MIT 6.7220/15.084 โ Nonlinear Optimization (Spring โ25) Thu, Feb 13th 2025
Lecture 4
The special case of convex functions
Instructor: Prof. Gabriele Farina ( gfarina@mit.edu)โ
In the previous lecture, we have seen how any solution ๐ฅ to a nonlinear optimization problem
defined on a convex feasible set ฮฉ โ โ๐ must necessarily satisfy the first-order optimality
condition
โจโ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ โฅ 0 โ๐ฆ โ ฮฉ.
In general, this optimality condition is only necessary but not sufficient. However, there
exists a notable class of functions for which such a condition is sufficient. These are called
convex functions, and are the topic of todayโs lecture.
L4.1 Convex functions
Intuitively, a good mental picture for convex functions is as functions that โcurve
upwardโ (think of a bowl for example). All the following functions are convex:
0.25 0.5 0.75 1 x
0
๐(๐ฅ) = ๐ฅ log ๐ฅ
โ2 โ1 1 2 x
โ2
โ1
1
2
0
๐(๐ฅ) = โ๐ฅ
โ4 โ2 0 2 4 x
1
2
3
4
๐(๐ฅ) = log(1 + ๐๐ฅ)
In particular, due to their curvature, local optima of these functions are also global optima,
and the first-order optimality condition completely characterizes optimal points. To capture
the condition on the curvature in the most general terms (that is, without even assuming
differentiability of the function), the following definition is used.
Definition L4.1 (Convex function). Let ฮฉ โ โ๐ be convex.
A function ๐ : ฮฉ โ โ is convex if, for any two points
๐ฅ, ๐ฆ โ ฮฉ and ๐ก โ [0, 1],
๐((1 โ ๐ก) โ ๐ฅ + ๐ก โ ๐ฆ) โค (1 โ ๐ก) โ ๐(๐ฅ) + ๐ก โ ๐(๐ฆ).
๐ฅ ๐ฆ
L4.1.1 Convexity implies bounding by linearization
Assuming that ๐ is not only convex but also differentiable, a very important property of
convex functions is that they lie above their linearization at any point.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x
โ0.4
โ0.3
โ0.2
โ0.1
0 ๐
๐(๐ฅ0) + โจโ๐(๐ฅ0), ๐ฅ โ ๐ฅ0โฉ
๐ฅ0
This follows directly from the definition, as we show next.
Theorem L4.1. Let ๐ : ฮฉ โ โ be a convex and differentiable function defined on a
convex domain ฮฉ. Then, at all ๐ฅ โ ฮฉ,
๐(๐ฆ) โฅ ๐(๐ฅ) + โจโ๐(๐ฅ), ๐ฆ โ ๐ฅโฉโโโโโโโโโ
linearization of ๐ around ๐ฅ
โ๐ฆ โ ฮฉ.
Proof. Pick any ๐ฅ, ๐ฆ โ ฮฉ. By definition of convexity, we have
๐(๐ฅ + ๐ก โ (๐ฆ โ ๐ฅ)) โค ๐(๐ฅ) + ๐ก โ (๐(๐ฆ) โ ๐(๐ฅ)) โ๐ก โ [0, 1].
Moving the ๐(๐ฅ) from the right-hand side to the left-hand side, and dividing by ๐ก, we
therefore get
๐(๐ฅ + ๐ก โ (๐ฆ โ ๐ฅ)) โ ๐(๐ฅ)
๐ก โค ๐(๐ฆ) โ ๐(๐ฅ) โ๐ก โ (0, 1].
Taking a limit as ๐ก โ 0 and recognizing a directional derivative at ๐ฅ along direction ๐ฆ โ
๐ฅ on the left-hand side, we conclude that
โจโ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ โค ๐(๐ฆ) โ ๐(๐ฅ).
Rearranging yields the result. โก
L4.1.2 Sufficiency of first-order optimality conditions
The above result also immediately shows the sufficiency of first-order optimality conditions.
Theorem L4.2. Let ฮฉ โ โ๐ be convex and ๐ : ฮฉ โ โ be a convex differentiable function.
Then,
โโ๐(๐ฅ) โ ๐ฉฮฉ(๐ฅ) โบ ๐ฅ is a minimizer of ๐ on ฮฉ
Proof. We already know from Lecture 2 that โโ๐(๐ฅ) โ ๐ฉฮฉ(๐ฅ) is necessary for optimality.
So, we just need to show sufficiency. Specifically, we need to show that if โจโ๐(๐ฅ), ๐ฆ โ
๐ฅโฉ โฅ 0 for all ๐ฆ โ ฮฉ, then surely ๐(๐ฆ) โฅ ๐(๐ฅ) for all ๐ฆ โ ฮฉ. This follows immediately from
Theorem L4.1. โก
L4.2 Equivalent definitions of convexity
Theorem L4.3. Let ฮฉ โ โ๐ be a convex set, and ๐ : ฮฉ โ โ be a function. The following
are equivalent definitions of convexity for ๐:
(1) ๐((1 โ ๐ก)๐ฅ + ๐ก๐ฆ) โค (1 โ ๐ก)๐(๐ฅ) + ๐ก๐(๐ฆ) for all ๐ฅ, ๐ฆ โ ฮฉ, ๐ก โ [0, 1].
(2) [If ๐ is differentiable] ๐(๐ฆ) โฅ ๐(๐ฅ) + โจโ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ for all ๐ฅ, ๐ฆ โ ฮฉ.
(3) [If ๐ is differentiable] โจโ๐(๐ฆ) โ โ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ โฅ 0 for all ๐ฅ, ๐ฆ โ ฮฉ.
(4) [If ๐ is twice differentiable and ฮฉ is open] โ2๐(๐ฅ) โชฐ 0 for all ๐ฅ โ ฮฉ.
Most general
Most often used
Often easiest to check
The third criterion of Theorem L4.3 is usually the easiest to check in practice.
Example L4.1. For example, from that criterion it follows immediately that these
functions are convex:
โข ๐(๐ฅ) = ๐โค๐ฅ + ๐ for any ๐ โ โ๐, ๐ โ โ;
โข ๐(๐ฅ) = ๐ฅโค๐ด๐ฅ for any ๐ด โชฐ 0, including ๐(๐ฅ) = โ๐ฅโ2
2;
โข the negative entropy function ๐(๐ฅ) = โ๐
๐=1 ๐ฅ๐ log ๐ฅ๐ defined for ๐ฅ๐ > 0;
โข the function ๐(๐ฅ) = โ โ๐
๐=1 log ๐ฅ๐ defined for ๐ฅ๐ > 0;
โข the function ๐(๐ฅ) = log(1 + ๐๐ฅ).
Remark L4.1. Condition (3) is also known as the monotonicity of the gradient โ๐. In
dimension ๐ = 1, the condition is equivalent to the statement that the derivative ๐โฒ is
nondecreasing.
Proof of Theorem L4.3. We have already seen how (1) โน (2) in Theorem L4.1. To
conclude the proof, we will show that under differentiability (3) โบ (2) โน (1), and that
under twice differentiability and openness of ฮฉ, (3) โบ (4). We break the proof into
separate steps.
โถ Proof that (2) โน (1).
Intuition: We sum the linear lower bounds centered in the point ๐ง โ ๐ก โ ๐ฅ + (1 โ ๐ก) โ
๐ฆ and looking in the directions ๐ฅ โ ๐ง and ๐ฆ โ ๐ง.
Pick any ๐ฅ, ๐ฆ โ ฮฉ and ๐ก โ (0, 1), and consider the point
ฮฉ โ ๐ง โ ๐ก โ ๐ฅ + (1 โ ๐ก) โ ๐ฆ.
From the linearization bound (2) for the choices (๐ฅ, ๐ฆ) = (๐ง, ๐ฅ), (๐ง, ๐ฆ), we know that
๐(๐ฅ) โฅ ๐(๐ง) + โจโ๐(๐ง), ๐ฅ โ ๐งโฉ,
๐(๐ฆ) โฅ ๐(๐ง) + โจโ๐(๐ง), ๐ฆ โ ๐งโฉ.
Multiplying the first inequality by ๐ก and the second by 1 โ ๐ก, and summing, we obtain
๐ก โ ๐(๐ฅ) + (1 โ ๐ก) โ ๐(๐ฆ) โฅ ๐(๐ง) + โจโ๐(๐ง), ๐ก โ ๐ฅ + (1 โ ๐ก) โ ๐ฆ โ ๐งโฉ = ๐(๐ง),
where the equality follows since by definition ๐ง = ๐ก โ ๐ฅ + (1 โ ๐ก) โ ๐ฆ. Rearranging, we
have (1).
โถ Proof that (2) โน (3).
Intuition: The idea here is to write condition (2) for the pair (๐ฅ, ๐ฆ) and for the
symmetric pair (๐ฆ, ๐ฅ). Summing the inequalities leads to the statement.
Pick any two ๐ฅ, ๐ฆ โ ฮฉ. From (2), we can write
๐(๐ฆ) โฅ ๐(๐ฅ) + โจโ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ
๐(๐ฅ) โฅ ๐(๐ฆ) + โจโ๐(๐ฆ), ๐ฅ โ ๐ฆโฉ.
Summing the inequalities, we therefore conclude that
0 โฅ โจโ๐(๐ฅ) โ โ๐(๐ฆ), ๐ฆ โ ๐ฅโฉ = โโจโ๐(๐ฆ) โ โ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ,
which is the statement.
โถ Proof that (3) โน (4).
Intuition: Condition (4) uses a Hessian matrix (i.e., second derivative), but (3) only
contains a difference of gradients. Unsurprisingly, the idea is to consider (3) for two
close-by points and take a limit to extract an additional derivative.
Pick any ๐ฅ, ๐ฆ โ ฮฉ, and define the point ๐ฅ๐ก โ ๐ฅ + ๐ก โ (๐ฆ โ ๐ฅ). Using (3) we have
0 โค โจโ๐(๐ฅ๐ก) โ โ๐(๐ฅ), ๐ฅ๐ก โ ๐ฅโฉ = ๐ก โ โจโ๐(๐ฅ๐ก) โ โ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ.
Rearranging and dividing by ๐ก2, we have
โจโ๐(๐ฅ + ๐ก โ (๐ฆ โ ๐ฅ)) โ โ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ
๐ก โฅ 0.
Taking the limit as ๐ก โ 0, we therefore have
โจ(๐ฆ โ ๐ฅ), โ2๐(๐ฅ)(๐ฆ โ ๐ฅ)โฉ โฅ 0.
Since ฮฉ is open by hypothesis, the direction of ๐ฆ โ ๐ฅ is arbitrary, and therefore we
must have โ2๐(๐ฅ) โชฐ 0, as we wanted to show.
โถ Proof that (4) โน (3).
Intuition: To go from (3) to (4) we took a derivative in the direction ๐ฆ โ ๐ฅ. To go
back, we take an integral on the line ๐ฆ โ ๐ฅ instead.
By hypothesis, for any ๐ฅ, ๐ฆ โ ฮฉ and ๐ โ [0, 1],
0 โค โจ๐ฆ โ ๐ฅ, โ2๐(๐ฅ + ๐ โ (๐ฆ โ ๐ฅ)) โ (๐ฆ โ ๐ฅ)โฉ.
Hence, taking the integral,
0 โค โซ
1
0
โจ๐ฆ โ ๐ฅ, โ2๐(๐ฅ + ๐ก โ (๐ฆ โ ๐ฅ)) โ (๐ฆ โ ๐ฅ)โฉ d๐ก
= โจ๐ฆ โ ๐ฅ, โซ
1
0
โ2๐(๐ฅ + ๐ก โ (๐ฆ โ ๐ฅ)) โ (๐ฆ โ ๐ฅ)โโโโโโโโโโโโโ
= d
d๐ก โ๐(๐ฅ+๐กโ (๐ฆโ๐ฅ))
d๐กโฉ = โจ๐ฆ โ ๐ฅ, โ๐(๐ฆ) โ โ๐(๐ฅ)โฉ.
โถ Proof that (3) โน (2).
Intuition: The idea here it to treat ๐ฅ as fixed, and integrate condition (3) on the line
from ๐ฅ to ๐ฆ.
Pick any ๐ฅ, ๐ฆ โ ฮฉ, and define the point ๐ฅ๐ก โ ๐ฅ + ๐ก โ (๐ฆ โ ๐ฅ) for ๐ก โฅ 0. Using condition
(3) we have
0 โค โจโ๐(๐ฅ๐ก) โ โ๐(๐ฅ), ๐ฅ๐ก โ ๐ฅโฉ = ๐ก โ โจโ๐(๐ฅ๐ก) โ โ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ,
which implies that โจโ๐(๐ฅ๐ก) โ โ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ โฅ 0 for all ๐ก โฅ 0.
Letting ๐ก range from 0 to 1 and integrating,
0 โค โซ
1
0
โจ๐ฆ โ ๐ฅ, โ๐(๐ฅ๐ก) โ โ๐(๐ฅ)โฉ d๐ก
= โโจ๐ฆ โ ๐ฅ, โ๐(๐ฅ)โฉ + โซ
1
0
โจ๐ฆ โ ๐ฅ, โ๐(๐ฅ + ๐ก โ (๐ฆ โ ๐ฅ))โฉ d๐ก
= โโจ๐ฆ โ ๐ฅ, โ๐(๐ฅ)โฉ + ๐(๐ฆ) โ ๐(๐ฅ).
Rearranging yields ๐(๐ฆ) โฅ ๐(๐ฅ) + โจโ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ, which is (2). โก
โ These notes are class material that has not undergone formal peer review. The TAs and I are grateful
for any reports of typos.
Lecture 4
The special case of convex functions
Instructor: Prof. Gabriele Farina ( gfarina@mit.edu)โ
In the previous lecture, we have seen how any solution ๐ฅ to a nonlinear optimization problem
defined on a convex feasible set ฮฉ โ โ๐ must necessarily satisfy the first-order optimality
condition
โจโ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ โฅ 0 โ๐ฆ โ ฮฉ.
In general, this optimality condition is only necessary but not sufficient. However, there
exists a notable class of functions for which such a condition is sufficient. These are called
convex functions, and are the topic of todayโs lecture.
L4.1 Convex functions
Intuitively, a good mental picture for convex functions is as functions that โcurve
upwardโ (think of a bowl for example). All the following functions are convex:
0.25 0.5 0.75 1 x
0
๐(๐ฅ) = ๐ฅ log ๐ฅ
โ2 โ1 1 2 x
โ2
โ1
1
2
0
๐(๐ฅ) = โ๐ฅ
โ4 โ2 0 2 4 x
1
2
3
4
๐(๐ฅ) = log(1 + ๐๐ฅ)
In particular, due to their curvature, local optima of these functions are also global optima,
and the first-order optimality condition completely characterizes optimal points. To capture
the condition on the curvature in the most general terms (that is, without even assuming
differentiability of the function), the following definition is used.
Definition L4.1 (Convex function). Let ฮฉ โ โ๐ be convex.
A function ๐ : ฮฉ โ โ is convex if, for any two points
๐ฅ, ๐ฆ โ ฮฉ and ๐ก โ [0, 1],
๐((1 โ ๐ก) โ ๐ฅ + ๐ก โ ๐ฆ) โค (1 โ ๐ก) โ ๐(๐ฅ) + ๐ก โ ๐(๐ฆ).
๐ฅ ๐ฆ
L4.1.1 Convexity implies bounding by linearization
Assuming that ๐ is not only convex but also differentiable, a very important property of
convex functions is that they lie above their linearization at any point.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x
โ0.4
โ0.3
โ0.2
โ0.1
0 ๐
๐(๐ฅ0) + โจโ๐(๐ฅ0), ๐ฅ โ ๐ฅ0โฉ
๐ฅ0
This follows directly from the definition, as we show next.
Theorem L4.1. Let ๐ : ฮฉ โ โ be a convex and differentiable function defined on a
convex domain ฮฉ. Then, at all ๐ฅ โ ฮฉ,
๐(๐ฆ) โฅ ๐(๐ฅ) + โจโ๐(๐ฅ), ๐ฆ โ ๐ฅโฉโโโโโโโโโ
linearization of ๐ around ๐ฅ
โ๐ฆ โ ฮฉ.
Proof. Pick any ๐ฅ, ๐ฆ โ ฮฉ. By definition of convexity, we have
๐(๐ฅ + ๐ก โ (๐ฆ โ ๐ฅ)) โค ๐(๐ฅ) + ๐ก โ (๐(๐ฆ) โ ๐(๐ฅ)) โ๐ก โ [0, 1].
Moving the ๐(๐ฅ) from the right-hand side to the left-hand side, and dividing by ๐ก, we
therefore get
๐(๐ฅ + ๐ก โ (๐ฆ โ ๐ฅ)) โ ๐(๐ฅ)
๐ก โค ๐(๐ฆ) โ ๐(๐ฅ) โ๐ก โ (0, 1].
Taking a limit as ๐ก โ 0 and recognizing a directional derivative at ๐ฅ along direction ๐ฆ โ
๐ฅ on the left-hand side, we conclude that
โจโ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ โค ๐(๐ฆ) โ ๐(๐ฅ).
Rearranging yields the result. โก
L4.1.2 Sufficiency of first-order optimality conditions
The above result also immediately shows the sufficiency of first-order optimality conditions.
Theorem L4.2. Let ฮฉ โ โ๐ be convex and ๐ : ฮฉ โ โ be a convex differentiable function.
Then,
โโ๐(๐ฅ) โ ๐ฉฮฉ(๐ฅ) โบ ๐ฅ is a minimizer of ๐ on ฮฉ
Proof. We already know from Lecture 2 that โโ๐(๐ฅ) โ ๐ฉฮฉ(๐ฅ) is necessary for optimality.
So, we just need to show sufficiency. Specifically, we need to show that if โจโ๐(๐ฅ), ๐ฆ โ
๐ฅโฉ โฅ 0 for all ๐ฆ โ ฮฉ, then surely ๐(๐ฆ) โฅ ๐(๐ฅ) for all ๐ฆ โ ฮฉ. This follows immediately from
Theorem L4.1. โก
L4.2 Equivalent definitions of convexity
Theorem L4.3. Let ฮฉ โ โ๐ be a convex set, and ๐ : ฮฉ โ โ be a function. The following
are equivalent definitions of convexity for ๐:
(1) ๐((1 โ ๐ก)๐ฅ + ๐ก๐ฆ) โค (1 โ ๐ก)๐(๐ฅ) + ๐ก๐(๐ฆ) for all ๐ฅ, ๐ฆ โ ฮฉ, ๐ก โ [0, 1].
(2) [If ๐ is differentiable] ๐(๐ฆ) โฅ ๐(๐ฅ) + โจโ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ for all ๐ฅ, ๐ฆ โ ฮฉ.
(3) [If ๐ is differentiable] โจโ๐(๐ฆ) โ โ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ โฅ 0 for all ๐ฅ, ๐ฆ โ ฮฉ.
(4) [If ๐ is twice differentiable and ฮฉ is open] โ2๐(๐ฅ) โชฐ 0 for all ๐ฅ โ ฮฉ.
Most general
Most often used
Often easiest to check
The third criterion of Theorem L4.3 is usually the easiest to check in practice.
Example L4.1. For example, from that criterion it follows immediately that these
functions are convex:
โข ๐(๐ฅ) = ๐โค๐ฅ + ๐ for any ๐ โ โ๐, ๐ โ โ;
โข ๐(๐ฅ) = ๐ฅโค๐ด๐ฅ for any ๐ด โชฐ 0, including ๐(๐ฅ) = โ๐ฅโ2
2;
โข the negative entropy function ๐(๐ฅ) = โ๐
๐=1 ๐ฅ๐ log ๐ฅ๐ defined for ๐ฅ๐ > 0;
โข the function ๐(๐ฅ) = โ โ๐
๐=1 log ๐ฅ๐ defined for ๐ฅ๐ > 0;
โข the function ๐(๐ฅ) = log(1 + ๐๐ฅ).
Remark L4.1. Condition (3) is also known as the monotonicity of the gradient โ๐. In
dimension ๐ = 1, the condition is equivalent to the statement that the derivative ๐โฒ is
nondecreasing.
Proof of Theorem L4.3. We have already seen how (1) โน (2) in Theorem L4.1. To
conclude the proof, we will show that under differentiability (3) โบ (2) โน (1), and that
under twice differentiability and openness of ฮฉ, (3) โบ (4). We break the proof into
separate steps.
โถ Proof that (2) โน (1).
Intuition: We sum the linear lower bounds centered in the point ๐ง โ ๐ก โ ๐ฅ + (1 โ ๐ก) โ
๐ฆ and looking in the directions ๐ฅ โ ๐ง and ๐ฆ โ ๐ง.
Pick any ๐ฅ, ๐ฆ โ ฮฉ and ๐ก โ (0, 1), and consider the point
ฮฉ โ ๐ง โ ๐ก โ ๐ฅ + (1 โ ๐ก) โ ๐ฆ.
From the linearization bound (2) for the choices (๐ฅ, ๐ฆ) = (๐ง, ๐ฅ), (๐ง, ๐ฆ), we know that
๐(๐ฅ) โฅ ๐(๐ง) + โจโ๐(๐ง), ๐ฅ โ ๐งโฉ,
๐(๐ฆ) โฅ ๐(๐ง) + โจโ๐(๐ง), ๐ฆ โ ๐งโฉ.
Multiplying the first inequality by ๐ก and the second by 1 โ ๐ก, and summing, we obtain
๐ก โ ๐(๐ฅ) + (1 โ ๐ก) โ ๐(๐ฆ) โฅ ๐(๐ง) + โจโ๐(๐ง), ๐ก โ ๐ฅ + (1 โ ๐ก) โ ๐ฆ โ ๐งโฉ = ๐(๐ง),
where the equality follows since by definition ๐ง = ๐ก โ ๐ฅ + (1 โ ๐ก) โ ๐ฆ. Rearranging, we
have (1).
โถ Proof that (2) โน (3).
Intuition: The idea here is to write condition (2) for the pair (๐ฅ, ๐ฆ) and for the
symmetric pair (๐ฆ, ๐ฅ). Summing the inequalities leads to the statement.
Pick any two ๐ฅ, ๐ฆ โ ฮฉ. From (2), we can write
๐(๐ฆ) โฅ ๐(๐ฅ) + โจโ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ
๐(๐ฅ) โฅ ๐(๐ฆ) + โจโ๐(๐ฆ), ๐ฅ โ ๐ฆโฉ.
Summing the inequalities, we therefore conclude that
0 โฅ โจโ๐(๐ฅ) โ โ๐(๐ฆ), ๐ฆ โ ๐ฅโฉ = โโจโ๐(๐ฆ) โ โ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ,
which is the statement.
โถ Proof that (3) โน (4).
Intuition: Condition (4) uses a Hessian matrix (i.e., second derivative), but (3) only
contains a difference of gradients. Unsurprisingly, the idea is to consider (3) for two
close-by points and take a limit to extract an additional derivative.
Pick any ๐ฅ, ๐ฆ โ ฮฉ, and define the point ๐ฅ๐ก โ ๐ฅ + ๐ก โ (๐ฆ โ ๐ฅ). Using (3) we have
0 โค โจโ๐(๐ฅ๐ก) โ โ๐(๐ฅ), ๐ฅ๐ก โ ๐ฅโฉ = ๐ก โ โจโ๐(๐ฅ๐ก) โ โ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ.
Rearranging and dividing by ๐ก2, we have
โจโ๐(๐ฅ + ๐ก โ (๐ฆ โ ๐ฅ)) โ โ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ
๐ก โฅ 0.
Taking the limit as ๐ก โ 0, we therefore have
โจ(๐ฆ โ ๐ฅ), โ2๐(๐ฅ)(๐ฆ โ ๐ฅ)โฉ โฅ 0.
Since ฮฉ is open by hypothesis, the direction of ๐ฆ โ ๐ฅ is arbitrary, and therefore we
must have โ2๐(๐ฅ) โชฐ 0, as we wanted to show.
โถ Proof that (4) โน (3).
Intuition: To go from (3) to (4) we took a derivative in the direction ๐ฆ โ ๐ฅ. To go
back, we take an integral on the line ๐ฆ โ ๐ฅ instead.
By hypothesis, for any ๐ฅ, ๐ฆ โ ฮฉ and ๐ โ [0, 1],
0 โค โจ๐ฆ โ ๐ฅ, โ2๐(๐ฅ + ๐ โ (๐ฆ โ ๐ฅ)) โ (๐ฆ โ ๐ฅ)โฉ.
Hence, taking the integral,
0 โค โซ
1
0
โจ๐ฆ โ ๐ฅ, โ2๐(๐ฅ + ๐ก โ (๐ฆ โ ๐ฅ)) โ (๐ฆ โ ๐ฅ)โฉ d๐ก
= โจ๐ฆ โ ๐ฅ, โซ
1
0
โ2๐(๐ฅ + ๐ก โ (๐ฆ โ ๐ฅ)) โ (๐ฆ โ ๐ฅ)โโโโโโโโโโโโโ
= d
d๐ก โ๐(๐ฅ+๐กโ (๐ฆโ๐ฅ))
d๐กโฉ = โจ๐ฆ โ ๐ฅ, โ๐(๐ฆ) โ โ๐(๐ฅ)โฉ.
โถ Proof that (3) โน (2).
Intuition: The idea here it to treat ๐ฅ as fixed, and integrate condition (3) on the line
from ๐ฅ to ๐ฆ.
Pick any ๐ฅ, ๐ฆ โ ฮฉ, and define the point ๐ฅ๐ก โ ๐ฅ + ๐ก โ (๐ฆ โ ๐ฅ) for ๐ก โฅ 0. Using condition
(3) we have
0 โค โจโ๐(๐ฅ๐ก) โ โ๐(๐ฅ), ๐ฅ๐ก โ ๐ฅโฉ = ๐ก โ โจโ๐(๐ฅ๐ก) โ โ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ,
which implies that โจโ๐(๐ฅ๐ก) โ โ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ โฅ 0 for all ๐ก โฅ 0.
Letting ๐ก range from 0 to 1 and integrating,
0 โค โซ
1
0
โจ๐ฆ โ ๐ฅ, โ๐(๐ฅ๐ก) โ โ๐(๐ฅ)โฉ d๐ก
= โโจ๐ฆ โ ๐ฅ, โ๐(๐ฅ)โฉ + โซ
1
0
โจ๐ฆ โ ๐ฅ, โ๐(๐ฅ + ๐ก โ (๐ฆ โ ๐ฅ))โฉ d๐ก
= โโจ๐ฆ โ ๐ฅ, โ๐(๐ฅ)โฉ + ๐(๐ฆ) โ ๐(๐ฅ).
Rearranging yields ๐(๐ฆ) โฅ ๐(๐ฅ) + โจโ๐(๐ฅ), ๐ฆ โ ๐ฅโฉ, which is (2). โก
โ These notes are class material that has not undergone formal peer review. The TAs and I are grateful
for any reports of typos.