Distributional Semantics

Jacob Andreas / MIT 6.864 / Spring 2020

Check email for exam info (makeups over break) Listener status (assignments won't be graded) Private piazza posts for project feedback Homework: expected release this weekend **Readings** online

Recap: text classification

Spam classification

[Supercloud-users] Reminder: Downtime

Lauren E Milechin <la25321@mit.edu> Reply-To: supercloud@mit.edu To: supercloud-users <supercloud-users@mit.edu>

Wed, Jan 15, 2020 at 4:51 PM

Hello All,

Supercloud will be having its regular monthly downtime this Thursday, Januar arting at midnight and ending about 24 hours later. We will send out an email when e is complete span the system is ready for jobs. The system may not come back up as qui does, we are planning a few major changes. These changes should not char ystem.

As a reminder, we have a downtime scheduled every month. We will continue to send reminder emails

third Thursday of the

A general reminder: If you have any questions, a

supercloud@mit.edu.

Lauren

Linear models

happy camper SO good horse saving delicious

Interpretation: deep bag of words

Interpretation: deep bag of words

Learning: likelihood

$L(s, y) = -\log p(y \mid x)$

$= -\log \frac{\exp(s_y)}{\sum_i \exp(s_i)}$

Idea: treat s as a vector of (unnormalized) log-probs, and maximize p(y | x; W).

$= -s_y + \log \sum' \exp(s_i) := -\log \operatorname{softmax}(s)_y$

Learning: margin

Idea: try to make the score of the right label s_y wrong label.

$L(s, y) = [s_v - \max(s_{-v}) - c]_+$ $[x]_{+} := max(x, 0)$

at least at least c greater than the score of every

Linear decision boundaries

Multilayer perceptron

 $\mathbf{s} = W_2^{\mathsf{T}} f(W_1^{\mathsf{T}} \mathbf{x})$

Nonlinear decision boundaries!

x = perhaps not the most scintillating work in the director's oeuvre

somewhat...awful -1 not...scintillating 0 ??? y=?less...terrible 1

Can we learn that similar words behave similarly in combination?

Challenges: data sparsity²

More generally, can we learn portable representations of words independent of specific prediction problems? $\begin{bmatrix} 0.1 \\ 1.7 \\ 0.3 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.1 \\ 1.7 \\ 0.3 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.1 \\ 1.7 \\ 0.3 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.1 \\ 1.7 \\ 0.3 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0.1 \\ 1.7 \\ 0.3 \\ 0.3 \end{bmatrix} \begin{bmatrix} 1.2 \\ 1.8 \\ -0.1 \end{bmatrix} = \begin{bmatrix} 0.1 \\ 0.1 \\ 0.3 \\ 0.3 \end{bmatrix}$ X very good, but gave me

Interpretation: deep bag of words

Distributional semantics

...it ? its...

...has ? earnings...

...either ? or...

...which ? the...

Words in context

...it?its...

...has ? earnings...

...either ? or...

...which ? the...

What do we know about the word at "?"

...it?its...

...has ? earnings...

...either ? or...

...which ? the...

What do we know about the word at "?"

not much about meaning, but probably a verb

...but simple block ? superimposed on the... ... lawyers recently sent? to growers saying... ... readers' comments in ? to the editor...

...but simple block? superimposed on the... ... lawyers recently sent? to growers saying... ... readers' comments in ? to the editor...

What do we know about the word at "?"

...but simple block? superimposed on the... ...lawyers recently sent? to growers saying... ... readers' comments in ? to the editor...

What do we know about the word at "?" You send them, they come in a block variety, ...

{the, May, since}? {planning, said, agency} {future, measure}? {., performance} {government's, primary}? {gauge, forecasting}

{the, May, since}? {planning, said, agency} {future, measure}? {., performance} {qovernment's, primary} ? {qauge, forecasting}

What do we know about the word at "?"

Lev stepped closer to the ?, which looked up at him.

The ?'s hand was warm, entirely handlike.

...the recent rental of a ?, one with potential as a weapon.

[Gibson 2014]

Çekoslovakyalılaştıramadıklarımızdanmışsınız

(you are reportedly one of those who we were not able to turn into a Czechoslovakian)

"You shall know a word by the company it keeps."

How can we automate the process of constructing representations of word meaning from information about "company"?

J.R. Firth, A Synopsis of Linguistic Theory, 1957

Lexical semantics

How can we automate the process of constructing representations of word meaning from information about "company"?

What do we want from a representation of word meaning?

...it?its... ...which ? the... ...the plate ? the table... ...will arrive ? Tuesday...

Types & syntactic roles

Is this word a noun?

A preposition?

What type of entity, event, or relation does it describe?

Selectional restrictions

Pat ate the ?. The ? dripped down the sides of the bowl.

Pat caught the ?. The ? smiled.

What sorts of actions can be performed on this word?

Is it animate? Intelligent? Solid?

Selectional restrictions

Pat ate the ?. The ? dripped down the sides of the bowl.

Pat caught the ?. The ? smiled.

What sorts of actions can be performed on this word?

Is it animate? Intelligent? Solid?

hypernymy cat / animal, engine / entity, run / move

synonymy fear / dread, greeting / welcome, rise / increase

antonymy good / bad, black / white, above / below

Perceptual features and grounding

egg, Switzerland, horse which is biggest?

good, better, best gray, black which is most intense?

[images: Wikipedia]

tomato which one is it?

Our word representations should capture information about types constraints on predicate-argument relations other relationships (hypernyms, antonyms, meronyms) perceptual features

How much of this can we get from context alone?

Co-occurrence statistics

The term-document matrix

Representational idea: construct a matrix where

rows are words columns are contexts entries indicate how many times word i appears in context j

- the 20 13 18 22 15 4 20

The term-document matrix

Representational idea: construct a matrix where

rows are words columns are contexts entries indicate how many times word i appears in context j

<u>The</u> mouse I saw yesterday was bigger than <u>the</u> biggest <u>cat</u> I've ever seen...

The term-document matrix

Representational idea: construct a matrix where

rows are words columns are contexts entries indicate how many times word *i* appears in context *j*

- a nylon dog collar
- the paw-shaped tag on the cat's collar
- - the 20 13 18 22 15 4 20

Related words appear together!

- a nylon dog collar
- <u>the paw-shaped tag on the cat's collar</u>

- Related words (sometimes) appear together!

Related words (sometimes) appear together!

but document co-occurrence alone isn't a sufficient signal for semantic similarity.

the cat lifted its paw the **dog** raised its paw

- Related words (sometimes) appear together!
- but document co-occurrence alone isn't a sufficient signal for semantic similarity.
- words might be in strict alternation:
 - a nylon **dog** collar
 - the paw-shaped tag on the cat's collar

- Related words (sometimes) appear together!
- but document co-occurrence alone isn't a sufficient signal for semantic similarity.
- or co-occurrence statistics might be sparse:

- Related words (sometimes) appear together!
- but document co-occurrence alone isn't a sufficient signal for semantic similarity.
- or co-occurrence statistics might be sparse:

0

0

The word co-occurrence matrix

Solution 1: low-rank approximation

with U and V orthonormal and Σ diagonal.

- **Theorem:** for every $m \times n$ matrix A, there exists a factorization
 - $A = U \Sigma V^{\mathsf{T}}$

Solution 1: low-rank approximation

words

documents

Solution 1: low-rank approximation

words

this is a word representation

documents

Solution 1: low-rank approximation

this is a word representation

documents

vectors are all orthogonal!

Solution 1: low-rank approximation: truncate cols. of U and V

words

documents

Solution 1: low-rank approximation: truncate cols. of U and V

words

A A ALACRO 200 SIL

documents

(Theorem: this is the best rank-k approx. to the original matrix)

documents documents about animals about computers

 d_1 d_2

0 1

0

cat

paw 0 algorithm 0

d ₃	d ₄	d ₅	d ₆	d ₇
1	0	0	0	Ο
1	0	0	0	0
0	1	1	1	1

Latent Semantic Analysis: Intuition

Most words don't appear in most documents, so dimensionality reduction techniques cluster words with similar contexts even when they don't co-occur.

Frequency effects

- These counts are way bigger!
- vector space similarity thinks they're more important dimensionality reduction cares more about them

 - the 20 13 18 22 15 4 20

TF-IDF normalization

term frequency (tf): # of times word *i* appears in document *j*

inverse document frequency (idf):

$count'(i, j) = tf \cdot idf$

log (# of documents / # of documents containing word i)

TF-IDF normalization

term frequency (tf): # of times word w appears in document d

inverse document frequency (idf):

$count'(i, j) = tf \cdot idf$

log (# of documents / # of documents containing word w)

close to o if word i appears in almost every document

- p(w) = # of times w appears in any document / word count p(d) = fraction of documents identical to doc d
- p(w, d) = # of times w and d appear together / (# words x # docs)

PMI(i, j) = p(w, d) / (p(w) p(d)) $\approx p(d \mid w)$ if p(d) is roughly constant

Frequency effects

After weighting, these counts don't really matter

- - the .02 .01 .02 .01 .01 .02 .02

Solution 2: work in the word co-occurrence matrix

rows are words **columns** are words entries indicate how many times word *i* appears in the same context as word *j*

$W_{tt} = \begin{array}{cccc} cat & dog & the \\ 10 & 8 & 103 \\ dog & 8 & 20 & 97 \\ the & 103 & 97 & 995 \end{array}$

The word co-occurrence matrix

Solution 2: word co-occurrence matrix

Much smaller and less sparse.

$W_{tt} = \begin{array}{ccccc} cat & dog & the \\ 10 & 8 & 103 \\ dog & 8 & 20 & 97 \\ the & 103 & 97 & 995 \end{array}$

Notice:

= $\sum (\text{# of times } i \text{ occurs in } d) \times (\text{# of times } j \text{ occurs in } d)$ doc. d

ith row of W_{td}

of times word *i* occurs in the same document as word *j*

 $= W_{td}[i, :] W_{td}[j, :]^{\mathsf{T}}$ words that co-occur frequently have large row dot products in T-D matrix!

Notice:

= $\sum_{i=1}^{n} (\text{# of times } i \text{ occurs in } d) \times (\text{# of times } j \text{ occurs in } d)$ doc. d

ith row of W_{td}

of times word *i* occurs in the same document as word *j*

$= W_{td}[i,:] W_{td}[j,:]^{\mathsf{T}} W_{tt} = W_{td}W_{td}^{\mathsf{T}}$ VV

The word co-occurrence matrix

But: this matrix is still sparse at rare words.

- cat the loris

- loris 0 1 1

But: this

The word co-occurrence matrix

But: this matrix is still sparse at rare words.

Frequent words will continue to dominate similarity measurements.

 $W_{tt} = cat \begin{bmatrix} 10 & 98 & 0 \\ 98 & 20 & 1 \end{bmatrix}$

- cat the loris

- loris 0 1 1

The word co-occurrence matrix

But: this matrix is still sparse at rare words.

Frequent words will continue to dominate similarity measurements.

Still a good idea to do normalization (tf-idf / PMI) and rank reduction!

p(i) = # of times *i* appears in any document / word count $p(i, j) = \# \text{ of times } i \text{ and } j \text{ appear together } / (\# \text{ words})^2$

PMI(i, j) = p(i, j) / (p(i) p(j))

p(i) = # of times *i* appears in any document / word count $p(i, j) = \# \text{ of times } i \text{ and } j \text{ appear together } / (\# \text{ words})^2$

PMI(i, j) = p(i, j) / (p(i) p(j))

Do I see these words together more often than if they were independent?

Summary: constructing distributional word vectors

1. Estimate a matrix of co-occurrence statistics

term-document matrix

- the 20 13 18 22 15 4 20

Summary: constructing distributional word vectors

1. Estimate a matrix of co-occurrence statistics

 $W_{tt} = cat \begin{bmatrix} 10 & 8 & 103 \\ dog & 8 & 20 & 97 \end{bmatrix}$

word co-occurrence matrix

cat	dog	the
-----	-----	-----

- the 103 97 995

Summary: constructing distributional word vectors

- 1. Estimate a matrix of co-occurrence statistics
- 2. Normalize / smooth counts

TF-IDF: # occurrences of word i

PMI: p(word i, word j) / [p(word i) p(word j)]

x log (# documents / # documents containing i)

Summary: constructing distributional word vectors

- 1. Estimate a matrix of co-occurrence statistics
- 2. Normalize / smooth counts
- 3. Take a low-rank approximation

words

documents

Summary: constructing distributional word vectors

- 1. Estimate a matrix of co-occurrence statistics
- 2. Normalize / smooth counts
- 3. Take a low-rank approximation
- 4. ???
- 5. Profit!

Our word representations should capture information about types constraints on predicate-argument relations other relationships (hypernyms, antonyms, meronyms) perceptual features

Did we win?

Our word representations should capture information about types yes! if context information preserves ordering, words with similar types appear in similar contexts (verbs come after nouns etc.)

Did we win?

Our word representations should capture information about types constraints on predicate-argument relations yes! dot products between word vectors predict frequency of co-occurrence

types constraints on predicate-argument relations disjoint contexts

Our word representations should capture information about

other relationships (hypernyms, antonyms, meronyms) maybe? e.g. antonyms have the same type but appear in

Our word representations should capture information about types constraints on predicate-argument relations other relationships (hypernyms, antonyms, meronyms) perceptual features ??? plant is close to green, but what does green look like?

In models

In models

In models

Bias in distributional representations

man wo 1

100 45 23

man

woman

doctor

nurse

man	doctor	nurse		
00	45	23		
	18	48		
18		80		
48	80			

Bias in distributional representations

man wo

man 100 woman doctor45nurse23

What word is most similar to man? What's next?

man	doctor	nurse
00	45	23
	18	48
18		80
48	80	

Bias in distributional representations

	man	woman	doctor	nurse
man		100	45	23
woman	100		18	48
doctor	45	18		80
nurse	23	48	80	

It's usually most helpful to think of bias as a property of decisions, not parameters. But how will these parameters influence decisions?

Next class: more word embeddings