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1 Why quantum field theory?

The goal of this class is to teach you quantum field theory (QFT), which is the central foundation
(together with general relativity) of most of contemporary theoretical physics. In 2024 you cannot claim to
understand the laws of physics without knowing some QFT, and here is an opportunity for you to learn it.
The full class is three semesters long, so in this semester we are just getting started.

QFT is not an easy subject to study: there are many subtle arguments and long calculations, and
moreover, as we will see throughout the class, QFT rests on somewhat shaky mathematical ground, which
can make it difficult to know which results are really solid. It is often said that nobody truly understands
QFT, and many current research seminars around the world are devoted to trying to understand how to
formulate it better. A consequence of this state of affairs is that, unlike for older subjects such as classical
electromagnetism, there is no settled way to teach QFT and the various textbooks are all written from quite
different perspectives. I'll say a bit more about the perspective of this class at the end of the section.

Given the difficulty of the subject, it is important to understand at the outset where we are going and
why. The goal of this section is to present the basic conceptual motivations for thinking about QF T, aiming
to get some intuition for why it is a good idea to think about the quantum mechanics of fields. There are
three main motivations that we will consider:

¢ Quantum field theory is (likely) the only way to create a quantum theory of interacting relativistic
particles. This is why quantum field theory is of great importance in particle physics: the standard
model of particle physics, which governs the interactions of elementary particles through the electro-
magnetic, strong, and weak forces, is a quantum field theory. For example one of the great triumphs of
the standard model of particle physics is its successful description of something called the anomalous
magnetic moment of the electron:

Theory :  a. = 0.001159652181643(764)
Experiment :  a, = 0.00115965218073(28). (1.1)

This theory calculation is a tour-de-force of quantum field theory, and we will compute the first few
digits of it next semester in QFT 2.

e Quantum field theory is the natural language for describing the low-energy physics of many-body
quantum systems with local interactions. This is why quantum field theory is of great importance in
condensed matter physics: many important solid-state phenomena such as superconductivity, phase
transitions in magnets, and the fractional quantum hall effect are quantitatively understood using the
machinery of quantum field theory. For example in an Ising magnet the spontaneous magnetization

M scales as
M o (T. - T)° (1.2)

for temperatures just below the critical temperature T, with the “critical exponent” § being given by

% dspatial =2
B =1 .326419(3) dyparias =3 (1.3)
% dspatial =4

These exponents can be computed in quantum field theory: by the end of this semester we will be able
to understand the dgpatiar = 2 and dgpatiar = 4 cases, while the dspatiar = 3 case (the hardest) is an
area of active ongoing research!

e Quantum field theory arises ubiquitously in our most promising approach to combining quantum me-
chanics and gravity, which consists of a set of related ideas under the general umbrella of “string
theory”. There it arises both as the low-energy description of brane systems and also as the “holo-
graphic dual” of non-perturbative quantum gravity in spacetimes with negative cosmological constant.



One of the big successes of the latter is its confirmation in many cases of the Bekenstein-Hawking
formula for the entropy of a black hole:

Ahm’izoncg
S — W . (1 .4)

We will now discuss each of these motivations in turn, focusing on the first two since the third is mostly
beyond the scope of this class. If you are new to QFT (as I hope many of you are), the arguments may go
by a bit fast for you. If that is the case do not worry: we will do most of these manipulations again in much
more detail in later sections. Our goal here is to paint in broad strokes, getting a flavor of what is to come
in the weeks and months ahead!

1.1 Combining quantum mechanics and special relativity

By the end of the 1920s non-relativistic quantum mechanics was on a fairly firm mathematical foundation.
For example for a system of N particles of mass m interacting via a potential V (&1, ... Zn) we can (at least
in principle) determine everything we want to know about the system by solving the many-body Schrodinger
equation

—o— > Vi —ihd, + V(T ... En) | ¢ (F1,. .., Enit) =0, (1.5)

This equation however has two problems from the point of view of special relativity:

2
(i) The kinetic terms are non-relativistic, being compatible with F = % instead of E = /|p|2c? + m2c?.

(ii) The potential interactions are instantaneous, which is not compatible with the relativistic principle
that nothing can move faster than light.

Problem (i) is not too difficult to solve: it isn’t pretty, but we can just make the replacement

p2 XN N
—%ZV? — Z\/—FL%QV? +m2ct (1.6)
i=1 i=1

in equation (1.5). In this way it is fairly straightforward to make a relativistic theory of non-interacting
quantum particles, for example in the one-particle case the solutions of the Schrodinger equation can be
expanded in a basis of energy eigenstates

w(f, t) — eiﬁ-f—i\/mt. (17)

Problem (ii) however is more serious: in order for quantum dynamics to be compatible with special relativity,
we need to make sure that all interactions are local in spacetime. Based on our experience with electromag-
netism, which is after all a relativistic theory, we can guess that the natural way to incorporate spacetime
locality is to introduce fields. When we move an electric charge here in Cambridge, it is not really true
that there is a physically-detectable Coulomb potential that immediately adjusts what is going on in the
Andromeda galaxy. What happens instead is that we create a ripple in the electromagnetic field which then
propagates outwards at the speed of light, updating the Coulomb field as it goes along. What is perhaps
more surprising is that it turns out that we need to introduce fields for the charges as well: an electron field,
a proton field, and so on.

1.1.1 A notational aside

Before proceeding further, it is time for the deep realization that the factors of i and c¢ in the previous
paragraph are unnecessary and distracting. We can get rid of the former by measuring time in units of
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Figure 1: Propagation inside the lightcone in 141 dimensions: in a theory where nothing is faster than light
a disturbance at (z;,t;) should not be able to reach a point (xf,ts) which is spacelike separated.

inverse energy, with i as the conversion factor, and we can get rid of the latter by measuring distance in
units of seconds, with ¢ as the conversion factor. From now on we will therefore work in units where

h: CcC = 1, (1.8)

with all dimensionful quantities having units which are some power of energy. In particular length and time
are both measured in units of inverse energy, while mass is measured in units of energy. For example the
radius of the earth is

Rg 1
_ - 1.9
he 4.9 x 10733 ]J (1.9)
and the acceleration due to gravity at the Earth’s surface is
h
9% _ 343 x 107427, (1.10)
c

These units are clearly not so practical for daily life, but in situations where both relativity and quantum
mechanics are important they are indispensable.

1.1.2 Relativistic propagator and causality

Let’s now try to understand in more detail why particles need to be replaced by fields. Although the non-
interacting theory based on the wave functions (1.7) is both relativistic and quantum, there is a sense in
which it allows information to propagate faster than light. To be concrete, let’s work in 1 + 1 dimensions

and consider the propagator
—iHg (tf —t; )

Glzy,tr;xi,t;) = (xyle Zi). (1.11)

Here |z;) and |xs) are eigenstates of the particle position: in the p basis the wave functions of such eigenstates
are given by ,
(p|lx) = e™*P7, (1.12)

The physical meaning of the propagator is that its absolute value squared is the probability to find the particle
at position z; at time ¢y given that it was located at position z; at time ¢; (its phase has information about
the same question for initial and final momenta). We'll focus on the situation where zy > x;, ty > t;,
and ty —t; < 2y — x;, in which case (x¢,t¢) and (z;,t;) are spacelike separated so no signal which is not
faster than light can propagate between them. More geometrically, the point (z,tf) is outside of the future
lightcone of (z;,t;) (see figure [1)). We’ll now show that the propagator in this situation is nonzero, which
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Figure 2: Deforming the contour in the complex p-plane. The defining contour is the lower dashed line, which
can be smoothly deformed via a two large circle segments at infinity to the upper contour which wraps the
branch cut along the positive imaginary axis.

shows that the information that there is a particle located at position z; at time t; propagates faster than
light!
We can evaluate the propagator ([1.11)) by inserting a complete set of momentum eigenstates:

G(xfztﬁl"ivti):/ %ewm_m_z prm), (1.13)

— 00

Going forward we might as well use translation invariance to set ¢; = z; = 0 and relabel t; = ¢, and z; = «,
in which case we can consider the simpler function

o0
dp . .

G(z,t) == / P gipr—iy/pm?t (1.14)
oo 2m

This integral is not so easy to evaluate analytically, and one can worry if it even converges due to the
oscillatory behavior at infinity. Since we are assuming that 0 < ¢ < x, the convergence of this integral is
controlled by the ipx term in the exponent. To make sure it is convergent, we can slightly rotate the phase
of the p integral so that it goes off to infinity at a small angle € above the real p-axis in both directions (see

figure . This is convergent since at large positive p we have
eie“p:c ~ g~ CPTFiPT (1.15)

while at large negative p we have ‘

ele”PT  geptipT (1.16)
Moreover by Cauchy’s theorem the answer is independent of € since we can rotate the contour freely from
one € to the next (the circle segments at infinity do not contribute since the integrand is exponentially
suppressed), and so we can take ¢ — 0 to recover the propagator. On the other hand to estimate the value
of the propagator, it is more convenient to instead rotate the contour up to wrap around the branch cut
that runs along the imaginary axis from p = im off to p = ico (see figure [2)). Evaluating the integral on this
contour, we see that we have

G(,T t) = Z/Oo @6_)@ (e A2—m?t _ e—\/>\2—m2t)
' m 2T
N l/ e sinh (VA2 = mlt). (1.17)
™

m



The integrand here (ignoring the factor of 7) is strictly positive for A > m, and so we see that the propagator
is indeed nonzero outside of the lightcone! On the other hand it isn’t very nonzero: by using the monotonicity
of sinhy for y > 0 and then ignoring the negative exponential we have

o) 1 o) —m(z—t)
/ w(Mmm(AkﬂﬁQ<7/ e =S (1.18)
and thus
—m(x—t)

e
0 < |G(z,t)| < e p—
Therefore the propagator of a massive relativistic particle is suppressed exponentially outside the lightcone,
but it isn’t zero.

In a relativistic theory, there is something deeply wrong with being able to send information faster than
light. Indeed by doing a boost we can change the time ordering of any pair of spacelike-separated events, so
if we can communicate faster than light then we can also communicate backwards in time. In the presence
of interactions it is even worse: by sending a message to a point outside of your future lightcone and then
receiving a message back you can communicate directly with points in your own own past lightcone. Such
things are called violations of causality, which is the principle that you shouldn’t be able to send signals to
your own past. Physics seems unlikely to make much sense in situations where causality is violated, so we
had better find a way to fix this.

(1.19)

1.1.3 Creation and annihilation operators on multi-particle Hilbert space

There is a useful way of re-organizing the above discussion of relativistic particles, historically called second
quantization, which helps points the way towards how to restore causality. The idea is to introduce a larger
Hilbert space, called Fock space, where any number of relativistic particles, including zero, is allowed. The
nicest way to do this is by introducing an annihilation operator a(x), which removes a particle from the
system at point z if one exists and otherwise annihilates the state. Its adjoint a'(z) creates a particle at z.
The algebra of creation and annihilation operators is given by

a(x),a( 0
(z),a" ()] =0
(z) 6

]
h—
I

[
[af

[a

x),a

i
f (x —a'), (1.20)

xT),a

)

and the zero-particle state |2) is defined to be the one which is annihilated by all a(x). Other states are
created from |Q2) by acting with creation operators, for example a one-particle state with wave function ¥ (x)
is represented in this language by

) = [ dwv@al @), (1.21)
For practice we can check that the norm works out:
W) = [ d'v (@) [ dovia)(@laaalz)|0)
— [ar's @) [ devi)@ate). @) )2)
_ / da'y* (2 / o (2)0(x — 7)

=/wwm2
—1. (1.22)



More generally a multi-particle state ¢ (x1, 22, ...2x) is represented by
1
) = i /dml codza(zy,. . zy)al (1) .. el (2N)|Q). (1.23)

We note in passing that since the af(z;) all commute with each other, the particles we are describing are
bosons{T]
al(z)a’(2")|Q) = a'(2")al (2)[). (1.24)

The Hamiltonian is given by

Hy = /dxaT(w)\/—(“)%—l—mza(x)
— [ SV (alp) (1.25)

where in the second line we have introduced the Fourier-transformed annihilation operator

a(p) = /dxe_ima(x). (1.26)

It may feel like we have suddenly introduced an entire new form of quantum mechanics, but except for
introducing a rule that the particles are bosons (which we couldn’t see before since we only considered one-
particle states), this is really just a different bookkeeping for the same old multi-particle quantum mechanics.
In particular the second expression for the Hamiltonian shows that the energy eigenstates are states of the
form

al(p1)...a'(pn)|2), (1.27)

N
E=Y\/p?+m? (1.28)
=1

In this language we can rewrite the propagator as
Gz, 1) = (Qa(x)e"al (0)|2)
= (Qa(z, t)a’ (0)|02)
= (Q[a(z, 1), a’ (0)]|©2). (1.29)

with the total energy just being

where we have introduced the Heisenberg picture annihilation operator

a(x,t) = oty (z)e=Hot, (1.30)
In fact this is true as an operator equation:

[a(z,t),a’(0)] = G(z, 1). (1.31)

What we have learned from our discussion of the propagator is therefore that creation and annihilation
operators in the Heisenberg picture do not commute at spacelike separation. It is a bit tedious to work out,
but this also implies that the number operator

N(z,t) = a' (z,t)a(z, 1), (1.32)

which counts how many particles there are at position z and time ¢, does not commute with itself at spacelike
separation. Unlike the creation/annihilation operators, the number operator is hermitian and thus should be
observable. If we are going to save causality, we thus need to argue that the number of particles at position
x and time ¢ cannot actually be measured by someone in the vicinity of x and ¢!

LIf we want to get fermions, we should instead impose anticommutation relations {a(z),a(z’')} = {af(z), a(2’) = 0 and
{a(z),a (z')} = 8(x — «'), where {A, B} = AB 4 BA is called the anticommutator of A and B. We will discuss fermions in
more detail later in the semester.
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Figure 3: Translation of a function f(x) by a. Note that here f’ is the transformed function, not the
derivative, and that it is the inverse of the translation which appears in the argument of the function.

1.1.4 Quantum fields

A good way to proceed is to consider what kind of interactions we could add to the Hamiltonian (|1.25) that
wouldn’t violate causality. We'd like to somehow build the interaction Hamiltonian V' out of the creation
and annihilation operators, but in a way where (now working in d spacetime dimensions) it is an integral

V(t) = / A4 i (L, F) (1.33)

of an interaction density H;n:(t,Z) that commutes with itself at spacelike separation (otherwise we could
violate causality by measuring the energy density at spacelike separation). The easiest way to achieve this is
to construct an interaction density which commutes with itself at spatial separation, and then also demand
that it transform as a Lorentz scalar in the sense that?]

U(A, a) Hint (2)U(A, a) = Hint (A (z — a)), (1.34)
where U(A, a) is the unitary operator on Hilbert space which implements the Poincaré transformation
't = AN x +at (1.35)

on the Hilbert space of the theory. This ensures commutativity at spacelike separation since if x and y are
spacelike separated there is always a Poincaré transformation that sends them to the same time slice and
we have assumed that H;,:(z) commutes with itself at spatial separation. It may be puzzling that we used
the inverse Poincaré transformation in the argument of H;,:, the idea behind this is shown in figure @ we
want to define the symmetry transformation to “move the scalar along with the symmetry”, meaning that
the “new” scalar at z should be equal to the “old” scalar at the point A=!(z — a) where x “came from”.
You will also show in the homework that defining things this way is necessary for us to have two successive
Poincaré transformations combine in the natural way.

T’ll note in passing that by using time-dependent perturbation theory we can write a formula for the
particle scattering matrix in a theory with an interaction of this form (see chapter three of Weinberg volume
I) as

S:1+§: (_i!)n

n

/ddxl .. dda:nT{Hmt(xl) o Hint(n) }- (1.36)
n=1
If H;,: is a Lorentz scalar then this is manifestly Lorentz-invariant except for the time-ordering symbol
T. As long as H;,: commutes with itself at spacelike separation however, then the time ordering is also
independent of Lorentz frame and so S will indeed be Lorentz-invariant

U(A,a)'SU(A,a) = S. (1.37)

2Here I’ll introduce a standard notation for the rest of the class: when I write # I mean a point in space, while when I write
z I mean a point (¢, Z) in spacetime.

10



We will discuss scattering theory in more detail later in the class.

How then can we build an H;,,; which is a Lorentz scalar that commutes with itself at spacelike separation?
The only idea which seems to work is that it should be built out of fields: linear combinations of the creation
and annihilation operators of the fornﬂ

d-1,
Z/ d uZ x;p, 0,n)a(p, o,n) +vi(x;p, 0,n)a’ (p, o, n))7 (1.38)

271-d1

with the coefficient functions w; and v; carefully constructed to ensure thatﬂ

[9i(2), &5 ()] = [$i(2), 6}« =0 (z—9)* >0, (1.39)

and also that under Poincaré transformations we have a simple transformation law

U(A, a)tg(x)U Z Dij(A !z — a)). (1.40)

Here we have allowed for multiple species of particle labeled by n, and also for the particles have spin o,
in which case the creation and annihilation operators need to be labeled by n and ¢ in addition p. You
will show in the homework that the consistently composing Poincaré transformations requires the matrices
D;;(A) to furnish a representation of the Lorentz group in the sense that

Z Dij(A1)Dji(As) = D (A1 As). (1.41)

The requirement (1.39) of (anti)commutativity at spacelike separation is sometimes called microcasaulity.
Given fields obeying (|1.39) and (1.40)), it is then a straightforward matter to construct interaction Hamilto-
nians which are Lorentz scalars. For example given a vector field V#(z) transforming as

U(A, o)V (x)U(A a) = A* VY (A~ (z — a)), (1.42)
some local interactions we could write down which are Lorentz scalars are
(VrV,)2 VEVROV, VRV, VY, (1.43)

which all commute with each other at spacelike separation since V#(x) does.

So far you might be tempted to view this construction as just more bookkeeping: we are still working in
our old multi-particle Hilbert space and constructing things using creation and annihilation operators (albeit
in nice linear combinations). How can bookkeeping fix a problem with causality? The key point is that we
now make a fundamental shift in how we physically interpret all of the above equations:

* In quantum field theory, we postulate that the observables that can be measured in the vicinity of a
spacetime point x are those constructed from the fields at z, not those constructed from the position-
space creation and annihilation operators af(x) and a(z).

We will see in section [3| below that the a(x) and af(z) are non-local when expressed in terms of the fields,
so the apparent failure of causality we saw above is really just a consequence of failing to identify the right
physical degrees of freedom. If we build a detector here in this room right now, the claim is that what it
really couples to are the fields and not the particles.

We are already in a position to see two of the most remarkable consequences of relativistic quantum field
theory:

3Here we work in the “interaction picture”, where operators evolve under the free Hamiltonian Hg. Heisenberg picture fields
in interacting theories cannot be decomposed in this way, and when interactions are strong the interaction picture is not useful
so this motivation needs some revisiting (see the next section).

4Here =+ indicates that for fields which create fermions we actually want anticommutativity instead of commutativity at
spacelike separation.

11



e In interacting quantum field theories, the number of particles is not conserved: we have
not yet specified the functions u; and v;, but we will see soon that both most be nonzero in order to
preserve commutativity at spacelike separation. Interactions which are polynomials of the fields will
thus always heuristically have the form (a + a)™, which necessarily includes terms that do not have
the same number of creation and annihilation operators and thus do not conserve particle number. We
should therefore expect that particle scattering in field theory can create any set of particles for which
there is sufficient energy, at least as long as the final particles have the same symmetry charges as the
initial particles. The idea that energy can be freely converted into particles is quite natural from the

point of view of Einstein’s equation E = mc?.

e Every particle must have an antiparticle of equal mass and opposite charge: we will see

soon that the time-dependence of u; and v; is given by eV P2m*t g4 o preserve commutativity at
spacelike separation for all times, which requires a cancellation between terms involving both u; and
v;, these must have the same time-dependence and thus multiply creation/annihilation operators for
particles of the same mass. On the other hand they must have opposite charge under any continuous
internal symmetry. This is because in order to have an internal symmetry of the Lagrangian we need
the field to have a simple transformation law

e—iQeqbi(I)eiQG _ ewq@(x)’ (1.44)

where @ is the charge operator for the symmetry and ¢ is the charge of the field, which means that
the annihilation and creation operators appearing in ¢; must both transform by a factor e’?. This
means that the particles created by the creation operator have opposite charge of those annihilated by
the annihilation operator (you will show this in the homework). A particle can be its own antiparticle,
but only if it has ¢ = 0 for all continuous symmetries.

There are other important general consequences we will understand later, including:

e Spin-statistics theorem: in constructing w; and v;, it turns out that commutativity at spacelike
separation is only possible when the particles that are created/annihilated have integer spin. For
particles of half-integer spin, we instead need to impose anticommutativity at spacelike separation.
As mentioned above, commutativity leads to bosons and anticommutativity leads to fermions. Hence
we see that bosons must have integer spin and fermions must have half-integer spin.

e CRT theorem: In any relativistic quantum field theory, it turns out that there is always a symmetry
that exchanges particles and antiparticles (C), reflects a spatial direction (R), and reverses time (7).

All of these predictions have been confirmed to remarkable precision by experiment, for example colliding two
photons at high energy can produce an electron-positron pair, a neutron decays to a proton, an electron, and
a neutrino, the antiparticle of the electron is the positron, electrons are fermions of spin 1/2 while photons
are bosons of spin one, and it was recently confirmed that hydrogen and antihydrogen have the same rate
for the 2s — 1s transition, as required by CR7T symmetry.

1.2 Many-body quantum systems with local interactions

There is another way to motivate quantum field theory. Let’s imagine a physical system with a large number
of independent degrees of freedom that are arrayed in a lattice pattern in space, as in figure @] What it
means to say that the degrees of freedom are independent is that the Hilbert space of the theory has a tensor
product form

H=Q)Hi, (1.45)
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Figure 4: A lattice system with two spatial dimensions. There are independent degrees of freedom at each
of the red sites, and each term in the Hamiltonian only couples degrees of freedom on nearby sites.

where ¢ labels the sites on the latticeﬂ We say that an operator is a local operator at site ¢ if it is the tensor
product of an operator on H; with the identity operator on all of the other sites. We are then interested in
Hamiltonians of the form
H=>Y 0, (1.46)
3

where each O; is built from local operators at sites in the vicinity of 4, meaning sites that are an O(1) number
of links away (as opposed to something that grows with the total size of the system). Such Hamiltonians are
called local Hamiltonians. For example our lattice could be ions in a crystal, and the degrees of freedom
at the sites could describe local displacements of the ions. Another example we will come back to repeatedly
is the quantum Ising model in a transverse field, where each H; is a two-level system and the Hamiltonian
is given by

H= fz%(z‘) )\;az(i)az(j), (1.47)

where (i) indicates nearest neighbors on the lattice.

In studying many-body local quantum systems we are usually not interested in the details of what is
happening on the lattice scale. For example if you look at the atomic scale a superconductor is a giant
mess: it is only when you zoom out and look at the long-distance behavior that you can see that something
remarkable is going on. As we do this zooming out process, it becomes harder and harder to see that there
is really a lattice and the system starts to look continuous in space. In other words it starts to look like a
system whose Hamiltonian has the form

H= /dd—le(;z-)? (1.48)

with the energy density H(Z) being built out of operators localized at . Moreover local operators at &
will commute with local operators at ¥, since they live on different tensor factors of the microscopic Hilbert
space . Thus it starts to look like a quantum field theory! This zooming out process is called the
renormalization group, and it is an idea of fundamental importance for any dynamical system (including
classical systems) with local interactions at short distances.

It is often the case that the interesting long-distance excitations of a many-body quantum system look
rather different than the fundamental lattice degrees of freedom. For example:

e In a crystal, the fundamental degrees of freedom are protons and electrons interacting through Coulomb
forces but at long distances the excitations are phonons, which are ripples made out of vibrations in
the lattice structure.

5This is not the most general possibility, as we could also add degrees of freedom on the links of the lattice, faces, etc, and
also perhaps constrain the physical states by imposing some kind of local constraint. We will see these generalizations arise
later when we consider gauge theories.
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e In quantum chromodynamics (QCD), which is the fundamental theory of strong interactions, the
fundamental degrees of freedom are quarks and gluons but the long-distance excitations are hadrons
such as protons, neutrons, and pions.

e In 1+ 1 dimensions the fundamental degrees of freedom of the quantum Ising model (1.47)) are Pauli
spins, but at the “critical point” A = 1 the long-distance excitations are pairs of non-interacting massless
fermions. This is also the essence of why the two-dimensional classical Ising model is solvable.

These examples illustrate an important weak point of our above argument that we need quantum field
theory to combine special relativity and quantum mechanics: when the interactions of the fundamental
fields appearing in the Lagrangian are strong, such as in QCD at low energies, there need not be any simple
relationship between these fundamental fields and the low-energy particle excitations. What the argument
leading to really constructs is a “low-energy effective field theory”, whose fields create and annihilate
the low-energy excitations. In quantum field theory the basic question we are often really trying to answer
is the following: given some short-distance formulation of the theory using local fields, what are the long-
distance excitations and how do they interact?

It is also worth emphasizing that, although we began this discussion by talking about particles, not all
quantum field theories lead to particles. Field theories without particles include “conformal field theories”,
which are more naturally understood in terms of correlation functions of local operators with simple scaling
transformations, and “topological field theories”, which are more naturally understood in terms of the algebra
of extended “surface” operators which can be freely deformed in spacetime. Moreover these are not weird
esoteric theories: the long-distance description of any second-order phase transition is a conformal field
theory, and the fractional quantum hall effect is described by a topological quantum field theory. Even in
the standard model of particle physics, there are “infrared divergences” arising from the presence of massless
particles such as the photon and dealing with these correctly requires us to consider asymptotic states which
are clouds of infinite numbers of particles rather than individual particles. In quantum field theory it is the
fields that are essential, not the particles.

There is an important caveat to mention here: we are quite confident that the laws of nature are relativis-
tic, so in high-energy physics we are for the most part only interested in relativistic quantum field theories.
In condensed matter physics however Lorentz invariance can be broken by the existence of the material we
are studying, so the field theories that show up in condensed matter physics do not need to be relativistic.
Sometimes they are however, for example in the case of the quantum Ising model or the fractional quantum
hall system, and the methods you learn in this class generalize to the non-relativistic case without much
difficulty.

1.3 Quantum field theory in quantum gravity

We have seen that quantum field theory gives a way to successfully combine quantum mechanics and special
relativity. The next frontier in fundamental physics is learning how to combine quantum field theory and
general relativity, which is Einstein’s theory of gravity. General relativity has been quite successful in
explaining gravitational phenomena in astrophysics and cosmology, but it is a classical theory and so far
attempts to “quantize” it in the conventional way (which we will review next time) have not been successful.
A number of lines of reasoning have led to the idea that a theory which combines gravity and quantum
mechanics will need to be “holographic”, in the sense that its fundamental formulation lives in fewer spacetime
dimensions than are perceived by long-distance observers such as ourselves. The most concrete example of
this phenomenon is the “AdS/CFT” correspondence, which says that quantum gravity in a universe with
negative cosmological constant is equivalent to a standard quantum field theory (in fact a conformal field
theory, hence “CFT”) living in one fewer spacetime dimension. This idea has been realized (and in fact was
discovered) within the broader framework of “string theory”, which is a speculative proposal for a theory
of quantum gravity based on dynamical objects called “branes” (short for membrane), which have spatial
volumes of various dimension. Often these branes have the feature that at long distances the gravity in the
ambient space the live in can be ignored, in which case their long-distance excitations are again controlled
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by quantum field theory. In fact AdS/CFT correspondence arises in string theory in precisely this way. This
also gives a novel way of constructing interesting quantum field theories that so far are not accessible by the
more conventional techniques based on Lagrangians that we will use in this class.

1.4 Mathematical difficulties

One of the difficulties of learning quantum field theory is that many of the standard manipulations are
difficult to justify in a mathematically rigorous manner. These mathematical problems arise because in
quantum field theory there is formally an infinite number of degrees of freedom: at least one for each point
in space. This leads to two different kinds of divergences in mathematical expressions, short-distance or
“UV” divergences and long-distance or “IR” divergences. The former arise because in a finite volume of
space there are infinitely many degrees of freedom due to the continuous nature of space. These divergences
can be regularized by working on a spatial lattice as in figure 4] Conventionally the lattice spacing is called
a, and its inverse

A= (1.49)

is called the UV cutoff. IR divergences instead arise because the volume of flat space is infinite: these
divergences are present even in the presence of a spatial lattice, so to regulate them we need to make the
spatial volume V finite. In most cases we are only really able to make sense of quantum field theory in a
mathematically rigorous way when both A and V are finite. We then need to master the art of constructing
appropriate observables that stay finite in the limit that A and V both go to infinity. For example at finite
temperature the total energy goes to infinity as V' — oo but the energy density stays finite. Similarly the
fluctuations of a field ¢(x) go to infinity as A — oo but the fluctuations of a “smeared” field

o1 = [ dlaf@ola) (1.50)

stays finite. In the latter f is taken to be a smooth function of compact support.

1.5 What this course is and is not

Finally I'll make a few comments about the philosophy of this class. The traditional approach to teaching
quantum field theory is based on getting to perturbative calculations of scattering processes in the standard
model of particle physics as quickly as possible. For this approach see e.g. the books of Peskin and Schroeder
or Schwartz. This will not be the approach we take here. Although particle physics was the original arena of
interest for quantum field theory, today it has grown far beyond these beginnings. Quantum field theorists
today study many different quantum field theories in a variety of spacetime dimensions, and it would be a
mistake to focus so narrowly on one particular quantum field theory in one particular spacetime dimensionﬁ
Indeed the traditional approach to teaching field theory is a bit like designing an electromagnetism class
to get to capacitors as quickly as possible, and then staying there for months. Our approach will instead
be to study quantum field theory as a general framework for analyzing many-body quantum systems. In
illustrating quantum field theory phenomena we will typically go for the simplest model that exhibits them,
and although we will sometimes use perturbation theory we will work non-perturbatively whenever it is
possible. Many of the most exciting quantum field theory phenomena such as confinement and duality
are fundamentally non-perturbative, and an overly perturbative class along the traditional lines would miss
them. We will eventually talk about the standard model of particle physics, since after all it is good to know
the fundamental laws of nature, but we will view it as one application among many rather than the main
goal of our labors.

61n fact even for particle physics applications it turns out to be useful to work in d spacetime dimensions, as this enables us
to use 't Hooft and Veltman’s loony (but brilliant) dimensional regularization method for computing Feynman diagrams.
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1.6 Homework
1. Let’s get some practice using natural units:

(a) What is the mass of the sun measured in Joules? What about in electron volts? Recall that
leV =1.6 x 10719].

(b) What is one meter in inverse electron volts?

(c) The mass of a proton is 1.67 x 10727 kg. What is this in electron volts? What do we get if we
convert it to an inverse length? How does this length compare to the size of a nucleus?

(d) The mass of an electron is 9.1 x 1073 kg. What is this in electron volts? What do we get if
we convert it to an inverse length? How does this length compare to the size of an atom? Any
thoughts about how this comparison went versus the one for the nucleus?

(e) Say that a force is quoted to you in units of eV?. What factors of ¢ and A should you supply to
convert it back to Newtons?

(f) Say that an energy flux is quoted to you in units of eV*. What factors of ¢ and 4 should you
supply to convert it back to Joules per meter squared per second?

If you are having trouble with these, a good way to proceed is to remember that / has units of energy
times time and ¢ has units of length over time. So you can use ¢ to convert all lengths to times, and
then use A to convert all times to energies. Masses can be converted to energy by multiplying by 2,

2. Show that the multiparticle states ([1.23) are normalized correctly. You will need to use the cre-
ation/annihilation algebra. If you are having trouble I recommend showing it recursively.

3. If an operator a annihilates particles of charge ¢, what is the commutator of the symmetry charge Q)
with a and af? What are e 7Q%qe'?Y and e 7@ te?@0?

4. Show that the second line of (|1.25|) follows from the first

5. Show that if we apply the Poincaré transformations (Aj,a;) and then (As,as) in succession, the
resulting Poincaré transformation is (AaA1, Asa; +aq1). Then show that the field transformation
is consistent with the composition rule U(Ag, a2)U(A1,a1) = U(AgA1, Asay + az) provided that the
matrix D obeys the Lorentz representation condition .
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2 Lagrangian field theory

Having motivated the idea of quantum fields from various directions, we now commence studying them in
detail. We will begin with the classical theory of fields, starting from the Lagrangian point of Viewm

2.1 Particle Lagrangians

We'll first briefly consider the Lagrangian mechanics of interacting particles, whose trajectories are parametrized
by functions x%(t) with a = 1,2, ..., N. Depending on how we interpret a we can think of this as N particles
moving in one spatial dimension or as N/(d — 1) particles moving in (d — 1) spatial dimensions. We can
think of x*(¢) as an N-component vector evolving in time, which we will notate as z(t). The dynamics are
determined by the Lagrangian function L(a:,a'c; t), with the rule being that physical trajectories are those
around which the action functional

Slx] :== /t fdtL(x(t),:z':(t);t) (2.1)

i

is stationary up to terms at the future/past boundariesﬁ Note that the Lagrangian is local in time: at time
t it only depends on the positions and velocities of the particles at time ¢. We have included t as a separate
argument in the Largangian to allow it to have some explicit time-dependence, for example through a time-
dependent background field that the particle is moving in. To study stationarity, we insert an infinitesimal
variation

z'(t) = x(t) + dz(t) (2.2)

into the action:

(2.3)

The third term in the second line consists of a future boundary term and a past boundary term, so stationarity
means that the second term should vanish for all variations dz(t). In other words the Euler-Lagrange
equations

_ & (2.4)

Jxz®  01°
must hold. For example if we have
L= %5& —V(x), (2.5)
then we must have av
;= — . 2.6
mi pn (2.6)
We can pass to the Hamiltonian formalism by introducing the canonical momenta
oL
a = A 2.7
Pa= 50 (2.7)

"I’ll present the traditional approach that assumes the Lagrangian depends only on the fields and their first derivatives.
Later in the semester we will also be interested in theories with more derivatives in the Lagrangian: the traditional method for
dealing with this is to introduce auxiliary fields to rewrite the Lagrangian in a way that only involves first derivatives. For a
more modern approach that works directly with the original fields see my paper 1906.08616 with Jie-qiang Wu.

8You may have been taught that the action should be stationary without qualification. This is true if we fix boundary
conditions at ty/t;, but doing that amounts to singling out some particular set of initial/final conditions. We are trying to
characterize the theory as a whole, so we shouldn’t bias the discussion by picking out some particular state of the system.
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and the Hamiltonian is given by

H=> pui"—L. (2.8)
To quantize we replace the Poisson bracket
{z% p} =0y (2.9)
by a commutator
[x%, pp] = @7, (2.10)

which we represent on a Hilbert space spanned by eigenstates |x) of the X* operator:

X z) = z%|z). (2.11)

2.2 Field Lagrangians

Let’s now generalize from particles to fields. We will consider fields living in d-dimensional Minkowski space,
with spatial points labeled by a (d — 1)-vector

F=(z',22,... 2470, (2.12)

The field trajectories are given by functions ¢%(t,Z), where a is a label that runs over some finite number
of fields. This can be viewed as a generalization of the previous subsection in two different ways. The first
way is that we are now allowing the trajectories to depend on space as well as time, in which case we go
back to the particle case by taking d = 1. The second way is that we can think of each field at each point in
space as a distinct particle, in which case we have generalized the previous subsection to an infinite number
of particles. Our notation is more closely aligned to the former interpretation, but the latter is valuable
conceptually because it makes clear that fundamentally we shouldn’t have to do anything for fields that we
didn’t already do for particles.

To specify the field dynamics we need a Lagrangian. As we are interested in constructing field theories
which respect microcausality (i.e. commutativity at spacelike separation), we should take this Lagrangian
to be an integral over space of a local Lagrangian density:

L{g;t] = /dd—1x£(¢(t,a‘c‘), o(t,7),Vo(t, T);t, q?) (2.13)

Here L(¢, b, ﬁqb;t,f) is constructed out the fields and their derivatives at (¢, %), and we have allowed for
explicit dependence on space and time. I've written L[¢;t] with square brackets to emphasize that it is a
functional: it is a function of the functions ¢* and ¢ throughout timeslice at time ¢. A simple example of
a Lagrangian density is the free scalar field Lagrangian, where we have a single field ¢(¢, ) with

- 1 /. - o
£(6,6,V9) = 5 (¢ — Vo Vo —m??), (2.14)
where m is a parameter that we will see next time gives the mass of the particles created by this field. We

could introduce explicit space and time dependence by letting m depend on ¢ and &.
To find the equations of motion we adopt the same principle as before: the action

t
S = / ' dtdd_1x£(¢(t, 7), 6(t, 7), Vo(t, );t, :E) (2.15)

t;
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should be stationary about physical field configurations up to future and past boundary terms. Computing
the variation, we find

t
5 =3 [ [ ta G ¢ Sosi ¢ G 907

b oL = ( oL wrn
_Z/t dt/ddl 6¢“_8¢>@_v'<8%a>}6¢(t’m)

e (forregss )| s [a ], or

The third line consists of future/past boundary terms and a spatial boundary term at the (d — 2)-sphere
S92 at spatial infinity. The former are acceptable, but the latter need to vanish in order for the theory to
make sense. The usual way to deal with this is to impose spatial boundary conditions requiring the fields to
vanish at infinity, in which case the variations §¢® must also vanish at infinity and so this term Vanishesﬂ
We therefore see that the action will be stationary (up to future/past terms) if the Euler-Lagrange equations

(t, T). (2.16)

oL = ([ oL oL
£ L () - (2.17)
Do oNge) 09"
are satisfied throughout spacetime. For example for our free scalar field Lagrangian we have
¢ — V¢ =—m’¢, (2.18)
which is a massive version of the wave equation known as the Klein-Gordon equation.
As in the particle case we can also introduce a canonical momentum
oL
o = ——, (2.19)
ap®
in terms of which the Hamiltonian is given by
_ /dd—le(¢(t,g‘c‘), o(t, T), Vo(t, D), q?) (2.20)
with Hamiltonian density
H(b, b, Voit, ©) =D pad® — L(¢,, Vit T). (2.21)

a

To complete the construction of the Hamiltonian formalism we need to solve (2.19) to determine ¢ in terms
of ¢ and p. Sometimes this is not possible due to constraints, in which case more sophisticated methods are
needed that we will return to later. For the free scalar field there is no problem, we simply have

T=¢ (2.22)

and

H = (7r2 +Ve Vo + m2¢>2) . (2.23)

DN | =

91t is also interesting to consider field theories in finite volume, in which case there is more to say about this term. For
example we could impose Neumann boundary conditions 7 - % = 0 instead of Dirichlet boundary conditions d¢% = 0
and it would still vanish. More generally we can take the action to include additional boundary terms at spatial infinity,
whose variation is designed to cancel the spatial boundary term in when we impose the boundary conditions of interest.
Ultimately the choice of spatial boundary conditions is part of the definition of the theory: a box with Dirichlet boundary
conditions is a different physical system from one with Neumann boundary conditions.
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Once the Hamiltonian formalism is constructed, we can then quantize the theory by converting the
equal-time Poisson brackets

{(ba(tv 5)7 (bb(tv :‘7)} =0

{ﬂ—a(t7 f)a ﬂ-b(ta 37)} =0

{¢a(t7f)aﬂb(tag)} = 6d_1(f_ ?7) (224)
to commutators in the usual way and then representing them on a Hilbert space spanned by field eigenstates

|¢) obeying
(0, 7)|¢) = ¢“(7)|¢)- (2.25)

We will carry out this procedure in detail for the free scalar field next time, but we note that in a Lorentz-
invariant theory the commutativity at spatial separation we see here extends to commutativity at spacelike
separation.

2.3 Relativistic notation

It is now convenient to introduce relativistic notation by combining space and time into a d-vector

x = (t,T). (2.26)

We will write the components of # as z?, with 4 = 1,2,...,d — 1, and the components of z as z*, with
w=0,1,...,d — 1. By definition we have

0 =t (2.27)

If we were mathematicians we would be zealous in adhering to using x for the vector and x* for its compo-
nents, but in physics there is a longstanding tradition of conflating the two since writing z* instead of x has
the convenient feature of reminding us what kind of object we are talking about (and after all if you know
its components then you know the vector)m The inner product of two d-vectors v and u* is given by

u-v=u"v"n, (2.28)
wherdZ] 100 0
0 1 0 0

= | 00 1 0 (2.29)
0 00 ... 1

is the d-dimensional Minkowski metric and we are using the Einstein summation convention that sums
over pairs of repeated indices automatically. This inner product is preserved under Lorentz transformations

u't = A" u”

v = AP Y,
where A, is any d x d matrix that obeys

A A g0y = Tap. (2.30)

10This abuse of notation is sometimes formalized by using “abstract index notation”, which writes the abstract vector as %
and its components as z#. This is done for example in Wald’s book. We already have enough kinds of index to be getting on
with however, so we will stick to being somewhat cavalier about the difference between x and z* (and analogously & and z?).
A similar remark applies about the difference between a function f and the evaluation f(z) of that function on an element x
of its domain, which we have already conflated several times.

11Some benighted particle theorists use a horrid “mostly-minus” convention for Nuv that reverses its overall sign, and in this
context our convention is called “mostly-plus”. In general life is not improved by increasing the number of minus signs, and
that is absolutely the case here.

20



Indeed we have

u v = A“auO‘A”BvﬁnHV

= naguavﬁ

— (2.31)

The set of d x d matrices obeying (2.30)) is called the Lorentz group, and we will have lots to say about it
later.
It is also convenient to introduce d-component objects with a lowered Lorentz index, called one-forms,

which transform as
wy, = A, w,. (2.32)

Here A" indicates the transpose of the inverse of A”,, meaning that it obeys
A N =0, (2.33)

with 65 being the Kronecker delta that is equal to one if @ =y and zero otherwise. A simple example of
a one-form is the scalar gradient

which transforms with the inverse-transpose of A because the partial derivative transforms opposite to the
spacetime coordinates. We can compute the inner product of two one-forms by using the inverse metric n*¥,
which again is diagonal with diagonal elements (—1,1,...,1):

w-o = wuont. (2.35)

You will show on the homework that we can use the metric to turn a vector into a one-form and the inverse
metric to turn a one-form into a vector by “lowering” and “raising” the indices

Uy 1= N’
wh = nw,, (2.36)

and also that the inverse-transpose Lorentz transformation A * is indeed obtained by raising/lowering the
indices of the original Lorentz transformation A", in this way.

Using this notation we can write the free scalar field Lagrangian density more elegantly in a few different
ways,

1
£(6,00) = —3 (9u00,6n" +m*6?)
1
= 5 Qoo+ )
1
= 5 (06-06 + m?6?) (2.37)
and the Klein-Gordon equation becomes
(0> —m?) =0 (2.38)
More generally we can write the action as
Sloral = [ e £(9(e). 00(0):c) (2.39)
and the Euler-Lagrange equations as
oL oL
0, ——— | = . 2.40
. (8&@“) oJoxd (240)
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2.4 Symmetries and currents

One of the most important advantages of the Lagrangian formalism is the close relationship between sym-
metries and conserved quantities. By definition a symmetry in the Lagrangian formalism is an invertible
change of variables

¢'(z) = Fl¢] (2.41)
which leaves the action invariant up to future/past boundary terms. A particularly interesting kind of
symmetry is a continuous symmetry, which is a family of symmetries Fy labeled by a continuous parameter
0 such that when 6 = 0 the transformation Fy is the identity. In particular we can take 8 to be infinitesimal,
in which case we’ll call it €, and we then have a field theory version of Noether’s theorem: any infinitesimal
transformation of the fields that leaves the action invariant up to future/past boundary terms leads to a
conserved current. Indeed consider an infinitesimal transformatio

¢ (x) = ¢"(x) + €059 (x) (2.42)

that to first order in e leaves the action invariant up to future/past boundary terms["%| Here dg¢°
is some function of ¢* and its derivatives at z, and possibly also x itself explicitly. One way for this to
happen is for the Lagrangian density itself to be invariant, but more generally its transformation could be
the divergence of a vector since that would still integrate to a future/past boundary term (assuming that the
spatial boundary terms vanish). More explicitly, in order for the transformation to be a symmetry we
need

dsL = Z (a¢a5$¢a 6327118 5S¢a) = Opa*, (2.43)

where o is some local function of ¢ and 0¢. We can rewrite this expression as

oL AL\ . .
(Z R aﬂ) 2 (a6~ 6 ) 359" (24

and then observe that the right-hand side vanishes for field configurations ¢®(z) that obey the Euler-Lagrange
equations (2.40). In other words we see that the Noether current

Z 5 ¢a55¢“ z) + o (z) (2.45)
obeys the conservation law
OuJ" =0. (2.46)
Writing this equation in non-relativistic notation we have
V-J=-J°, (2.47)

which is precisely the continuity equation familiar from electromagnetism. In the usual way it implies that
the charge

Q) = / d4te JO(t, ) (2.48)

is independent of time. We have chosen the overall sign and normalization of J* so that @ is the generator
of the symmetry in the sense that for any observable O we have the Poisson brackeﬂ

{Q, 0} = 450. (2.49)

121t is not obvious, but every infinitesimal symmetry can be “exponentiated” to produce a continuous symmetry so the two
ideas are equivalent.

131t is important here that the action needs to be invariant for any ¢®(z), not just solutions of the equations of motion. In
the latter case the action is always invariant to first order under any continuous transformation!

14 This Poisson bracket is easy to derive when §g¢ depends only on ¢ and not its derivatives and a = 0. The general case is
tricky and I haven’t found a textbook discussion, the only derivation I know is given in section 4.2 of 1906.08616.
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After quantization this becomes

(@, 0] = ids50. (2.50)

As a simple example of this construction let’s return to our free scalar theory and now set the mass m
to zero. The Lagrangian density is then invariant under the shift symmetry

¢'(x) = o(x) + e, (2.51)
so we have a continuous symmetry with
dsp =1
at =0. (2.52)
The Noether current is given by
JH = 0o, (2.53)

and the conservation law follows immediately from the (massless) wave equation 9?¢ = 0.

2.5 Noether currents for Poincaré symmetry

A more sophisticated example of a continuous symmetry in field theory is Poincaré symmetry, which is
the full set of symmetries obtained by combining Lorentz transformations and spacetime translations. A
general Poincaré transformation can be put in the form

't = A x¥ +a”, (2.54)

where A is a Lorentz transformation obeying (2.30)) and a is an arbitrary vector, but to interpret it as a
dynamical symmetry for Noether’s theorem we need to recast it as a transformation of the fields rather than
the coordinateleI On a scalar field the transformation is simple to write down: we have

¢'(x) = oA (z - a)). (2.55)

Here the inverse transformation appears inside the field so that the composition of Poincaré transformations
works out correctly, as you showed on the previous homework.
To apply Noether’s theorem we need to understand infinitesimal Lorentz transformations, meaning we
should write
A¥, =68+ ew”, (2.56)

and substitute into to see what the constraints are on w*,. Indeed we have
(8% + ew”,) (85 + €w”s) Nuw = Nap + € (Wap + wpa) + O(€?), (2.57)
so for to hold we need w with both indices down to be antisymmetric:
WBa = —Wag- (2.58)
Including also an infinitesimal translation a* = eb* we therefore have

(A (z - a)) = $(x — (b + wa) + O(e?))
= (a) — (b + w¥o1®)d,0(x) + O(c), (2.59)

15The viewpoint where the fields transform and the coordinates stay the same is sometimes called the active viewpoint, to be
distinguished from a passive viewpoint where the coordinates transform and the fields stay the same. As in many situations,
here it is better to be active.
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Figure 5: Killing vector fields for a spacetime translation, a spatial rotation, and a boost.

and thus
dsp(x) = —(b" + w' x®)0,é(x)
= —&"(2)0u9(x), (2.60)
where in the second line we have introduced a Killing vector field
() =" +w! a” (2.61)

that we can view as pointing in the direction of the infinitesimal Poincaré transformation in question. For
example an infinitesimal boost in the ! direction has w’ = w!'; =1 and thus

¢ = (2',2°0,...,0), (2.62)
while a pure rotation in the 12 plane has w? = —w!y, = 1, and thus
e =(0,—22,2%,0,...,0). (2.63)

These Killing vector fields are illustrated in figure [o} More generally a Killing vector field is by definition a
vector field for which
au§u‘+'av€u =0,

as you can easily check is the case herem Contracting this equation with the inverse metric, we also see that

(2.64)

9" =0. (2.65)

In Minkowski space gives the full set of Killing vectors. It is spanned by d — 1 infinitesimal boosts,
(d—1)(d —2)/2 infinitesimal rotations, and d infinitesimal spacetime translations. For d = 4 this gives three
boosts (in the z, y, and z directions), three rotations (in the zy, yz, and zz planes), three space translations
(in the z, y, and z directions), and one time translation.

By definition a theory which is Poincaré-invariant is one whose Lagrangian density is a scalar under
Poincaré transformations, meaning that

5L = —£r9,L (2.66)

for any Killing vector £&”. You will check this equation (somewhat laboriously) for our free scalar theory in
the homework. Since £* is a Killing vector, by equation (2.65)) we have

£10,L = 0,,(6"C) (2.67)

16The motivation for this definition is that an infinitesimal coordinate transformation x'# = x* 4 ¢#(z) leaves the spacetime
metric 7, invariant if and only if £# obeys (2.64).
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and thus
dsL = 0yt (2.68)

with
b= _¢rL. (2.69)

For any Killing vector £# we therefore have a conserved Noether current
050 ( HL(x). 2.70
Zaa¢a5¢ 7) — € L(x) (2.70)
In the free scalar theory we can evaluate this, giving

T = €0 00a0 + €L (0a00°0 + m)
=&TH, (2.71)

where
v v 1 v o 2.2
= OH 0¥ ¢ — 577“ (8a¢8 ¢ +m-¢p ) (2.72)
is called the energy-momentum tensor. It has two nice properties:

(1) Symmetry:
T = TvH (2.73)

(2) Conservation:
9, T" = 0. (2.74)

Indeed any tensor obeying these two properties has the feature that contracting it with a Killing vector gives
a conserved current:
aﬂ(gl/THV) = a,ué-l/ T + fuﬁmi/ = 0. (275)

It is not obvious from that we can in general write Jg in terms of a symmetric conserved energy-
momentum tensor in this way, since when there are fields that are not scalars dg¢® can involve derivatives
of £# but it turns out that when such derivatives appear they can always be removed by shifting J“ by
local term whose divergence is identically zerom The resulting energy-momentum tensor has a more elegant
equivalent definition as the derivative of the action with respect to the spacetime metric:

S[o, Nuv + Eh;w] = S[o, 77/W] + % /dde“”(x)hlw(x) + 0(62)~ (2.76)

The metric is a symmetric tensor so this T#” obeys condition (1) automatically, and with a little more
differential geometry than we are requiring for this class you can also show that it obeys condition (2)
provided that there are no Lorentz-violating background fields.

We can understand the physical meaning of the energy momentum tensor by looking at the Noether
currents for pure spacetime translations with w,,,, = 0. By definition the total momentum vector P, which
is the generator of spacetime translations, is given by

/dd’lx J = -6 P (2.77)

Therefore we have
PH = /dd‘leo“, (2.78)

17See section 7.4 of Weinberg for the case where the Lagrangian has only first derivatives, as we’ve been considering here, or
appendix A of 2108.04841 for the general case.
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so we can think of T as the energy density and T as the momentum density (hence the name of the
tensor). And indeed for our free scalar theory, from (2.72]) we have

0= 2 (# 496 Vp 4 m?¢?) (2.79)

consistent with the Hamiltonian density (2.23]). We can also define generators of pure Lorentz transformations
(with b* = 0) via

1
/ dd—lig = §WWJW, (2.80)

which gives
JH = / d* e (M T — 2 T) . (2.81)

Here J% is the angular momentum for a rotation in the ij plane, while J = K’ is the generator of a boost
in the 7 direction.

There are some annoying sign conventions in the previous paragraph, which perhaps are worth drawing
attention to. From we see that P° is the generator of time translation in the sense of equation ,
but the generator of spatial translations is actually —P?. Similarly K is the generator of boosts in the i
direction, but the generator of rotations in the ij plane is actually —J%. These sign differences arise because
we really should have defined the generator of time translations to be Py instead of P°, in which case we
could have switched the sign of in order to have momentum and angular momentum indeed be the
generators of spatial translations and rotations. Unfortunately it is too late to change the sign of energy so
we are stuck with these sign differences whatever choice we make for the sign in E

18You might object that if we switch the sign then the energy becomes bounded from above instead of below, and the ground
state becomes the state of highest energy. In fact I think this is preferable, as the ground state is really quite special and
fine-tuned. We could perhaps instead call it the “pinnacle” or ”paragon” state. Flipping the sign of the energy also makes more
sense in statistical mechanics, for example what is usually called negative temperature is actually hotter than what is usually
called positive temperature. Alas this is a battle which cannot possibly be won, so I will rest my case here.
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2.6 Homework

1. Show that A" = n,an"? A% is indeed the inverse of A¥,, in the sense that A"\ A * = 6E.

2. Show that the gradient 0,¢ transforms as a one-form under the Poincaré transformation ¢'(z) =

(A (z — a)).

3. Show that if V# is a vector then V), = n,, V" transforms as a one-form, and also that if w,, is a one-form
then w* = n*”w, transforms as a vector.

4. The Lagrangian density for Maxwell theory is

1 v
£ - _ZFIL Fl“”

where

F,, =0,A, -0,A,

is the field strength tensor and A, is a one-form usually called the gauge potential or gauge field. The

relationship between A, and the usual scalar potential ¢ and vector potential Ais that A = (—¢, A)

(a)
(b)

-

Write out the Euler-Lagrange field equations which follow from the Maxwell Lagrangian. Use the
relativistic variables A, and F},,.

For d = 4, give expressions for the components of F},, in terms of the usual electric and magnetic
fields E and E, and use these to rewrite the equations of motion in terms of E and B. How
do these relate to Maxwell’s equations? Did you get all four equations, and if not where do the
others come from?

Now add a term A, J" to the Lagrangian density, where J* = (p, f) is the spacetime electric
current. Show how this modifies the equations of motion, and check that for d = 4 it gives the
correct charge and current terms in Maxwell’s equations. In this part you can view J" as a
“background” current, meaning that when you compute the variation of the action you can take
its variation to be zero. Eventually we will build J# out of other fields which create charged
particles, but this does not effect the equation of motion obtained by varying A,,.

5. The Langrangian density for a complex free scalar field is given by

(a)

()

L=—0"¢*0up — m?p*¢.

Find the Euler-Lagrange equations for this action. In principle in computing variations you should
treat the independent fields as the real and imaginary parts of ¢, but your life will be easier if you
can convince yourself that you can instead treat ¢ and ¢* as the independent variables. Convince
yourself that you indeed can do this for a general Lagrangian density £(¢, ¢*, 0p, 0¢*).

Show that the transformation ¢'(z) = e ¢(z) is a symmetry for any 6, write out its infinitesimal
version (i.e. to linear order in ), and construct the associated Noether current. Confirm explicitly
that this current is conserved as a consequence of the equations of motion. You again will do
better to view ¢ and ¢* as the independent fields.

Write an expression for the conserved symmetry charge ), and check that it indeed generates the
symmetry transformation as in equation (2.49)).

6. Show explicitly that the free real scalar Lagrangian density obeys the invariance condition (2.66)) under
the infinitesimal transformation dg¢ = —£#0,¢ for any Killing vector £*.

7. (extra credit) The action of a free scalar field in a general metric g, is given by

S =3 [ dev=g Bu00,69" + m*?).
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where g indicates the determinant of the matrix g,, and g"” is its inverse. Show that if we take
Guv = Nuv + €hyyy, the energy momentum tensor we construct as in equation (2.76) is the same one we
found from the Noether current. To do this you need to look up or derive how the determinant and
inverse of a matrix respond to a small change in the matrix.

. (extra credit) The Maxwell action in a general metric is

1
S = —Z/ddx\/—ng,Fagg“ag”’B.

What is energy-momentum tensor which follows from varying this action with respect to g,,7 For
d = 4 write Ty in terms of the electric and magnetic fields; does the answer look familiar?
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3 Quantization of a free scalar field

The previous section was rather formal. Formalism is good for organizing one’s thinking, but to really
understand things you need to get your hands dirty. In this section we will carry out in detail the canonical
quantization of a free scalar field in d spacetime dimensions, with Lagrangian density

2
L= 100000~ g, (3.1)

The word “free” here means that the Lagrangian is quadratic in the fields - we’ll see that this implies that
the particles in this theory are non-interacting. For now we will take ¢ to be real-valued, we will discuss
soon how to generalize to the case of complex ¢. The free scalar field is both simple and profound: it is
exactly solvable, and yet it illustrates many of the deep aspects of quantum field theory that we will return
to again and again. Before beginning it is worth emphasizing that this model is not only of interest as an
example: it has many physical realizations. Some examples in various dimensions:

e The Higgs boson in the Standard Model of particle physics, discovered in 2012 at the LHC, is to first
approximation described by a free scalar field with d = 4 and m = 125 GeV.

e Helium 4 (He,) at low temperature and standard pressure is a special kind of liquid, called a superfluid,
which flows with zero viscosity. The low-energy excitations of this liquid are density waves called
phonons, and they are described by a free scalar field theory with d = 4 and m = 0. If we confine
Helium-4 to a two-dimensional surface, then it is described by a free scalar field with d = 3 and m = 0.

e The protons and neutrons in nuclei are held together by exchanging particles called pions, and these
pions are governed at low-energy by free scalar fields with d = 4 and m = 134 MeV (for the 7°) and
m = 139 MeV (for the 7%). The ¥ is a real scalar field, while the 7% are complex (as we will introduce
below).

e In string theory the embedding of the string worldsheet into spacetime is described using free scalar
fields with d = 2 and m = 0.

In fact the 2016 Nobel prize in physics was awarded in substantial part for understanding the d = 2 version
of this theory!

3.1 Canonical commutation relations and wave functionals

Let’s first recall the Hamiltonian formulation of the free scalar: defining a canonical conjugate momentum

=2£_4 (3.2)
oo
we have the Hamiltonian density
1 1 2
H=n*+ 5V Vo + m?& (3.3)

Lifting the classical fields ¢(x) and 7(z) to quantum operators ®(z) and II(x) and their Poisson brackets to
commutators, we have the algebrﬂ

[®(t,2), ®(t, )] =0
[1I(¢, ), I(¢, )] = 0
[®(t, Z), (L, 7)] = i6% (& — 7). (3.4)

9You may wonder why the third commutator has a d-function on the right-hand side instead of some kind of Kronecker-§
with continuous indices. This is because we defined 7 as a partial derivative of the Lagrangian density, as opposed to a partial
derivative of the Lagrangian. The latter actually vanishes since it is multiplied by the infinitesimal d?~ 'z, so in field theory
it is better to use the former. With a lattice regulator they are related by a power of the lattice spacing a, as we will see in a
moment.
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The first step of canonical quantization is to represent this algebra on a Hilbert space, which in the particle
case we take to be the vector space of square-normalizeable wave functions. We can do the same thing here,
but we need to introduce a space of normalizeable wave functionals

Vo] = (o]¥), (3.5)
where |¢) labels a complete eigenbasis for (%) := ®(0, Z):
(7)[9) = ¢(7)[4). (3.6)

Note that the states |¢) are labeled by functions ¢ : R?~! — R, so ¥ is indeed a functional (a function of
a function). In order to compute the inner product between two wave functionals ¥y and ¥y, we need to
compute a functional integral

(W] T) = / DU, [6]" T [4]. (3.7)

Functional integrals are rather delicate mathematical objects, as we will discuss in more detail when we get
to path integrals. Roughly speaking the idea is to define the measure as

D¢ := [ [ do(&), (3.8)

so in other words we integrate independently over the value of ¢ at each point in space.
To represent the algebra (3.4]) on this Hilbert space, imitating nonrelativistic quantum mechanics we can

take 5
(z) :=1(0,7) = —i ——, 3.9
(@)= 10.5) = ~i s (39)
where the quantity appearing on the right-hand side is the functional derivative defined by
o) = 81— 7). (3.10)
60(7)

We can easily check the canonical commutation relation:

o(7) - (—ZM‘S@> — (—zéqf@) S (Z) = 04N (E — 7). (3.11)

Proceeding as in non-relativistic quantum mechanics, the next step is then to construct energy eigenstates
by solving the functional Schrédinger equation

2
% / Atz { 5;5)2 + Vo V() + m2¢<f>2} Wlg) = EV[g]. (3.12)

In principle solving this equation (including interactions and other types of fields) is “all there is” to quantum
field theory[]

We can make the functional Schrédinger formalism more rigorous by regularizing the theory using a
spatial lattice, so that the field variable is only defined on a discrete set of spatial points & which are part of
a lattice L. Taking L to be a cubic lattice, this more explicitly looks like

< a
relL

H= % > et |I(@)? + zg: (@(5+ 0) - ‘b(f)) +m*®(F)? |, (3.13)

20More carefully this is all there is to field theories which are constructed from Lagrangians. There are some exotic field
theories that do not seem constructable in this way, and studying them requires techniques that are mostly beyond the scope
of this class.
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with

[®(Z), T1(3)] = ia~ "oz 5 (3.14)
and thus 5
(%) = —ia~ (47D _——. 3.15
@ 55 (3.15)
Here a is the lattice spacing, and 5 ranges over the orthogonal lattice displacements aZ1,aZs,...,aZq—1. The
functional Schrodinger equation then becomes
o 2
1 d—1 —2(d—1) o P(T +0) — ¢(Z) 2 /2
5 - —_— Vp| = E¥ 3.16
s L ; +mPo(@)? | Wlol = BWlGl,  (316)

which is now just a second-order partial differential equation in many variables. If we also work in finite
volume, so that the total number of points is finite, then we can (at least in principle) try solving this
equation on a computer. In free theories this is not necessary since the theory can be solved exactly (see
below), but if we include interactions (such as say a ¢* term in the Hamiltonian) then this approach can be

viable[Z1]

3.2 Heisenberg fields and particle states

Wave functionals are conceptually important in quantum field theory because they make it clear that ulti-
mately we are still doing the same quantum mechanics we learned in the non-relativistic case. Unfortunately
however they are somewhat unwieldy objects, as we have already seen, and indeed in quantum field theory
the wave functional approach is not so useful in practice. It turns out to be a better idea to study the field
operators directly, rather than the states, especially in the Heisenberg picture.
Let’s first recall that by definition in the Heisenberg picture the time-dependence of an operator is given
by
O(t) = 'O (0)e . (3.17)

Taking the time derivative (and being a bit cavalier about operator ordering in the second step) we see that
O(t) = i[H,0()] = —{H,0(1)}, (3.18)

which is precisely the classical equation of motion (in Hamiltonian form) for O(¢). Thus in the free scalar
theory (where there is no issue of operator ordering since there are no terms in the Hamiltonian involving
both ® and IT) the Heisenberg field

O(t, 7)) = e H' O (F)e H! (3.19)

should obey its classical equation of motion, namely the Klein-Gordon equation
(0 —m?)® = 0. (3.20)

As discussed in the last section we will impose boundary conditions requiring the fields to vanish at spatial
infinity, and any solution of the Klein-Gordon equation which vanishes at spatial infinity can be expanded
in terms of a plane-wave basis set of solutions given by

fe(t.%) = etk ¥—ivgt (3.21)

and its complex conjugate. Here we have defined

wi = VIE[2 + m2, (3.22)

21Tn practice there are often much better numerical techniques available however, with “monte carlo” evaluation of the path
integral being the long-standing champion for many theories (including this one). Newer approaches which are gaining ground
are the “numerical bootstrap” and quantum simulation.
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where |k| = Vk -k, and we have included the factor of

— for future convenience (it ensures that we
4

end up with properly-normalized annihilation/creation operators below). Defining a spacetime momentum
vector

k= (wp, k), (3.23)

in relativistic notation we have

fr(x) = etk (3.24)

Expanding the Heisenberg field in terms of these solutions we have
dd lk .
b(0) = [ Ggaer [e@laz + fi(@af]

'k 1 ikex —ik-x
_/(277)(112%2 [e ap +e QE} , (3.25)

where a; and al are operator coefficients in the mode expansion of the operator ®(x). The operator
coefficients of f; and fl;l‘ are hermitian conjugates because ¢ is a real field and so ® needs to be a hermitian
operator. The factor of (277)% is included as a matter of convenience: it has to appear somewhere due to
the way that Fourier transforms work, and this turns out to be the best place to put it. There is a mantra
for remembering where it goes which we’ll call Coleman’s rule:

* Whenever you integrate over momentum there is a factor of 1/(27) for each component, and whenever
you have a momentum-conserving é-function then it comes with a factor of 2z for each component.

So far we haven’t actually done much, but let’s now see what the canonical commutation relations (3.4)
have to say about the algebra of a; and at The easiest way to do this is to use the Fourier transform to

extract ap and at from the ¢t = 0 fields <I>( 7) and II(Z). In doing such calculations there are two crucial
identities:

Ak pa a1y
where we have placed the factors of 27 in accordance with Coleman’s rule. Using the first of these we have
. dé—1k o =
/ddflxefzp-wq)(f) :/ 271- T — 7zpz ezkwaE + 671k.$a£:|

By W [@W)d—lgd—l@—maﬁ<zw>d—15d-1<f%' + ]

_ 1 (aﬁ +a*_ﬁ) (3.27)

A /20.)5

and

L d1k —iw- o o
/ddflxefzp-mn(f) _ / @ R TWE 401 o iE [ezk-zaE o efzk-zag (3.28)

(@m)*=t 2w
d—1 wi - -
= / 7(;iﬂ)dfl \/E |(2m)"7 169 = Pag — (2m)" 16" (F + pa]

Wi

—iy L (aﬁ - aiﬁ) , (3.29)
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and thus

al = \% / AP <\/LT,;<I>(5) - \/@H(f)) . (3.30)

[aJr aa/]— lag, azs ]

ap.aly) == [ @t / a4y T ([0 (7), 1G] + 20, 1))
:/ddqxez(ﬁuﬁ)z
= (2m)* o (p - p). (3.31)

These results should look familiar: they are the algebra of creation and annihilation operators for an infinite
number of harmonic oscillators, with the oscillators labeled by the spatial momentum p. They are also
the momentum space version of the creation/annihilation operators on multi-particle Fock space that we
introduced back in the section [I} Defining a vacuum state |2) by the property that

az/Q) =0 (3.32)

for all p (we will show in a moment that this is indeed the ground state of the Hamiltonian), we have

one-particle states of the form
atlQ), (3.33)

two-particle states of the form
Tt
agag (<), (3.34)

and so on.
To justify the words “vacuum” and “particle” here however, we need to study the Hamiltonian. This is
given by

2

into which we should substitute our expression (3.25) for the Heisenberg field. This calculation is a bit
tedious, I'll compute the first term here and you’ll do the other two in the homework:

H= l/dd—lx[ (@ + (V@) +m*(@)] . (3.35)

dd 1 H dd 1, dd 1]4; 44— 1 1 . ikF -t iws k%t i 4w izt
2 (2r)a- 12\/7 —iwge™ Cag + iwge ar iwge'” ap +iwge al;
L[ d 'k i ; -
=1 / Wojg (aEaE +aga; —aga_p — aEa_E) . (3.36)

Combining all three terms, we find

1 [ dk
H= 3 / ng (a%a,; + aw%) . (3.37)
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This looks quite a bit like the harmonic oscillator Hamiltonian, and we can make it look more so by using

the algebra (3.31)):
1 [ d¥ 'k
_ T T
H = 5 / WUJE ((LEGE + GEQE>

1 [ d"'k t f1o ot
D) (27r)d*1w’5 (aEaE + [a127a,;] + aEaE)

d—1
_ / (gﬂ)dklwka tap + / 4 ko541 (0). (3.38)

The first term here is just what we would like: the operator aZa is the number operator that counts how

many particles there are of momentum k, so this term says that each particle of momentum k contributes
wi to the energy. For example if we act on a one-particle state we have

d—1 d—1 B
( / (;)d’flw,;a;a,;) afle) = / gﬂ%%zaf; (2m) 4141 (F = I0) = wpalje), (3.39)

so one-particle states a;\Q) are eigenstates of this term with eigenvalue wy. Ignoring the second term, we
thus have succeeding in finding the eigenstates of the Hamiltonian!

What however are we to say about the second term in ? On the one hand it does not involve the
creation/annihilation operators and thus is proportional to the identity, which means that the eigenstates
we just found are also eigenstates of the full Hamiltonian. On the other hand it is embarassingly infinite,
for two different reasons. The first reason is the d-function evaluated at zero, which is an “infrared (IR)
divergence” arising because the momentum k is a continuous parameter. If we were to work in finite volume
V, then the momentum would be discrete and we would find §¢71(0) ~ V. The second reason is the integral
over IZ, which diverges at large k since in continuum field theory we can have particles of arbitrarily high
momentum. This is called an “ultraviolet (UV) divergence”, and it is regulated if we introduce a lattice
with lattice spacing a since then it does not make sense to consider momenta larger than of order the “UV
cutoft”

1
A= - A
: (3.40)

With both cutoffs in place we therefore have
1 _ _
5 / A kwzd® 1 (0) ~ VAY, (3.41)

which you can check indeed has units of energy. What are we to make of this term? The essential point is
that since it is proportional to V', we can write it as a local integral of a constant over space:

1
3 / A" M hewd?1(0) ~ A? / di g, (3.42)

We would thus precisely get a term of this form if from the beginning we had taken the Lagrangian to include
a “cosmological constant” term

AL = —py, (3.43)

and so the term is usually called a renormalization of the cosmological constant. Somehow the
dynamics of our free scalar field have generated a gigantic energy density filling the universe! This is a quite
remarkable prediction, but unfortunately it is also quite inconsistent with our understanding of the world.
In the absence of gravity such an energy density would have no measurable effect, but gravity responds to
the total energy density and such a gigantic positive energy density would lead to a universe that tore itself
apart via exponential expansion on a timescale of order % We don’t quite know what the scale of A should
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be, but from the Large Hadron Collider it should at least be bigger than ~ 10TeV and this already tells us
that + < 15 ~ 6 x 107%s. Not good. No es bueno. RANGF.
What should we do? There is only one way out: we need to introduce an additional “bare” cosmological

constant term in the original Lagrangian,
Loy ~ A% (3.44)

called a counterterm, whose coefficient is precisely tuned to cancel the cosmological constant generated by
our free scalar field. The full Hamiltonian is then just be given by

d 1k n
Hyen = / ngagagy (3.45)
so the vacuum has zero energy as hoped. This is our first example of a procedure called renormalization,
by which we carefully tune the coefficients in the Lagrangian in a A-dependent way to cancel UV divergences.
This may seem like a rather ugly fix. Why should the Lagrangian be fine-tuned in this way? How do we
know that there won’t be other UV divergences that can’t be canceled in this way? These are excellent
questions, and we will discuss them in considerable detail in later sections.

3.3 Non-locality of the annihilation operator in position space

In the first section we tried (and failed) to build a quantum theory of relativistic particles using annihilation
and creation operators labeled by position. We can now straightforwardly see why this did not work: taking
the Fourier transform of (3.30), we see that

d*'p i, dd 'p d—1, _ip-(ZF—7) - [ -

This is not a local function of ® and II since the inverse Fourier transforms of , /oy and F do not vanish

away from zero, and this non-locality is the origin of the apparent acausality we found in the first section.
In the non-relativistic limit however these functions become constants, in which case their inverse Fourier
transforms are d-functions so az indeed becomes local:

0z o \/? <<I>(33’) + ;n(f)) . (3.47)

For this reason non-relativistic systems are often formulated using az and a; instead of ®(Z) and II(Z).

3.4 Lorentz transformations and microcausality revisited

We’ll now make an aside to see more explicitly how the scalar field theory we have constructed avoids
the problems we saw in the first section with a particle-based relativistic quantum mechanics. There we
motivated fields by looking for linear combinations of creation and annihilation operators that

(1) have simple Lorentz transformation properties
(2) commute at spacelike seperation.

In the free field theory we have been studying these conditions follow automatically from the canonical
commutation relations together with the invariance of the action under Lorentz transformations which act
on ® as a scalar, but it is instructive to see how they arise from the point of view of the creation and
annihilation operators.

Let’s first consider Lorentz transformations. In the next section we will show that any Lorentz transfor-
mation A that does not reverse the direction of time must be implemented on the Hilbert space by a unitary
operator U(A), which we will take to leave the ground state invariant:

U(A)|Q) = [Q). (3.48)
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To understand how U(A) acts on the rest of the Hilbert space, we need to understand its action on the
creation and annihilation operators. Before deciding this it is convenient to first understand the Lorentz

transformation properties of the measure (‘Zi:)%. The easiest way to do this is to note that the full measure

d
% which integrates over p® as well as p is Lorentz-invariant, since Lorentz transformations preserve the
Minkowski metric 7,,. We however only want to integrate over Lorentz vectors p* which obey the on-shell
condition p® = wp. We can implement this using a Lorentz-invariant J-function, leading to a manifestly

Lorentz-invariant measure

d'p 216 (—p* +m?) O(p°). (3.49)
(2m)4
The Heaviside © function here is one for p° > 0 and zero for p° < 0, and is there to make sure that the §
function only picks out p° = wy (as opposed to p0 = —wp). O(p°) is Lorentz invariant because we are only

d—1

considering Lorentz transformations that do not reverse time. We can then relate this measure to (gﬂ)idf’l

via
dp d*=1p dp® 2@
— o (—p? Hop) = ———— ——5(p° — wy
(2’/T)d u ( p +m ) (p ) (277_)(1,1 1t 2p0 (p wp)
ddflp 1
= 3.50
(2m)4=1 2wy’ (3.50)
so if we define
AP p” = (PR, PA) (3.51)
then 1 i1
d*- 1 d*— 1
PA = P (3.52)
(2’7‘(’)‘171 2(4.);5/\ (27T)d71 20.);5
This also shows that we have
wi, (2m) 48N — D) = wp(2m) TR (P — p). (3.53)
Proceeding to consider the action of U(A), we can guess that
U(A)al|Q) = Njaal, |Q) (3.54)
for some constant Ny that we can determine by requiring U(A) to be unitary. Indeed we want that
| Npal?(2m) 464 (7 — ) = (Qlap UM TU(A)al|2)
— (QapallQ)
= (2m) 16N (' - ), (3.55)
so from ([3.53)) we see that
w—‘
Nz = PA 3.56
A wy ( )
is consistent with unitarity. We therefore have the Lorentz transformations
WP
UMN)ay UM = g
Wi
w—»
U(N)aLU(A) = Lf: al . (3.57)
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We can use this to work out the Lorentz transformations of the field:
ddflp 1
UN®(2)U(A) :/77
W' = [ Gt
dlp T »
_ 1pT —p-x t:|
/ @M Vaw, [e ag, te U5y
ddfl O ) )
f/ PA /P {62p~xaﬁA+671p~xaT ]

{eip.mU( NagU(A) + efipwU(A)a;U(A)T]

2m)1 \uwy, Pa

dd_lp 1 A1 A1
— (AP, o (AT ) t}
/ 2m)i 1 Twﬁ {e ag+e a;

= d(Ax). (3.58)

Going from the first to the second line we used , going from the second to the third we used ,
going from the third to the fourth we relabeled the integration variable gy — 7, and in going from the fourth
to the fifth we used that

(A'p) -z = A pYxg = pal®sz” = p- (Az). (3.59)

Thus we see that indeed we have succeeded in constructing a Lorentz scalar out of creation/annihilation

operators which themselves have more complicated transformations, at least for Lorentz transformations

that do not reverse time. We will discuss time-reversal symmetry in the next section, where we will see that

it needs to be represented on Hilbert space by an antiunitary operator instead of a unitary operator.
Turning now to microcausality, let’s compute the commutator of ® at spatial separation:

d—1 d—1 L L
[@(Z), ®(y)] = / (;lﬂ)dpl / (;lw)dkl 2\/&17% (eiﬁf—ik'y[aﬁ, ag] - e—1p~m+1k'y[al_€,7a’;]>

d—1
_ / (dTPlL (7D — i)
2m)%= 1 2wy

=0, (3.60)

where in going from the first to the second line we used and in going from the second to the third
we flipped the sign of the integration variable in the second term. The point to notice however is that the
vanishing of this commutator required a nontrivial cancellation between two terms. For example if we had
tried to make the field ® using only annihilation operators, then its commutator with its hermitian conjugate
would not vanish at spatial separation:

dd—lp 1 L dd—lk. 1 - dd_lp 1 o
(9 Nd—1 Prag A N1 Ry 1 = _— 7'p'(1_y) 61
[/ (2m)d—t \/Wﬁe ap,/ (2m)d-1 me ak} / (2rm)d—1 2wﬁe 70 (3.61)

It is the requirement of microcausality that requires us to use fields that involve both creation and annihilation
operators, leading to the distinctive predictions of particle number non-conservation and the existence of
antiparticles as discussed in the first section.

3.5 Quantization of a complex scalar field, antiparticles

There is a simple but instructive generalization of the free scalar field we have been discussing so far, where
¢ is taken to be complex and the Lagrangian density to be

L=—0"¢*0up — m?p*¢. (3.62)
You will show on the homework that the equation of motion for this theory is again just

9% = m2¢, (3.63)
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but when we expand the field in terms of solutions there is no longer a reason for the creation and annihilation
operators to be related. We thus should write

ddfl 1 ) )
D(x) :/(7297 {e”"xaﬁ—i— e*”"“:b; , (3.64)

27T)d_1 A /2w5

where az and by are not related. The canonical commutation relations follow from the observation that
(z) = &' (x), (3.65)

so we have

[@(2), 7 (7)] = [27(@), &(7)] = 0" (@~ 7) (3.66)

with all other commutators vanishing. In the homework you will show that these imply that az, a; and bz, b;;
give two independent sets of annihilation/creation operators. This theory thus has two species of particles,
both with mass m. You will also show that these particles have opposite charge under the symmetry
¢ (z) = e"p(x), and indeed one is the antiparticle of the other.

3.6 Correlation functions I: Definition and physical meaning

We have now solved the theory of a free scalar field. What we haven’t done however is compute anything
interesting with it. We’ve acknowledged that the functional Schrodinger formalism is not so useful in practice,
so what kinds of questions are interesting in quantum field theory? Long experience has shown that the
physics of quantum fields is most elegantly packaged into vacuum expectation values of products of Heisenberg
fields, otherwise known as correlation functions.

The simplest correlation function for any field O(z) is its one-point function in the ground state:

(O()) == (2|0(2)[2). (3.67)

If O(x) is hermitian then the physical interpretation of this quantity is clear: it is the expectation value for
what we get if we measure O(z) in the ground state. In quantum field theory it is often (but not always) the
case that the one-point functions of the fields vanish. Usually more interesting is the two-point function:
for any two fields O;(z1) and Oz(x2) we have

<02(I2)01(I1)> = <Q|02(I2)01($1)‘Q> (368)

The two point function is important for many physical questions. Perhaps the most direct physical interpre-
tation is that when x; and x- are spacelike separated and O; and Os have vanishing one-point functions, the
two-point function is a measure of how correlated the fluctuations are in measurements of the independent
observables O; and Oy (we need to assume spacelike separation to ensure the operators are independent,
i.e. commuting). More generally if their one-point functions don’t vanish we can still quantify the amount
of correlation using the connected two-point function

(O2(22)O1(21))c := (O2(22)O1(21)) — (O2(22))(O1(21)). (3.69)

The two-point function also has a physical interpretation when x; and x5 are not spacelike separated:
it tells us about the linear response of the theory to an external source. Indeed let’s say we have a field
theory with Hamiltonian H, and then we turn on a position-dependent source J(z) for a field Oq(z) such
that the Schrodinger picture Hamiltonian becomes:

H(t) = Hy+ V(1) (3.70)

with
V(t) = )\/dd‘la:J(t,:f)Ol(a?). (3.71)
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Here ) is a parameter controlling the strength of the source that we will take to be small. The question we
will ask is the following: assuming that J goes to zero at early times, if we start in the ground state of Hy
at early times, what is the expectation value of a field Os as a function of space and time? We can answer
this question using time-dependent perturbation theory. Indeed including this interaction we have

(Q]Os(ta, #)[Q) = (Q(Te™ I W HEYi Oy ()T 72 A H 1 )
= (U (t2) e 0t2 0y (Fy) e~ Hot21; (1,)|2), (3.72)

where , , , v
Ur(t) = eiHotTe—ijfoo dt'H(t') _ Te*ilfoo dt’ oty (t)e~iHot (3.73)

is the interaction picture time-evolution operator (you can check that these two expressions are equiv-
alent by showing they have the same time derivative and obey the same initial condition at ¢t = —o0). The
letter T here is the time-ordering symbol, it means that earlier operators go to the right. Expanding in
A we have

t
Ur(t) =1—iX / dt’ / A4t J(t, &) e oty (27)e ™ ot 1 0(A?), (3.74)

and thus to linear order in A we have (assuming that Oy has vanishing one-point function in the unperturbed
theory)

(Q|Os(ta, 72)|Q) = fu/f dt//ddflm'J(t/,f')<[02(t2,52),ol(t',f')po. (3.75)

Here ()¢ indicates the vacuum expectation value of Heisenberg operators in the unperturbed theory. In
particular if we take J to be a delta function localized at (t1,Z1), then we have

(Q|O02(ta, T2)|Q2) = —iAO(t2 — t1){[O2(t2, F2), O1(t1,Z1)])o- (3.76)

Thus we see that the response of a quantum field theory to a local perturbation is determined by a difference
of two-point functions at arbitrary separation. The © function arises because if ¢; > t5 then the source is
outside of the region of ¢’ intregration so the d-function never contributes. This response vanishes unless z
is in the future lightcone of 1, as it had better, which by the way is another illustration of the fact that by
introducing fields we have solved the causality problems of relativistic particle quantum mechanics.

A simple example of an application of this calculation is the following: we can create a source for the
scalar field theory describing liquid helium-4 by firing a high-energy neutron at a bubble of liquid helium,
and then describes how the local density of helium atoms in the bubble responds. In the homework
you will play with this and see how the response depends on whether the sample has two or three spatial
dimensions.

Higher-point correlation functions are also interesting. At spacelike separation they quantify conditional
fluctuations such as knowing how likely we are to see correlation between two operators given that we
measured a third to have some value, while at timelike separation they give more information about how
the theory responds to perturbations. We will also see later that for quantum field theories with particles at
low energies, higher-point correlation functions can be used to extract the scattering matrix.

3.7 Correlation functions II: Calculation

Having introduced the idea of correlation functions, let’s compute some in our free scalar field theory.
The one-point function of the scalar field ® is easy:

(®(z)) =0 (3.77)

since we can view the ay in ® as annihilating |Q2) and the a; as annihilating (Q].
The two-point function
G(,’Eg,xl) = <‘b(.€(:2)@($1)> (378)
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is more interesting. Note that the two-point function we have defined has ®(x5) to the left of ®(x1) regardless
of the time-ordering of z1 and xs: it is to be distinguished from the Feynman propagator, which is defined
to include a time-ordering symbol

Gp(xa,x1) = (TO(x2)P(x1)). (3.79)

In quantum field theory correlation functions without time ordering such as (3.78)) are sometimes called
Wightman functions to distinguish them from correlation functions that are time-ordered. We can easily
write the Feynman propagator in terms of the Wightman two-point function:

GF($2,CC1) = @(tz — tl)G(ZEQ,Il) + @(tl — tQ)G(.Tl,ZEQ). (380)

It is harder to go the other way (you need to do some nontrivial analytic continuation), so in quantum field
theory it is usually a good idea to view the Wightman functions as the fundamental objects of the theory. In
particular we emphasize that the linear response involves two-point functions with both time orderings
and thus requires the Wightman two-point function. The Feynman propagator is important in perturbative
calculations, as we will see in later sections.

In the free scalar field theory we can compute the (Wightman) two-point function:

ddflp1 ddflp2 1 ) )
G = P2 T2—1P1-T1 ()| = 1; 9]
(z27 xl) / (27T)d_1 (27T)d_1 9 W5, O, € < |aP2 ap1 ‘ >

dd—lp 1 )
_ ¢ip (21 (3.81)
/ (2m)d=1 2wy

where in the first line we observed that the only non-vanishing term involves an annihilation operator to the
left of a creation operator and in the second line we used the algebra . We won’t spend valuable class
time doing this integral since we will later have a better way to compute the same quantity using the path
integral@ but the result is

d—2

G(z2,21) = (27r1)d/2 (\/( n ) Kas (my/(z9 — x1)2 + isg€) (3.82)

X2 — 1)% + is21€

where so1 is equal to one if t5 — ¢ is positive and minus one if it is negative and € is a small positive quantity
whose purpose is to define the branch of the square root when (22 — 1)? < 0 but should otherwise be taken
to zero. This is an example of what is called an “ie prescription”, which we will see again and again. K, (z)
is a modified Bessel function of the second kind: the only things worth knowing about it at the moment are
its asymptotics{™|

()22~} 1
Ka(m)~{ oo O<ll<l (3.84)
et x> 1
In particular at general separations which are small compared to the inverse mass we have
I'(d/2-1) 1
G(z2,21) = 52 g (3.85)

((acg —x1)%2 + i5216>

221f you want to try it, I recommend first considering the d = 2 case. You can deform the p contour to wrap around one of
the cuts on the imaginary p axis as in figure [2| which leads to one of the standard integral representations of Ko(m|za — z1]).
In the general case you need to first do an angular integral, after which you can do the same manipulation.

23 Another thing that is perhaps worth knowing is that it simplifies when « is a half-integer, which here means that d is odd.

For example for d = 3 we simply have K /5(z) = y/5-€e~ " and thus

2z
e~ mvV (z2—w1)%+isare
47/ (1'2 — (E1)2 =+ i8216.

G(z2,z1) =

(3.83)
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t2—t1>0 tz—t1<0

Figure 6: Closing the contour in the complex p® plane for the integral (3.90).

while at spacelike separations which are large compared to the inverse mass we have

md—2
d—1

d+1 d—1
2

e-mlramal, (3.86)
w2 (m|ry —x1|) 2

G(.Z’Q,.’El) ~

2
There is quite a bit of physics in these expressions, here are some key points:

(1) The two-point function is nonzero at spacelike separation, so independent fields are correlated with
each other in the ground state. Correlation between independent (i.e. commuting) degrees of freedom
in a pure quantum state is called entanglement, so what we are seeing is that in quantum field
theory the vacuum is a highly-entangled state. Indeed since the two-point function diverges in the
limit o — x1, the amount of entanglement is infinite!

(2) In the massless limit ([3.85) becomes exact so the correlation function (for d > 2) decays as an inverse
power of the distance between the points. You will study the d = 2 case in the homework.

(3) In the massive case the correlation decays exponentially with distance at spacelike separations which
1

are large compared to m™".
This discussion illustrates something of a general maxim about correlation functions in quantum field theory:
the physics is more clear in position space, but the formulas are simpler in momentum space. More pithily,
in quantum field theory you should think in position space but compute in momentum space.

The short-distance divergence of the two-point function also has an important mathematical consequence:
it shows that the field ®(x) is not actually a good quantum operator, since acting on the vacuum (or indeed
any other state of finite energy) we get a state of infinite norm. In order to get something which is a good
operator, we need to smear ®(x) against a smooth function of compact support:

Dy = / dizf(x)®(x). (3.87)

This statement is sometimes formalized by saying that in quantum field theory the fields themselves are
operator-valued distributions. We will show in the next section that this smearing indeed produces a
well-defined operator.

You may have found it annoying that our expression for the two-point function involves integrals

over only the spatial components of momentum; wouldn’t it be nice to have a more manifestly covariant

d—1
AP _L_ g ] orentz-invariant, but there our
(2m) 2wy ’

demonstration involved the non-analytic objects ©(p") and §(p? + m?). It turns out to be a very good idea

expression? Of course we did already show that the measure
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to come up with an expression for the two-point function that is manifestly both covariant and analytic in
momentum. We can do this by showing that
oo 0 -
iefiwﬁ(tth) = lim di 771821 efipo(b*tl)7 (388)
20.)1-,' e—0 [ o 2m p2 +m?2 — 1€S91

where s again is one if ¢t — t1 is positive and minus one if it is negative, since from (3.81]) we then have

d .
d®p —1821 et (x2—z1) (389)

e = 1i
(w202 = i, | )i 24 m? — feom

The appearance of the vanishingly small quantity € > 0 here is another example of an ie prescription. To
demonstrate (3.88)), it is convenient to rewrite the integral on the right-hand side as

o d 0 e—ipo(tz—tl)
8o / L : _ S— (3.90)
oo 271 (P — (wp — i€521)) (P + (wp — i€s21))

where we have used that
(po — (w5 — ieszl))(po + (wp — i€s91)) = —(p2 +m?— 2iwgesar) + 0(62) (3.91)

and then redefined 2wze — € since the only thing we care about € is that it is small and positive. The integral
(13.90) can be computed using the residue theorem. Indeed recall that if f(z) is an analytic function in a
region R containing a point 2y, then we hav@

1 (2)

21t Jor 2 — 20

= f(20) (3.92)

where the integral is taken in the counter-clockwise direction about zy. Said differently, the function Zf_(il
has a simple pole at z = zp and the integral around this pole extracts the residue f(zp). The integrand

(3-90) has two simple poles, at
P’ = £ (wy — i€sar) . (3.93)

We can evaluate the integral using the residue theorem by closing the integration contour along the real axis
at infinity in the lower or upper half plane depending on whether sq; is positive or negative respectively (see
figure @ Either way the integral picks up the residue of the pole at p° = wp — €821, but there is a sign
difference since in the former case the integral is clockwise while in the latter case it is counter clockwise.
We therefore have

dn° —ip®(ta—t1) 1 )
/L. - - 5 . = —59) ——e wrlta—t1) (3.94)
2mi (p° — (wp — i€s21)) (P° + (wp — i€s21)) 2wy

so multiplying by —s2; we recover ([3.88]).
Finally it will be convenient later to have a formula similar to (3.89) for the Feynman propagator.

Proceeding as in the derivation of (3.81)), we have

dd—lp 1 .
G , _ is21p-(T2—71)
F(w2,21) /(27T)d_1 2wﬁe
/ dd_lp 1 iﬁ‘(fz-i’l)-isQlw“(tQ-t ) (3 95)
= | —— e 2 1 .
(27T)d71 QWI;

24The intuition for this is essentially the divergence theorem in two dimensions, although to make it rigorous the logic goes
the other way since the divergence theorem requires continuous partial derivatives and showing that an analytic function has
continuous partial derivatives is usually done using the residue theorem.
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where in the first line there is an ss; in the exponent because depending on the time-ordering which field
contributes an az and which contributes an a; switches and in going from the first line to the second line we
flipped the direction of the integral over p. The quantity so1(t2 —t1) is always positive, so in this integral we
can use the identity replacing (t2 — t1) — S21(t2 — t1) and setting s2; to one on the right hand side.
Flipping the direction of the p° integral we get

d —1
Gr(ze,z1) = lim P !

e—0 ) (2m)4 p? 4+ m? — ieew.(mrml)’ (3.96)

which is a bit simpler than the expression (3.89) for the two-point function. In particular the Feynman
propagator has the nice property that it is a Green’s function for the Klein-Gordon operator:

dd (2 2 )
(03 —m®)Gp(w2,21) = lim p__ilp” ¥ m) P (@2—1)

=0 ) (2m)e p? +m? — ie

—i [ I
(2m)4
= i6% (g — 11). (3.97)

This would not have worked for the Wightman function since the derivative acting on ss; would have
generated additional terms.

You may be wondering why we stopped with two-point functions: what about three-point functions,
four-point functions, and so on? In free field theory the answer is simple: these end up either vanishing or
just being combinations of two-point functions. Indeed the n-point function

(P(21)P(22) ... P(zn)) (3.98)

vanishes when 7 is odd since there are no terms with an equal number of creation and annihilation operators.
When n is even we simply pair them up to get a sum of products of two-point functions. For example to
compute the four-point function we introduce annihilation and creation parts of ®(z) as

d—1 1 )
0= [ Gt

2m)4=1 2w
dd—lp 1 )
P - —ipw gl 3.99
o) = [ Gt b (399)
observe that
dd—lp 1

B (2), @, ()] = / 7Y = G(a,y), (3.100)

(2m)4~t 2wp
and then compute

(B(20)@(w5)®(22)@(21) ) = (P (24) (O (w3) + D (23)) (B (w2) + D (22)) @y (a1))

(@ (@4), @4 (23)] + @ (22)®(w3)) ([B— (2), D (21)] + B (2) 1 (1)) )
— G4, 23)C (22, 21) + <<1>,(x4)<1>,(x3)q>+(x2)<1>+(x1)>

G4, 23)G (w3, 21) + (@ (24) (O~ (25), O (2)] + B (22) @ () B (1) )
= G(v4,73)G(x2,71) + G(23,2)G (T4, T1) + G(T4,2)G (T3, T1). (3.101)

This pattern continues to higher orders: the n-point function with even n is given by the sum over all pairings
of n of the products of two-point functions of the pairing, with the order of the operators in each pair given
by their order in the full n-point function. The same is true for the time-ordered n-point function, but with
the two-point function replaced by the Feynman propagator.
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3.8

1.

Homework

Evaluate the other two terms in our expression (3.35)) for the free scalar Hamiltonian, confirming that

this leads to (3.37).

. Find the vacuum wave functional for a free scalar field. Hint: the answer has the form

wlol exp |5 [ Lt k(@ - Do@o]
so you just need to find the function K(Z — ¢). The condition you need to satisfy is that this wave
functional is annihilated by ay for all momenta p, and you can use the expression for az and also
the definition of the canonical momenta acting on wave functionals. Your life will be easiest if you
transform K and ¢ to momentum space, but extra credit if you can give a position-space expression
for K in d = 4 (Bessel functions are involved).

The response of superfluid liquid helium to a localized perturbation with source O; = ¢(t1, #1) is given
by equation , with the two Wightman functions appearing in the commutator given by .
Taking the perturbation at ¢; = 0 and #; = 0 and taking the measured operator Os to be ¢(¢, &), plot
the response (Q|4(t, Z)|€2) as a function of ¢ and the spatial radius r = |z| for d = 3 and d = 4. Is there
a qualitative difference between two cases?

Starting from the expression for a complex scalar field and the canonical commutators ,
calculate the commutators of the operators ag, by, a;;, b;. Derive an expression for the Hamiltonian H
in terms of these creation/annihilation operators, and also give an expression for the symmetry charge
Q for the symmetry ¢ = e¢ that you derived in the last homework. What are the charges of the
particles in this theory?

Expand the massless two-point function (3.85)) in the limit d — 2. You will find a series in (d — 2)
that begins with a divergence that goes like 1/(d — 2) followed by a term that is finite and nonzero as
d — 2. What is this correction term? Do you see anything strange about it?

Extra credit: evaluate the momentum integral for the two-point function assuming that x; and
xo are spacelike separated in the cases d = 2, d = 3, and d = 4. You will likely need to consult some
reference on Bessel integrals, e.g. Gradshteyn and Ryzhik or Abramowitz and Stegun, both of which
are available as pdfs online. If the experience leaves you enthusiastic you can try the case of timelike
separation as well; this is actually a bit easier since you can go to a frame where ¥y — #; = 0.
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4 Algebras and symmetries in quantum field theory

In this section we return to formalism, introducing a general algebraic language that we can use to precisely
define the idea of symmetry in quantum field theory. We will learn about the difference between internal
symmetries and spacetime symmetries, learn more about global structure of the Lorentz group, and study
how correlation functions in quantum field theory are constrained by global symmetries.

4.1 The algebraic approach to field theory

In the Lagrangian approach to field theory we have been pursuing thus far, there is a set of “fundamental”
fields ¢®(x) appearing as dynamical variables in the Lagrangian. Other local operators such as ¢* and 0,90, ¢
are constructed out of these fundamental fields and their derivatives. In strongly-interacting theories however
it is often the case that the fundamental fields are not so closely related to the interesting physics at long
distances. Indeed sometimes the same quantum field theory has multiple presentations in terms of different
choices of fundamental fields, which is a phenomenon called duality. It is therefore sometimes useful to
adopt a language for quantum field theory that de-emphasizes the fundamental fields and treats all local
operators on equal footing. This is the algebraic approach to quantum field theory.

The basic idea of algebraic field theory is that for each open spatial region R there is an algebra of
operators A[R] associated to that region. Roughly speaking A[R] consist of all the operators made out of
sums and products of the fields in R and their derivatives. There are various opinions about how general
the spatial regions R should be, in this class we will require that each R lies within a constant time slice in
some Lorentz frame@ The algebras obey three natural axioms:

e Nesting: If Ry C Ry, then A[Rﬂ C A[RQ]

e Causality: If R; and R, are spacelike separated, then A[R;] C A’[Rz]. Here the symbol A'[R] indi-
cates the commutant of A[R], meaning the set of (bounded) operators that commute (or anticommute
in the case of fermions) with everything in A[R)].

e Haag Duality: For any region R we have A'[R] = A[R|, where R is the interior of the spatial
complement of R in the time slice it lives in.

Nesting, also sometimes called “isotony”, formalizes the idea that you cannot make more operators by
restricting which fields you can use, causality is a consequence of the (anti)commutativity of fields at spacelike
separation, and Haag duality expresses the idea that the algebra is “complete” in the sense that A[R] contains
everything you can build out of the ﬁelds@

Conceptually these axioms are all we will need from the algebraic approach to field theory, but there are
some mathematical subtleties in making the definition of A[R] precise which are worth discussing. Don’t
worry if the rest of this section goes by too fast, the goal is to make you aware of these things rather than
to turn you into a master practitioner. The first problem is that we saw in the last section that the fields
themselves are not actually genuine operators. For example if we act with a free scalar field on the vacuum
we get a state of infinite norm:

(QP(z)P(x)|Q) = G(x,z) = oco. (4.1)

To get a good operator we need to smear against a smooth (meaning infinitely-differentiable) function
f: R4 = R of compact support:

;= /ddxf(x)q)(x). (4.2)

25We do this to avoid needing to discuss quantization on curved slices. More generally R can be any open subset of a Cauchy
slice.

26Haag duality should not be confused with the “duality” mentioned in the previous paragraph, whereby the same quantum
field theory can have two seemingly different presentations. Unfortunately both usages are completely standard.
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To see that this makes the norm finite, we can first note that we have

ddilp 1 ip-x —ip-x
q)f —/dxf(x)/(mr)d_l\/% |:6p a,;—%—e P a:-){|

B /(;ljr;]—gl\/;vﬁ [ o7 ag -+ J e P (4.3)

where
fio) = [ dtoe = 5(0) (1.4)
is the (d-dimensional) Fourier transform of f. It is useful to recall two facts about Fourier transforms:

o If f:R?Y — R is a smooth function that is bounded in absolute value by W for some C' > 0 (here

|z| is the Euclidean length on R?), and moreover which has the property that when acted on by any
finite number of partial derivatives it continues obey this bound (possibly with different C for different
sets of derivatives), then the Fourier transform f(k) exists and decays faster than any power at large
|k|. The proof of this is fairly simple: by differentiating under the integral sign and integration by
parts we have

Ky -k, f(R) = / dzk,, .. Ky, e” ™ f(z)
_m / A0y, .00, (e~ ) ()
= (—i)m/ddzefik'g”au1 o Oy, f2), (4.5)

and the third line vanishes at large |k| by the Riemann-Lebesgue lemma (see Wikipedia) since by
assumption 9, ...d,,, f(x) is integrable since it is smooth and bounded in absolute value by W
e If f: R? — R is a continuous function of compact support then its Fourier transform f(k:) is an entire

function, meaning that it is analytic for arbitrary complex k. This is because we can simply define the
derivative of the Fourier transform by

af .

of _ / A (ia)e ™ f(2), (4.6)

ok, s

which is convergent since f is continuous and S (the support of f) is compact.

Results of this type illustrate the general maxim that continuity /differentiability properties of an integrable
function f translate into statements about the decay of its Fourier transform at inﬁnitym In particular we
have learned that the Fourier transform f of a smooth function of compact support is a very well-behaved
function: it is analytic for all £ and decays faster than any power at infinity. These properties ensure that
® is a better-behaved operator than ®(z). For example we can compute the norm of the state ®¢[Q):

d—1 _
QP r|C2) =/(;lﬂ)ﬁ2iﬁ|f<wﬁ,m|2. (4.7)

This integral is now convergent at large |p| due to the fast decay of f, and for m > 0 it is also convergent

at p = 0 since wy is finite there and f is analytic. When m = 0 there is an apparent singularity at p = 0
d—
due to the wz in the denominator, but as long as d > 2 this is compensated by the volume measure (gﬂ%

27 Another useful result which is intermediate between these two is that an integrable function which is analytic in a strip of
finite thickness about the real axis has a Fourier transform which decays exponentially at large k.
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Figure 7: Domains of dependence for spatial regions in Minkowski space. The regions R; and R, are blue,
while their domains of dependence are the green diamond-shaped spacetime regions.

so the integral is still finite. When d = 2 there is a logarithmic divergence at p = 0 in the massless case,
which shows that there is indeed an infrared pathology for a massless scalar in d = 2 that cannot be removed
by smearing@ It is important to emphasize that the introduction of smeared fields ®; is not purely a
mathematical convenience; no real detector has perfect spatial resolution, so this smearing is really physical
- the function f describes the spacetime profile of the detector which couples to ®(x).

Which smeared operators ¢ can be associated to which spatial regions R? The answer to this question
is not completely obvious, since in order to get a good operator we need the support of f to have nontrivial
extent in time. On the other hand we should expect that in a relativistic field theory the operators at a
location = which lies to the future or past of a timeslice should be expressible solely in terms of the fields on
that timeslice which are not spacelike separated from z. Given a spatial region R we therefore introduce the
idea of its domain of dependence D[R], which is the set of spacetime points 2 with the property that every
timelike curve which intersects = also intersects R. In Minkowski space this is equivalent to the set of points
which are spacelike-separated from all points in R, see figure 7] for an illustration Moreover this definition
has the property that if Ry C Ry then D[R;] C D[Rs]. Operators ¢y with the support of f contained in
DIR] thus will obey nesting and causality, and therefore are thus natural candidates for elements of A[R].

There is one further issue however that needs to be addressed: although the operator ®; is better-
behaved than ®(z), it still can in general have arbitrary large eigenvalues. An operator whose eigenvalues
are unbounded can have rather strong restrictions on its domain, which makes it difficult to include in
an algebra since products of unbounded operators are complicated to handle. For example in the simple

harmonic oscillator the state iy
6 = 1
) = o Z 5\n> (4.8)

n=0

has unit norm but if we act on this state with the Hamiltonian H = ) w(n + 1/2)|n)(n| we get a state
of infinite norm and the expectation value of H in the state |¢) is also infinity. This kind of divergence is
usually viewed as unphysical however, as given a detector of finite size we can’t actually measure an observable
with an infinite number of distinct possible outcomes. It is thus standard to restrict A[R] to only contain
operators O which are bounded in the sense that there is some constant C' such that /(y|OTOy)| < C
for all normalizeable states |¢). Given smeared fields ®; it is not difficult to create bounded operators, for

28This has interesting physical consequences, with perhaps the most important being that there cannot be spontaneous
breaking of a continuous symmetry in d = 2. This statement is called the Mermin-Wagner-Coleman theorem, and we will say
more about it when we get to spontaneous symmetry breaking later in the semester.

29 Another way to motivate the definition of the domain of dependence is that it is the region in which the wave equation (or
more generally any well-behaved hyperbolic PDE) should have a unique solution given initial data specified on R. Outside of
DIR] the solution will depend also on the initial data on R.
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example if ®(z) is hermitian then e'®s and H-% are both bounded, and so is the spectral projection onto
¥

the eigenstates of ®; which lie between any two distinct real numbers.
The algebra A[R] associated to a spatial region R in quantum field theory gives an example of a famous
mathematical notion:

Definition 1 Let H be a Hilbert space. A set A of bounded operators on H is a von Neumann algebra
if the following things are true:

(1) A is closed under addition, multiplication, and hermitian conjugation.
(2) A contains A\ for any A € C, where I is the identity operator.

(8) A is closed under “weak limits”, meaning that of O,, € A are a sequence of operators such that the
sequences (Y|Oy|¢) are convergent for all states |¢),|p) € H then there exists an operator O € A such

that ($[0|¢) = limy, 0 ($|On|@) for all 1), |d) € H.

Elements of A[R] are bounded for the reasons discussed in the previous paragraph, they obey (1) because if
we can measure two hermitian operators O; and Oy then we can measure simple functions of them such as
O1 4 O3 and 0102 + 0204 and (0105 — O204), they obey (2) because we can always measure the identity
by doing nothing, and they obey (3) because a limit of measurements should be a measurement. There are
many powerful mathematical results about von Neumann algebras with interesting implications for quantum
field theory, and in particular there is a classification of von Neumann algebras under which the algebras
associated to bounded regions are “type III;”, but this is not a class in mathematical physics we will stop
here.

4.2 Symmetry in quantum mechanics

What is a symmetry in quantum field theory? At the classical level we already discussed this in the context
of Noether’s theorem, where we defined a symmetry as a local transformation of the dynamical fields which
leaves the action invariant up to future/past boundary terms. From the path integral point of view (which
we have not yet introduced) we could just continue to apply this definition quantum mechanically, but it is
useful to also consider how to define symmetries in quantum mechanics directly from the Hilbert space point
of view.

A rather minimal requirement for a symmetry in quantum mechanics is that it should at least preserve
the probabilistic interpretation of the inner product, meaning that it should be an invertible transformation
f:H — H of Hilbert space that preserves instantaneous transition amplitudes

(@), f@)IP = 1w, 9). (4.9)

Here we have temporarily dispensed with Dirac notation and instead used the mathematician notation (-, -)
for the inner product on ’Hm We also require that the inverse transformation preserves amplitudes in the
same way. It is a fundamental theorem of Wigner (see section 2.A of Weinberg) that the only transformations
obeying these requirements arise from unitary or antiunitary operators on H. In other words we must either
have a linear operator U obeying

(U, Uo) = (¢, ) (4.10)
for all ¥ and ¢ such that
fW)=Uvy, (4.11)
or else an antilinear operator © obeying
(©Y,0¢) = (¢,¢) (4.12)

30The reasons for this notational change are 1) to write equation (#.9) in Dirac notation we’d need to introduce a dual action
of f on bras and 2) Dirac notation is confusing when antilinear operators are involved.
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for all ¥ and ¢ such that

f() = 9. (4.13)
A linear operator L is one for which
L(ay + bg) = alap + bLo, (4.14)
while an antilinear operator A is one for which
A(ay) + bp) = a* A + b* A. (4.15)

Defining the adjoints of linear/antilinear operators by

(¥, LT¢) = (L, 6)
(¥, AT9) = (¢, Ay), (4.16)

we see that a linear operator U is unitary if and only if UTU = I and an antilinear operator © is antiunitary
if and only if 6710 = I.

Although preserving instantaneous transition amplitudes is a necessary condition to have a symmetry in
quantum mechanics, it is clearly not sufficient: otherwise any unitary or antiunitary operator would be a
symmetry! There must also be a sense in which the unitaries/antiunitaries which are genuine symmetries
preserve more of the structure of the theory. In particular any symmetry of quantum theory should be
compatible with its dynamics. This requirement is easiest to formalize when the symmetry in question does
not affect the direction of time evolution: we then simply require that

e I = UemtHY (4.17)

i.e. that transforming and then evolving is the same as evolving and then transforming. Multiplying by U*
on the left, we can also write this as ' 4
UlemHHIy = 1, (4.18)

Since either of these equations must be true for all ¢, they are equivalent to requiring that
((HYU =U(iH). (4.19)

So far we have not decided whether U is unitary or antiunitary. Let’s first try antiunitary: then (4.19) is
equivalent to
HU =-UH. (4.20)

This however leads to trouble: if ¢p is an energy eigenstate of energy F, then we have
HUYp =-UHyp =—-FEU¢Yg (4.21)

and thus we see that Uy is an energy eigenstate of energy —F. Most Hamiltonians of physical interest
do not have the property that their spectrum is symmetric about H = 0, and in particular in quantum
field theory the Hamiltonian is usually bounded from below but not from above. Thus we have learned
that any symmetry which does not affect the direction of time evolution is implemented by a unitary (NOT
antiunitary) operator on Hilbert space. Equation then tells us that

HU =UH, (4.22)

which is the usual maxim that a symmetry in quantum mechanics is a unitary operator that commutes with
the Hamiltonian.

The set of all distinct unitaries U that commute with the Hamiltonian form what mathematicians call
a group, which is a set G whose elements can be multiplied together in such a way that the following
conditions are true:
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e Associativity: For any g1, 92,93 € G we have (g192)93 = 91(g293)-

e Identity: There exists an element e € G such that eg = ge = ¢ for all g € G.

1 1

e Inverses: For each g € G, there exists ¢g~! such that gg=! = g~ lg =e.

! are unique. They are obeyed here because if U; and Us commute with

These axioms imply that e and g~
the Hamiltonian then

U\U,H = U HU, = HUUs, (4.23)

and if UH = HU then
U'H =U'HUU" = UTUHU' = HUT. (4.24)

Hopefully this is not your first time seeing the definition of a group, but if it is then I assure you groups are
ubiquitous in physics so best to get started learning about them. Simple examples of groups are the real
numbers R under addition, the group U(1) of complex phases ¢ under multiplication, the group U(N) of
N X N unitary matrices under matrix multiplication, and the group SU(N) of N x N unitary matrices of
determinant one (again under matrix multiplication)@ A group G is called abelian if it is commutative,
meaning that g1 g2 = g291 for all g1, g2 € G. R and U(1) are abelian, while U(N) and SU(N) are non-abelian
for N > 2.

What about symmetries that do affect the direction of time evolution? In relativistic theories there are
only two such symmetries: we can mix time and space translations using a Lorentz boost, or we can reverse
the direction of time using time-reversal symmetry@ We have already seen in our free scalar theory that any
Lorentz transformation which does not reverse time can be represented by a unitary operator U(A) which

acts on the annihilation operators as
. [YWpa
U(A)aﬁU(A) - W Qi (425)
V Wp

so in particular this is true for Lorentz boosts. More generally in any quantum field theory we expect that
a Lorentz boost in the 7 direction of rapidity n acts on the Hamiltonian as

UTHU = coshn H + sinhn - P, (4.26)

which is a consequence of the fact that the spacetime momentum P* transforms as a spacetime vector.
Since we are (momentarily) considering the possibility that U could be antiunitary however, we should
really require that

UT(iH)U = i(coshn H + sinhnn - P). (4.27)

If U is unitary this is equivalent to (4.26]), but if it is antiunitary then we should instead require that
UTHU = —(coshn H + sinhnn - P) (4.28)

This equation however is not continuous as n — 0, so this would be a rather pathological representation of
Lorentz symmetry. Moreover it would again have a problem with the spectrum of the Hamiltonian: given a
simultaneous eigenstate 1 g 5 of H and P, we would have

HUp,z = — (coshnkE + sinhni - p) Upp . (4.29)

In any quantum field theory which can be interpreted as a scattering theory of particles it is quite natural
to impose the following requirement:

31These examples may misleadingly suggest that all groups are matrix groups, meaning groups that can be represented
with finite-dimensional matrices. This is true for groups which are topologically compact, but it isn’t true in general.

32Time-reversal symmetry may not actually be a symmetry by itself, for example in the Standard Model of particle physics
it isn’t, but we will see in section@ that there is a combination of time reversal with other transformations, called CR7, which
is always a symmetry in any relativistic quantum field theory.
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e Spectrum condition: In any relativistic quantum field theory we have
H>n-P, (4.30)

where 7 is any unit vector and H is defined so that the energy of the ground state is zero. The operator
inequality means that H — 7 - P is a positive semidefinite operator.

This condition should hold because each particle has energy w = /|p|?> + m? > |p|, and when we add up
energies there are no cancellations while when we add up momenta there can beﬂ We then have (for > 0)

coshn E + sinhnf - > coshnE — sinhn|p| > E(coshn — sinn), (4.31)

and so assuming that H is unbounded from above we can again generate energy eigenstates of arbitrarily
negative energy by acting with U. From now on we will therefore assume that boosts are implemented by
unitary operators.

Finally we can consider time-reversal, which we will take to be represented by an operator ©. This
should act on the time evolution operator as

ohe ter = ¢t (4.32)
and thus obey
Ol (iH)or = —iH. (4.33)
If we assume O is unitary then we have
ol HOr = —H, (4.34)

which we can discard as before since it would require the spectrum of H to be symmetric about zero. We
therefore see that we want ©1 to be antiunitary, since this gives the more reasonable condition

el HOr = H. (4.35)

For example in the simple harmonic oscillator time reversal is implemented by an antiunitary operator which
acts on the X basis

O7lz) = |z), (4.36)
leading to
ol xer=Xx
el POr = —P. (4.37)

The energy eigenstates |n) have real wave functions in the X basis, and thus are invariant under time-reversal:
Orln) = Or / de(z|n)|z) = /dx<x\n>@T|x> _ /dx<x|n)|w> — ). (4.38)

4.3 Internal symmetries in quantum field theory

In quantum field theory there is additional structure which is not present in general quantum systems: the
operators are organized into the local algebras A[R] obeying nesting, causality, and duality. In order for a
symmetry in quantum field theory to be useful, it needs to respect this local structure. The simplest kind of
symmetry that respects this structure is an internal symmetry, which roughly speaking is a symmetry that
maps any local (Heisenberg) operator O(z) to another local operator which is located at the same spacetime
point. More formally we have a definition:

331f we are willing to just assume that boosts are unitary, for example because we reject the discontinuity at n = 0 in the
antiunitary case, then we can give a simpler and more rigorous argument for the spectrum condition: it must be true so that
the Hamiltonian in any Lorentz frame is a positive operator.
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Definition 2 An internal symmetry of a quantum field theory in d-dimensional Minkowski space is a
unitary operator U such that

(1) For any spatial region R the algebra A[R] is preserved by conjugation by U and U', meaning that for
any O € A[R] we have UTOU € A[R] and UOU'T € A[R)].

(2) For any spacetime point x the energy-momentum tensor T, (x) is invariant under conjugation by U :

U'T,, (2)U = Ty (). (4.39)

The first requirement here expresses the idea that the symmetry should preserve the local algebra. The
second is a strengthening of the idea that U should commute with the Hamiltonian: it expresses the idea of
local conservation of the symmetry charge. More concretely, it says that symmetry charge cannot leave
a region of space without passing through its edges. This is not obvious, and showing it is a consequence of
requires more differential geometry than we are using in this class@ We can also motivate ina
more mundane way: a generic quantum field theory shouldn’t have more than one energy-momentum tensor,
and whatever an internal symmetry sends the energy-momentum tensor to is an equally valid candidate for
an energy-momentum tensor and therefore must be the original one. The set of internal symmetries in a
quantum field theory forms a group, as you can easily check.

There is an important further classification of internal symmetries based on what kinds of operators they
act nontrivially on. The simplest kind of nontrivial internal symmetry is one which acts nontrivially on some
local operator O(z). More mathematically, the action of U on A[R] by conjugation is nontrivial for any
region R. Such internal symmetries are called global internal symmetries. An example of a global internal
symmetry is the phase rotation of a free complex scalar

U6) ®(z)U(0) = e d(x), (4.40)

whose symmetry group is clearly isomorphic to the group U(1). Conventionally we say that this theory
has a U(1) global symmetry. This semester we will only discuss theories where all operators are built from
local operators, so all internal symmetries are global. Next semester we will discuss gauge theories such
as quantum electrodynamics, where there can be extended operators that are not built from local operators.
The reason for this is familiar from Maxwell theory: we cannot create an electrically charged particle without
also creating an electric field sourced by it that satisfies Gauss’s law, and this electric field must extend out
to spatial infinity. Therefore there are no local operators that carry nonzero electric charge. On the other
hand there are clearly states of nonzero electric charge, such as a state with one electron in the center of
space. These are created by acting on the vacuum with extended operators that create both the electron
and its Coulomb field, and it is these extended operators which carry nonzero electric chargeﬂ

Another important question about any internal symmetry in quantum field theory is whether or not
the ground state |Q2) is invariant. If it is not, then we say that the symmetry is spontaneously broken.
Spontaneously broken global internal symmetries are very interesting in quantum field theory, for example
being essential to our understanding of magnets, superfluidity, and nuclear physics. There is also a sense

34More formally local conservation is expressed as the requirement that we can continuously deform the slice on which U
is defined without changing the operator. This is often described by saying that the symmetry operator U is a topological
surface operator. In the continuous case this is a consequence of Noether’s theorem: the charge Q = [ d4=12JO(t, Z) can be
written as Q = fE n*J, where ¥ is the surface t = 0 and n* is its normal vector, and then the fact that we can continuously
deform ¥ without changing Q is a consequence of the divergence theorem and the current conservation equation 9, J* = 0.
The basic idea in showing that the invariance of T}, implies this deformability in general is to use that the stress tensor is the
functional derivative of the action with respect to the metric and that the action is invariant under arbitrary diffeomorphisms
which act on both the dynamical fields and also the background spacetime metric.

35The distinction between gauge and global symmetry defined here is not the way this distinction is traditionally presented.
The conventional definition is that in terms of the fundamental fields a global symmetry is one which acts the same way at all
points in space while a gauge symmetry is one where the symmetry transformation can vary from point to point. This definition
is problematic however, as most of the gauge transformations defined this way are mere redundancies of description and for
discrete symmetries it isn’t clear what the difference is. The algebraic definition I’ve given here isolates the physical distinction
between the two without introducing confusing historical baggage.
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in which gauge symmetries can be spontaneously broken, called the Anderson-Higgs mechanism, although
the concept is somewhat less well-defined than for global symmetries. We will have more to say about
spontaneous symmetry breaking next semester. If an internal global symmetry is unbroken, meaning that
the ground state is invariant, then it implies a powerful constraint on the correlation functions of the theory.
Indeed if we define

O'(z) = UTO(x)U, (4.41)

then we must have
(O (1) ... OL(2)) = (QUTOL (z1)U ... UTO (2,)U|Q) = (O1(21) . .. Op (). (4.42)
For example if we have a U(1) global symmetry, this tells us that for all 6 € [0, 2] we have
el a1t0)8(0 (1) ... Op(x)) = (O1(x1) ... On(zn)), (4.43)

which shows that this correlation function obeys the selection rule that it must vanish unless the sum of the
operator charges vanishes. For example this explains why you will find that (®(z)®(y)) = (®f(z)®T(y)) =0
in the free complex scalar theory.

4.4 Spacetime symmetries in quantum field theory

We now turn to symmetries that act nontrivially on the spacetime coordinates, which are called spacetime
symmetries. In terms of their action on operators, these are symmetries that move local operators around.
In relativistic field theory the most familiar of these are Poincaré transformations, which for example act on
a scalar field as

U(A,a) ®(x)U(A, a) = (A" (z — a)). (4.44)

There are three other kinds of spacetime symmetries that can show up in relativistic theories, which I’ll
mention here but not discuss further:

e Conformal symmetry: In quantum field theories which do not possess any dimensionful parameter,
such as the massless free scalar theory, then in addition to Poincaré symmetry we also have a scaling
symmetry z* = Az# for any A > 0. It is not obvious, but Poincaré symmetry plus scaling symmetry
seems to imply the existence of a broader spacetime symmetry called conformal symmetry, which
consists of arbitrary angle-preserving coordinate transformations. Field theories with this enhanced
symmetry are called conformal field theories, and conformal field theories are very important to the
logical structure of quantum field theory: any quantum field theory is supposed to asymptote to a
conformal field theory in the limit of short or long distance.

e Supersymmetry: Supersymmetries are fermionic symmetries that exchange fermionic and bosonic
fields. The spin-statistics theorem (which we will prove in section @ shows that bosons must have
integer spin and fermions must have half-integer spin, so a symmetry which exchanges them must
transform nontrivially under rotations. Supersymmetries thus mix nontrivially with Poincaré trans-
formations, and must thus be spacetime symmetries themselves. Supersymmetric field theories have
many nice properties, and in particular many interesting quantities can be computed exactly. They
are thus a source of interesting solvable examples of interesting field theory phenomena. There is also
some hope that supersymmetry will be relevant in the real world, for example to address the hierarchy
problem in particle physics (as we will discuss later), and also in string theory where supersymmetry
seems to be necessary for the consistency of the theory.

e Diffeomorphism symmetry: There is a particularly simple kind of quantum field theory called a
topological field theory, for which arbitrary coordinate transformations are symmetries. These theories
arise in some interesting condensed matter systems such as those exhibiting the fractional quantum
hall effect, and they also appear in some corners of string theory. One can think of topological field
theory as a special kind of conformal field theory.
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Returning to Poincaré symmetry, the full set of Poincaré transformations forms a group called the Poincaré
group and it is useful to now make a few general comments about its global structure. Recall that this is
defined to be the set of coordinate transformations

o = A" 2V + ot (4.45)
with a# arbitrary and A obeying
AP LAY g1 = Nap- (4.46)

The subgroup of the Poincaré group with a = 0 is called the Lorentz group, and it is denoted O(d — 1, 1).
Taking the determinant of (4.46)) we see that

(det A)* =1, (4.47)

and splitting the time and space terms of the 00 component of (4.46) we see that
(A%)? = 1+ 3" (A%)? (4.48)

and thus
(A%)% > 1. (4.49)

We therefore can split up the Lorentz group into four connected components labeled by the signs of det A
and A%,. The simplest of these components is the one containing the identity transformation, which is called
the identity component and denoted SOT(d —1,1) (here “S” indicates unit determinant and “+” indicates
A% > 1). Any element of the other components can be written as an element of SO*(d — 1,1) multiplied
by one of the following three Lorentz transformations:

R:(tzt 2% . 2 e (¢, -2t 2?2t
T (ot 2?7 o (=t 2t 2?20
RT : (t,xt, 22, 2% (—t, -2t 22, ... 2% ). (4.50)

The transformation R reflects the spatial 2! coordinate, the transformation 7~ reverses time, and the transfor-
mation R7T does both. Due to our general discussion above we should expect that 7 and RT are represented
by antiunitary operators ©+ and Ox7, while R is represented by a unitary operator Ug. Therefore two of
the connected components of the Lorentz group are unitary and two are antiunitary. When d is even it is
conventional to replace R by an operation P, called parity, that reflects all spatial coordinates. When d is
odd however P is in SOT(d — 1,1), so in general it is best to stick with R.

The fact that the Poincaré group has four connected components suggests the possibility that there could
be relativistic field theories where only some of these components give genuine symmetries. We should always
include the identity component SO (d—1,1) (otherwise what would we mean by “relativistic field theory”),
but there are indeed interesting theories where some of the other components are not symmetries. In fact this
possibility is realized in the Standard Model of particle physics, which has neither parity nor time-reversal
symmetry. On the other hand we will see in section [6] that there is a way of combining R7 with an internal
transformation C, called charge conjugation, that gives a combined transformation CR7T which is always
a symmetry in any relativistic field theory (even if C, R, and T separately are not symmetries). Thus we
always at least have a spacetime symmetry group SO(d — 1, 1), where the absence of the + indicates that
we have included the RT component of the Lorentz group but the S indicates that we have not included
the R and 7 components.

The existence of a unitary representation of SO*(d—1,1) obeying U (A, a)T A[R]JU(A,a) = A[A~Y(R—a)],
the spectrum condition, nesting, and causality together form what are called the Haag-Kastler axioms
for algebraic quantum field theory. It is widely agreed that these axioms are necessary for any reasonable
definition of relativistic quantum field theory. There is less agreement on what else is needed, two things
I personally would also include are duality and the existence of a conserved symmetric energy-momentum
tensor that generates SOT(d —1,1).
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4.5 Correlation functions of tensor fields

Just as in the case of internal symmetries, spacetime symmetries imply powerful constraints on correlation
functions. First considering elements of the Poincare group with A% > 1, we can define

O'(z) = UY(A,a)O(z)U(A, a) (4.51)
with U(A, a) being unitary. Assuming the ground state is invariant under Poincare symmetry, we then have
QO] (z1) ... 0L (2,)|Q) = (Q|O1(x1) ... Op(x,)|Q) (4.52)

just as in the internal case. In particular let’s say that the operators O(x) are tensor fields, meaning that
they come with some number of raised and lowered indices such that their Poincare transformation is

Omatn L (x) =AM AR AP, POt (AT (e — a)). (4.53)

vy...

By taking A to be the identity we see that the correlation function must be invariant under translating all of
the coordinates zf', ..., 2" by an arbitrary vector a*, and thus that the correlation function can only depend
on differences of these coordinates. When A is not the identity further constraints are imposed, for example
the two-point function of a vector operator V*(x) must obey

(VI (@1)V" (22)) = A A g (VA (A ) VI (A a2)), (4.54)
which determines the form of the two-point function to be

(VI @)V (22)) = 0" f (21 = 22)%) + (2} — 28)(2} — 25)g (21 — 22)*) (4.55)

with f and g being functions of a single variable.
We can also consider Poincaré transformations with A% < —1, which are implemented by antiunitary
operators ©(A, a). The local operators transform as

O'(x) = OT(A,a)O(z)O(A, a) (4.56)

as before, but the constraint on correlation functions is now a bit trickier to derive. Assuming that the
ground state is invariant under ©F, we have

(O1(z1) ... Op(an)) = (2, 01(21) ... Op(20))

= (0'0 @Tol(xl) O (2,)9)

= (O1(21) ... On(2n)2, Q)

= (2, (Ou(z ) . On(2n))'Q)

= (On(z)" ... O1(21)"). (4.57)
Here we have switched to mathematician notation in the middle to handle the antiunitary operators. Thus
we see that an antiunitary symmetry reverses the operator of the operators in a correlation function and

takes their hermitian conjugates. This has the nice feature that it sends time-ordered correlation functions
to time-ordered correlation functions.

4.6 Correlation functions involving conserved currents

We saw in section [2| that from the Lagrangian point of view, Noether’s theorem tells us that any continuous
symmetry in field theory leads to a conserved current J ”(w)@ The current conservation equation imposes

36This theorem has not quite been proven from the abstract point of view taken in this section (i.e. using only the Haag-
Kastler axioms), and indeed in my long paper with Hirosi Ooguri we give some counterexamples. These counterexamples are in
somewhat pathological theories however, and so far it seems likely that Noether’s theorem is true for sufficiently well-behaved
theories.
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interesting constraints on correlation functions that contain such currents, since inserting 0,,J* into any
(Wightman) correlation function must give zero. For example you will show on the homework that imposing
the conservation equation 9,V* = 0 on the vector field appearing in (4.55) implies that the functions f and

g obey the constraint

fl(x) +zg (x) + %g(x) =0. (4.58)

There is also an interesting constraint on time-ordered correlation functions of a conserved current J*. We
can illustrate the idea using a two-point function:

0u(TJ"(2)0(y)) = 0 (O(a” — y°){J*(2)O(y)) + O(y” — 2")(O(y) J"(x)))
= (2" —y"){[J° (=), 0W)]), (4.59)

where the term on the right-hand side comes from the derivative acting on the Heaviside © function. More
generally we have

(T I @01 (1) - - On(ya)) = 3 6(2° = 42N TOL (1) . [J4(@), O (ym)] - Onln)).  (4.60)

m=1
Note that the commutators appearing on the right-hand side are at equal time due to the d-function, and
thus vanish when x # y. We can therefore expand them in the ¢ function and its derivatives:
[7°(y°, ), 005", D) = A", )5 1T — §) + B'(y°, 900" (T~ ) + ... (4.61)

Integrating this equation over & we see that

A(y) = [Q,0(y)] = ids0(y), (4.62)

and so we see that the divergence of a time-ordered correlation function involving a conserved current obeys
the Ward identity:

Ou(TI*(2)O01(y1) - .. On(yn)) =1 Z 0z — Yy T O1(y1) - .. 65O (Ym) - - - On(n)) + - - -, (4.63)

m=1

[ R

where the indicates terms proportional to derivatives of 6%(x — y,,) with respect to . In quantum
field theory terms in correlation functions which vanish unless the operators are at the same point are
called contact terms, and usually they have ambiguities depending on how the theory is regulated at short
distance. The leading term in is an exception, as we were able to determine it from the symmetry
algebra.
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4.7

Homework

. Compute the two-point functions (®(z)®(y)) and (®(x)®(y)) for a complex scalar field, giving each

answer both as a covariant integral over spacetime momenta and also directly in position space in
terms of a Bessel function. You are free to use our results for the real scalar field, so you shouldn’t
need to evaluate any new integrals.

Show that if R; and R» are open spatial regions (which recall for us means that each lies in a constant
time slice in some Lorentz frame) obeying R; C Rg, then their domains of dependence obey D[R] C
DI[R3].

Show that SU(N) is indeed a group, meaning that it is closed under matrix multiplication and matrix
inverse.

Show that every Lorentz transformation is indeed a product of an element of SOT(d — 1,1) with 1,
R, T, or RT. Hint: this shouldn’t require any detailed calculation or explicit parameterization of the
Lorentz group.

Argue that the vector two-point function indeed has the form (4.55)), and also show that if 9,V# =0
then ([4.58]) follows.

Check that the two-point functions we computed for real and complex scalar fields are consistent with
the time-reversal constraint (4.57)).

Extra credit: Antiunitary operators may seem somewhat counter-intuitive, but there is an elegant
characterization of any antiunitary operator due to Wigner that you will work out in this problem.
First argue that if © is antiunitary then ©? is unitary. There therefore must be a basis |i) in which
we have ©2|i) = e=2"% i) and (©1)2|i) = (©2)T|i) = €*¥|i) for some 0; € (—7/2,7/2]. Work out how
© and O act in this basis, and then argue that their action on arbitrary superpositions follows from
antilinearity. Hint: you want to show that up to phase redefinitions you can take this basis to consist
of states which are invariant and pairs of states which are exchanged up to a phase by acting with ©.
You might start by showing that ©[i) is also an eigenstate of ©2.
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5 Path integrals in quantum mechanics and quantum field theory

So far we have discussed quantum field theory in the Hamiltonian formalism. This formalism has many
advantages, for example it is where the physical interpretation of a quantum system in terms of measurements
and counting degrees of freedom is most clear, but it obscures the full symmetry of relativistic theories since
one needs to pick a Lorentz frame to define the canonical momenta and the Hamiltonianﬂ Giving up on
manifest Lorentz invariance makes it harder to demonstrate some of the deeper consequences of Lorentz
invariance, such as the CR7T and spin-statistics theorems, and it also makes practical calculations more
difficult since each intermediate step seems to depend on the Lorentz frame but the end result doesn’t. In
classical mechanics there is a clear way to handle this problem: we can think more about the Lagrangian and
less about the Hamiltonian. The goal of the path integral approach to quantum mechanics, first suggested
by Dirac and then greatly expanded by Feynman, is to give an independent (but equivalent) formulation of
quantum mechanics that based on the Lagrangian instead of the Hamiltonian. We will spend the rest of this
section developing this approach.

5.1 Hamiltonian path integral in quantum mechanics

We will first discuss the path integral for a finite number M of quantum degrees of freedom, which we
will refer to as @ with a = 1,2,..., M. They have canonical conjugate momenta P,, and these obey the
canonical commutation relations

[Q*, Py] = idy
[Q*,Q" =0
[P, Po] = 0. (5.1)

We will take the Hamiltonian H(Q, P) to be a polynomial in ) and P whose terms are ordered in such a
way that all P’s appear to the right of all @Q’s (using the canonical commutation relations we can always
write any product of Ps and @s as a sum of terms with this ordering), and we will work in the Heisenberg
picture so that both @ and P are functions of time. For convenience we will take the Hamiltonian to be
time-independent, but there is no real difficulty in repeating the argument for a time-dependent Hamiltonian.
Let’s say we are interested in computing the propagator G(qs,¢i;ts,%;) in the @ basis. In the Schrédinger
picture this is given by

Glag, aists ts) = {agle™ =1 g, (5.2)

but since we are working in the Heisenberg picture we’ll instead write it as

where |g, t) is a simultaneous eigenstate of the Q®(¢):

Q" (t)lg,t) = q*|q,1). (5.4)

Explicitly we have |q,t) = e'ft|q,0).
The idea behind the path integral formalism is to break up the propagator into a repeated integral over
propagators with smaller time separation by inserting complete sets of states:

N-1
(ar,trlaiti) = H (/dMQm> (ar,trlanv—1,ty —e){gn-1,tr —€lgn—2,tr —2€) ... (g2, t2|q1, t1){q1, ti +€lgi, ti).

" (5.5)

37There actually is an approach to Hamiltonian mechanics that does not require a choice of Lorentz frame, which is called the
covariant phase space approach. See my first paper with Jie-qiang for a review. Quantization in this approach is somewhat
subtle, and we won’t pursue the topic here.
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(ar,ty)

(gists)

q

Figure 8: Discretizing a particle trajectory from (g¢;,t;) to (gs,ts). The dashed lines show the positions
which are integrated over in the intermediate steps.

Here we have split the time interval t; —¢; into IV pieces of size e. We can think of the integration variables
qf,...q%_, as giving a discretization of possible trajectories the system could follow from ¢ at time t; to
qf at time ¢, see figure [8| for an illustration in the case of a single particle moving in one dimension. The
integral is therefore a sum over (discretized) intermediate trajectories; a path integral. The expression
however is not so useful: we need some way to compute the propagators. At finite € this of course isn’t
any easier than computing the full propagator, but in the limit of small ¢ a simplification is possible:

(¢ t+ €lg,t) = (¢, t|e " H<|q, )
~ (¢, t|(1 — ieH(Q(t), P(t)))lq,t)

M
:/(ir)lz; (¢, tl(1 —ieH(q',p))Ip, t)(p, tlg, 1)

dj\/jp . ra a
- / am —ieH(q',p))e’ ZePe(1" 70

dMp e S pa L=t H (g p)
%/(%)Me (Zare ™ ). (5.6)

Here in going from the first to second and fourth to fifth lines we have neglected terms which are O(e2),
in going from the second to the third line we have inserted a complete set of states and used that in H
the momenta are ordered to the right, and in going from the third to the fourth line we have used the
momentum-space wave function

(q:t|p,t) = €' Za?"de. (5.7)

We can then use this repeatedly in (|5.5) and take the limit € — 0, which gives

N—-1 N-1 N-1 a a
(ap.trlgitsy =lim JT ([ d™am ) T] 20 Y s [ie S pea I H (g1 pe)
frbfldi, bi EHOm:I m 11 (27T)M a B +1,

/=0 a

~ [ Dalit [ Dy exo l [ (Zpau)q'“(t) - H<q<t>,p<t>>>] . (53)

i

Here we have defined ¢y = ¢; and gy = ¢y, and [ Dq|4! indicates a functional integral over paths ¢%(t)
obeying ¢*(t;) = ¢ and ¢%(ty) = q5- J Dp indicates a functional integral over paths pe(f) in momentum
space with no restrictions at t; and t;. Equation (5.8) is called a Hamiltonian path integral expression
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for the propagator. The quantity appearing in the exponent is essentially i times the Lagrangian, except
that p is treated as an independent variable instead of being related to ¢ and ¢.

In quantum field theory we are particularly interested in expectation values of products of Heisenberg
operators, and these also have a useful path integral representation. Indeed we can consider the quantity

(qr,t£1Onm (Q(ar), P(tar)) .. O1 (Q(t1), P(t1)) s, ta), (5.9)

where I've put a line over the times of the Heisenberg operators to distinguish them from the timesteps
appearing in the path integral discretization. We will assume that the operators are time-ordered, meaning
that

t) <ty <...<tp, (5.10)

and we will also take these operators to be ordered so that all canonical momenta appear to the left (note
that this is the opposite of the ordering we chose for the Hamiltonian). We can evaluate this quantity by
inserting complete sets of states as before, except now we occasionally need to evaluate

.+ O P)Ia.1) = [ b a' e MOy 1y, 1O, PO )

M i a’%—q% _ ’
z/(iﬂ)@eze(zam —-—H(q ’p)>0(q(t),p(t)), (5.11)

Thus we see that the only effect of time-ordered operator insertions is to insert these operators evaluated as
functions of ¢ and p into the path integral:

(@514 [TOVQ(E), P(R)) .. Oar(Q(Er), P(Ear))li. i) = / Dyl¥! / DpOL(a(), p(Rr)) - .. Onr(aEar), p(Ear))

x exp [ | <Zpa<t>qa<t> - H(q<t>,p<t>>ﬂ
1 ’ (5.19)

Here we have used the time-ordering symbol T on the left-hand side to ensure that operators are time-ordered,
so we no longer need to impose (5.10).

5.2 Ground state preparation and the ic prescription

In quantum field theory the canonical coordinates Q%(¢) become Heisenberg fields, and it isn’t so useful
to consider expectation values in eigenstates of these fields. What we really want are vacuum expectation
values, so for the path integral formulation to be useful in quantum field theory we need a path integral way
to prepare the ground state. Fortunately there is a fairly simple way of doing this. Let’s first recall that the
eigenstates |¢,t) of Q obey

|, t) = ¢"[q. 0). (5.13)

As with any state in the Hilbert space, we can expand |g,0) in terms of energy eigenstates:
lq,0) =Y Ci(q)li), (5.14)
i

with H|i) = F;|i). The idea is then to give ¢t a small imaginary part via
t=e T, (5.15)

with 7 real and 0 < € < 1, and then take 7 to be large and negative. Working to leading order in ¢ we then
have

lq,e7"7) = |q, (1 —ie)r) = T ]q,0) =Y~ Ci(q)e" 7 i), (5.16)
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Figure 9: The i€ prescription for computing correlation functions in quantum field theory. Here 1, 2, ... are
the locations of the operators and the time contour is shown in red. In practice it simplifies calculations if
we also analytically continue the operator times as %,, = e *“7,,, as then we can straighten the contour to
the dashed one.

so if we take 7 to —oo this gives us a state which is proportional to the ground state (which we renormalize
to have zero energy):

g1, —(1 — i€)oo) = Co(q)[$2). (5.17)

Therefore we can write a (Hamiltonian) path integral expression for the ground state wave function:

v/ Dpexp[ / o (Zpaa)qa(t)H<q<t>,p<t>>>]. (5.18)

We can also use 1) to give a path integral expression for the time-ordered correlation functions:

<qfao|

(QUTOx (@), P[E)) - Oat (QUEar)- P13)) 19) =i [ Dull [ PoOs(a(t).pE) .- Ons(afEar).piE)
(1—i€)oo
X exp [Z~/—(1—ie)m dt (%:pa (t)g"(t) —H(Q(t),p(t))ﬂ ;
(5.19)

where for convenience we have arbitrarily taken ¢f = qf = 0. The contour for the ¢ integral is shown in
figure 9] This contour prescription is the path integral version of the ie prescription, and we will soon see
that it gives rise to the same ie prescription in the Feynman propagator that we found from the canonical
approach in section 3} You may worry that this formula still requires us to know |Cy(0)[, but by removing
the operator insertions we can also use it to give us a path integral formula for this,

(1—ie)oco
Col0)* = [ Dalf [ Do exp[ [ (Zpaa)q'a(t)—H<q<t>7p<t>>>], (520)

so the correlation function is really a ratio of two path integrals. This is convenient because ambiguities in
the normalization of the path integral measure cancel between the numerator and denominator.

5.3 An aside on Gaussian integrals

To proceed further, we now need to remember (or learn) a few things about Gaussian integrals. You hopefully
haven’t made it this far in your education without knowing that

/ dre™ = = /27, (5.21)

— 00

M)
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but just in case the proof is to look at the square of this integral and change to polar coordinates:

oo 2 %) %) %) o)
_=2 FLET 2 d _2
(/_OO dze ) = /_oo dat:/_C>O dye —271'/0 drre —271'/0 dra (—e ) =2m.  (5.22)

Once we have this basic result we can derive others, for example for any A > 0 and any complex B we have

1o

|

/ dg e~ 2% + Bz :/ dpe=3(@=8)+8 _ \}Ze%/ dze ™ = \/ 2%6%. (5.23)

By differentiating this expression with respect to B we can compute all the moments of the Gaussian
—. (5.24)

distribution, for example
o) 2
\/A/ drae 2% = d e% =
2 J_ o aB? B=0 A

We can also consider multiple integrals: given a symmetric matrix A which we will at first assume to be real
and positive, and a complex vector B, we have the integral

1

Z|A,B] = / dge= 2@ AvtBle (5.25)

where z is a real vector. We can diagonalize A as A = OT DO, where O is orthogonal and D is diagonal
with positive elements dy,ds,.... We can then change variables to z = Oz, giving

Z[A,B] _ /dief%iTDEJr(OB)TE
— </ d%lefédeLEr‘rZJ OLJBJ’QEL)
\/ﬁ (=, Oiij)2
= —_— 2d;
; ( 4 )

= ;e%BT‘rlB. (5.26)
Det (%)

There is an easy way to remember this result: up to a determinant factor, we can evaluate a Gaussian integral
by evaluating its integrand on the value of x for which its exponent is stationary. Indeed the exponent in
(5.25) has a stationary point at

r=A"'B, (5.27)
and we then have ) )
—ixTAx + Bx = 5BTA*HB. (5.28)
We can also use this result to compute correlation functions:
. - —tzT Az
[ dwa, Pt _ 9 0 gsmats| (5.29)
fd;c e 27T Az 831‘1 8B1n B=0
in particular the two-point function is given by
d T —%xTAx
Jdwaiaye 22 2 _ g, (5.30)

f dx e—%xTAx

In quantum mechanics we are not only interested in the situation where A is real and positive. We can
extend our result ([5.26)) to more general A by analytic continuation; a minimal condition for the convergence
of the integral that A has positive real part, meaning that A + A' is positive, and will apply
for any such matrix provided that we are careful to define the sign of the square root by analytic continuation
from real positive A.
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5.4 Lagrangian path integral in quantum mechanics

So far the path integrals we have discussed have independent integrals over the trajectories ¢(t) and p(t).
These manifestly rely on the Hamiltonian formalism, and thus are not manifestly covariant in relativistic
theories. To get covariant expressions we need to get rid of p(t). The best way to do this is to integrate
it out, meaning to simply evaluate the functional integral over p(¢). In many theories of physical interest,
including in particular the standard model of particle physics and also general relativity, the Hamiltonian
is a quadratic function of the canonical momenta. The functional integral over p(t) is therefore a Gaussian
integral, and we can thus evaluate it using the methods of the previous subsection. Indeed the stationarity
condition is simply Hamilton’s equation -

§* =

Opa
so evaluating the Gaussian integral over p(t) has precisely the effect of converting the exponent in the path
integral into the Lagrangian! More explicitly, considering expectation values of operators that depend only
on @ (and not P) we have

(5.31)

D ;
q| - On(g(Ea)) e ST Lia(t) ()

v/Det (2w Algq
(5.32)

Here Alg| is the “matrix” appearing in the term in the Hamiltonian which is quadratic in P, as in equation
. In simple theories (such as the harmonic oscillator or the standard model of particle physics) A is
independent of ¢, in which case the determinant factor is a field-independent constant and can be absorbed
into a rescaling of the measure@ Equation is called the Lagrangian path integral, and unlike the
Hamiltonian path integral it manifestly has (up to possible regularization issues) all the symmetries of the
classical Lagrangian L. Using the ie prescription we can also give a Lagrangian path integral expression for
time-ordered correlation functions:

(a7, t71TOL Q")) - - - Onr(Q(Ear)) i ti) =

_ co(1—ie) .
| 01 (a(11)) - Orra(fan))e! Tt 000D

[—Dds__i Ul dtLa(t),q(1))

+/Det(2mAlq])

This expression, together with its Euclidean continuation we will introduce soon, is the starting point for
many (most?) standard calculations in quantum field theory.

The restriction to operator insertions that don’t depend on P is not so serious, as we can differentiate
both sides of equation with respect to the operator times #1, o, ... to get path integral expressions for
correlation functions involving time derivatives of q. The restriction to Hamiltonians which are quadratic in
P is more concerning. In general the best that can be said is that by integrating out p we will always get some
local Lagrangian which has whatever symmetries the theory has, but it won’t in general be the Legendre
transform of the Hamiltonian we started with. On the other hand in quantum field theory we usually end
up writing down the most general local Lagrangian that is consistent with the symmetries in question (see
our discussion of effective field theories in section , and the new Lagrangian resulting from integrating
out p will differ from the one resulting from the Legendre transformation only by shifts of the values of
the parameters in this Lagrangian. By starting with the Lagrangian approach we therefore land on the
same class of theories as we did starting from the Hamiltonian approach, but now with a more complicated
relationship between the two approaches. These comments also apply to the somewhat arbitrary choices we
made for the operator ordering of H and O: other choices would just differ by shifting the coefficients of

(QITO(Q(1)) ... Om(Q(tar)) Q) =

(5.34)

38 An example of a theory which is not “simple” in this regard is the “non-linear o-model”, which is a theory of multiple
scalar fields ¢™ with Lagrangian density

L= —%gmn(qs)amma%" —V(p). (5.33)

Here gmn(¢) is a Euclidean metric on the target space of the fields ¢ (x). This theory shows up in the low-energy description
of pions in nuclear physics.
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the local terms appearing in H and O. In general shifts of this type are called renormalizations, and in
defining path integrals we always give ourselves some leeway in how to renormalize both the Hamiltonian
and the operators appearing in expectation values.

5.5 Path integral calculation of the harmonic oscillator ground state

As a first illustration of using a path integral for a practical calculation we can compute the ground state
wave function of the simple harmonic oscillator. Up to normalization this is given by

(2] x /Da;|§fe" SR amioe 43 (27 -m?a?), (5.35)

This integral is Gaussian, so we can evaluate it using our formula ([5.26)): we are supposed to find the saddle
point of the exponent and then evaluate the integrand on it. The saddle point equation is

d?z
-7 = —m?2x, (5.36)

but it is more convenient to rewrite this in terms of 7 = (1 + ie)t:

d2

d—;ﬁ = —m2(1 — 2ie)z. (5.37)
We are interested in finding the saddle point which vanishes at 7 = —oo and is equal to zf at 7 = 0; this is

x(r) = zpetmI=ioT, (5.38)

Evaluating the exponent of the integrand we have

2
_m:vf

ix3 2m2(1 — i
_ m=(1 — ie)
2 2im(l —ie) 2’ (5:39)

i(1— ie)/ d77f (—m2(1 — 2i€) — m?) e2m=ioT —

— 00

which is indeed the exponent for the correct harmonic oscillator ground state.

5.6 Path integral calculation of the Feynman propagator in field theory

We can evaluate the Feynman propagator for a free scalar field along similar lines. Taking into account the
i€ prescription, integrating by parts we can write the exponent as

%/ dT/dUHm (—(1+2i€)0% + V* —m?) ¢. (5.40)
Thuss the “matrix” A for this Gaussian integral is
A(z1,22) = —i (—(1 +2i€)0% + V* —m?) (5.41)

which we can easily invert in momentum space:
dp jetp(r2—x1)
A Y@y, 20) = /
(0152) = | Gyt (4 2ie) ()7 — o7 — 7
_ / ddp _ieip(Cw*CEl)
) @2m)dp2 +m2 — i€’

(5.42)

where in the second line we rescaled e by the positive quantity (p”)2. By equation ([5.30)) this should be equal
to the Feynman propagator G (z1,z2), and indeed it matches the expression we found in section [3| using
the canonical formalism.
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We can also use this approach to independently derive a position space expression for the Feynman
propagator. Indeed from equation ([5.41]) the Feynman propagator should obey

(—(1+2i€)02, + V3 —m?) Gp(a1, 22) = i6(21 — 22). (5.43)
By Lorentz invariance G should really only be a function of
s = \/(fg — 51)2 — (tg — t1)2 = \/(3_3"2 - fl)Z - (1 - 2i€)(7’2 - 7'1)2, (544)

and substituting this into (5.43) we find that away from s = 0 the Feynman propagator obeys (up to terms
of order €?)

d—1
G%(s) + TGIF(S) —m2Gp(s) =0, (5.45)
which is a standard ordinary differential equation whose solutions can be expressed in terms of Bessel

functions (as you can easily check in mathematica). The solution which goes to zero at large positive s is
Gp x s*%Kdz;z (ms), (5.46)
and we can fix the coefficient of proportionality either by requiring that this obeys
(V2 —mHGr(xe, 1) = 0wy — x1) (5.47)

or else by matching to the integral (5.42)) in the massless limit that ms < 1 where the integral is easier to
compute. This is the same position-space two-point function we quoted in section [3} except that now the ie
prescription we are using gives us the Feynman propagator instead of the two-point function.

5.7 FEuclidean path integrals

We’ve seen that it is convenient to analytically continue ¢ slightly into the complex plane via the ¢e prescrip-
tion ¢ = e~ *¢7. In fact it is an even better idea to continue all the way to € = 7/2, i.e. to

t=—ir. (5.48)

The path integral on this contour is called the Euclidean path integral, and for many questions the
FEuclidean path integral is the best way to think about it. Given its importance, it is worth repeating the
deriviation we gave in Lorentzian signature directly in Euclidean signature. The idea is to define Euclidean
Heisenberg operators byﬁ

O(r) = e™0(0)e ™8, (5.49)

with eigenstates |¢, —iT) = e7|g,0). Proceeding as in the Lorentzian case, we can note that

M
<ql, *Z(T + €)|O(Q(T), P(T)‘q, 7’L7‘> = / (;71-)};4 <q/’ 7Z-T‘676H(Q(T),P(T)) ‘p, *Z.’7'> <p, *Z.7'|O(Q(T)7 P(T))‘q, fi7->
M i a’*—q% _ /
~ / (;lﬂ)]]; ee(zZa pot———H(q 4’)) O(q(7),p(7)) (5.50)

and therefore by inserting complete sets of states we have

(qf, —iTf|TO1(Q(T1), P(T1)) - - Om(Q(Tm), P(Tr))l i, —iTi) Z/Dq & /Dp01(Q(71)7P(71))---OM(Q(7M)7P(?M))

 exp [ [ <i2pamq’a<r> - H(qm,pm)ﬂ .

(5.51)

39These operators are somewhat delicate mathematically due to the presence of e™ | which has a very limited domain. It is
always ok to use them in time-ordered vacuum correlators however, which in the end is the only place we will use them.
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Taking 7; — —oo and 77 — oo now automatically projects onto the ground state, so no analytic continuation
is needed to convert this into a vacuum expectation value:

(QUTONQ). P(F)) - Oae(Q(Fan). PFw))I) =1 / Dyl / DpO1(g(T1)p(T1)) - .. Ont (a(Tar). p(Far)
X exp [/_ dr (ina(T)(i“(T) - H(q(T),p(T))ﬂ :
’ (5.52)

Converting this into a Lagrangian path integral (with the same caveats as before), we end up with

S [1::1\20” 01(q(71)) ... Onr(q(Tar))e I A7l l0)
(QTONQ)) . .. O (Q(Far))| Q) = —Y2LCTD

[ __Dal§ _— [ drLe(g.d) ’ (5.53)

4/ Det(2mA)

where Lg is the Euclidean Lagrangian defined in terms of the Lorentzian Lagrangian by

d .d
Lg (q, d?_) =L (q,zdj) . (5.54)

1
Ly =5 (¢ +m?), (5.55)

while for a free scalar field the Euclidean Lagrangian is the spatial integral of the Euclidean Lagrangian
density

1 /.
Lo=3 (¢2 Y V-Vt m2¢2) . (5.56)
There are a few essential points to make about the Euclidean path integral:

e Mathematically it is much better behaved than the Lorentzian path integral. The Euclidean action
Sg = ffooo dr L is often real and bounded from from below, as you can see from the harmonic oscillator
and the free scalar, so the integrand e™°# exponentially suppresses field configurations which aren’t
near ¢ = 0. This makes it possible to give it a mathematically rigorous formulation (at least in the
case of a finite number of degrees of freedom), look up “Wiener measure” if you want to learn about
it.

e In situations where Sg is real and bounded from below we can interpret the Euclidean path integral
(5.53]) as computing expectation values in a classical probability distribution. Many famous classical
statistical systems arise in this way, for example the Euclidean path integral for a free particle is the
classical theory of Brownian motion and the Euclidean path integral for a free scalar field with d = 2
is the classical theory of random surfaces. The critical point in the phase diagram of water is also
described by a (interacting) Euclidean scalar field theory, as are the fluctuations of magnets at the
Curie temperature. Euclidean path integrals also arise in quantitative finance: the prices of options as
a function of time are fluctuating variables which can be characterized by a Euclidean path integral.

e In situations where the Euclidean path integral has a probabilistic interpretation it is amenable to
explicit numerical evaluation. The standard approach to this is called the Monte Carlo method, which
samples from the probability distribution and then assumes that the expectation value is dominated
by its value on a typical instance. This is a very powerful method for evaluating high-dimensional
integrals. For example in QCD, the theory of the strong nuclear force, my colleagues here in the
Center for Theoretical Physics use this method to compute the masses of hadrons such as the proton
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and neutron to quite good accuracy. The computational resources involved are somewhat terrifying,
for example in a recent calculation my colleague Will Detmold used the fastest publicly-available
supercomputer in the world, Frontier at Oak Ridge National Laboratory, to evaluate the FEuclidean
path integral of QCD on a Euclidean spacetime lattice with 72 x 72 x 72 x 192 sites, consuming of
order 10'! Joules of energy in the process.

e In relativistic theories something particularly nice happens: if we have SO*(d — 1,1) symmetry in
Lorentzian signature then we have SO(d) rotational symmetry in Euclidean signature. This Euclidean
rotation invariance is at the heart of many famous results in quantum field theory, as we will see in
the next section.

e We can also use the Euclidean path integral to compute Lorentzian correlation functions: to compute a
time-ordered correlator of operators O1 (1), O2(f2), . . ., we simply compute their Euclidean correlation
function as a function of 71,75,... and then analytically continue the time of each operator as 7 =
i(1 — i€)t. This analytic continuation is called Wick rotation; essentially we are approaching the
ie contour shown in figure [J] from the Euclidean contour instead of the Lorentzian one. You will
check in the homework that this continuation again gives the correct ie prescription for the Feynman
propagator.

e Euclidean path integrals arise naturally in the context of quantum statistical mechanics. For example
to compute the partition function Z(8) = Tr (6*5H ), we evaluate the Euclidean path integral with
periodic boundary conditions in time, with periodicity 5.
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5.8

Homework

. Rewrite the operator PQPQ as a sum of operators with all P to the right and all @ to the left.

Use the path integral to find the propagator (¢’,t'|q,t) of a free quantum particle moving on a line

with Hamiltonian H = %. Hint: use the discretized version of the Lagrangian path integral.

Use the path integral to find the propagator for the simple harmonic oscillator, with Hamiltonian
2

H = QP—m + §Q2. Hint: you should expand the function ¢(t) you are integrating over as a classical

solution g plus a fluctuating piece dg, and then expand dq in Fourier modes and integrate over the

coefficients of these modes. I recommend first doing the calculation neglecting any prefactors which are

independent of k: you can find the k-independent prefactor at the end by comparing to your answer

for the previous problem in the limit £ — 0.

Use the Lorentzian path integral with an e prescription to find the Feynman propagator of a free
massive complex scalar field (remember that this is the time-ordered two-point function of ® and ®T).

Use the Euclidean path integral followed by a Wick rotation to compute the Feynman propagator of a
real free scalar field with mass m. Hint: you should find that the Euclidean Feynman propagator is a
Greens function for the Euclidean Klein-Gordon operator, obeying (V2 — m2)Gr(z,y) = —d%(z — y).
It is ok to leave your expression for it in terms of a spacetime momentum integral, but you should
make sure that after Wick rotation you get the right ie prescription for the Feynman propagator in
Lorentzian signature.
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6 CRT, spin-statistics, and all that

We’ve now developed two powerful formalisms for thinking about quantum field theory: the operator ap-
proach based on algebras acting on Hilbert spaces and the path integral approach, both in Lorentzian and
FEuclidean signature. In this section we will put the pieces together to prove some of the famous results
in relativistic quantum field theory: the CR7T theorem, the relation between spin and statistics, and the
thermal nature of vacuum entanglement (the Unruh effect). All of these results are true non-perturbatively
in any relativistic quantum field theory, as the arguments will hopefully make clear. The title of this section
is shamelessly adapted from a famous book by Streater and Wightman, which discusses the first two of these
from a rigorous (but somewhat out-dated) approach.

6.1 The CRT theorem

Let’s first recall our Euclidean path integral expression for correlation functions in quantum field theory:

e—Se[4]
QTO\[®)].... Op[a]j) = L 22 Ol}(@])'d;;iﬂi[ﬁ] (6.1)

Here I have switched from the particle notation we used in the last section to field notation, and also absorbed
the determinant factor coming from integrating out the momenta into the measure D¢. In any relativistic
quantum field theory this path integral is invariant under Euclidean rotation symmetry, in the sense that if
Fy is a transformation of field space which implements a Euclidean rotation A € SO(d), i.e.

Fr¢®(2) = Dp(A)%¢" (A" ) (6.2)
on the dynamical fields, then the combination of the path integral measure and action are invariant:
D(Frg)e 52lFrd] = Dpe=5eld], (6.3)

The invariance of the action is the classical statement of having a symmetry, while the invariance of the
measure reflects the statement that the regularization of the theory implicit in the path integral does not
destroy the symmetry (much later we will see examples of situations where this happens). Using this
invariance we can derive a constraint on correlation functions:

D¢ O ...0 —Su(4]
[ D(Fro) O1[Fad] ... On[Frgle=Se1Fad)
B [ D551
_ | DO [Frg]. .. Ot [Fagle 5719
B [ Dge—5=14]
= (QTO1[Fr®] ... On[Fr2]|2). (6.4)

In going from the first to the second line here we changed variables in the path integral, in going from the
second to the third we used the symmetry condition (6.3), and in going from the third to the fourth we used

(@)

To prove the CRT theorem we are interested in the Euclidean rotation A = RT, which acts ad™]

RT : (1,2t 29, ..., 2% = (=7, —2t, 2%, ... 2971 (6.5)

40When d is even we can combine R7 with spatial rotations to define an operation P7 which simply acts as PT : = — —z.
This then leads to a symmetry called CP7T, which is a symmetry of any relativistic field theory when d is even. Historically the
theorem discussed in this section has thus usually been called the CP7T theorem, especially by particle physicists who only care
about the case of d = 4, while the terminology CRT is of more recent origin. We have focused on CR7T nonetheless because 1)
it is the thing which works in any spacetime dimension and 2) it is what naturally arises from the proof of the theorem.

69



I emphasize that RT is indeed an element of SO(d), it is a rotation by 7 in the plane of 7 and z'. This
transformation reverses the direction of Euclidean time, so it also reverses the order of the operators in the
Euclidean correlation function. To be more concrete, if O; lives at time 71, Os at time 75, etc, and for

simplicity we assume that 7y < 75 < ..., then the Euclidean statement of this symmetry is that
FG=1)
QO [®]...01[D]|2) = (=1) "= (QO1[Fr7®]...On[FrTP]|Q)
= (~1)72(Q01[Fr79] ... On[Fr7]|0), (6.6)
where
f=foi+...+ fou (6.7)

is the total number of fermionic operators appearing in O;p...Ojps. This pesky minus sign arises from
something we haven’t discussed yet, which is that when you time-order fermionic operators the process is
antisymmetric instead of symmetric. We’ll see this in more detail when we discuss the fermionic path integral
in a month or so, but for now the basic idea is that since fermionic fields anticommute instead of commute
at spacelike separation it must be that the degrees of freedom which represent them in the path integral are
also anticommuting. The second line of follows from the first because correlation functions involving
fermions vanish unless the total number of fermions is even, which is a consequence of the fact that the
Lagrangian density is always bosonic (this is called fermion parity symmetry).

The CRT theorem is what we get when we analytically continue to Lorentzian signature. We can
formalize the analytic continuation be introducing a Wick rotation operation W, whose action on dynamical
fields is defined to perform the analytic continuation 7 = it. On Euclidean scalar fields we have

Wo(t,7) = (it, 7), (6.8)

while for tensor fields each raised 7 indices get a factor of ¢ and each lowered 7 indices get a factor of —i. So

for example a vector field V# has
VO, &)\ _ (iVO(it,7)
W (Vj(t,f)) = <vi (it, ) (6.9)

(@03 _ (—iwolit, 7)) (6.10)

w;(t, @) w;(it, T)
These factors are necessary because we’d like to preserve e.g. the expressions V = V#0, and w = w,dz*, so
we should rotate V° in the same way as we rotate 7 and wy in the opposite way@ Analytic continuation of

thus gives
(QWOM[®]... WO, [®]|Q) = (—1)FortFors)/2(QIW O, [Frr®] ... WO [Frr®]|Q). (6.11)

while a one-form field w, has

In order to give this a symmetry interpretation in Lorentzian signature, we can first observe that the sym-
metry must be antiunitary since it reverses time. To see what the antiunitary is, we need to first recall that
for any antiunitary operator © that preserves the ground state we have the constraint

Q)01 ...0M|) = QIO ... O] |) (6.12)

Thus we can interpret (6.11)) as indicating that our Lorentzian theory has an antiunitary symmetry Ocr 1
whose action on the dynamical fields i

Ol Wd(2)0 = il* (W Frr®®(z))T, (6.13)

41For future reference I’ll mention that spinor fields do not pick up any phase factors under Wick rotation, but the y-matrix
~9 transforms as W~7 = iy?. Don’t worry about this if you don’t yet know what it means.

42Note that this definition does not require or use independent definitions of C, R, and 7. In general these are not symmetries,
and even when they are there is some freedom in how they are defined. The name CR7T is thus in some sense a historical
anachronism, the whole is better-defined than its parts.
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where f, = 1 if ®* is fermionic and f, = 0 if ®¢ is bosonic. In particular note that we need to take the
complex conjugate of the analytic continuation of the Euclidean rotation to match (6.12)), this is the origin
of the “C” in CRT. For example the action of CRT on a (Lorentzian) complex scalar ® or complex vector

v i
OLpr®(2)OcrT = ®(RTx)
Ol VH(x)OcrT = (RT)*, V¥ (RTx)t. (6.14)
Once we have understood spinor fields we will also see that a Dirac spinor transforms as
Olrr¥(z)OcrT = YV U (RTx). (6.15)
In general we can write the CRT transformation in Lorentzian signature as
Ol 8% (x)Ocr T = if* (D(RT)%®"(RTx))' | (6.16)

since any factors of ¢ and —i from the Wick rotation of any 7 indices cancel between the two sides. In the
homework you will show that this equation together with the spin-statistics theorem imply that

in any quantum field theory@

The CRT theorem is quite remarkable from the point of view of the topology Lorentz group. In Lorentzian
signature R7T lives in a component of O(d—1,1) which is disconnected from the identity component SO (d—
1,1). If we just assume a relativistic theory has SO (d — 1,1) symmetry, there is no particular reason why
we should expect any version of R7 to be a symmetry. In Euclidean signature however R7T is in the identity
component SO(d) of O(d), and thus must be a symmetry. So far there does not seem to be any nice proof
of the CRT theorem that doesn’t involve analytic continuation away from Lorentzian signature. The only
exception is a brute-force argument, given e.g. in Weinberg, that one simply can’t make a polynomial
Lagrangian out of tensor and spinor fields that isn’t CR7T invariant - the proof is just to check this for
all possible terms. Any experimental observation of CR7T -violation would be a very big deal, as it would
mean that we have to give up either locality or special relativity. And at least to the extent that quantum
mechanics + special relativity implies locality, we’d really need to give up either on quantum mechanics or

relativity ﬁ

6.2 Spin and statistics

In non-relativistic quantum mechanics we learn that each type of particle has a spin s which can take integer
or half-integer values. We also learn that each type of particle should be a boson or a fermion, meaning
that if we exchange two of them the wave function should be symmetric or antisymmetric. A priori there
does not seem to be any reason why these two should be related, and indeed in non-relativistic quantum
mechanics it is easy to write down theories of particles with arbitrary spin and statistics. On the other hand
in relativistic quantum field theory there is a very simple ruleﬂ

43Here we have slightly abused notation to use the same symbol RT for the Lorentzian map RT : (t,z',z2,..., 29" 1) —
(=t, =z, z?,... z%1),

44In theories with extra global symmetries people sometimes combine CR7T with those symmetries to get something that
doesn’t square to one. The CRT we have constructed here however is the only unbreakable one, up to the possibility of
multiplying it by the fermion parity operator (71)F which acts as one on all bosonic states and minus one on all fermionic
states.

45In quantum gravity there are good reasons to think that we can have quantum mechanics and (general) relativity without
having locality, but as far as we can tell CR7T continues to be a good symmetry even in quantum gravity. See my recent paper
with Numasawa for more on this.

46The fully non-perturbative proof of the spin-statistics theorem we give here is due to Schwinger. In most quantum field
theory books the theorem is proven in a more banal way that applies only to free fields. Essentially one tries to construct free
fields for particles of various spin, and then finds that it only works if the fields commute for integer spin and anticommute for
half-integer spin.
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e Spin-statistics relation: Particles with integer spin are bosons, while particles with half-integer spin
are fermions.

The idea behind this rule is quite easy to understand, but we first need to discuss the subtle fact (which
hopefully you have seen before) that a rotation by 27 acts on objects of half-integer spin as —1. For example
in the context of a spin 1/2 particle in three spatial dimensions a rotation by 8 about the z axis is implemented
on the Hilbert space by

U(f) = e~ 07:/2, (6.18)

so U(27) = e~"= = —1. Mathematically we can express this by saying that the action of rotations on a
spin 1/2 particle does not give a genuine representation of the rotation group SO(3) in the sense of a set
of unitary operators U(g) such that U(g1)U(g2) = U(g192), since a rotation by 27 is equal to nothing in
the rotation group but apparently it isn’t equal to nothing acting on a spin 1/2 particle. We will discuss
this in more detail later in the semester, but the right way to understand this is that in a relativistic theory
with half-integer spin particles the spacetime symmetry group isn’t really SO (d —1,1), but instead what is
called its double cover Spin™(d —1,1). Locally Spin™(d —1,1) looks just like SO (d — 1, 1), but globally
it is different in that each element of SO¥(d — 1,1) corresponds to two elements of Spin™(d — 1,1) which
differ by a rotation by 2m. The rotation part of Spin™(3,1), which is the double cover of SO(3), is precisely
given by the set of matrices of the form e~%*%/2  which is nothing but the matrix group SU(2). We will see
how to extend this to a double cover of the full Lorentz group later in the semester when we discuss spinors.

Turning now to spin and statistics, the basic ingredient we will need is to understand in more detail how
the Euclidean rotation matrix Dg(RT) acts on the fields ®* and their complex conjugates. This is a bit
tricky, so hold on tight! Let’s first recall that in Lorentzian signature we have

U(A) @ (2)U(A) = D(A)% (A La), (6.19)

and thus
U(A)T@“(x)TU(A) = D*(A)“béb(A_lx)T. (6.20)

In particular when A is a boost of rapidity 7 in the 2! direction we have
D(A) = 7", (6.21)

where the matrix J'° is the boost generator in the representation D of the Lorentz group. To turn a boost
into a FEuclidean rotation, we want analytically continue ¢ = —i7 and = —i6 such that

t' = cosh(n)t + sinh(n)z
a’ = cosh(n)z + sinh(n)t (6.22)

become

7" = cos(#)T + sin(f)z
2’ = cos(f)x — sin(0)7. (6.23)

We therefore have 0
Dg(A) =7 (6.24)

for a Euclidean rotation by @ in the 7,z! plane. In Euclidean signature the rotation group SO(d) is a
compact group, and the finite-dimensional representations of such groups are always unitary. We therefore
see that J'° must be anti-hermitian. D*(A) therefore analytically continues to

e= (™) = (T 2 0T 2 Dg(A)". (6.25)

In particular this applies to R7T, which is just a Euclidean rotation by 7.
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We next need to understand how the hermitian conjugate of fields works in Euclidean signature. In
Lorentzian signature we have the convenient fact that we can take the hermitian conjugate before or after
time evolution and end up with the same thing:

O(t)Jr = (ethOe_th)T = HtOt =il — OT(t). (6.26)
In Euclidean signature we aren’t so lucky, the hermitian conjugate now gives
O(1)1 = (™0™ )T = ¢ HTOTHT £ HT O e~ HT, (6.27)
To deal with this it is conventional to define a Euclidean adjoint
O*(r) = em0Te ™ = O(—7)T, (6.28)

as this is the quantity which analytically continues to OT(¢) in Lorentzian signature. Therefore from the pre-
vious paragraph, in Euclidean signature we have the somewhat counter-intuitive symmetry transformations

&' () = Dp(RT)®(z)
®*'(z) = Dp(RT)T®*(RTx). (6.29)

To proceed further, we now change our basis of fields ®*(z) to diagonalize Dg(RT). Recall that this
is a unitary matrix, and since all fields have integer or half-integer spin it must obey Dg(RT)* = 1. Its
eigenvalues are therefore 1 on fields of integer spin and +i on fields of half-integer spin. We may then
observe that

(Q|®*(7,0)D(—7,0)|Q) = (=1)2¢(Q|T®* (—7,0)D(r, 0)|2)
= (=1)2+F 76 (Q®(7,0)D* (-7, 0)|Q), (6.30)

where in the first line jg4 is the spin of ® and we have used our Euclidean rotation rule and also that if
® has integer spin both rotations contribute +1 while if ® has half-integer spin then they both contribute
+i. Note that here is crucial in getting the factor of (—1)%/¢, as it ensures ® and ®* contribute with
the same sign in front of ¢ in the fermionic case. The second line then follows from the antisymmetry of the
time-ordered product for fermions, as explained below .

Finally we can complete the proof by showing that the correlation functions on both sides of are
strictly positive: this implies the theorem because then we need

(—1)ette =1, (6.31)

which means that when jg4 is an integer we must have fy = 0 while when j, is a half-integer we must have
fo = 1. It is easy to show that they are positive semidefinite, as they are the squared norms of states:

(Q@* (7, 0)@(

—7,0)) = [|®(—7,0)|)[|* > 0
(Q|®(7,0)®* (—7,0

1) = 19" (=7,0)|)]> > 0, (6.32)

that the theorem is proved

It is instructive to consider how a naive version of this argument which doesn’t use special relativity can
fail. The idea of the naive argument is to do the same manipulation using a spatial rotation by 7 instead
of RT. We can derive the relation just as before (except with the fields now being at +z2), but the
failure mode is that we can no longer show that the correlators aren’t zero! Indeed in non-relativistic field
theory you can have a field ® that only has an annihilation part and such a field can indeed annihilate the
vacuum.

where here we have used 16.28: . We will show later in the section that these norms cannot vanish, so provided

4"More precisely what we showed is that ® and ®* commute/anticommute at spacelike separation if they have integer/half-
integer spin. In the homework you will show that this implies the same for ® with ® and ®* with &*.
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Figure 10: Re-interpreting the ground state wave function as a Euclidean transition amplitude in half of
space.

It is also instructive to compare this argument to the more conventional one given e.g. in Weinberg.
There one tries to construct free fields that create particles of arbitrary spin, finding out by brute force
that it is impossible to choose the coefficient functions u; and v; such that the field both transforms in
a valid representation of Spin™(d — 1,1) and commutes/anticommutes at spacelike separation unless the
spin-statistics relation is satisfied. The proof given here by contrast does not rely on free fields and is also
more intuitive. As in the case of the CRT theorem, any experimental demonstration of a violation of the
spin-statistics connection would be catastrophic for quantum mechanics and special relativity.

6.3 The structure of vacuum entanglement

There is a nice way to use the ideas we have been discussing to analyze the structure of the ground state
wave function in relativistic quantum field theory. The idea is to decompose space into a “left” region with
2! < 0 and a “right” region with 2! > 0. To simplify our analysis we will restrict to bosonic theories where
all fields commute at spacelike separation, in which case the fields in the L region are independent of the
fields in the R region, so at least in the presence of a cutoff we can write the Hilbert space as a tensor product

H=HrR®HRg. (6.33)
The operators in the algebra A(L) are product operators of the form Oy ® Ir, while the operators in the

algebra A(R) = A'(L) are product operators of the form I ® Op[™| The ground state wave function is
computed by the Euclidean path integral in the region 7 < 0:

(6L 6R|Q) o / Dofjr-tne oo 4T Twbp(0:09) (6.34)

The idea is to change our interpretation of this path integral from being split up on horizontal slices to being
split up on radial slices, as shown in figure We thus have

(ORI o (prle™ ™7 | FrroL)
= e ™ (¢rln)r(n|FrToL) (6.35)

where Kp is the right-sided boost operator

Kp= / d ez Too (), (6.36)
z1>0

481n fermionic theories this structure is more complicated because the fermionic fields in L and R need to anticommute instead
of commute; we haven’t introduced enough fermion technology to deal with this yet so for now we’ll stick to bosons.
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also sometimes called the Rindler Hamiltonian, and |n) is a complete basis of Kr eigenstates with
eigenvalues w,. You can think of as arising from applying our usual path integral derivation to
Euclidean evolution by the Rindler Hamiltonian, which generates rotation in the 72! plane. To turn
into an expression for the ground state however we need to find a way to get ¢, into a bra instead of a ket.
We can do this by introducing a “partial CR7T” operator QgRT : Hr — H which acts as

OlrrloR) = |67). (6.37)

Here ¢ indicates the CRT transformation of ¢, which is indeed a function of ¢. This operator implements
CRT on operators in the left region, as we can check by noting that if z is in L we have:

(@)0frr|6r) = Ofrr (OCkr2(®)08r7 ) 16r)
= O 7® (2)|¢R)
= O (%) 6R)
= /ik(x)@?RTWR)- (6.38)
In the first line here we used that @gRT is antiunitary, the second line is just implementing CR7T on &, in
the third line we use that for bosonic theories ® and ® are commuting so an eigenstates of ® is also an

eigenstates of @, and in the fourth line we used that ©f is antilinear. From (6.13)) we can rewrite ([6.37)
as

OfrTl0R) = |PrTOR), (6.39)

and making the substitution ¢p = Fr7¢r and using that F%T = 1 on bosons we have

Oihrlor) = |FrroL). (6.40)
This then implies that
(n|Fr7¢L) = (n|OFkrléL) = (6110frTIn), (6.41)
and thus
(pLPR|Q) o< Z e ™ (@O R TIn) (DR IN). (6.42)

We therefore have shown that in any relativistic quantum field theory the ground state has the simple
entangled form

) o< 3 e O rln) @ [n), (6.43)

which is called the Rindler decomposition. Stated heuristically, the Rindler eigenstates in the right region
are entangled with their CRT conjugates in the left region@

6.4 Unruh Effect

The Rindler decomposition has two very important consequences, the first of which is the Unruh effect:
an observer moving at constant acceleration a in the vacuum of a relativistic field theory feels a temperature

ha

—_— 4
2mckp’ (6.45)

TUnruh =

49There were several points in this argument which need to be revisited if there are fermions. We don’t yet have the tools to
do so, but I’ll mention that the result in that case becomes

1) oc Y- e i Lol rn) @ [n), (6.44)

where Fp, is the number of fermions in the left region.
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where I have temporarily restored the unsightly dimensionful constants h, ¢, and kg. This is a quite
remarkable statement, although not one which is easy to experience yourself. For example if we take a to be
9.8m/s? we get

Tirmrun ~ 4 x 10720K. (6.46)

To derive this, we first note that an observer living in the right region can take the partial trace over the left
region, leading to a vacuum density matrix

PR X Z e~ 2™n |n)(n| = e~ ER, (6.47)

This is nothing but a thermal density matrix, but with “Hamiltonian” Kpr and “temperature” Tx = %

The world should therefore look thermal to someone whose proper time is proportional to the boost rapidity
1. From equation (6.22)), we see that such a person should be moving on a trajectory

t(n) = xgsinhn
x(n) = xo coshn. (6.48)

Note that this trajectory is the boost image of the point (0,z). The proper time along this trajectory is
related to n by
T = nxo, (6.49)

and we can compute the proper acceleration:

2z\® (dt\® 1

Therefore the proper temperature seen by this observer is

dn 1 a
Toneun = — T = = —. 6.51
Unruh = gr 7K 2rxg 27 ( )

This effect is the essence of Hawking’s calculation showing that black holes evaporate into thermal radiation,
and in fact Unruh discovered it by way of trying to come up with an intuitive interpretation of Hawking’s

paper.
6.5 Reeh-Schlieder property

There is a second important consequence of the Rindler decomposition, which we will call the Reeh-Schlieder
property:

e In relativistic quantum field theory there are no nonzero local operators which annihilate the vacuum.

In free field theory this statement is quite intuitive: since any field is the sum of an annihilation and a
creation part, to project onto the annihilation part we need to use a Fourier transform which is an integral
over all of space. The proof for general field theories is quite simple: for any operator O localized in the
right region R (or more carefully any element of A[R]), using the Rindler decomposition the squared norm
of the state created by acting with O on the vacuum is given by

(Q0T01Q) o< Y~ e ™" (n|OTOn)
=Y e 7 (n|OfIm)(m|O|n)

= e 2™ [(m|O]n) [, (6.52)
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The final expression here is a sum of positive semi-definite terms, so it can vanish only if each term vanishes.
Therefore if O annihilates the vacuum, all of its matrix elements must vanish - in other words O must itself
be zero. We note in passing that the Reeh-Schlieder property is precisely what we needed to complete our
proof of the spin-statistics theorem, so that theorem is now proved as well. We also note that this argument
actually proves something stronger: it shows that no operator which is an element of A[R] in some Lorentz
frame can annihilate the vacuum. For example any nonzero product of a finite number of local operators at
arbitrary points also cannot annihilate the vacuum, since by an appropriate spacetime translation we can put
all the operators into the domain of dependence of the right region R and the vacuum is translation-invariant.

The Reeh-Schlieder property has a rather surprising consequence: it implies that any state in the Hilbert
space can be obtained by acting on the vacuum with an operator which is supported only in the left region
L (by symmetry the same is of course true for the right region R, or more generally for the left or right
region in any Lorentz frame). The proof goes like this: suppose by contradiction that there is a nontrivial
subspace S C H which is orthogonal to all the states which can be written as O|Q) for some O € A[L]. We
will argue that the projection Pg is a nonzero element of A[R] which annihilates |[2). By the Reeh Schlieder
property this is not allowed, and so the subspace S must be zero-dimensional. The idea is to first consider
Pgi =1 — Pg, which is the projection onto the subspace of states which can be created by acting on |Q2)
with elements of A[L]. For any O in A[L] we have

OPg. = Ps.OPg. (6.53)

and
O'Pg. = P50 Pg., (6.54)

where in both cases the argument is that both sides of the equation act as zero on S and as O/O" on S+.
Taking the dagger of the second equation and combining them, we see that

OPg. = Ps. 0, (6.55)

and thus that Pg. is in the commutant of A[L]. By Haag duality this is equal to A[R], and so we have
Ps =1— Pgi € A[R]. Moreover Ps clearly annihilates |Q) since Q) € S*.

We only proved the Reeh-Schlieder property for half-space regions, but in fact it is true for any region
which is not a complete time Sliceﬂ In other words any operator which annihilates the vacuum cannot be in
A[R] for any region R that is not a complete time slice. The argument just given then implies an even more
shocking consequence: for any open spatial region R and any quantum state [¢), we can find an element O
of A[R] such thaiﬂ

) = O1€). (6.56)

For example we can instantaneously create the moon by acting on the vacuum with an operator that has
support only in this classroom! This is a rather extreme example of what is called quantum teleportation@

It is worth briefly mentioning some standard mathematical terminology which is used in discussing the
Reeh-Schlieder property. In von Neumann algebra a state |2) with the property that it is not annihilated
by any nonzero element of a von Neumann algebra A is said to be separating for that algebra. Similarly a
state |Q2) with the property that A|Q2) is a dense set of states in the Hilbert space H is said to be a cyclic
state for A. What the Reeh Schlieder property says is that in quantum field theory the vacuum is both
cyclic and separating for the algebra A[R] associated to any spatial region which isn’t a complete time slice.

50Unfortunately I'm not aware of a simple proof of this generalization, except in the special case of conformal field theories.

51This statement isn’t actually quite true: if we are careful about infinite-dimensional Hilbert spaces, what we find from the
proof in the previous paragraph is that we can create a state which as close to |¢) as we like in the Hilbert space norm. A
mathematician would describe this situation by saying that the set A[R]|Q2) is dense in the Hilbert space H.

52T% be clear, the operator which does this is not unitary so we can’t use it to communicate faster than light. This seeming
non-locality is of the EPR variety, rather than the worse non-locality we found in the first section by trying to quantize a
relativistic quantum particle.
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6.6

1.
2.

Homework
Using ([6.16) and also the spin-statistics theorem, show that 0%, = 1.
Check that the complex scalar action is invariant under CR7T .

Check that the massive (real) vector action with Lagrangian

2
L= _%(auvy — 9,V (0" VY — 9 V) — m?wvu (6.57)

is also invariant under CRT.

Let’s model the hydrogen atom by a classical electron orbiting the proton in a circle whose radius is
the Bohr radius ag = 5 x 107! m. What is the Unruh temperature experienced by the electron? How
does it compare to the binding energy of hydrogen?

Show that if ®(x)®T(y) + ®T(y)®(x) = 0 at spacelike separation, then we also have ®(z)®(y) +
O(y)®(z) = 0 and @f(2)®f(y) £ ®T(y)®@T(z) = 0 at spacelike separation. Hint: you should assume
that ®(z)®(y) + s®(y)®(x) = 0 with either s = 1 or s = —1, and then show that s needs to be the
same sign as appears in ®(z)®f(y) £ ®(y)®(x) = 0. I recommend considering the norm of the state
O (x)®(y)|€2), and you will need to use the Reeh-Schlieder property and also that as (z — y)? — +oo
we have

(@Y (2)2(2)@" (y)2(y)) — (2T(2)2(2)) (@' (1) 2(v)), (6.58)

which is an example of what is called cluster decomposition. In general cluster decomposition says
that the connected correlation functions of local operators should always decay at large separation, in
this case the connected two-point function of the composite operator ®f®.
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7 Perturbative calculation of correlation functions in interacting
theories

So far our results in this class have fallen into two categories:
e Explicit calculations in free field theory

e General formal results (such as the CRT and spin-statistics theorems) which are valid in any relativistic
quantum field theory.

Free field theory is quite useful for getting an initial picture of how quantum field theory works, and formal
results are of course important for understanding the general structure of quantum field theory, but in the
end of the day most field theories are not free and formal results won’t get us to detailed predictions that
can be quantivatively compared to experiment. It is time for us to learn how to do some explicit calculations
in field theories that are not free.

The simplest interacting field theory is called ¢* theory, and its Lagrangian density is given by

1 m? A
L=—20 ¢O'd — — 2 — Zpt. 7.1
It must be acknowledged from the outset that no analytic solution of this theory is known. It is not difficult
to see why it cannot be solved using the methods we have discussed so far: the Heisenberg equation of
motion

(V2 —m?)® = %@3 (7.2)
is non-linear, and thus cannot be solved using the Fourier transform, and the path integral
/ Dge! [ 4'eL (7.3)

is not Gaussian so we can’t compute it using our Gaussian tricks. In fact there is an even more severe problem:
for d > 4 this model is widely expected to not even have a continuum limit: it can only be defined precisely
in the presence of a finite UV cutoff such as a lattice. Nonetheless there is much to be gained by studying
this model, and the key idea that will allow us to make progress is perturbation theory: we treat the
parameter A, called the coupling constant, as small, and then we compute interacting correlation functions
as power series in A about their free field values. There is a beautiful diagrammatic way of organizing such
calculations, called Feynman diagrams, which we will meet for the first time in this section. Perturbative
calculations using Feynman diagrams are the central focus of a large fraction of the practicing quantum field
theorists in the world, especially those working in particle physics, and developing a good intuition for them
is essential for any aspiring theoretical physicist (or any aspiring particle experimentalist).

7.1 Perturbation series for an integral
As a first illustration of the perturbative method, we’ll consider the integral

A4

1 e 1,2
f) = E[ drxe 2% "u® (7.4)

with A > 0. This integral can be evaluated in closed form, according to Mathematica we have

3
2T A

e Ky (75)
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but our approach here will be to ignore this and try to approximate f(A) when A\ < 1. The idea is to Taylor
expand the “interaction” term, which allows us to rewrite the integral as a sum over Gaussian moments:

oo

%S) L2 )\4 n
f()\)Z\/%/_Oodxe_f”“ Z% (—Z‘)

=0

 [— 1<—A>"/°° An L2
“:”727 - dorine 27 (76)
\/271'”:071! | o

T've put the equality in quotes in the second line since we have recklessly exchanged the order of summation
and integration, a sin for which we will shortly pay a price. Proceeding boldly ahead in the meantime, we
can be encouraged by the fact that the terms in the sum are suppressed by higher powers of A as n increases,
and so we can hope that truncating this sum to the first few terms gives a good approximation to f(\) when
A is small. The easiest way to evaluate these Gaussian moments is to remember the integral definition

I(y) = / dss¥"le™® (7.7)
0
of the Euler I-function and change variables x? = 2s, which gives
/ dzzirem2” = 22 H1/2D (20 4 1/2), (7.8)

so we can write the perturbative expansion as

FA)“=" L > =TI(2n+1/2) (—2) : (7.9)

The first few terms in the sum are given by

A 3527 385X3  25025\%
A)¢="1—-— — 7.10
F&) 8 + 384 3072 + 98304 * (7.10)

In figure [11| we show how this approximation does against the exact expression : at least in the range
0 < A < .3 including higher order terms indeed seems to give us a better and better approximation to f(\).
Unfortunately things are not so simple as this plot might suggest. Recalling Stirling’s approximation

that at large x we have
I'(z) = exp[zlogxz — x4+ O(log z)] , (7.11)

we see that the coefficients of A" in the series eventually grow like e?"1°8™ at large n, which is faster
than (%)n is decreasing no matter the size of A: the perturbation series is divergent! This is the price we
pay for our earlier illegal exchange of an integral and an infinite sum. Another way to anticipate this trouble
is that the integral for f(\) is badly divergent for A < 0, so asking for a convergent power series at A = 0 is
asking for too much. You may be desperately hoping that this problem is special to this particular example,
but T assure that it isn’t: almost any perturbation series in quantum field theory (or even in non-relativistic
quantum mechanics) is divergent. We therefore need to decide what to do. Discarding the method altogether
is too drastic given the impressive success shown in figure [T} but we’d like to get a better sense of when
it succeeds and when it doesn’t. The key idea to remember is that perturbation theory is an asymptotic
series, which means that if we sum the first NV terms in the series we get an approximation to the function
whose error is of order AV for sufficiently small X\. The reason the series doesn’t converge is that as N gets
larger, we need to go to smaller A for this approximation to be good. Asymptotic series are written using
the “~” symbol, so we can rewrite as

F(A) ~ € > %F@n +1/2) (-2) : (7.12)

n=0
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Figure 11: Comparing the first few terms in perturbation theory to the exact answer. What is plotted here
is the ratio of the partial sum of the first few terms to the exact answer; for A < .3 the first order result
already brings us within a percent of right answer, and including higher order terms gets us even closer.

To show that this series is indeed asymptotic, note that we can legally move a finite number of the terms in
the sum past the integral to get

1 = AN\ 1 [ X1/ A\
N=—=Y =I2n+1/2) (-2 — | dwe Y = (- 7.13
=g gren 1) (g) 4o [ a2 ()L
and therefore
N—-1 n N e} m
1 1 A A 1 ° 12 1 A
N——=Y —I@2n+1/2)(-2) =(-5) — dre™ 2 — (=2 ) AN,
JA) wnzonl("+ /)< 6> ( m) «@ﬁ@[a3xe 2;An1+ﬁﬂl< m) *
(7.14)
In the second line we relabeled the sum to pull out an overall factor of (—%)N The thing it multiplies
approaches a constant as A — 0, so the error of the series is indeed of order A" at small A.

We can understand the implications of the asymptotic nature of this series as follows: the series will not
begin to diverge until we get to large enough n that

€8N ~ 1, (7.15)
or in other words )
~ =, 7.16
ey (7.16)
At this point the terms are of order
Emin = CX = e ER , (7.17)

where ¢ is some O(1) constant which is less than one. €,,;, is the most accurate that the perturbation series
can be, after this including more terms only causes the error to get larger. We illustrate this qualitative
behavior in figure[I2} Effects which are of order €,,;,, or smaller are typically referred to as non-perturbative
effects, and in situations where they are of interest we need to use methods that go beyond perturbation
theory. For reasonable values of A however this minimal error can be quite small, for example in quantum
electrodynamics we have \ ~ % so the QED perturbation series should be good up to an unrecoverable
error which is of order

€min ™~ 67137- (718)
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Figure 12: The qualitative behavior of perturbation theory: adding more terms to the series increases the
accuracy until we get to N ~ % terms, at which point the error of the series is of order e . After this
the series begins to diverge and the approximation gets worse and worse. In the plot label a,, indicates the
coefficient of A" in the perturbative expansion for f(\).

I’d say this is close enough for most practical purposes! From now on we will therefore use perturbation
theory without further handwringing about its validity, except in non-perturbative situations where we are
indeed interested in effects of order emmﬁ

7.2 Feynman diagrams for Gaussian integrals

In the previous section we took advantage of our knowledge of I'-functions to immediately compute the
coefficients in the perturbation series. In more general examples this is not possible, so we need another
method. The idea which always works is to compute the integral using our Gaussian integral technology.
Indeed recall that we have

2
dze 2™ tBr — o5 (7.19)
and therefore
1 / *° d
V2T J s dB
At first the combinatorics of computing these derivatives is somewhat intimidating, after all it has to give the
series ([7.10]) whose coefficients are not so simple-looking, but life is simple once we realize that each derivative

can only do one of two things: bring down a factor of B from the exponent or compute the derivative of the
existing prefactor. We therefore have

d\" B2 B2 d d d
(LY = (5 ) (5 ) (5 25) o1, iy

where are there m copies of (B + d%)' In order to get a term which survives when we set B = 0, there must

m 2
dza™e " = < ) eBT|B:0. (7.20)

be an equal number of Bs and %s, with each derivative appearing to the left of the B that it acts on. There
are no such terms when m is odd, so we see that the integral (7.20)) vanishes unless n is even. When m is
even, the number of terms is equal to the number of pairings of m objects since each derivative needs to be

530f course if X is not small then neither is €,,n, so in that case we are obviously interested in effects of order €,,;,,! More
interesting are situations where A is small but we nonetheless still care about some non-perturbatively small effect. For example
there could be some process whose rate is zero to all orders in perturbation theory but not zero, in which case non-perturbative
effects give the leading contribution. The possible decay of the Higgs vacuum is an example of such an effect.
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paired with the B it acts on. The number of such pairings is

m/!

Ny = om/2 (m/2)'7

(7.22)
since we can chose the first element of the first pair, the second element of the first pair, and so on down to
the 2nd element of the m/2nd pair, and then we need to divide by a factor of two for each pair since the
order doesn’t matter and also divide by the number of permutations of the pairs. Therefore we have

1 ° Npm
—/ dzz™e 2" = meven (7.23)
2T J 0o 0 modd

This of course is equal to what we found using the I" function (with the replacement m = 4n), as you will
check on the homework.
In quantum field theory we are really interested in multi-dimensional Gaussian integrals, which we found

obey
A L 7 T Lor
Det 5 dz exp —3% Az + B'z| =exp §B AT'B (7.24)
T
/ A 1T, O 0 1pTa-ip
Det (27‘[‘) /dxl’“ Ty, € 2 = th ...a?imez e

We can think of this as the m-point correlation function in the Gaussian distribution. To compute it we
again can observe that each derivative again does one of two things, which now are to bring down a factor
of A7'B or to take the derivative of the existing prefactor, so we have

and thus

(7.25)

d O 1pmats _ 1pTa'n d
T T > AL B; + 55 ZAWm Bj, + 9B | 1. (7.26)

1/771,

Ji

As before we can only get a term that survives taking B = 0 if each partial derivative is paired with a B to
its right, so the integral again vanishes for odd m while for even m we have

A — 12T Ag
\/ Det (mr)/d:rxil...xime 2 :Z H Al (7.27)
P (j,k)eP

Here P indicates pairings of 1, ..., m. As before there are IV,;, such pairings, but now they can make different
contributions to the integral. For example for m = 4 we have

A — 12T Az — —
“ Det <27T) /dxxilzi2xi3Ii46 2 A2112A1314 + Az1z3A2224 + A1114A2213 (728)

We are now ready for our first meeting with Feynman diagrams. These are simply a graphical way of
representing the different pairings appearing on the right side of equation [7.27] The idea is quite trivial: we
draw a dot for each x; appearing in the correlation function, and then we draw lines connecting them to
indicate the pairing. Each pairing contributes a “propagator” A~!. The m = 4 case is shown in figure

7.3 Feynman diagrams for an “interacting” integral

We can explore the idea of Feynman diagrams further by considering an “interacting” integral
f(A) =4/ Det ( ) / dawe= 2" Av—a Tiwl (7.29)

83



o ——0 /
o — /
Figure 13: Feynman diagrams for the four-point function in the Gaussian distribution.

which you can think of as a simple model of the interacting ¢* theory we began the section with. The
perturbative expansion for this integral is

A <1 A\" 1T A
fA) ~ 4/ Det (27r> Z ] (—4'> Z /dm:?l ...x?ﬂe 2@ Az (7.30)
(U ’ iy...1

n= celn

and we can evaluate these integrals using our pairing formula (7.27)). We now meet a new phenomenon how-
ever, which is that many of the pairings give the same answer due to the repeated indices in the interaction.
For example the first order n = 1 contribution to the series is

A E / A —12T Az A § —1\2
75 i Det (27‘(‘) /dII16 2 —71 X 3 X i (A” )
A _
Y E (An'l)Qa (7.31)

where all three pairings appearing in (7.28) contribute equally. The second order contribution has three
distinct kinds of pairings: those where each interaction has two self-pairings, those where each interaction
has one self-pairing, and those where there are no self-pairings. These lead to

1 1 1

_\2 12 g—1)2 el —1a2 u
=\ Z <128(A“ ) (Ajj ): + TGA” Ajj (Aij )2+ 7(Az'j ) ) ’
(7.32)

where the factors of 9, 72, and 24 count how many pairings there are of each type. Counting these pairings
takes a bit of practice to get used to, we illustrate the idea in figure [T4}

The diagrams in figure are useful for counting pairings, but it is also useful to have a simpler set
of diagrams which are designed so that the same diagram automatically represents all the pairings in each
equivalence class. Following Feynman, the idea is to combine all the dots appearing in each factor of the
interaction ), z} to a single interaction vertex, giving us the Feynman diagram expansion. See figure
for the set of Feynman diagrams contributing to f()\) up through order n2. In terms of these diagrams we
can rewrite our asymptotic series for f(\) as

VBT SCVRE—D DI | [T (733)
D

t1.inpy (ME)ELD

where m and £ label the interaction vertices of the diagram, np indicates the number of interaction vertices
in D, Lp indicates the set of (unoriented) links in D, and sp is called the symmetry factor of the diagram
and is given by

(4o
sp = Mj (7.34)
Pp
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Figure 14: Counting pairings at first and second order. For the n = 1 pairings, we need to pick which of
three other s to pair the first ¢ with. For the n = 2 pairings where each interaction has two self-pairings, we
need to make this choice independently for each interaction. For the n = 2 pairings where both interactions
have a single self-pairing, for each interaction we need to pick which two of the four is are self-paired, and
then there are two ways to do the remaining pairings. For the n = 2 pairings with no self-pairings, we need
to pick which of the four js pairs with the first ¢, which of the remaining three js pairs with the second ¢,
and which of the remaining two js pairs with the third .

1+ W + + + o

Figure 15: Feynman diagrams contributing to f(\) up through order A\2. As we saw above, the symmetry
factors for these diagrams are sp = 1,8,128, 16, and 48.
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with pp the number of pairings which give rise to this diagram as in figure Except for sp all factors in
are easy to read off by visual inspection of D, so Feynman diagrams give a powerful way of immediately
seeing what is going on at each order in perturbation theory. There is actually also a way to compute sp
directly from the diagram, it is the size of the automorphism group of the diagram, but as long as you
do not intend to become a high-order amplitudes expert it is easy enough (and perhaps safer) to just use
the method of figure (14| to compute leEI In more realistic theories where the interaction vertices are less
symmetric we conveniently often have Sp = 1.

7.4 Exponentiation of connected diagrams

You may have already noticed in figure [L5| that at second order we started getting diagrams which are topo-
logically disconnected. This makes the computation of the perturbation series for f(\) somewhat redundant,
as diagrams from lower orders are constantly reappearing at higher orders. In fact there is a beautiful com-
binatoric simplification: the sum of all disconnected Feynman diagrams is actually the exponential of
the sum of connected diagrams only! In other words we have

log f(A)NZ(—A)"Cé SOOI 4k (7.35)

c i1eming (m)ELG

where C' indicates the set of connected Feynman diagrams.
To derive (7.35]), we need to understand how to evaluate a disconnected diagram in terms of its connected
components. We will indicate by

VD:(—A)"Di > I 4k (7.36)

i1eming (m0)ELD

the “value” of a Feynman diagram. If D is disconnected then most of these terms are just products of
the analogous terms for its connected components, but we need to be careful about the symmetry factor.
Indeed let’s say that a disconnected diagram D has connected components C7,Cs, ..., Cys, which we will
momentarily take to be all distinct from each other. We can write the pairing number pp of the full

disconnected diagram as
np np —ngc np —nc, — ... NCy_
L)L ' MU X ey - Pewy
ney ne, ncu

TLD!

=— 2 e, ...poy, 7.37
’Ilcl! . ..ncM! bes bou ( )

PD

where the combinatoric factors account for the number of ways we can choose which interaction vertices get
assigned to which connected components, and we then multiply by the number of pairings we can do within
each component. If the diagrams appear with repetitions, say m, repetitions of C,, then we need to divide
by additional factors of m,! since exchanging identitical connected components of a pairing gives the same
pairing. We thus in general have

TLD! 1

mi
ne )™ (no, ) [ X (po)™ - (poy

)"
my!...muy

Pp = ( , (7.38)

54This interpretation of Sp is actually the reason we included the factor of 1/4! in the interaction vertex. The basic idea is
that np!(4!)"P gives an “estimate” of how many pairings there are with a given diagram topology, since permuting the np
vertices and permuting which of the four dots at each vertex get attached to other dots can’t change the graph topology. This
sometimes is an overestimate however, as whenever the graph has an automorphism then acting on a pairing with it gives the
same pairing. Therefore Sp is precisely counting the number of such automorphisms. For example in the second diagram of
figure there are three Zo automorphisms: one that reflects the top lobe, one that reflects the bottom lobe, and one that
exchanges the two lobes. We therefore have Sp = 8. Similarly for the fifth diagram there is a four-fold permutation symmetry
of the links, as well as a Zos symmetry that exchanges the two vertices, so we have Sp = 4! x 2 = 48.
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Figure 16: Feynman diagrams for computing the numerator of (7.42)) with two external points. Dividing
by the denominator of ([7.42]) removes all disconnected diagrams. The symmetry factors of the connected
diagrams here are sp = 1,2, 6,4, and 4.

and therefore 1 1 1
PD
i = X . 7.39
SD TLD!(4!)"D Sg}ll gblé\;j ml'mM' ( )

We can therefore write the value of D as

(7.40)

Finally we can observe that these are precisely the coefficients that these values appear with in

SV _ l;levC 1] (Z W) , (7.41)

C mc

which computes the proof of (7.35).

7.5 Perturbative computation of correlation functions
Let’s now see how to use Feynman diagrams to compute perturbative corrections to the Gaussian correlation
functions (7.27). We want to evaluate

[daz,, ... ;e 2 Av—ar el
f d!L‘e_EI Az—f > ml

(Tiy - Tipg) = (7.42)

We already know how to compute the denominator perturbatively: it is the exponential of the sum of
connected Feynman diagrams with only interaction vertices (divided by a factor of Det( ) that will

cancel with the same factor in the numerator). Let’s think about how to compute the numerator. The
perturbation series for the numerator is

A ot Az—2 3, ot _ET
Det (2W>/dm:il...xme 2 i% ~ 4 [Det (27‘(’)an ( 4,> /dxx“... (Zx)

_Znt<4:>n > Z IT A% (7.43)

IMA41-EMAn (j,k)eP

where in the second line I've labeled the n interaction vertices as ips41,...,%+n. In such calculations the
x;, with a € (1, M) are referred to as “external” and the i, with a € (M + 1, M + n) are referred to as
“internal” or “interaction” 9]

55In this terminology the denominator of (7.42) (multiplied by /Det (%)) is the exponential of the sum of connected

diagrams with no external legs, also sometimes called the sum over “vacuum bubbles”.
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Figure 17: Feynman diagrams contributing to the four-point function up through O(A). Note however that
the second two rows are all really just incorporating corrections to the two point functions in the first row;
it is only the fourth row that is a “genuinely four-point” contribution.

As in the previous subsection we can group this sum over pairings into equivalence classes labeled by
Feynman diagrams, with the diagrams contributing to the two-point function through second order shown
in figure In general in terms of diagrams we have

f A T A . 1
Det (27T> /dwxil ...xiMe—%aLTAJ:—% DI Z(_)\)an Z H Aijnliw (7.44)
D

IMA41---EM4np M¥EELD

where now np is the number of interaction vertices, m and ¢ run over the links of the diagram including
links to external points, and Sp is again the symmetry factor
np!(4h)"p
PG (7.45)
Pp
with pp the number of pairings of the m 4+ N points that give rise to the diagram D. As before we can
interpret Sp as counting the automorphisms of the diagram, now restricting to those automorphisms which
keep the external points fixed. We also have an exponentiation result: the numerator of (7.42)) is equal to
the sum over diagrams where all interaction vertices are connected to at least one external point times the
exponential of the sum over connected vacuum bubbles. The second factor just cancels the denominator

(7.42)), so we then have

ERER N DS VZI=ND DI | (T (7.46)

¢ IM41-iM4n s MAELy
where C' runs over the set of diagrams where each interaction vertex is connected to at least one external

point. The first few such diagrams for the four-point function are shown in figure Note that these
diagrams still are not all connected, essentially because there are diagrams which amount to just correcting
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Figure 18: Feynman diagrams for computing the connected four-point function, including all contributions
up through A\2. The symmetry factor of the first diagram is one and the symmetry factors for the others are
all two.

the two-point functions appearing in figure [13| rather than giving “genuinely four-point” contributions. To
focus on the latter, we should look at the connected four-point function, which is defined by

(@Tiy o Tig)e = (Tiy - Tiy) — (Tiy Tip (Tig@iy) — (Tiy i ){Tiy Tiy) — (Tiy Ty ) (Tip Tig)- (7.47)

More generally the connected M-point function (z;, ...x;,, ). is defined recursively byE]

(@i, i) = Y (T @isde - CTT i) (7.48)

S jeS1 JESL

where the sum is over partitions S of M into parts Si,...,Sr. This defines (x;, ...x;,, ). in terms of lower-
point connected correlation functions and the full correlation function (z;, ...x;,,). Recursing down to the
lowest level, we take (z;). = (z;). Forgetting for a moment that in this theory the odd moments of x; vanish,
the first few explicit solutions of this definition are

(Ti)e = (@)
(Tizj)e = (@iz;) — (wi)(7;)
(Tizjay)e = (Tizjay) — (i) (Tr) — (Tizg)(25) — (Tio8)(T) + 2(2s) (25) (k) (7.49)

In practice however the definition is more useful, as it shows that what the connected correlation
function is really doing is removing all parts of the full correlation function which are mere products of
lower-point correlation functions. Said differently, it builds up the full correlation function out of connected
components in precisely the same way as Feynman diagrams do. We therefore can express the connected
correlation function as a sum over connected diagrams only:

n 1 —_
@iy - Ting)e ~ D (=N c@ > I 4.k (7.50)
C IM+41--tM4ne MLELC

where now the sum is over genuinely connected diagrams C'. We show the first few diagrams contributing
to the connected four-point function in figure
Already some patterns may be apparent in the diagrams we have discussed. Let’s emphasize two of them:

e The number of diagrams grows quite rapidly as we go to higher orders in A\. Roughly speaking grows
like some power of np!, since the total number of pairings grows like this and the symmetry factors grow

56In other contexts the connected correlation functions are called “cumulants” or “Ursell functions”.
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too slowly to make up for it (after all generic diagrams should have few symmetries). This growth is
consistent with the idea that the series should be divergent, since a power of np! will always eventually
beat \"P. It also means that computing higher-order Feynman diagrams is a rather laborious process,
requiring many clever tricks to make progress.

e For a fixed number of external legs, as we go to higher order the number of loops in the diagram
increases by one for each power of A\. Diagrams are thus often classified by the number of loops
rather than the number of interaction vertices, as it is really the number of loops that determines the
complexity of evaluating individual diagrams. Connected diagrams with interaction vertices but no
loops are called tree diagrams, while higher loop diagrams are referred to as one-loop diagrams,
two-loop diagrams, and so on. Most theoretical physicists these days never need to evaluate a
diagram with more than one lo