold X is a C-local system L on
X or by Riemann-Hilbert, a vector bundle V = L⊗COX with a flat connection ∇ : V → V ⊗OX

Ω1
X ,

together with a decreasing Hodge filtration F •V on V , such that:

• the filtration induces a Hodge structure of weight n on each stalk of V ; and
• Griffiths transversality is satisfied, i.e.,

∇(F pV ) ⊂ F p−1V ⊗ Ω1
X .

The variation of Hodge structures is furthermore polarized if there is a morphism of local systems

S : L⊗ L → C
which give a polarization of Hodge structures at each stalk.

Then, as desired, we have:

Proposition 2.2. Given a smooth proper morphism f : X → Y of smooth varieties over C, the
pushforward Rnf∗CXan is a variation of Hodge structures on Y .

Proof (from [PS08, Corollary 10.31]). The Gauss-Manin connection on Rnf∗CXan can be described
as follows: Ω•

Xan has a Koszul filtration

KozqΩ•
Xan = f∗Ωq

Y an ∧ Ω•−q
Xan ,

whose graded pieces are

grqKozΩ
•
Xan ≃ f∗Ωq

Y an ⊗OXan Ω•
Xan/Y an [−q].

Now there is a short exact sequence of complexes

(2.1) 0 → f∗Ω1
Y an ⊗ Ω•

Xan/Y an [−1] → Koz0/Koz2 → Ω•
Xan/Y an → 0,

and the Gauss-Manin connection is the connecting homomorphism by obtaining Rf∗:

δ : Rnf∗Ω
•
Xan/Y an → Rn+1f∗(f

∗ΩY an ⊗ Ω•
Xan/Y an [−1]) ≃ ΩY an ⊗Rnf∗Ω

•
Xan/Y an .
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Upon passing to the filtration bête (stupid filtration) σ≥p in (2.1), we have a short exact sequence

0 → f∗Ω1
Y an ⊗ σ≥p−1Ω•

Xan/Y an [−1] → σ≥p(Koz0/Koz2) → σ≥pΩ•
Xan/Y an → 0,

which shows δ maps F p into F p−1 ⊗ Ω1
Y an . □

If variations of Hodge structures are generalizations of Hodge filtrations, the following is the
generalization of Hodge decompositions:

Definition 2.3. A holomorphic vector bundle V on a complex manifold X is a system of Hodge
bundles if there is a decomposition

V =
⊕

p+q=n

V p,q,

together with homomorphisms θ : V p,q → V p−1,q+1 ⊗ Ω1
X such that θ ∧ θ = 0.

Example 2.4. When f : X → Y is a smooth proper morphism of smooth varieties, we simply have
Ep,q = Rqf∗Ω

p
X/Y and θy is the cup product with the Kodaira-Spencer deformation class

ηy ∈ Hom
(
TY,y, H

1(Xy, TXy)
)
≃ H1(Xy, TXy)⊗ Ω1

Y,y.

This is in fact an example of a Higgs bundle, which is the key player in the following story about
nonabelian Hodge theory:

Definition 2.5. A Higgs bundle on a smooth variety X/C is one of the following equivalent pieces
of data:

• a vector bundle V and a one-form θ : V → V ⊗ Ω1
X such that θ ∧ θ = 0;

• a vector bundle V on X with an action of Sym•TX; or
• a coherent sheaf V on T ∗X = SpecX(Sym•TX) such that V = f∗V is a vector bundle on
X.

3. Simpson’s correspondence

Let X be a compact Kähler manifold. Then Hodge decomposition gives an isomorphism

(3.1) Hom(π1(X),C) ≃ H1(X,C) ≃ H1(X,OX)⊕H0(X,Ω1
X),

so homomorphisms π1(X) → C can be thought of as pairs of a cohomology class e ∈ H1(X,OX)
and a holomorphic 1-form ξ ∈ H0(X,Ω1

X). The nonabelian Hodge correspondence is analogous:
n-dimensional representations of π1(X)

Hom(π1(X),GLn(C)) ≃ H1(π1(X),GLn(C))

are (roughly) classified by a cohomology class in H1(X,GLn(OX)), i.e., a n-dimensional vector
bundle V on X, with a endomorphism-valued one-form θ—this is exactly the data of a Higgs
bundle.

For a more precise statement, we restrict our attention to stable Higgs bundles:

Definition 3.1. A Higgs bundle V onX is stable (resp., semi-stable) if for any subsheaf U preserved
by θ and a hyperplace section H,

χ(U(nH))

rk(U)
<

χ(V (nH))

rk(V )
(resp.,

χ(U(nH))

rk(U)
≤ χ(V (nH))

rk(V )
)

for n ≫ 0.
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Remark 3.2. In general stable vector bundles behave better in families, so they are better when
considering moduli spaces. For example, the vector bundle O(−1)⊕O(1) on P1 is not stable since
O(1) is a subsheaf with higher slope. They are problematic since there is a family of exact sequences

0 → O(−1) → Et → O(1) → 0

where Et corresponds to the extension class t ∈ H1(P1,O(−2)) ≃ C. Generically Et ≃ O⊕2 has
trivial Chern classes, but at t = 0 the vector bundle E0 = O(−1)⊕O(1) has c2 = −1.

Example 3.3. When V is an irreducible polarized complex variation of Hodge structures, the
associated system of Hodge bundles V =

⊕
p+q=n V

p,q is stable.

Now, the nonabelian Hodge theorem states:

Theorem 3.4 ([Sim91, Theorem 1]). There are bijections:

{stable Higgs bundle with trivial Chern classes} ≃ {irreducible representations of π1(X)}
{semistable Higgs bundle with trivial Chern classes} ≃ {representations of π1(X)}.

Remark 3.5. Formally, the theorem looks very similar to the Riemann-Hilbert correspondence:
representations of π1(X) (or equivalently, C-local systems L on X) correspond to a vector bundle
V = L ⊗ OX with a flat section ∇ : V → V ⊗ Ω1

X . However, note that for Higgs bundles θ : V →
V ⊗ Ω1

X is required to be OX -linear, i.e.,

θ(fv) = fθ(v),

while for connections we require

∇(fv) = f∇(v) + v ⊗ df.

Alternatively, Riemann-Hilbert is a correspondence between representations of π1(X) with DX -
modules, while nonabelian Hodge theory predicts a correspondence with modules of

grDX ≃ Sym(TX).

In the construction of the nonabelian Hodge correspondence, one starts with the vector bundle
V = L⊗OX , and keep the topological vector bundle, but modify the complex structure on it.

Example 3.6. Let us focus our attention on Ga-Higgs bundles, i.e., two-dimensional unipotent
Higgs bundles. Then the nonabelian Hodge correspondence predicts a bijection between:

• semistable rank two Higgs bundles V sitting in a short exact sequence

0 → O → V → O → 0,

which as a vector bundle is classified by a class in H1(X,OX) and the Higgs field θ : V →
V ⊗ Ω1

X must descend to θ : OX → Ω1
X , i.e., θ ∈ H0(X,Ω1

X) where the condition θ ∧ θ = 0
is automatic; and

• representations of π1(X) sitting in a short exact sequence

0 → Ctriv → π1(X) → Ctriv → 0,

i.e., classified by Hom(π1(X),C).
This correspondence is exactly the one described in (3.1).

Example 3.7. For line bundles, the nonabelian Hodge correspondence predicts a bijection between:

• line bundles L with trivial Chern class, classified by a class in

Pic0(X) := ker
(
H1(X,O×

X) → H2(X,Z)
)
≃ H1(X,OX)/H1(X,Z),

with a Higgs field θ : L → L ⊗ Ω1
X . By twisting away the line bundle, we simply have

θ ∈ H0(X,Ω1
X); and
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• homomorphisms π1(X) → C×, which are classified by

Hom(π1(X),C×) ≃ H1(X,C)/H1(X,Z).

This is given by the isomorphism

H1(X,OX)/H1(X,Z)×H0(X,Ω1
X) ≃ H1(X,C)/H1(X,Z)

by quotienting the usual isomorphism H1(X,C) ≃ H1(X,OX)⊕H0(X,Ω1
X) by a lattice H1(X,Z).

Note that in particular the isomorphism does not preserve the complex structure.

We outline several special important cases of Theorem 3.4. When θ = 0, the trivial Higgs field,
we have:

Theorem 3.8 (Hitchin-Kobayashi, Narasimhan-Seshadri). There are bijections

{stable vector bundle with trivial Chern classes} ≃ {unitary irreducible representations of π1(X)}
{semistable vector bundle with trivial Chern classes} ≃ {unitary representations of π1(X)},
which associates to a unitary local system L on X the vector bundle L⊗OX .

Remark 3.9. A key point of the theorem is that given a unitary local system L on X, the vector
bundle L ⊗ OX is stable. When X is a curve, this follows from the following argument. Suppose
E ⊂ L⊗OX is a positive-degree sub-bundle. By taking wedge powers we may assume E is a line
bundle. Then by taking finite étale covers f : X ′ → X, the cohomology group Γ(X ′, f∗E) grows
arbitrarily, but by Proposition 3.10

(3.2) Γ(X ′, f∗(L⊗OX)) ≃ Γ(X ′, f∗L),

which has bounded dimension, a contradiction.

Proposition 3.10 ([NS64]). Let X be a compact Riemann surface and let L be a local system with
unitary monodromy. Then

Γ(X,L) ≃ Γ(X,L⊗OX).

Proof. Choose a point x ∈ X. A section of L is simply a π1(X,x)-equivariant function f : X̃ → Lx,

where X̃ → X is the universal cover. Then Lx carries a π1(X,x)-equivariant hermitian form ∥ · ∥.
Now ∥f∥ will be a subharmonic function on X, which must be constant since X is compact. Thus
f is constant. □

Remark 3.11. For Proposition 3.10, unitarity is important. Indeed, if E/C is an elliptic curve, it
has a Tate uniformization E ≃ C×/⟨qZ⟩, and it has a line bundle Lq with monodromy q. Then the
holomorphic function z on C× descends to a nonconstant section in H0(E,Lq).

In the special case of Example 3.3 (so the local system on X additionally has a Hodge structure,
and the Higgs bundle comes from a system of Hodge bundles), we have:

Theorem 3.12. There is a bijection between:

• irreducible polarized complex variations of Hodge structures; and
• stable systems of Hodge bundles with vanishing Chern classes.

4. Interpretations in terms of moduli spaces

Our goal now is to re-write Theorem 3.4 in the language of (coarse) moduli spaces. We let MRep

be the quotient stack

MRep = Hom(π1(X),GLn)/GLn,

where GLn acts on Hom(π1(X),GLn) by conjugation, which is well-behaved since π1(X) is a finitely
generated group. The moduli space of Higgs bundles is more subtle.
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Recall that we may view a Higgs bundle (V, θ) as a coherent sheaf V on T ∗X = SpecX(Sym•TX).
A point (x, ξ) ∈ T ∗X is in the support of V if and only if the linear function TxX → C is an
eigenvalue of the action of θx on Ex. Now V will be finite and flat over OX , so in particular
supp(V) will be d = dim(X)-dimensional.

Definition 4.1. For a projective variety Z with ample line bundle OZ(1), a coherent sheaf E on
Z has pure dimension d if dim(supp(F)) = d for every subsheaf F ⊂ E .

Now we use the following general fact:

Proposition 4.2. Let Z be a projective variety with ample line bundle OZ(1). Then there is a
projective variety MZ(P ) which is a coarse moduli space for semistable coherent sheaves of pure
dimension d and Hilbert polynomial P , up to Jordan equivalence.2

For us let Z be the projective closure of T ∗X, i.e.,

Z = ProjX(Sym•TX ⊗ C[t]).
Then there is a ample OZ(1) whose restriction to T ∗X is the pullback of OX(1). Then, the Higgs
bundles on X are coherent sheaves E of pure dimension d on Z whose support is contained in
T ∗X, and the vanishing Chern classes means E has the appropriate Hilbert polynomial P . Thus
the moduli space MHiggs of Higgs bundles with trivial Chern classes on X is an open subset of the
moduli space MZ(P ).

Now, we have the following version of Theorem 3.4:

Theorem 4.3. For any smooth projective variety X/C there is a real-analytic isomorphism of
coarse moduli spaces

MHiggs ≃ MRep.

The formalism of the moduli spaces allows us to prove the following:

Corollary 4.1. Any representation of π1(X) may be deformed to a representation underlying a
polarized complex variation of Hodge structure. In particular, a rigid representation (i.e., an isolated
point in the moduli space) must already underly a complex variation.

Proof. There is an action of C× on MHiggs:

(E, θ) 7→ (E, tθ),

and the points which underly a system of Hodge bundles may be characterized as the fixed points.
Now although MHiggs is not compact, E0 := limt→0 tE exists, and is a C×-fixed point. The points
of MHiggs which underly a system of Hodge bundles exactly correspond to representations of π1(X)
underlying a complex variation of Hodge structures by Theorem 3.12. □

4.4. Acknowledgment. We thank Sasha Petrov for exlpaining many aspects of the story, partic-
ularly Remark 3.9.
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