MIT 6.7220/15.084 — Nonlinear Optimization (Spring ‘25) Thu, Mar 6% 2025

Lecture 9

Conic optimization

Instructor: Prof. Gabriele Farina (& gfarina@mit.edu)*

In Lectures 3, we considered normal cones at the intersection of linear equality and inequality
constraints. In Exercise 1 of Homework 1, we were also able to give closed formulas for the
normal cone in certain sets, such as a ball. In Lecture 7, we turned our attention to more
general feasible sets. There, we saw how KKT conditions define necessary conditions for
feasible sets defined by functional constraints by approximating the feasible set with the
linearization of the active constraints and considering the normal cone to the intersection of
those linearizations.

Today, we look at a class of convex feasible sets that are neither linear equality nor inequality
constraints. Also, they are not defined via functional constraints, making the KKT machinery
inapplicable.

L9.1 Conic optimization

A conic optimization problem is a nonlinear optimization problem whose feasible set is the
intersection between an affine subspace (that is, a system of linear equalities) and a nonempty
closed convex cone X':

min f(zx)
st. Az =10
reX

This class of problems captures linear programming, semidefinite programming, second-order
cone programming, copositive programming, and more, depending on the specific cone X
that is selected.

L9.1.1 Nonnegative cone < Linear programming

The first example is the nonnegative cone RZ,. In this case, the conic problem takes the
more familiar form

min f(x)

st. Ar=1b
x>0

*These notes are class material that has not undergone formal peer review. The TAs and I are grateful for
any reports of typos.
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which is a linear program. So, for the specific choice of the nonnegative cone, conic program-

ming corresponds to linear programming.

L9.1.2

Definition L9.1.

The ice-cream cone, or Lorentz cone, is defined as

£ i={(z,2) ER™ L X R : 2> |z, ). 1

The figure on the right shows the shape of £3.
St
Conic problems for the specific choice of the i
Lorentz cone are usually called second-order cone i [
programs, or SOCP for short. Several problems of 1.95

interest in engineering and physics can be mod-
eled as SOCP, including the design of antenna
arrays, the positions of spring systems at rest,
and grasp planning in robotics.

L9.1.3 Semidefinite cone <— Semidefinite programming

Definition L9.2. The semidefinite cone §™ is the set of

positive semidefinite n X n matrices:
S":={XeS": X =0}
={XeS":a"Xa>0 VaeR"},

where S" is the set of symmetric n X n real matri-
ces.

The figure on the right shows the cone of values
(z,y, z) corresponding to the semidefinite cone of

2 X 2 matrices
y =z

In this simple 2 x 2 case, the positive semidefiniteness condition is equivalent to
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(the sum of the eigenvalues [trace] is nonnegative)

Ice-cream (aka. Lorentz) cone <— Second-order conic programming

0 1.25

(the product of the eigenvalues [determinant] is nonnegative.)

These conditions are equivalent to z,z > 0 A zz > y?. So, slices of the cone with planes
orthogonal to the z-axis are shaped like parabolas x > y?/z. Similarly, slices with planes
orthogonal to the x-axis are shaped like parabolas z > y*/x. Note how the curvature of the
parabolas decreases as the slicing plane gets further away from the origin.

Lecture 9 « Conic optimization e MIT 6.7220/15.084

| 2/11



Remark L9.1. Semidefinite programming subsumes both linear programming and second-
order cone programming. This is because

z € RE, — = 0,and
2zl x
z > |z, — (xT z) > 0.

Semidefinite programming is an extremely powerful tool with applications in all disciplines.
I have noted resources that treat semidefinite programming extensively at the end of this
document; we will see connections to optimization of polynomials in the next lecture.

L9.1.4 Copositive cone <— Copositive programming

Definition L9.3. The copositive cone C™ is the set of

symmetric n X n real matrices:

e ={XeS":a'Xa>0 VaeRl} i) /

The difference with the positive semidefinite cone -
8™ is given by the fact that we need a' Xa > 0 only z
for nonnegative vectors a € R, and not for all a € 7
R™. 0 2 EAIE
1.25 S
The figure on the right shows the cone of values 0 1
(z,y, z) corresponding to the copositive cone of 2 x Y —1.257%

2 matrices, that is
(m y) € C2.
Yy z

It follows immediately from the definition that €™ is a superset of both the cone of nonneg-

nxn

ative symmetric matrices N := S N RIF"™ and the cone of semidefinite matrices. Hence,
N™ 4 8™ CCn for all n € N.

Curiously, the reverse inequality is known to hold, but only up to dimension n < 4 [Dia62]:
Cr=8"+N" ifn <4.

Beyond dimension 4, some matrices are copositive, and yet they are not expressible as the

sum of §™ with N™.

Remark L9.2. One important fact to know about the copositive cone is that despite being
a closed convex cone, optimization of even linear functions over the copositive cone is
computationally intractable!

Lecture 9 o Conic optimization e MIT 6.7220/15.084 | 3/11



For example, the size of the mazimum independent set of a simple graph G = (V, E), that
is, the size of the largest set S C V of vertices with the property that no two vertices in S
are connected by an edge in E, can be computed as the solution to the following copositive
problem. Let A € {0,1}V*V denote the adjacency matrix of G, that is,

W[l eE
iJ 7 10 otherwise.

The size of the maximum independent set of G can then be found by solving the copositive
optimization problem

min  w
w,te R,Q
st. Q=wl+tA—11" (MIS)
Qecn

where 1 € RV is the vector of all ones. More information is available in the paper by de
Klerk, E., & Pasechnik, D. V. [dP02]. Since deciding whether a graph admits an independent
set of size k cannot take polynomial time unless P = NP, this means that solving copositive
optimization problems must take more than polynomial time in the worst case unless P =
NP. The hardness applies already for linear objectives, as the previous example shows. So,
we conclude—for example—that one cannot construct an efficient separation oracle for €™.

Several techniques are known to “relax” the copositive cone by, for example, approximating it
with a (higher-dimensional) semidefinite cone. The monographs of Gértner, B., & Matousek,
J. [GM12] and de Klerk, E. [de 02] do an excellent job at explaining approximation techniques
that involve semidefinite cones.

L9.2 Optimality conditions and conic duality

In general, the feasible set Q of conic optimization problems cannot be easily captured via
functional constraints. Because of that, we cannot use the KKT conditions we discussed in
the previous lecture to compute the normal cone at each point of the feasible set. In this
situation, we need to compute the normal cone from first principles.

To simplify the treatment and avoid the machinery of relative interiors (interiors in the
topology induced by the smallest affine subspace that contains a set), we will assume in
the following that X is a cone with interior. This condition is satisfied by all the cases
discussed above.

In order to compute the normal cone at a point at the intersection of {Az = b} and X', we
will use the following general result (again based on separation), which enables us to consider
the affine subspace and the cone separately and sum their normal cones.

Theorem L9.1. Let H := {z € R" : Az = b, with A € R™*"} be an affine subspace, and
S be a closed convex set (not necessarily a cone) such that S° N H is nonempty, where
S° is the interior of S. For any x € HN S,

Nrns(@) = Ny (z) + Ny ().

Lecture 9 o Conic optimization e MIT 6.7220/15.084 | 4/11



So, using the fact (see Lecture 2) that Ny (z) = colspan(AT"), we have

Nuas(@) ={ATp+2:p € R™, z € Ny(z)}.

Remark L9.3. The condition of existence of a feasible point in the interior is sometimes
referred to as Slater’s condition, strict feasibility condition, or strong feasibility condition.
The term Slater’s condition is appropriate in light of the constraint qualification condition
for the KKT theory we discussed in Lecture 7. In both cases, the insistence on an interior
solution is required to rule out pathological behavior.

We know from Lectures 3 that Slater’s condition was not required for the intersection of
halfspaces, which are flat surfaces. The condition becomes, however, crucial when considering
sets that can have curvature. For example, consider the intersection of a two-dimensional
ball of radius 1 centered in (z,y) = (1,0) with the plane = 0. The normal cone at the
intersection is R?, but this is not equal to the sum between the normal cones of the sets at
the intersection points (which evaluates to R x {0}).

Remark L9.4. The previous result can be generalized, without much effort nor substan-
tially new ideas to the case of intersection between two generic convex sets whose relative
interiors have a nonempty intersection. In other words, the normal cone to the intersection
between convex sets is equal to the sum of the normal cones to the individual sets if the
relative interiors of the two sets intersect. This also explains why the strict feasibility
condition imposed by Slater is sufficient.

L9.2.1 The normal cone at a point in K

With Theorem L9.1 in our toolbox, the only obstacle to writing first-order optimality
conditions for conic problems is being able to compute the normal at points in XK. Luckily,
we can do that in closed form in all the abovementioned cases.

In particular, it turns out that the normal cone at any point in X can be defined starting
from the normal cone at 0 (remember that 0 is always part of a nonempty cone, as a
straightforward consequence of the definition of cone). The normal cone for a cone X at 0 €
X is such an important object, that several names for it or its related quantities are used in

the literature:
e The polar cone of X, often denoted X, is exactly the normal cone at 0:

K+ = Nye(0) = {d : (d,y) <0 Vye X}

e The dual cone of X, often denoted K™, is the opposite of the normal cone at 0:
K* = —K+t = -Ng(0)={d:(d,y) >0 VyeX}.

For all the important cones considered earlier, we have a very precise idea of what their polar

and dual cones look like:
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Theorem L9.2.
1. The nonnegative cone, the Lorentz cone, and the semidefinite cones are self-dual
cones, that is, X* = X.
2. The dual cone to the copositive cone €™ is called the totally positive cone, defined as

k
P = {ZzzzzT 12, €RE,k € N} ={BB" : Be R%;™, m € N}

i=1

> Try to prove the previous theorem.| Since for a closed convex cone X, (X*)" = X, it
follows that the dual to the totally positive cone is the copositive cone. [> You should also
try to prove that (X™*)" = X]

Once the normal cone at 0 is established, the normal cone at any point x € X can be

recovered as a function of N4 (0).

Theorem L9.3. Let X' C R™ be a nonempty, closed convex cone. The normal cone at any
point z € X is given by

Ng(z) ={d € X+ :(d,z) =0}

Proof. Fix a generic x € K. We break the proof into a proof of the two separate inclusions.
(S) Let d € R" be a direction in Ny (z), that is,

(d,y—1z) <0 Yy e X.
Since X is a cone, we have that both 2z and %x belong to X . So,

(d,2x —x) <0 = (d,z) <0,and

1
<d,§m—z> <0 = (d,z) >0,
showing that (d,z) = 0 is necessary. But then, from the condition that (d,y —z) < 0 for
all y € X we deduce that (d,y) < 0 for all y € X, which means that d € X+ = Ny (0).
(2) Vice versa, let d € {d € X+ : (d,z) = 0}. Then, for any y € X,

(d,y —x) = (d,y) — (d, )
=(d,y) (since (d,z) = 0)
<0 (since d € X1).

L9.2.2 First-order optimality conditions

We now have all the ingredients to write first-order optimality conditions for a conic problem

mwin f()
s.t. Az =1b (2)
reX.
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Specifically, by combining Theorem 1.9.1 with Theorem 1.9.3 and the sufficiency of first-order
optimality conditions seen in Lecture 3, we obtain the following result.

Theorem L9.4. If f is convex and differentiable, and the conic optimization (2) is strictly
feasible, that is, there exists € X° such that Az = b, then a point z* € Q:= X N {z:
Az = b} is a minimizer of f on  if and only if

—Vf@)e{ATp+z:p€R™ z € Ng(z*)},
that is, expanding Ny (z*) using Theorem 1.9.3, if and only if
—Vf@a)e{ATu+2:peR™ z€ X, (z,2*) =0}
= —-Vf@)e{dTu—z:peR™ z€X* (2,2%) =0}.

Remark L9.5. The condition (z,z*) =0 is called the conic complementary slackness
condition. It is a generalization of the complementary slackness condition we saw in
Lecture 3 for linear programming. In the special case where X = RZ, the conic comple-
mentary slackness condition reduces to the complementary slackness condition for linear
programming.

L9.2.3 Conic duality for linear objectives

In particular, when f(z) = (c,z) is a linear objective, then optimality of z* for (2) is
equivalent to the existence of u, z such that

—c=ATp—z, where 1 € R™,z € X*, (2,2*) = 0.

This suggests that whenever the conditions of strict feasibility holds, then a duality theory
for conic problems can be derived following the exact same steps as we did in Lecture 3. In
particular, we find that the dual problem is

max (b, p1)

W,z

st. 2=c—ATp
uwER™
z € X*.

After showing that the value of the dual is always upper bounded by the value of the primal
(weak duality) using the same steps as in Lecture 3, we conclude the following. > Try working
out the details, it should only take a minute.]

Theorem L9.5. If the primal problem

min {c, z)
st. Az =10
reX

is strictly feasible and admits an optimal solution x*, then the dual problem
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max (b, )

w,z
st. 2=c—ATp
uweER™
z e X*

admits an optimal solution (u*, z*) such that:
o the values of the two problems coincide: (¢, z*) = (b, u*); and
o the solution z* satisfies the complementary slackness condition (x*, z*) = 0.

» Lagrangian duality in the conic case. Alternatively, it is possible to adapt the Lagrangian
ideas we saw in Lecture 8 (which, after all, were nothing but a rewrite of the first-oder
optimality conditions) to conic problems.

The key difference is that the constraint x € X is not a functional constraint, so it cannot
be easily included in the Lagrangian. For this, we consider some intermediate Lagrangian
problem in which we only penalize violation of the constraint Az = b, but otherwise retain
the constraint z € X as part of the domain. In other words, we consider the Lagrangian

L(zyp): X x R™, L(z;p) = {e,z) — (u, Az — b).

The conditions in Theorem 1.9.4 guarantee that for any solution z* of (2), there exist p* €
R™ such that

—c—ATpe{ze Xt (2,2%) =0} = Ng(a").

and therefore z* is a minimizer of £(xz; u*) over X'. Hence, using the same steps as in Lecture
8, we obtain the strong Lagrangian duality statement

ax inf £(x;pu) = (c,z*) = min sup L(z;u).
max inf. (@5 1) = {c, ") mip sup. (5 1)

One can easily check that the Lagrangian dual problem on the left is the same as the dual
problem we derived earlier in Theorem 1.9.5. Indeed,

inf L(z;p) = inf (e, z) — (n, Az =)

= (u,b inf — AT p).
{,0) + Inf (z,c = ATp)
The infimum on the right-hand side is equal to 0 if (¢ + AT p) € X™*, and —oo otherwise [
Show this!]. Hence, the dual problem is indeed equivalent to

max (b, u)
2

st. c— ATp e X+

L9.2.4 Failure of duality when the constraint qualification is not satisfied

It is essential to remember that duality might fail when the strict feasibility constraint
qualification is not satisfied. Specifically, the primal problem might be feasible and yet the
dual might not have an optimal solution.
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The failure mode can be of different kinds:

e the primal has an optimal solution, the supremum of the dual matches the value of the
primal, and yet the dual does not have a maximizer (Example 1.9.1); or

e the primal has an optimal solution, the dual has an optimal solution, but the values of
the problems differ (Example L9.2).

Example L9.1 ([de 02]). Consider the problem
min 2X 5+ Xy

st. X;; =0
Xy =1
X »0.

The only point in the feasible set is (8 (1)); therefore, the optimal value is 1.

Since the matrix (g ?) is not in the interior of the semidefinite cone (one eigenvalue is

0), strict feasibility does not hold.
The dual problem in this case is

max A,
\Z

01 10 00
. 2= (01 -n (3 9)-n(09).

) € R?
Z >0

1{E 1) > 0 with objective

value 1 — €. Hence, the supremum of the dual matches the value of the primal, but the

For A= (—1,1—¢€), e > 0 we obtain the feasible point Z = (

e

dual has no optimal solution.

Example L9.2 ([BV04]). Consider the primal problem

min z,
X
zo+1 0 0
st. X = 0 z; z
0 =z, O
X = 0.

Since the determinant must be nonnegative, it follows immediately that z, = 0 for all
feasible points, and so the objective value is 0. The dual problem is (after some manip-

ulations)
—Z
max 11
st. Z;1+2Z;3=1
Z22 S 0
Z = 0.
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Since Z is positive semidefinite, then so must be the submatrix (?2 ?3). But since Z,, =
23 33

0, then necessarily Z,; = 0. So, for any feasible point in the dual, the constraint Z;; +
Zy3 =1 is equivalent to Z;; = 1. So, the dual attains an optimal point, but the value at
optimality is different from the value at optimality of the primal problem.

L9.3 Conic solvers and software tools

Conic programming is a powerful tool that can be used to solve a wide range of optimization
problems. Several excellent software packages are available that can solve conic programs
efficiently. Here are just a few:

o CVX [GBO08] is a modeling language for convex optimization problems that can be used
with several solvers, including MOSEK [AA(00] and SCS [O'D+16]. It is compatible
with Python and numpy.

e JuMP [Lub+23] is a modeling language for mathematical optimization problems in
Julia. Like CVX, it can be used with several solvers, including MOSEK and SCS.

o« MOSEK [AAQ0] is a commercial solver that can handle a wide range of optimization
problems, including linear, quadratic, conic, and semidefinite programs.

L9.4 Further readings and bibliography

Hiriart-Urruty, J.-B., & Seeger, A. [HS10] wrote an excellent survey of the properties of the
copositive cone.

For further reading on semidefinite programming, I find the short books by de Klerk, E. [de
02] and Gértner, B., & Matousek, J. [GM12] very well-written and approachable. The book
by Boyd, S., & Vandenberghe, L. [BV04] is a great reference too.

The monograph by Ben-Tal, A., & Nemirovski, A. [BNO1] contains an extensive list of
applications of second-order cone problems and semidefinite problems.

[Dia62]  Diananda, P. H. (1962). On non-negative forms in real variables some or all of
which are non-negative. Mathematical Proceedings of the Cambridge Philosophical
Society, 58(1), 17-25. https://doi.org/10.1017/50305004100036185

[dP02] de Klerk, E., & Pasechnik, D. V. (2002). Approximating of the stability number of
a graph via copositive programming. SIAM J. Optim., 12(4), 875-892. https://
doi.org/10.1137/5105262340138324

[GM12]  Gértner, B., & Matousek, J. (2012). Approzimation Algorithms and Semi-
definite Programming. Springer. https://link.springer.com/book/10.1007/978-3-
642-22015-9

[de 02] de Klerk, E. (2002). Aspects of Semidefinite Programming. Springer US. https://
link.springer.com/book/10.1007/b105286
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[BV04]  Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge University
Press. https://web.stanford.edu/~boyd/cvxbook/

[GBO0S] Grant, M., & Boyd, S. (2008). CVX: Matlab Software for Disciplined Convex
Programming.

[AA00]  Andersen, E. D., & Andersen, K. D. (2000). The MOSEK interior point optimizer
for linear programming: an implementation of the homogeneous algorithm. High
Performance Optimization, 197-232.

[0'D+16] O'Donoghue, B., Chu, E., Parikh, N., & Boyd, S. (2016). Conic Optimization
via Operator Splitting and Homogeneous Self-Dual Embedding. Journal of Opti-
mization Theory and Applications, 169(3), 1042-1068.

[Lub+23] Lubin, M., Dowson, O., Dias Garcia, J., Huchette, J., Legat, B., & Vielma, J. P.
(2023). JuMP 1.0: Recent improvements to a modeling language for mathemat-

ical optimization. Mathematical Programming Computation. https://doi.org/10.
1007/512532-023-00239-3

[HS10] Hiriart-Urruty, J.-B., & Seeger, A. (2010). A Variational Approach to Copositive
Matrices. SIAM Review, 52(4), 593-629. http://www.jstor.org/stable/41062014

[BNO1]  Ben-Tal, A., & Nemirovski, A. (2001). Lectures on modern convex optimization:
analysis, algorithms, and engineering applications. STAM.

Changelog
e Mar 6, 2025: Fixed typo in conic dual problem (thanks Jonathan Huang!)
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