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Abstract

In this paper, we study the class of games known as hidden-role games in which players are assigned
privately to teams and are faced with the challenge of recognizing and cooperating with teammates. This
model includes both popular recreational games such as the Mafia/Werewolf family and The Resistance
(Avalon) and many real-world settings, such as distributed systems where nodes need to work together
to accomplish a goal in the face of possible corruptions. There has been little to no formal mathematical
grounding of such settings in the literature, and it was previously not even clear what the right solution
concepts (notions of equilibria) should be. A suitable notion of equilibrium should take into account the
communication channels available to the players (e.g., can they communicate? Can they communicate in
private?). Defining such suitable notions turns out to be a nontrivial task with several surprising conse-
quences. In this paper, we provide the first rigorous definition of equilibrium for hidden-role games, which
overcomes serious limitations of other solution concepts not designed for hidden-role games. We then
show that in certain cases, including the above recreational games, optimal equilibria can be computed
efficiently. In most other cases, we show that computing an optimal equilibrium is at least NP-hard or
coNP-hard. Lastly, we experimentally validate our approach by computing exact equilibria for complete
5- and 6-player Avalon instances whose size in terms of number of information sets is larger than 1056.

∗Equal contribution; author order randomized
†Work done while at Carnegie Mellon University
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1 Introduction

Consider a multiagent system with communication where the majority of agents share incentives, but there
are also hidden defectors who seek to disrupt their progress.

This paper adopts the lens of game theory to characterize and solve a class of games called hidden-role
games1. Hidden-role games model multi-agent systems in which a team of “good” agents work together to
achieve some desired goal, but a subset of adversaries hidden among the agents seeks to sabotage the team.
Customarily (and in our paper), the “good” agents make up a majority of the players, but they will not
know who the adversaries are. On the other hand, the adversaries know each other.

Hidden-role games offer a framework for developing optimal strategies in systems and applications that
face deception. They have a strong emphasis on communication: players need to communicate in order to
establish trust, coordinate actions, exchange information, and distinguish teammates from adversaries.

Hidden-role games can be used to model a wide range of recreational and real-world applications. Notable
recreational examples include the popular tabletop games Mafia (also known as Werewolf ) and The Resis-
tance, of which Avalon is the best-known variant. As an example, consider the game Mafia. The players
are split in an uninformed majority called villagers and an informed minority called mafiosi. The game
proceeds in two alternating phases, night and day. In the night phase, the mafiosi privately communicate
and eliminate one of the villagers. In the day phase, players vote to eliminate a suspect through majority
voting. The game ends when one of the teams is completely eliminated.

We now provide several non-recreational examples of hidden-role games. In many cybersecurity applica-
tions [Garcia Morchon et al., 2007, Garcia-Morchon et al., 2013, Tripathi et al., 2022], an adversary com-
promises and controls some nodes of a distributed system whose functioning depends on cooperation and
information sharing among the nodes. The system does not know which nodes have been compromised, and
yet it must operate in the presence of the compromised nodes.

Another instance of problems that can be modeled as hidden-role games arises in AI alignment, i.e., the
study of techniques to steer AI systems towards humans’ intended goals, preferences, or ethical princi-
ples [Ziegler et al., 2019, Ji et al., 2023, Hubinger et al., 2024]. In this setting, there is risk that a misaligned
AI agent may attempt to deceive a human user into trusting its suggestions [Park et al., 2023, Scheurer et al.,
2023]. AI debate [Irving et al., 2018] aims at steering AI agents by using an adversarial training procedure in
which a judge has to decide which is the more trustful between two hidden agents, one of which is a deceptor
trained to fool the judge. Miller et al. [2021] proposes an experimental setting consisting of a chess game
in which one side is controlled by a player and two advisors, which falls directly under our framework. The
advisors pick action suggestions for the player to choose from, but one of the two advisors has the objective
of making the team lose.

Hidden-role games also include general scenarios where agents receive inputs from other agents which may
be compromised. For example, in federated learning (a popular category of distributed learning methods),
a central server aggregates machine learning models trained by multiple distributed local agents. If some
of these agents are compromised, they may send doctored input with the goal of disrupting the training
process [Mothukuri et al., 2021].

Our paper aims to characterize optimal behavior in these settings, and analyze its computability.

Related work. To the best of our knowledge, there have been no previous works on general hidden-role
games. On the other hand, there has been a limited amount of prior work on solving specific hidden-role
games. Braverman et al. [2006] propose an optimal strategy for Mafia, and analyze the win probability when
varying the number of players with different roles. Similarly, Christiano [2018] proposes a theoretical analysis
for Avalon, investigating the possibility of whispering, i.e. any two players being able to communicate without
being discovered. Both of those papers describe game-specific strategies that can be adopted by players to
guarantee a specific utility to the teams. In contrast, we provide, to our knowledge, the first rigorous

1These games are often commonly called social deduction games.
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definition of a reasonable solution concept for hidden-role games, an algorithm to find such equilibria, and
an experimental evaluation with a wide range of parameterized instances.

Deep reinforcement learning techniques have also been applied to various hidden-role games [Aitchison et al.,
2021, Kopparapu et al., 2022, Serrino et al., 2019], but with no theoretical guarantees and usually with
no communication allowed between players. A more recent stream of works focused on investigating the
deceptive capabilities of large language models (LLMs) by having them play a hidden-role game [Xu et al.,
2023, O’Gara, 2023]. The agents, being LLM-based, communicate using plain human language. However,
as before, these are not grounded in any theoretical framework, and indeed we will illustrate that optimal
strategies in hidden-role games are likely to involve communication that does not bear resemblance to natural
language, such as the execution of cryptographic protocols.

1.1 Main Modeling Contributions

We first here give an informal, high-level description of our game model. We also introduce our main solution
concept of interest, called hidden-role equilibrium, and discuss the challenges it addresses. We will define
these concepts in more formality beginning in Section 3.

We define a (finite) hidden-role game as an n-player finite extensive-form game Γ in which the players are
partitioned at the start of the game into two teams. Members of the same team share the same utility
function, and the game is zero-sum, i.e. any gain for one team means a loss for the other. We thus identify
the teams as MAX and MIN, since teams share the same utility function, but have opposite objectives. At
the start of the game, players are partitioned at random into two teams. A crucial assumption is that one
of the two teams is informed, i.e. all the members of that particular team know the team assignment of all
the players, while this is not true for all players belonging to the other team. Without loss of generality, we
use MAX to refer to the uninformed team, and MIN to refer to the informed one.2

To allow our model to cover communication among players, we formally define the communication extensions
of a game Γ. The communication extensions are games like Γ except that actions allowing messages to be sent
between players are explicitly encoded in the game. In the public communication extension, players are able
to publicly broadcast messages. In the private communication extension, in addition to the public broadcast
channel, the players have pairwise private communication channels.3 In all cases, communication channels
are synchronous and authenticated: messages sent on one timestep are received at the next timestep, and are
tagged with their sender. Communication presents the main challenge of hidden role games: MAX-players
wish to share information with teammates, but not with MIN-players.

In defining communication extensions, we must bound the length of the communication, that is, how many
rounds of communication occur in between every move of the game, and how many distinct messages can
be sent on each round. To do this, we fix a finite message space4 of size M and length of communication R,
and in our definition of equilibrium we will take a supremum over M and R. This will allow us to consider
arbitrarily complex message spaces (i.e., M and R arbitrarily large) while still only analyzing finite games:
for any fixed M and R, the resulting game is a finite hidden-role game. We will show that our positive results
(upper bounds) only require logM = R = polylog(|H |, 1/ε), where |H | is the number of nodes (histories) in
the game tree and ε is the desired precision of equilibrium.

We characterize optimal behavior in the hidden-role setting by converting hidden-role games into team games
in a way that preserves the strategic aspect of hidden-roles. This team game is called split-personality form
of a given hidden-role game. Given a (possibly communication-extended) hidden-role game Γ, we define and
analyze two possible variants:

• the uncoordinated split-personality form USplit(Γ) is a team games with 2n players, derived by split-
ting each player i in the original game in two distinct players, i+ and i−, that pick actions for i in Γ

2For example, in Mafia, the villagers are MAX while mafiosi are MIN.
3If players are assumed to be computationally bounded, pairwise private channels can be created from the public broadcast

channels through public-key cryptography. However, throughout this paper, for the sake of conceptual cleanliness, we will not
assume that players are computationally bounded, and therefore we will distinguish the public-communication case from the
private-communication case.

4Note that, if the message space is of size M , a message can be sent in O(logM) bits.
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if the player is assigned to team MAX or MIN respectively.

• the coordinated split-personality form CSplit(Γ) is the (n+1)-player team game in which the additional
player, who we refer to simply as the adversary or MIN-player, takes control of the actions of all players
who have been assigned to the MIN-team. On the contrary, the players from 1 to n control the players
as usual only if they belong to the team MAX.

The coordinated split-personality variant encodes an extra assumption on MIN’s capabilities, namely, that
the MIN-team is controlled by a single player and is therefore perfectly coordinated. Trivially, when only one
player is on team MIN, the uncoordinated and coordinated split-personality forms coincide.

In either case, the resulting game is a team game in which each player has a fixed team assignment. We
remark that the split-personality form maintains the strategic aspects of hidden roles, since i+ and i− share
identity when interacting with the environment. For example, players may observe that i has done an action,
but do not know if the controller was i+ or i−. Similarly, messages sent by i+ and i− are signed by player i,
since the communication extension is applied on Γ before splitting personalities.

Picking which split-personality variant to use is a modeling assumption that depends on the game instance
that one wants to address. For example, in many recreational tabletop games, USplit is the more reasonable
choice because MIN-players are truly distinct; however, in a network security game where a single adversary
controls the corrupted nodes, CSplit is the more reasonable choice. The choice of which variant also affects
the complexity of equilibrium computation: as we will detail in later, CSplit yields a more tractable solution
concept. In certain special cases, however, CSplit and USplit will coincide. For example, we will later
show that this is the case in Avalon, which is key to allowing our algorithms to work in that game.

With these pieces in place, we define the hidden-role equilibria (HRE) of a hidden-role game Γ as the team
max-min equilibria (TMEs) of the split-personality form of Γ. That is, the hidden-role equilibria are the
optimal joint strategies for team MAX in the split-personality game, where optimality is judged by the
expected value against a jointly-best-responding MIN-team. The value of a hidden-role game is the expected
value for MAX in any hidden-role equilibrium. If communication (private or public) is allowed, we define
hidden-role equilibria and values by taking the supremum over M and R of the expected value at the
equilibrium, that is, the MAX-team is allowed to set the parameters of the communication.

Our new solution concept encodes, by design, a pessimistic assumption for the MAX-team. MAX picks M ,
R and its strategy considering a worst-case MIN adversary that knows this strategy and best-responds to it.
Throughout our proofs, we will heavily make use of this fact. In particular, we will often consider MIN-players
that “pretend to be MAX-players” under certain circumstances, which is only possible if MIN-players know
MAX-players’ strategies. It is not allowed for MAX-players to know MIN-players’ strategies in the same fashion.
This is in stark contrast to usual zero-sum game analysis, where various versions of the minimax theorem
promise that the game is unchanged no matter which side commits first to a strategy. Indeed, we discuss
in Section 6.2 the fact that, for hidden-role games, the asymmetry is in some sense necessary: a minimax
theorem cannot hold for nontrivial hidden-role games. We argue, however, that this asymmetry is natural
and inherent in the the hidden-role setting. If we assumed the contrary and inverted the order of the teams
so that MIN commits first to its strategy, MAX could discover the roles immediately by agreeing to message
a passphrase unknown to MIN in the first round, thus spoiling the whole purpose of hidden-role games. This
argument will be made formal in Section 6.2.

Existing solution concepts failures We defined our equilibrium notion as a team max-min equilibrium
(TME) of the split-personality form of a communication-extended hidden role game. Here, we will argue
why some other notions would be less reasonable.

• Nash Equilibrium. A Nash equilibrium [Nash, 1950] is a strategy profile for all players from which no
player can improve its own utility by deviating. This notion is unsuitable for our purposes because it
fails to capture team coordination. In particular, in pure coordination games (in which all players have
the same utility function), which are a special case of hidden-role games (with no hidden roles and no
adversary team at all), a Nash equilibrium would only be locally optimal in the sense that no player
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can improve the team’s value alone. In contrast, our notion will lead to the optimal team strategy in
such games.

• Team-correlated equilibrium. The team max-min equilibrium with correlation [von Stengel and Koller,
1997, Celli and Gatti, 2018] (TMECor), is a common solution concept used in team games. It arises
from allowing each team the ability to communicate in private (in particular, to generate correlated
randomness) before the game begins. For team games, TMECor is arguably a more natural notion
than TME, as the corresponding optimization problem is a bilinear saddle-point problem, and therefore
in particular the minimax theorem applies, avoiding the issue of which team ought to commit first.
However, for hidden-role games, TMECor is undesirable, because it does not make sense for a team
to be able to correlate with teammates that have not even been assigned yet. The team max-min
equilibrium with communication (TMECom) [Celli and Gatti, 2018] makes an even stronger assumption
about communication among team members, and therefore suffers the same problem.

1.2 Main Computational Contributions

We now introduce computational results, both positive and negative, for computing the hidden-role value
and hidden-role equilibria of a given game.

Polynomial-time algorithm Our main positive result is summarized in the following informal theorem
statement.

Theorem 1.1 (Main result, informal; formal result in Theorem 4.3). If the number of players is constant,
private communication is available, the MIN-team is a strict minority (i.e., strictly less than half of the
players are on the MIN-team), and the adversary is coordinated, there is a polynomial-time algorithm for
exactly computing the hidden-role value.

This result should be surprising, for multiple reasons. First, team games are generally hard to solve [von Stengel and Koller,
1997, Zhang et al., 2023a], so any positive result for computing equilibria in team games is fairly surprising.
Further, it is a priori not obvious that the value of any hidden-role game with private communication and coor-
dinated adversary is even a rational number5, much less computable in polynomial time: for example, there ex-
ist adversarial team games with no communication whose TME values are irrational [von Stengel and Koller,
1997].

There are two key ingredients to the proof of Theorem 1.1. The first is a special type of game which we call
a mediated game. In a mediated game, there is a player, the mediator, who is always on team MAX. MAX-
players can therefore communicate with it and treat it as a trusted party. We show that, when a mediator
is present (and all the other assumptions of Theorem 1.1 also hold), the hidden-role value is computable in
polynomial time. To do this, we state and prove a form of revelation principle. Informally, our revelation
principle states that, without loss of generality, it suffices to consider MAX-team strategies in which, at every
timestep of the game,

1. all MAX-players send their honest information to the mediator,

2. the mediator sends action recommendations to all players (regardless of their team allegiance; remember
that the mediator may not know the team assignment), and

3. all MAX-players play their recommended actions.

MIN-team players are, of course, free to pretend to be MAX-team players and thus send false information
to the mediator; the mediator must deal with this possibility. However, MIN-team players cannot just send
any message; they must send messages that are consistent with some MAX-player, lest they be immediately
revealed as MIN-team. These observations are sufficient to construct a two-player zero-sum game Γ0, where
the mediator is the MAX-player and the coordinated adversary is the MIN-player. The value of Γ0 is the value
of the original hidden-role game, and the size of Γ0 is at most polynomially larger than the size of the original
game. Since two-player zero-sum extensive-form games can be solved in polynomial time [Koller et al., 1994,
von Stengel, 1996], it follows that mediated hidden-role games can also be solved in polynomial time.

5assuming all game values and chance probabilities are also rational numbers
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The second ingredient is to invoke results from the literature on secure multi-party computation to simulate a
mediator in the case that one is not already present. A well-known result from that literature states that so
long as strictly more than half of the players are honest, essentially any interactive protocol—such as the ones
used by our mediator to interact with other players—can be simulated efficiently such that the adversary can
cause failure of the protocol or leakage of information [Beaver, 1990, Rabin and Ben-Or, 1989].6 Chaining
such a protocol with the argument in the previous paragraph concludes the proof of the main theorem.

Related works on MPC and communication equilibria. The communication equilibrium [Forges,
1986, Myerson, 1986] is a notion of equilibrium with a mediator, in which the mediator has two-way com-
munication with all players, and players need to be incentivized to report information honestly and follow
recommendations. Communication equilibria include all Nash equilibria, and therefore are unfit for general
hidden-role games for the same reason as Nash equilibria, as discussed in the previous subsection.

However, when team MIN has only one player and private communication is allowed, the hidden-role equilibria
coincide with the MAX-team-optimal communication equilibria in the original game Γ. Our main result covers
this case, but an alternative way of computing a hidden-role equilibrium in this special case is to apply
the optimal communication equilibrium algorithms of Zhang and Sandholm [2022] or Zhang et al. [2023b].
However, those algorithms either involve solving linear programs, solving many zero-sum games, or solving
zero-sum games with large reward ranges, which will be less efficient than directly solving a single zero-sum
game Γ0.

We are not the first to observe that multi-party computation can be used to implement a mediator for
use in game theory. In various settings and for various solution concepts, it is known to be possible to
implement a mediator using only cheap-talk communication among players [e.g., Urbano and Vila, 2002,
Liu, 2017, Abraham et al., 2006, Izmalkov et al., 2005]. For additional reading on the connections between
game theory and cryptography, we refer the reader to the survey of Katz [2008], and papers citing and cited
by this survey.

Lower bounds. We also show lower bounds on the complexity of computing the hidden-role value, even
for a constant number of players, when any of the assumptions in Theorem 1.1 is broken.

Theorem 1.2 (Lower bounds, informal; formal statement in Theorems 4.5 and 4.6). If private communica-
tion is disallowed, the hidden-role value problem is NP-hard. If the MIN-team is uncoordinated, the problem
is coNP-hard. If both, the problem is ΣP

2 -hard. All hardness reductions hold even when the MIN-team is a
minority and the number of players is an absolute constant.

Price of hidden roles. Finally, we define and compute the price of hidden roles. It is defined (analogously
to the price of anarchy and price of stability, which are common quantities of study in game theory) as the
ratio between the value of a hidden-role game, and the value of the same game with team assignments made
public. We show the following:

Theorem 1.3 (Price of hidden roles; formal statement in Theorem 6.3). Let D be a distribution of team
assignments. For the class of games where teams are drawn according to distribution D, the price of hidden
roles is equal to 1/p, where p is the probability of the most-likely team in D.

Intuitively, in the worst case, the MAX-team can be forced to guess at the beginning of the game all the
members of the MAX-team, and win if and only if its guess is correct. In particular, for the class of n-player
games with k adversaries, the price of hidden roles is exactly

(

n
k

)

.

6In this part of the argument, the details about the communication channels become important: in particular, the MPC
results that we use for our main theorem statement assume that the network is synchronous (i.e., messages sent in round r
arrive in round r + 1), and that there are pairwise private channels and a public broadcast channel that are all authenticated
(i.e., message receivers know who sent the message). This is enough to implement MPC so long as k < n/2, where k is the
number of adversaries and n is the number of players. Our results, however, do not depend on the specific assumptions about
the communication channel, so long as said assumptions enable secure MPC with guaranteed outcome delivery. For a recent
survey of MPC, see Lindell [2020]. For example, if k < n/3 then MPC does not require a public broadcast channel, so neither
do our results. For cleanliness, and to avoid introducing extra formalism, we will stick to one model of communication.
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1.3 Experiments: Avalon

We ran experiments on the popular tabletop game The Resistance: Avalon (or simply Avalon, for short). As
discussed earlier, despite the adversary team in Avalon not being coordinated in the sense used in the rest of
the paper, we show that, at least for the 5- and 6-player variants, the adversary would not benefit from being
coordinated; therefore, our polynomial-time algorithms can be used to solve the game. This observation
ensures that our main result applies. Game-specific simplifications allow us to reduce the game tree from
roughly 1056 nodes [Serrino et al., 2019] to 108 or even fewer, enabling us to compute exact equilibria. Our
experimental evaluation demonstrates the practical efficacy of our techniques on real game instances. Our
results are discussed in Section 7, and further detail on the game-specific reductions used, as well as a
complete hand-analysis of a small Avalon variant, can be found in Appendix E.

1.4 Examples

In this section we present three examples that will hopefully help the reader in understanding our notion of
equilibrium and justify some choices we have made in our definition.

A hidden-role matching pennies game. Consider a n-player version of matching pennies (with n > 2),
which we denote as MP(n). One player is chosen at random to be the adversary (team MIN). All n players
then simultaneously choose bits bi ∈ {0, 1}. Team MAX wins (gets utility 1) if and only if all n bits match;
else, team MAX loses (gets utility 0).

With no communication, the value of this game is 1/2n−1: it is an equilibrium for everyone to play uniformly
at random. Public communication does not help, because, conditioned on the public transcript, bits chosen
by players must be mutually independent. Thus, the adversary can do the following: pretend to be on team
MAX, wait for all communication to finish, and then play 0 if the string of all ones is more conditionally likely
than the string of all 1s, and vice-versa.

With private communication, however, the value becomes 1/(n + 1). Intuitively, the MAX-team should
attempt to guess who the MIN-player is, and then privately discuss among the remaining n− 1 players what
bit to play. We defer formal proofs of the above game values to Section 5, because they rely on results in
Section 4.1.

Simultaneous actions. In typical formulations of extensive-form imperfect-information games, it is with-
out loss of generality to assume that games are turn-based, i.e., only one player acts at any given time.
To simulate simultaneous actions with sequential ones, one can simply forbid players from observing each
others’ actions. However, when communication is allowed arbitrarily throughout the game, the distinction
between simultaneous and sequential actions suddenly becomes relevant, because players can communicate
when one—but not all—the players have decided on an action.

To illustrate this, consider the game MP(n) defined in the previous section, with public communication,
except that the players act in sequence in order of index (1, 2, . . . , n). We claim that the value of this game
is not 1/2n−1, but at least 1/2n. To see this, consider the following strategy for team MAX. The MAX players
wait for P1 to (privately) pick an action. Then, P2 publicly declares a bit b ∈ {0, 1}, and all remaining
players play b if they are on team MAX. If P1 was the MIN player, this strategy wins with probability at least
1/2, so the expected value is at least 1/2n. This example illustrates the importance of allowing simultaneous
actions in our game formulations.

Correlated randomness matters. We use our third and final example to discuss a nontrivial consequence
of the definition of hidden-role equilibrium that may appear strange at first: it is possible for seemingly-useless
information to affect strategic decisions and the game value.

To illustrate, consider the following simple game Γ: there are three players, and three role cards. Two of the
three cards are marked MAX, and the third is marked MIN. The cards are dealt privately and randomly to
the players. Then, after some communication, all three players simultaneously cast votes to elect a winner.
If no player gains a majority of votes, MIN wins. Otherwise, the elected winner’s team wins. Clearly, MAX
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can win no more than 2/3 of the time in this game: MIN can simply pretend to be on team MAX, and in that
case MAX cannot gain information, and the best they can do is elect a random winner.

Now consider the following seemingly-meaningless modification to the game. We will modify the two MAX

cards so that they are distinguishable. For example, one card has MAX written on it, and the other has
MAX

′. We argue that this, perhaps surprisingly, affects the value of the game. In fact, the MAX team can
now win deterministically, even with only public communication. Indeed, consider following strategy. The
two players on MAX publicly declare what is written on their cards (i.e., MAX or MAX

′). The player elected
now depends on what the third player did. If one player does not declare MAX or MAX

′, elect either of the
other two players. If two players declared MAX, elect the player who declared MAX

′. If two players declare
MAX

′, elect the player who declared MAX. This strategy guarantees a win: no matter what the MIN-player
does, any player who makes a unique declaration is guaranteed to be on the MAX-team.

What happens in the above example is that making the cards distinguishable introduces a piece of correlated
randomness that MAX can use: the two MAX players receive cards whose labels are (perfectly negatively)
correlated with each other. Since our definition otherwise prohibits the use of such correlated randomness
(because players cannot communicate only with players on a specific team), introducing some into the game
can have unintuitive effects. In Section 6.2, we expand on the effects of allowing correlated randomness: in
particular, we argue that allowing correlated randomness essentially ruins the point of hidden-role games by
allowing the MAX team to learn the entire team assignment.

2 Preliminaries

Our contributions are based on prior work on extensive-form adversarial team games. In this section, we
introduce the main definitions related to this class of games.

Definition 2.1. A (perfect-recall, timeable) extensive-form game7 consists of the following.

1. A set of n players, identified with the integers [n] = {1, . . . , n}, and an extra player C denoting the
chance player modeling stochasticity.

2. A directed tree of nodes H (also called histories). The root of the tree is indicated with ∅ while the
set of leaves, or terminal nodes, in H is denoted Z.

3. At each node h ∈ H \ Z, for each player i ∈ [n] ∪ C, an action set Ai(h). The edges leaving h are
identified with the joint actions a ∈×i∈[n]∪C

Ai(h).

4. For each player i ∈ [n], an observation function oi : H \ Z → O, where O is some set of observations.
We assume that the observation uniquely determines the set of legal actions, that is, if oi(h) = oi(h

′)
then A(h) = A(h′).

5. For each player i ∈ [n], a utility function ui : Z → R.

6. For each node h ∈ H \ Z, a probability distribution ph ∈ ∆(AC(h)) denoting how the chance player
picks its action.

The information state of player i at node h ∈ H is the tuple si(h) := (o0i = oi(∅), a0i , o
1
i , a

1
i , . . . , oi(h)) of

observations made by player i and actions played by player i on the path to node h. We will use Σi to denote
the set of all information states of player i. A pure strategy xi of player i is a mapping from information states
to actions. That is, it is a map xi : Σi → ∪h∈HAi(h) such that xi(si(h)) ∈ Ai(h) for all h. A mixed strategy
is a probability distribution over pure strategies. A tuple of (possibly mixed) strategies x = (x1, . . . , xn) is
a profile or strategy profile, and the expected utility of profile x for player i is denoted ui(x). We will use Xi

to denote the set of pure strategies of player i.

7Our definition uses slightly different notation than most works on extensive-form games: for example, we use observations
in place of information sets, and we allow for simultaneous moves. In our case, both of these choices will be useful later on in
the paper, as we will explicitly make reference to observations and simultaneous actions. We discussed in Section 1.4 why it is
important in our model to allow simultaneous actions.
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An extensive-form game is an adversarial team game (ATG) if there is a team assignment t ∈ {MAX,MIN}n

and a team utility function u : Z → R such that ui(z) = u(z) if ti = MAX, and ui(z) = −u(z) if ti = MIN.
That is, each player is assigned to a team, all members of the team get the same utility, and the two teams
are playing an adversarial zero-sum game8. In this setting, we will write xi ∈ Xi and yj ∈ Yj for a generic
strategy of a player on team MAX and MIN respectively. ATGs are fairly well studied. In particular, Team
Maxmin Equilibria (TMEs) [von Stengel and Koller, 1997, Celli and Gatti, 2018] and their variants are the
common notion of equilibrium employed. The value of a given strategy profile x for team MAX is the value
that x achieves against a best-responding opponent team. The TME value is the value of the best strategy
profile of team MAX. That is, the TME value is defined as

TMEVal(Γ) := max
x∈×i∆(Xi)

min
y∈×j∆(Yj)

u(x, y), (1)

and the TMEs are the strategy profiles x that achieve the maximum value. Notice that the TME problem is
nonconvex, since the objective function u is nonlinear as a function of x and y. As such, the minimax theorem
does not apply, and swapping the teams may not preserve the solution. Computing an (approximate) TME
is ΣP

2 -complete in extensive-form games [Zhang et al., 2023a].

3 Equilibrium Concepts for Hidden-Role Games

While the notion of TME is well-suited for ATGs, it is not immediately clear how to generalize it to the
setting of hidden-role games. We do so by formally defining the concepts of hidden-role game, communication
and split-personality form first introduced in Section 1.1.

Definition 3.1. An extensive-form game is a zero-sum hidden-role team game, or hidden-role game for short,
if it satisfies the following additional properties:

1. At the root node, only chance has a nontrivial action set. Chance chooses a string t ∼ D ∈ ∆({MAX,MIN}n),
where ti denotes the team to which player i has been assigned. Each player i privately observes (at
least9) their team assignment ti. In addition, MIN-players privately observe the entire team assignment
t.

2. The utility of a player i is defined completely by its team: there is a u : Z → R for which ui(z) = u(z)
if player i is on team MAX at node z, and −u(z) otherwise.10

In some games, players observe additional information beyond just their team assignments. For example,
in Avalon, one MAX-player is designated Merlin, and Merlin has additional information compared to other
MAX-players. In such cases, we will distinguish between the team assignment and role of a player: the team
assignment is just the team that the player is on (MAX or MIN), while the role encodes the extra private
information of the player as well, which may affect what actions that player is allowed to legally take. For
example, the team assignment of the player with role Merlin is MAX. We remark that additional imperfect
information of the game may be observed after the root node.11

Throughout this paper, we will use k to denote the largest number of players on the MIN-team, that is,
k = maxt∈supp(D) |{i : ti = MIN}|.

8This is a slight abuse of language: if the MAX and MIN teams have different sizes, the sum of all players’ utilities is not zero.
However, such a game can be made zero-sum by properly scaling each player’s utility. The fact that such a rescaling operation
does not affect optimal strategies is a basic result for von Neumann–Morgenstern utilities [Maschler et al., 2020, Chapter 2.4].
We will therefore generally ignore this detail.

9It is allowable for MAX-players to also have more observability of the team assignment, e.g., certain MAX-players may know
who some MIN-players are.

10While at a first look this condition is similar to the one in ATGs, we remark that in this case the number of players in
a team depends on the roles assigned at the start. The same considerations as Footnote 8 on the zero-sum rescaling of the
utilities hold.

11This is an important difference with respect to Bayesian games [Harsanyi, 1967–68], which assume all imperfect information
to be the initial types of the players. Conversely, we have an imperfect information structure that evolves throughout the game,
while only the teams are assigned and observed at the start.
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3.1 Models of Communication

The bulk of this paper concerns notions of equilibrium that allow communication between the players. We
distinguish in this paper between public and private communication:

1. Public communication: There is an open broadcast channel on which all players can send messages.

2. Private communication: In addition to the open broadcast channel, each pair of players has access
to a private communication channel. The private communication channel reveals to all players when
messages are sent, but only reveals the message contents to the intended recipients.

Assuming that public-key cryptography is possible (e.g., assuming the discrete logarithm problem is hard)
and players are polynomially computationally bounded, public communication and private communication
are equivalent, because players can set up pairwise private channels via public-key exchange. However, in
this paper, we assume that agents are computationally unbounded and thus treat the public and private
communication cases as different. Our motivation for making this distinction is twofold. First, it is concep-
tually cleaner to explicitly model private communication, because then our equilibrium notion definitions do
not need to reference computational complexity. Second, perhaps counterintuitively, equilibria with public
communication only may be more realistic to execute in practice in human play, precisely because public-key
cryptography breaks. That is, the computationally unbounded adversary renders more “complex” strate-
gies of the MAX-team (involving key exchanges) useless, thus perhaps resulting in a simpler strategy. We
emphasize that, in all of our positive results in the paper, the MAX-team’s strategy is efficiently computable.

To formalize these notions of communication, we now introduce the communication extension.

Definition 3.2. The public and private (M,R)-communication extensions corresponding to a hidden-role
game Γ are defined as follows. Informally, between every step of the original game Γ, there will be R rounds
of communication; in each round, players can send a public broadcast message and private messages to each
player. The communication extension starts in state h = ∅ ∈ HΓ. At each game step of Γ:

1. Each player i ∈ [n] observes oi(h).

2. For each of R successive communication rounds:

(a) Each player i simultaneously chooses a message mi ∈ [M ] to broadcast publicly.

(b) If private communication is allowed, each player i also chooses messages mi→j ∈ [M ] ∪ {⊥} to
send to each player j 6= i. ⊥ denotes that the player does not send a private message at that time.

(c) Each player j observes the messages mi→j that were sent to it, as well as all messages mi that
were sent publicly. That is, by notion of communication, the players observe:

• Public: player j observes the ordered tuple (m1, . . . ,mn).

• Private: player j also observes the ordered tuple (m1→j , . . . ,mn→j), and the set {(i, k) :
mi→k 6= ⊥}. That is, players observe messages sent to them, and players see when other
players send private messages to each other (but not the contents of those messages)

3. Each player, including chance, simultaneously plays an action ai ∈ Ai(h). (Chance plays according to
its fixed strategy.) The game state h advances accordingly.

We denote the (M,R)-extensions as Comm
M,R
priv (Γ), and Comm

M,R
pub (Γ). To unify notation, we also define

Comm
M,R
none (Γ) = Γ. When the type of communication allowed and number of rounds are not relevant, we

use Comm(Γ) to refer to a generic extension.

3.2 Split Personalities

We introduce two different split-personality forms USplit(Γ) and CSplit(Γ) of a hidden-role game Γ, The
split-personality forms are adversarial team games which preserve the characteristics of Γ.
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Definition 3.3. The uncoordinated split-personality form12 of an n-player hidden-role game Γ is the 2n-
player adversarial team game USplit(Γ) in which each player i is split into two players, i+ and i−, which
control player i’s actions when i is on team MAX and team MIN respectively.

Unlike the original hidden-role game Γ, the split-personality game is an adversarial team game without
hidden roles: players i+ are on the MAX team, and i− are on the MIN-team. Therefore, we are able to apply
notions of equilibrium for ATGs to USplit(Γ). We also define the coordinated split-personality form:

Definition 3.4. The coordinated split-personality form of an n-player hidden-role game Γ is the (n + 1)-
player adversarial team game CSplit(Γ) formed by starting with USplit(Γ) and merging all MIN-players
into a single adversary player, who observes all their observations and chooses all their actions.

Assuming MIN to be coordinated is a worst-case assumption for team MAX, which however can be justified.
In many common hidden-role games, such as the Mafia or Werewolf family of games and most variants of
Avalon, such an assumption is not problematic, because the MIN-team has essentially perfect information
already. In Appendix E.1, we justify why this assumption is safe also in some more complex Avalon instances
considered. The coordinated split-personality form will be substantially easier to analyze, and in light of the
above equivalence for games like Avalon, we believe that it is important to study it.

When team MIN in Γ is already coordinated, that is, if every MIN-team member has the same observation at
every timestep, the coordinated and uncoordinated split-personality games will, for all our purposes, coincide:
in this case, any strategy of the adversary in CSplit(Γ) can be matched by a joint strategy of the MIN-team
members in USplit(Γ). This is true in particular if there is only one MIN-team member. But, we insert
here a warning: even when the base game Γ has a coordinated adversary team, the private communication
extension Commpriv(Γ) will not. Thus, with private-communication extensions of Γ, we must distinguish the
coordinated and uncoordinated split-personality games even if Γ itself is coordinated.

3.3 Equilibrium Notions

We now define the notions of equilibrium that we will primarily study in this paper.

Definition 3.5. The uncoordinated value of a hidden-role game Γ with notion of communication c is defined
as

UValc(Γ) := sup
M,R

UValM,R
c (Γ)

where UValM,R
c (Γ) is the TME value of USplit(Comm

M,R
c (Γ)). The coordinated value CValc(Γ) is defined

analogously by using CSplit.

Definition 3.6. An ε-uncoordinated hidden-role equilibrium of Γ with a particular notion of communication
c ∈ {none, pub, priv} is a tuple (M,R, x) where x is a MAX-strategy profile in USplit(Comm

M,R
c (Γ)) of value

at least UValc(Γ)−ε. The ε-coordinated hidden-role equilibria is defined analogously, again with CSplit and
CVal instead of USplit and UVal.

As discussed in Section 1.1, our notion of equilibrium is inherently asymmetric due to its max-min definition.
The MAX-team is the first to commit to a strategy and a communication scheme, and MIN is allowed to
know both how much communication will be used (i.e., M and R) as well as MAX’s entire strategy x. As
mentioned before, this asymmetry is fundamental in our setting, and we will formalize it in Section 6.2.

4 Computing Hidden-Role Equilibria

In this section, we show the main computational results regarding the complexity of computing an hidden-
role equilibrium in different settings. We first provide positive results for the private-communication case in
Section 4.1 while the negative computational results for the no/public-communications cases are presented
in Section 4.2. The results are summarized in Table 1.

12In the language of Bayesian games, the split-personality form would almost correspond to the agent form.

12



4.1 Computing Private-Communication Equilibria

In this section, we show that it is possible under some assumptions to compute equilibria efficiently for
hidden-role games. In particular, in this section, we assume that

1. there is private communication,

2. the adversary is coordinated, and

3. the adversary is a minority (k < n/2).

Games with a publicly-known MAX-player. First, we consider a special class of hidden-role games
which we call mediated. In a mediated game, there is a player, who we call the mediator, who is always
assigned to team MAX. The task of the mediator is to coordinate the actions and information transfer of
team MAX. Our main result of this subsection is the following:

Theorem 4.1 (Revelation Principle). Let Γ∗ be a mediated hidden-role game. Then, for R ≥ 2 and M ≥ |H |,
there exists a coordinated private-communication equilibrium in which the players on MAX have a TME profile
in which, at every step, the following events happen in sequence:

1. every player on team MAX sends its observation privately to the mediator,

2. the mediator sends to every player (MAX and MIN) a recommended action, and

3. all players on team MAX play their recommended actions.

Players on team MIN, of course, can (and will) lie or deviate from recommendations as they wish. The above
revelation principle imples the following algorithmic result:

Theorem 4.2. Let Γ∗ be a mediated hidden-role game, R ≥ 2, and M ≥ |H |. An (exact) coordinated
private-communication hidden-role equilibrium of Γ∗ can be computed by solving an extensive-form zero-sum
game Γ0 with at most |H |k+1 nodes, where H is the history set of Γ∗.

Proofs of Theorems 4.1 and 4.2 are deferred to Appendix A.

We give a sketch of how the two-player zero-sum game is structured. Theorem 4.1 allows us to simplify the
game by fixing the actions of all players on team MAX, leaving two strategic players, the mediator and the
adversary. Any node from the original game is expanded into three levels:

1. the adversary picks messages on behalf of all MIN-players to send to the mediator,

2. the mediator picks recommended actions to send to all players, and

3. the adversary acts on behalf of all MIN-players.

The key to proving Theorem 4.2 is that, in the first step above, the adversary’s message space is not too
large. Indeed, any message sent by the adversary must be a message that could have plausibly been sent by
a MAX-player: otherwise the mediator could automatically infer that the sender must be the adversary. It
is therefore possible to exclude all other messages from the game since they belong to dominated strategies.
Carefully counting the number of such messages would complete the proof.

It is crucial in the above argument that the MIN-team is coordinated; indeed, otherwise, it would not be valid
to model the MIN-team as a single adversary in Γ0. For more elaboration on the case where the MIN-team is
not coordinated, we refer the reader to Appendix E.1.

In practice, zero-sum extensive-form games can be solved very efficiently in the tabular setting with linear
programming [Koller et al., 1994], or algorithms from the counterfactual regret minimization (CFR) fam-
ily [Brown and Sandholm, 2019, Farina et al., 2021, Zinkevich et al., 2007]. Thus, Theorem 4.2 gives an
efficient algorithm for solving hidden-role games with a mediator.
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Simulating mediators with multi-party computation In this section, we show that the previous
result essentially generalizes (up to exponentially-small error) to games without a mediator, so long as the
MIN team is also a minority, that is, k < n/2. Informally, the main result of this subsection states that, when
private communication is allowed, one can efficiently simulate the existence of a mediator using secure multi-
party computation (MPC), and therefore team MAX can achieve the same value. The form of secure MPC
that we use is information-theoretically secure; that is, it is secure even against computationally-unbounded
adversaries.

Theorem 4.3 (Main theorem). Let Γ be a hidden-role game with k < n/2. Then CValpriv(Γ) = CValpriv(Γ
∗),

where Γ∗ is Γ with a mediator added, and moreover this value can be computed in |H |O(k) time by solving a
zero-sum game of that size. Moreover, an ε-hidden-role equilibrium with private communication and logM =
R = polylog(|H |, 1/ε) can be computed and executed by the MAX-players in time poly(|H |k, log(1/ε)).

The proof uses MPC to simulate the mediator and then executes the equilibrium given by Theorem 4.2.
The proof of Theorem 4.3, as well as requisite background on multi-party computation, are deferred to
Appendix B. We emphasize that Theorems 4.2 and 4.3 are useful not only for algorithmically computing an
equilibrium, but also for manual analysis of games: instead of analyzing the infinite design space of possible
messaging protocols, it suffices to analyze the finite zero-sum game Γ0. Our experiments on Avalon use both
manual analysis and computational equilibrium finding algorithms to solve instances.

Comparison with communication equilibria. As mentioned in Section 1.2, our construction simulating
a mediator bears resemblance to the construction used to define communication equilibria [Forges, 1986,
Myerson, 1986]. At a high level, a communication equilibrium of a game Γ is a Nash equilibrium of Γ
augmented with a mediator that is playing according to some fixed strategy µ. Indeed, when team MIN has
only one player, it turns out that the two notions coincide:

Theorem 4.4. Let Γ be a hidden-role game with k = 1. Then CValpriv(Γ) is exactly the value for MAX of
the MAX-optimal communication equilibrium of Γ.

However, in the more general case where MIN can have more than one player, Theorem 4.4 does not apply:
in that case, communication equilibria include all Nash equilibria in particular, and therefore fail to enforce
joint optimality of the MIN-team, so our concepts and methods are more suitable. The proof is deferred to
Appendix C.

4.2 Computing No/Public-Communication Equilibria

In this section, we consider games with no communication or with public-communication and a coordinated
minority. Conversely to the private-communication case of Section 4.1, in this case the problem of computing
the value of a hidden-role equilibrium is in general NP-hard.

For the remainder of this section, when discussing the problem of “computing the value of a game”, we
always mean the following promise problem: given a game, a threshold v, and an allowable error ε > 0 (both
expressed as rational numbers), decide whether the hidden-role value of Γ is ≥ v or ≤ v − ε.

Theorem 4.5. Even in 2-vs-1 games with public roles and ε = 1/poly(|H |), computing the TME value (and
hence also the hidden-role value, since adversarial team games are a special case of hidden-role games) with
public communication is NP-hard.

Since there is only one MIN-player in the above reduction, the result applies regardless of whether the
adversary is coordinated.

Theorem 4.6. Even with a constant number of players, a minority adversary team, and ε = 1/poly(|H |),
computing the uncoordinated value of a hidden-role game is coNP-hard with private communication and
ΣP

2 -hard with public communication or no communication.

Proofs of results in this section are deferred to Appendix D. Intuitively, the proofs work by constructing
gadgets that prohibit any useful communication, thus reducing to the case of no communication.
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Communication Type

Adversary Team Assumptions None Public Private

Coordinated, Minority NP-complete
[von Stengel and Koller, 1997]

NP-hard P [Thm. 4.3]

Coordinated [Thm. 4.5] open problem

Minority ΣP
2 -complete ΣP

2 -hard coNP-hard

None [Thm. 4.6] and [Zhang et al., 2023a] [Thm. 4.6] [Thm. 4.6]

Table 1: Complexity results for computing hidden-role value with a constant number of players, for various
assumptions about the adversary team and notions of communication. The results shaded in green are new
to our paper.

5 Worked Example

This section includes a worked example of value computation to illustrate the differences among the notions of
equilibrium discussed in the paper and illustrates the utility of having a mediator for private communication.
Consider a n-player version of matching pennies MP(n) as defined in Section 1.4.

Proposition 5.1. Let MP(n) be the n-player matching pennies game.

1. The TMECor and TMECom values of PublicTeam(MP(n)) are both 1/2.

2. Without communication or with only public communication, the value of MP(n) is 1/2n−1.

3. With private communication, the value of MP(n) is 1/(n+ 1).

Proof. The first claim, as well as the no-communication value, is known [Basilico et al., 2017].

For the public-communication value, observe that, conditioned on the transcript, the bits chosen by the
players must be mutually independent of each other. Thus, the adversary can do the following: pretend
to be on team MAX, wait for all communication to finish, and then play 0 if the string of all ones is more
conditionally likely than the string of all 1s, and vice-versa13.

It thus only remains to prove the third claim.

(Lower bound) The players simulate a mediator using multi-party computation (see Theorems 4.2 and 4.3).
Consider the following strategy for the mediator. Sample a string b ∈ {0, 1}n uniformly at random from the
set of 2n+ 2 strings that has at most one mismatched bit. Recommend to each player i that they play bi.

Consider the perspective of the adversary. The adversary sees only a recommended bit bi. Assume WLOG
that bi = 0. Then there are n+ 1 possibilities:

1. b is all zeros (1 way)

2. All other bits of b are 1 (1 way)

3. Exactly one other bit of b is 1 (n− 1 ways).

The adversary wins in the third case automatically (since the team has failed to coordinate), and, regardless
of what the adversary does, it can win only one of the first two cases. Thus the adversary can win at most
n/(n+ 1) of the time, that is, this strategy achieves value 1/(n+ 1).

(Upper bound) Consider the following adversary strategy. The adversary communicates as it would do if it
were on team MAX. Let bi be the bit that the adversary would play if it were on team MAX. The adversary
plays bi with probability 1/(n + 1) and 1 − bi otherwise. We need only show that no pure strategy of the
medaitor achieves value better than 1/(n+1) against this adversary. A strategy of the mediator is identified
by a bitstring b. If b is all zeros or all ones, the team wins if and only if the adversary plays bi (probability

13In general, computing the conditional probabilities could take exponential time, but when defining the notion of value here,
we are assuming that players have unbounded computational resources. This argument not work for computationally-bounded
adversaries. Indeed, if the adversary were computationally bounded, MAX would be able to use cryptography to build private
communication channels and thus implement a mediator, allowing our main positive result Theorem 4.3 to apply.
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1/(n+1)). If b has a single mismatched bit, the team wins if and only if the mismatched bit is the adversary
(probability 1/n) and the adversary flips bi (probability n/(n+ 1)).

6 Properties of Hidden-role Equilibria

In the following, we discuss interesting properties of hidden-role equilibria given the definition we provided
in Section 1.1, and that make them fairly unique relative to other notions of equilibrium in team games.

6.1 The Price of Hidden Roles

One interesting question arising from hidden-role games is the price of having them. That is, how much
value does MAX lose because roles are hidden? In this section, we define this quantity and derive reasonably
tight bounds on it.

Definition 6.1. The public-team refinement of an n-player hidden-role game Γ is the adversarial team
game PublicTeam(Γ) defined by starting with the (uncoordinated) split-personality game, and adding the
condition that all team assignments ti are publicly observed by all players.

Definition 6.2. For a given hidden-role game Γ in which MAX is guaranteed a nonnegative value (i.e.,
ui(z) ≥ 0 whenever i is on team MAX), the price of hidden roles PoHR(Γ) is the ratio between the TME
value of PublicTeam(Γ) and the hidden-role value of USplit(Γ).

For a given class of hidden-role games G, the price of hidden roles PoHR(G) is the supremum of the price of
hidden roles across all games Γ ∈ G.

Theorem 6.3. Let D ∈ ∆({MAX,MIN}n) be any distribution of teams assignments. Let Gn,D be the class of
all hidden-role games with n players and team assignment distribution D. Then the price of hidden roles of
Gn,D is exactly the largest probability assigned to any team by D, that is,

PoHR(Gn,D) = max
t∈{MAX,MIN}n

Pr
t′∼D

[t′ = t].

The lower bound is achieved even in the presence of private communication.

Proof. Let t∗ be the team to which D assigns the highest probability, and let p∗ be that probability. Our
goal is to show that the price of hidden roles is 1/p∗.

(Upper bound) Team MAX assumes that the true MAX-team is exactly the team t∗. Then MAX gets utility
at most a factor of 1/p∗ worse than the TME value of PublicTeam(Γ): if the assumption is correct, then
MAX gets the TME value; if the assumption is incorrect, MAX gets value at least 0 thanks to the condition
on MAX’s utilities in Definition 6.2.

(Lower bound) Consider the following game Γ. Nature first selects a team assignment t ∼ D and each player
privately observes its team assignment. Then, all players are simultaneously asked to announce what they
believe the true team assignment is. The MAX-team wins if every MAX-player announces the true team
assignment. If MAX wins, MAX gets utility 1; otherwise MAX gets utility 0.

Clearly, if teams are made public, MAX wins easily. With teams not public, suppose that we add a mediator
to the game so that Theorem 4.1 applies. This cannot decrease MAX’s value. The mediator’s strategy
amounts to selecting what team each player should announce. Mediator strategies in which different players
announce different teams are dominated. The mediator strategy in which the mediator tells every player to
announce team t wins if and only if t is the true team, which happens with probability at most p∗ (if t = t∗).
Thus, even the game with a mediator added has value at most p∗, completing the proof.

This implies immediately:

Corollary 6.4. Let Gn,k be the class of all hidden-role games where the number of players and adversaries
are always exactly n and k respectively. The price of hidden roles in Gn,k is exactly

(

n
k

)

.
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Variant 5 Players 6 Players

No special roles (Resistance) 3 / 10 = 0.3000* 1 / 3 ≈ 0.3333*
Merlin 2 / 3 ≈ 0.6667* 3 / 4 = 0.7500*
Merlin & Mordred 731 / 1782 ≈ 0.4102 6543 / 12464 ≈ 0.5250
Merlin & 2 Mordreds 5 / 18 ≈ 0.2778 99 / 340 ≈ 0.2912
Merlin, Mordred, Percival, Morgana 67 / 120 ≈ 0.5583 —

Table 2: Exact equilibrium values for 5- and 6-player Avalon. The values marked * were also manually
derived by Christiano [2018]; we match their results. ‘—’: too large to solve.

In particular, when k = 1, the price of hidden roles is at worst n. This is in sharp contrast to the price of
communication and price of correlation in ATGs, both of which can be arbitrarily large even when n = 3
and k = 1 [Basilico et al., 2017, Celli and Gatti, 2018].

6.2 Order of Commitment and Duality Gap

In Definition 3.5, when choosing the TME as our solution concept and defining the split-personality game, we
explicitly choose that MAX should pick its strategy before MIN—that is, the team committing to a strategy is
the same one that has incomplete information about the roles. One may ask whether this choice is necessary
or relevant: for example, what happens when the TME problem (1) satisfies the minimax theorem? Perhaps
surprisingly, the answer to this question is that, at least with private communication, the minimax theorem
in hidden-role games only holds in “trivial” cases, in particular, when the hidden-role game is equivalent to
its public-role refinement (Definition 6.1).

Proposition 6.5. Let Γ be any hidden-role game. Define UVal′priv(Γ) identically to UValpriv(Γ), except that

MIN commits before MAX—that is, in (1), the maximization and minimization are flipped. Then UVal′priv(Γ)
is equal to the TME value of PublicTeam(Γ) with communication—that is, the equilibrium value of the
zero-sum game in which teams are public and intra-team communication is private and unlimited.

Proof. It suffices to show that team MAX can always cause the teams to be revealed publicly if MIN commits
first. Let s be a long random string. All members of team MAX broadcast s publicly at the start of the game.
Since MIN commits first, MIN cannot know or guess s if it is sufficiently long; thus, with exponentially-good
probability, this completely reveals the teams publicly. Then, using the private communication channels,
team MAX can play a TMECom of PublicTeam(Γ).

Therefore, the choice of having MAX commit to a strategy before MIN is forced upon us: flipping the order
of commitment would ruin the point of hidden-role games.

7 Experimental Evaluation: Avalon

In this section, we apply Theorem 4.2 to instances of the popular hidden-role game The Resistance: Avalon
(hereafter simply Avalon). We solve various versions of the game with up to six players.

A game of Avalon proceeds, generically speaking, as follows. There are n players, ⌈n/3⌉ of which are randomly
assigned to team MIN and the rest to team MAX. Team MIN is informed. Some special rules allow players
observe further information; for example, Merlin is a MAX-player who observes the identity of the players
on team MIN, except the MIN-player Mordred, and the MAX-player Percival knows Merlin and Morgana (who
is on team MIN), but does not know which is which. The game proceeds in five rounds. In each round, a
leader publicly selects a certain number of people (defined as a function of the number of players and current
round number) to go on a mission. Players then publicly vote on whether to accept the leader’s choice. If a
strict majority vote to accept, the mission begins; otherwise, leadership goes to the player to the left. If four
votes pass with no mission selected, there is no vote on the fifth mission (it automatically gets accepted). If
a MIN-player is sent on a mission, they have the chance to fail the mission. The goal of MAX is to have three
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missions pass. If Merlin is present, MIN also wins by correctly guessing the identity of Merlin at the end of
the game. Avalon is therefore parameterized by the number of players and the presence of the extra roles
Merlin, Mordred, Percival, and Morgana.

Avalon is far too large to be written in memory: Serrino et al. [2019] calculates that 5-player Avalon has at
least 1056 information sets. However, in Avalon with ≤ 6 players, many simplifications can be made to the
zero-sum game given by Theorem 4.2 without changing the equilibrium. These are detailed in Appendix E,
but here we sketch one of them which has theoretical implications. Without loss of generality, in the zero-sum
game in Theorem 4.2, the mediator completely dictates the choice of missions by telling everyone to propose
the same mission and vote to accept missions, and MIN can do nothing to stop this. Therefore, team MIN

always has symmetric information in the game: they know each others’ roles (at least when n ≤ 6), and
the mediator’s recommendations to the players may as well be public. Therefore, Avalon is already natively
without loss of generality a game with a coordinated adversary in the sense of Section 3.2, so the seemingly
strong assumptions used in Definition 3.3 are in fact appropriate in Avalon. Even after our simplifications,
the games are fairly large, e.g., the largest instance we solve has 2.2 million infosets and 26 million terminal
nodes.

Our results are summarized in Table 2. Games were solved using a CPU compute cluster machine with 64
CPUs and 480 GB RAM, using two algorithms:

1. A parallelized version of the PCFR+ algorithm [Farina et al., 2021], a scalable no-regret learning
algorithm. PCFR+ was able to find an approximate equilibrium with exploitability < 10−3 in less
than 10 minutes in the largest game instance, and was able to complete 10,000 iterations in under two
hours for each game.

2. An implementation of the simplex algorithm with exact (rational) precision, which was warmstarted
using incrementally higher-precision solutions obtained from configurable finite-precision floating-point
arithmetic implementation of the simplex algorithm, using an algorithm similar to that of Farina et al.
[2018]. This method incurred significantly higher runtimes (in the order of hours to tens of hours), but
had the advantage of computing exact game values at equilibrium.

Table 2 shows exact game values for the instances we solved.

Findings We solve Avalon exactly in several instances with up to six players. In the simplest instances
(Resistance or only Merlin), Christiano [2018] previously computed equilibrium values by hand. The fact
that we match those results is positive evidence of the soundness of both our equilibrium concepts and our
algorithms.

Curiously, as seen in Table 2, the game values are not “nice” fractions: this suggests to us that most of
the equilibrium strategies will likely be inscrutable to humans. The simplest equilibrium not previously
noted by Christiano, namely Merlin + 2 Mordreds with 5 players, is scrutable, and is analyzed in detail in
Appendix E.4.

Also curiously, having Merlin and two Mordreds (i.e., having a Merlin that does not actually know anything)
is not the same as having no Merlin. If it were, we would expect the value of Merlin and two Mordreds to
be 0.3× 2/3 = 0.2 (due to the 1/3 probability of MIN randomly guessing Merlin). But, the value is actually
closer to 0.28. The discrepancy is due to the “special player” implicit correlation discussed in Section 1.4.

8 Conclusions and Future Research

In this paper, we have initiated the formal study of hidden-role games from a game-theoretic perspective.
We build on the growing literature on ATGs to define a notion of equilibrium, and give both positive and
negative results surrounding the efficient computation of these equilibria. In experiments, we completely
solve real-world instances of Avalon. As this paper introduces a new and interesting class of games, we hope
that it will be the basis of many future papers as well. We leave many interesting questions open.
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1. From our results, it is not even clear that hidden-role equilibria and values can be computed in finite
time except as given by Theorem 4.3. Is this possible? For example, is there a revelation-principle-like
characterization for public communication that would allow us to fix the structure of the communi-
cation? We believe this question is particularly important, as humans playing hidden-role games are
often restricted to communicating in public and cannot reasonably run the cryptographic protocols
necessary to build private communication channels or perform secure MPC.

2. Changing the way in which communication works can have a ripple effect on the whole paper. One
particular interesting change that we do not investigate is anonymous messaging, in which players can,
publicly or privately, send messages that do not leak their own identity. How does the possibility of
anonymous messaging affect the central results of this paper?

3. In this paper, we do not investigate or define hidden-role games where both teams have imperfect
information about the team assignment. What difference would that make? In particular, is there a
way to define an equilibrium concept in that setting that is “symmetric” in the sense that it does not
require a seemingly-arbitrary choice of which team ought to commit first to its strategy?
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A Mediated Games and the Revelation Principle

In this section, we prove Theorem 4.1 and Theorem 4.2.

A.1 Theorem 4.1

Theorem 4.1 (Revelation Principle). Let Γ∗ be a mediated hidden-role game. Then, for R ≥ 2 and M ≥ |H |,
there exists a coordinated private-communication equilibrium in which the players on MAX have a TME profile
in which, at every step, the following events happen in sequence:

1. every player on team MAX sends its observation privately to the mediator,

2. the mediator sends to every player (MAX and MIN) a recommended action, and

3. all players on team MAX play their recommended actions.

Proof. We follow the usual proof structure of revelation principle proofs. Let x = (x1, . . . , xn) be any strategy
profile for team MAX in CSplit(Commpriv(Γ

∗)). Consider the strategy profile x′ = (x′
1, . . . , x

′
n) that operates

as follows. For each player i, the mediator instantiates a simulated version of each player i playing according
to strategy xi. These simulated players are entirely “within the imagination of the mediator”.

1. When a (real) player i sends an observation oi(h) to the mediator, the mediator forwards observation
oi(h) to the simulated player i.

2. When a simulated player i wants to send a message to another player j, the mediator forwards the
message to the simulated player j.

3. When a simulated player i plays an action ai, the mediator forwards the action as a message to the
real player i.

Since the strategy xi is only well-defined on sequences that can actually arise in CSplit(Commpriv(Γ
∗)), the

simulated player i may crash if it receives an impossible sequence of observations. If player i’s simulator has
crashed, it will no longer send simulated messages, and the mediator will no longer send messages to player
i.

It suffices to show that team MIN cannot exploit x′ more than x. Let y′ be any best-response strategy profile
for MIN against x′.

We will show that there exists a strategy y such that (x′, y′) is equivalent to (x, y). Consider the strategy y
for team MIN in which each player i maintains simulators of both xi and y′i, and acts as follows.

1. Upon receiving an observation or message, forward it to y′i

2. If y′i wants to send an observation to the mediator, forward that observation to xi.

3. If xi sends a message, send that message.

4. If xi plays an action ai, forward that action to y′i as a message from the mediator. If xi crashes, send
empty messages to y′i from the mediator. In either case, when y′i outputs an action, play that action.

By definition, the profiles (x, y) and (x′, y′) have the same expected utility (in fact, they are equivalent, in
the sense that they induce the same outcome distribution over the terminal nodes of Γ), so we are done.
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A.2 Theorem 4.2

Theorem 4.2. Let Γ∗ be a mediated hidden-role game, R ≥ 2, and M ≥ |H |. An (exact) coordinated
private-communication hidden-role equilibrium of Γ∗ can be computed by solving an extensive-form zero-sum
game Γ0 with at most |H |k+1 nodes, where H is the history set of Γ∗.

Proof. Consider the zero-sum game Γ0 that works as follows. There are two players: the mediator, repre-
senting team MAX, and a single adversary, representing team MIN. The game state of Γ0 consists of a history
h in Γ (initially the root), and n sequences si. Define a sequence si to be consistent if it is a prefix of a
terminal sequence si(z) for some terminal node z of Γ. For each sequence si which ends with an action, let
O(si) be the set of observations that could be the next observations of player i in Γ.

1. For each player i on team MAX, let õi = oi(h) be the true observation of player i. The adversary
observes all recommendations oi(h) for players i on its team. Then, for each such player, the adversary
picks an observation õi ∈ O(si) ∪ {⊥}. Each õi is appended to the corresponding si.

2. The mediator observes (õ1, . . . , õn), and picks action recommendations ai ∈ Ai(õi) to recommend to
each player i, and appends each ai to the corresponding si.

3. Players on team MAX automatically play their recommended actions. The adversary observes all actions
(ai : ti = MIN) recommended to players on team MIN, and selects the action played by each member of
team MIN.

The size of this game is given by the number of tuples of the form (h, s1, . . . , sk) where si is the sequence of
adversary i and h is a node of the original game Γ. There are at most |H |k+1 of these, so we are done.

B Multi-Party Computation and Proof of Theorem 4.3

We first formalize the usual setting of multi-party computation (MPC). Let X be the set of binary strings
of length ℓ, and let λ be a security parameter. Rabin and Ben-Or [1989] claims in their Theorem 4 that
essentially any protocol involving a mediator can be efficiently simulated without a mediator so long as more
than half the players follow the protocol and we allow some exponentially small error. However, they do not
include a proof of this result. In the interest of completeness, we prove the version of their result that is
needed for our setting, based only on the primitives of secure multi-party computation and verifiable secret
sharing.

B.1 Secure MPC

In secure MPC, there is a (possibly randomized) function f : Xn → Xn defined by a circuit with N nodes.
A subset K ⊂ [n] of size < n/2 has been corrupted. Each honest player i ∈ [n] \K holds an input xi ∈ X .
The goal is to design a randomized messaging protocol, with private communication, such that, regardless
of what the corrupted players do, there exist inputs {xj : j ∈ K} such that:

1. (Output delivery) At the end of the protocol, each player i learns its own output, yi := f(x1, . . . , xn)i,
with probability 1− 2−λ.

2. (Privacy) No subset of < n/2 players can learn any information except their own output yi. That is,
the players cannot infer any extra information from analyzing the transcripts of the message protocol
than what they already know.

This can be intuitively modeled as follows. If any minority of colluded players were to analyze the
empirical distributions of transcripts of the protocol for any input-output tuple, then such distribution
would be fully explained in terms of their input-outputs, leaving no conditional dependence on other
players’ input-outputs. Formally, for any such subset K ⊆ [n] of size < n/2, there exists a randomized
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algorithm SimK that takes the inputs and outputs of the players in set K, and reconstructs transcripts
T , such that for all x ∈ Xn, we have

∑

T

|Pr[SimK(xK , yK) = T ]− Pr[ViewK(x) = T ]| ≤ 2−λ

where ViewK(x) is the distribution of transcripts observed by players in set K when running the
protocol with input x.

In other words, the players in set K cannot do anything except pass to f inputs of their choice. For our
specific application, this implies that introducing an MPC protocol to simulate the mediator is equivalent
to having a mediator, because no extra information aside from the intended function will be leaked to the
players.

Theorem B.1 ([Beaver, 1990, Rabin and Ben-Or, 1989]). Secure MPC is possible, with polytime (in ℓ, λ, n,N)
algorithms that take at most polynomially many rounds and send at most polynomially many bits in each
round.

B.2 Verifiable Secret Sharing

In the verifiable secret sharing (VSS) problem, the goal is to design a function Share : X → X̄n , where
X̄ = {0, 1}poly(ℓ,λ,n), that shares a secret x ∈ X by privately informing each player i of its piece Share(x)i,
such that:

1. (Reconstructibility) Any subset of > n/2 players can recover the secret fully, even if the remaining
players are adversarial. That is, there exists a function Reconstruct : Xn → X such that, where
(x1, . . . , xn)← Share(x), we have Reconstruct(x′

1, . . . , x
′
n) = x so long as x′

i = xi for > n/2 players i.

2. (Privacy) No subset of < n/2 players can learn any information about the secret x. That is, for any
such subset K and any secret x, there exists a distribution SimK ∈ ∆(Xn) such that

‖Share(x)K − SimK‖1 ≤ 2−λ,

where ‖·‖1 denotes the ℓ1-norm on probability distributions.

Theorem B.2 ([Rabin, 1994, Rabin and Ben-Or, 1989]). There exist algorithms Share and Reconstruct, with
runtime poly(ℓ, λ, n), that implement robust secret sharing.

VSS is a primitive used in a fundamental way to build secure MPC protocols; to be formally precise in this
paper, we will require VSS as a separate primitive as well to maintain the state of the mediator throughout
the game.

B.3 Simulating a Mediator

We will assume that the game Γ0 in Theorem 4.2 has been solved, and that its solution is given by a (possibly
randomized) function

f : Σ×On → Σ×An (2)

where Σ is the set of information states of the mediator in Γ0. At each step, the mediator takes n observations
o1, . . . , on and its current infostate s as input, and updates its infostate and outputs action recommendations
according to the function f .

Consider the function f̂ : (X̄ ×O)n → (X̄ ×A)n defined by

f̂((x1, o1), . . . , (xn, on)) = ((x′
1, a1), . . . , (x

′
n, an))

where

(s′, a1, . . . , an) = f(Reconstruct(x1, . . . , xn), o1, . . . , on)

25



(x′
1, . . . , x

′
n) = Share(s′).

That is, f̂ operates the mediator with its state secret-shared across the various players. The players will run
secure MPC on f̂ at every timestep. By the properties of MPC and secret sharing, this securely implements
the mediator in such a way that the players on team MIN can neither break privacy nor cause the protocol
to fail, with probability better than O(|H | · 2−λ), where H is the set of histories of the game.

We have thus shown our main theorem, which is more formally stated as follows:

Theorem B.3 (Formal version of Theorem 4.3). Let:

• Γ be a hidden-role game with a MIN-team of size k < n/2,

• Γ∗ be identical to Γ except that there is an additional player who takes no nontrivial actions but is
always on team MAX;

• Γ0 be the zero-sum game defined by Theorem 4.2 based on Γ∗;

• x be any strategy of the MAX player (mediator) in Γ0, represented by an arithmetic circuit f as in (2)
with N = poly(|H |k) gates; and

• λ be a security parameter.

Then there exists a strategy profile x′ of the MAX players in CSplit(Comm
M,R
priv (Γ)), where logM = R =

poly(λ,N, log |H |) such that:

1. (Equivalence of value) the value of x′ is within 2−λ of the value of x in Γ0, and

2. (Efficient execution) there is a poly(r)-time randomized algorithm AΓ that takes as input an infostate

si of CSplit(Comm
M,R
priv (Γ)) that ends with an observation, and returns the (possibly random) action

that player i should play at si.

C Connection to Communication Equilibria

In this section, we prove Theorem 4.4, recalled below.

Theorem 4.4. Let Γ be a hidden-role game with k = 1. Then CValpriv(Γ) is exactly the value for MAX of
the MAX-optimal communication equilibrium of Γ.

Before proving this result, we must first formally define a communication equilibrium. Given an arbitrary
game Γ with n players, consider the (n+1)-player game in which the extra player is the mediator. Consider
a private-communication extension Γ̃ of that game, with R = 2 rounds and M = |H |, in which only
communication with the mediator is allowed. In Γ∗, each player has a direct strategy x∗

i in which, at every
timestep, the player sends its honest information to the mediator, interprets the mediator’s message in reply
as an action recommendation, and plays that action recommendation.

Definition C.1. A communication equilibrium of Γ is a strategy profile µ = (x1, . . . , xn) for the mediator of
Γ̃ such that, with µ held fixed, the profile (x1, . . . , xn) is a Nash equilibrium of the resulting n-player game.

The revelation principle for communication equilibria [Forges, 1986, Myerson, 1986] states that, without loss
of generality in the above definition, it can be assumed that x = x∗, i.e., players are direct in equilibrium.

We now prove the theorem. Let Γ∗ be Γ with a mediator who is always on team MAX, and let Γ0 be the
zero-sum game constructed by Theorem 4.2. Because CValpriv(Γ) is the zero-sum value of Γ0 by Theorem 4.3,
it is enough to prove the inequality chain

CValpriv(Γ) ≤ CommVal(Γ) ≤ Val(Γ0),
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where CommVal is the value of the MAX-optimal communication equilibrium and Val is the zero-sum game
value.

By Theorem 4.3, the hidden-role equilibria of Γ are (up to an arbitrarily small error ε > 0) TMEs of
CSplit(Γ∗). By von Stengel and Koller [1997], since MIN has only one player, the TMEs of CSplit(Γ∗) are
precisely the MAX-team-optimal Nash equilibria of CSplit(Γ∗). Thus, for a TME (µ, x1, . . . , xn) of that game
(where µ is a strategy of the mediator), there exists an adversary strategy y such that (µ, x1, . . . , xn, y) is a
Nash equilibrium. But then (µ, x1, . . . , xn, y) is also a communication equilibrium. Thus TMEVal(CSplit(Γ∗)) ≤
CommVal(Γ).

We now show the second inequality. If Γ is an adversarial hidden-role game, each player i’s strategy can be
expressed as a tuple (xi, yi) where xi is player i’s strategy in the subtree where i is on team MAX, and yi is
the same on team MIN. In that case, the problem of finding a MAX-optimal communication equilibrium can
be expressed as:

max
µ

u(µ, x∗, y∗)

s.t. ∀i max
xi

u(µ, xi, x
∗
−i, y

∗) ≤ u(µ, x∗, y∗)

∀i min
yi

u(µ, x∗, yi, y
∗
−i) ≥ u(µ, x∗, y∗)

where u is the MAX-team utility function. That is, no player can increase their team’s utility by deviating
from the direct profile (x∗, y∗), regardless of which team they are assigned to. Now, using the fact that MIN

has only one player, we can write MAX’s utility function u as a sum u =
∑

i ui where ui is the utility of MAX

when the MIN-player is player i (weighted by the probability of that happening). Each term ui depends only
on x and the yis. Thus, the above program can be rewritten as

max
µ

∑

i

ui(µ, x
∗, y∗i )

s.t. ∀i max
xi

u(µ, xi, x
∗
−i, y

∗) ≤ u(µ, x∗, y∗)

∀i min
yi

ui(µ, x
∗, yi) ≥ ui(µ, x

∗, y∗i )

or, equivalently,

max
µ

∑

i

min
yi

ui(µ, x
∗, yi)

s.t. ∀i max
xi

u(µ, xi, x
∗
−i, y

∗) ≤ u(µ, x∗, y∗).

or, equivalently,

max
µ

min
y

u(µ, x∗, y)

s.t. ∀i max
xi

u(µ, xi, x
∗
−i, y

∗) ≤ u(µ, x∗, y∗).

This is precisely the problem of computing a zero-sum equilibrium in the game Γ0, except with an extra
constraint, so the inequality follows.

D Complexity Bounds and Proofs

Here we state and prove the various lower bounds in Table 1. Before proceeding, we make several remarks
about the conventions used in this section.

• Utilities will be given unnormalized by chance probability. That is, if we say that a player gets utility 1,
what we really mean is that the player gets utility 1/p, where p is the probability that chance sampled
all actions on the path to z. Thus the contribution to the expected value from this terminal node will
be 1. This makes calculations easier.
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• The utility range of the games used in the reductions will usually be of the form [−M,M ] where M
is large but polynomial in the size of the game. Our definition of an extensive-form game allows only
games with reward range [−1, 1]. This discrepancy is easily remedied by dividing all utility values in
the proofs by M .

• Θ(·) hides only an absolute constant.

To recap, we show hardness of approximating the value of the game to a desired precision ε > 0. Our
hardness results will hold even when ε = 1/poly(|H |).

Theorem 4.5. Even in 2-vs-1 games with public roles and ε = 1/poly(|H |), computing the TME value (and
hence also the hidden-role value, since adversarial team games are a special case of hidden-role games) with
public communication is NP-hard.

Proof. We show that given any graph G, it is possible to construct a hidden-role game based on G whose
value correspond to the size the graph’s max-cut. This reduces MAX-CUT to the TME value problem.

Let G be an arbitrary graph with n nodes and m edges, and consider the following team game (no hidden
roles). There are 3 players, 2 of whom are on team MAX. The game progresses as follows.

1. Chance chooses two vertices v1, v2 in G, independently and uniformly at random. The two players on
team MAX observe v1 and v2 respectively.

2. The two players on team MAX select bits b1, b2, and the MIN player selects a pair (v′1, v
′
2). There are

now several things that can happen: (L is a large number to be picked later)

(a) (Agreement of players) If v1 = v2 and b1 6= b2, team MAX gets utility −L.

(b) (Objective) If v1 6= v2, b1 6= b2, and (v1, v2) is an edge in G, then team MAX gets utility 1.

(c) (Non-leakage) If (v′1, v
′
2) = (v1, v2) then team MAX gets utility −(n2 − 1)L. Otherwise, team MAX

gets utility L.14

Consider a sufficiently large L = poly(m). The game is designed in such a way that MIN’s objective is to guess
the vertices v1, v2 sampled by chance, but she has no information apart from the transcript of communication
to guess it. Therefore, MIN’s optimal strategy is to punish any communication attempt between the players
and play the most likely pair of vertices v1, v2. If no communication happens, her best strategy is to play a
random pair of vertices. On the other hand, MAX optimal strategy must ensure that under no circumstance
players play the same bit when assigned to the same vertex (lest they incur the large penalty L). Therefore,
the strategy of both MAX players is to play a fixed bit in each vertex, and the optimal strategy is the one that
assigns a bit to the vertices in such a way that the number of edges connecting vertices with different bits
is maximized. This corresponds to finding a max cut and therefore the value of the game is (essentially) c∗

where c∗ is the true size of the maximum cut. Moreover, any communication attempt would be immediately
shut down by MIN strategy since any leak of the observation received on the public channel implies to receive
a fraction of the large penalty L.

We now formalize this intuition.

First, note that MAX can achieve utility exactly c∗ by playing according to a maximum cut. To see that MAX

cannot do significantly better, consider the following strategy for team MIN. Observe the entire transcript τ
of messages shared between the two MAX players. Pick (v1, v2) maximizing the probability p(τ |v1, v2) that
the players would have produced τ .15

First, suppose that MAX does not communicate. Then MIN’s choice is independent of MAX’s, so MAX can
WLOG play a pure strategy. If b1 6= b2 for any pair (v1, v2), then MAX loses utility L in expectation. For

14Note that MIN playing uniformly at random means that the expected utility of this term is 0.
15Note again, as in Section 5, that this computation may take time exponential in r and the size of G, but we allow the

players to perform unbounded computations.
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L > n2, this makes any such strategy certainly inferior to playing the maximum cut. Therefore, MAX should
play the maximum cut, achieving value c∗.

Now suppose that MAX uses communication. Fix a transcript τ , and let

δ := max
v1,v2

p(v1, v2|τ)−
1

n2
.

Now note that we can write p(·|τ) = (1 − α)q0 + αq1, where q0, q1 ∈ ∆(V 2), q0 is uniform, and α ≤ Θ(n4δ).
Now consider any strategy that MAX could play, given transcript τ . Such a strategy has the form x1(b1|v1)
and x2(b2|v2). Since q is α-close to uniform, the utility of MAX under this strategy conditioned on τ must
be bounded above by

(1 − α)u0 + α ≤ (1− α)c∗ + α ≤ c∗ + α ≤ c∗ +Θ(n4δ)

where u0 is the expected value of profile (x1, x2) given τ if v1, v2|τ were truly uniform. But now, in expectation
over τ , team MIN can gain utility Ln2δ by playing argmaxv1,v2 p(v1, v2|τ). So, MAX’s utility is bounded above
by

c∗ +Θ(n4δ)− Ln2δ ≤ c∗

by taking L sufficiently large.

The next result illustrates the difference between the uncoordinated hidden-role value and the coordinated
hidden-role value which is the focus of the positive results in our paper. Whereas the coordinated hidden-role
value with private communication can be computed in polynomial time when k is constant (Theorem 4.3),
the uncoordinated hidden-role value cannot, even when k = 2:

Theorem D.1. Even in 3-vs-2 hidden-role games, the uncoordinated hidden-role value problem with private
communication is coNP-hard.

Proof. We reduce from UNSAT. Let φ be any 3-CNF-SAT formula, and consider the following 5-player
hidden-role game. Two players are chosen uniformly at random to be on team MIN; the rest are on team
MAX. The players on team MIN know each other. The players on team MIN play the SAT gadget game
described by Koller and Megiddo [1992]. Namely:

1. The players on team MIN are numbered P1 and P2, at random, by chance.

2. Chance selects a clause C in φ and tells P1.

3. P1 selects a variable xi in C, and that variable (but not its sign in C, nor the clause C itself) is revealed
to P2.

4. P2 selects an assignment bi ∈ {0, 1} to xi. MIN wins the gadget game if the assignment bi matches the
sign of xi in C.

The value of this game is decreasing with M and R since MAX does nothing, so it is in the best interest of
MAX to select R = 0 (i.e., allow no communication). In that case, the best probability with which MIN can
win the game is exactly the maximum fraction of clauses satisfied by any assignment, which completes the
proof.

The above result is fairly straightforward: it is known that optimizing the joint strategy of a team with
asymmetric information16 is hard [Koller and Megiddo, 1992], and private communication does not help if
MAX does not allow its use. However, next, we will show that the result even continues to apply when MIN

has symmetric information, that is, when the original game Γ is coordinated. This may seem mysterious at
first, but the intuition is the following. Just because Γ has symmetric information for the MIN-team, does
not mean USplit(Commpriv(Γ)) does. Indeed, MAX-players can send different private messages to different

16For our purposes, we will say that MIN has symmetric information if all players MIN have the same observation at every
timestep. This implies that they can be merged into a single player without loss of generality.
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MIN-players, resulting in asymmetric information among MIN-players. This result illustrates precisely the
reason that we define two different split-personality games, rather than simply dealing with the special case
where the original game Γ has symmetric information for the MIN-team.

Theorem D.2. Even in 3-vs-2 hidden-role games with a mediator in which no MIN-player has any informa-
tion beyond the team assignment, the uncoordinated hidden-role value problem with private communication
is coNP-hard.

Proof. We will reduce from (the negation of) MAX-CUT. Let G be an arbitrary graph with n nodes and m
edges, and consider the following 5-player hidden-role game with 2 players on the MIN-team and 3 players on
the MAX-team. Player 5 is always on team MAX and is the mediator. The other four players are randomly
assigned teams so that two are on team MAX and two are on team MIN. The game proceeds as follows.

1. Chance chooses vertices v1, . . . , v4 uniformly at random from G. The mediator privately observes the
whole tuple (v1, . . . , v4).

2. For notational purposes, call the players on team MAX 3 and 4, and MIN 1 and 2. (The mediator does
not know these numbers.) After some communication, the following actions happen simultaneously:

(a) P1 and P2 select bits b1, b2 ∈ {0, 1};

(b) P3 and P4 select vertices v′3, v
′
4 of G and players i3, i4 ∈ {1, 2, 3, 4}.

3. The following utilities are given: (L is a large number to be picked later, and each item in the list
represents an additive term in the utility function)

(a) (Correct vertex identification) For each player i ∈ {3, 4}, if vi 6= v′i then MAX gets utility −L4

(b) (Agreement of MIN-players) If v1 = v2 and b1 6= b2 then team MAX gets utility L.

(c) (Objective) If v1 6= v2, b1 6= b2, and (v1, v2) is an edge in G, then team MAX gets utility −1.

(d) (Privacy) For each j ∈ {3, 4}, if i∗j is on team MIN, then MAX gets utility L. Otherwise, MAX gets
utility −L/2.

We claim that this game has value (essentially) −c∗, where c∗ is the actual size of the maximum cut of G.
To see this, observe first that the mediator must tell all players their true vertices vi, lest it risk incurring
the large negative utility −L2. Further, any player except the mediator who sends a message must be on
team MIN. This prevents team MIN from communicating. Thus, the mediator’s messages force MIN to play
an asymmetric-information identical-interest game, which is hard.

We now formalize this intuition. First, consider the following strategy for team MAX: The mediator sends
all players their true types, and MAX-players play their types. If any MAX-player sees a message sent from
anyone except the mediator, the MAX-player guesses that that player is on team MIN.

Now consider any (pure) strategy profile of team MIN. First, MIN achieves utility −c∗ by observing the
mediator’s message and playing bits according to a maximum cut. We now show that this is the best that
MIN can do. Sending messages is, as before, a bad idea. Thus, a pure strategy profile of MIN is given by four
f1, f2, f3, f4 : V → {0, 1} denoting how player i should pick its bits. But then f1 = f2 = f3 = f4; otherwise,
the agreement of MIN-players would guarantee that MIN is not playing optimally for large enough L.

Now, for any (possibly mixed) strategy profile of team MAX, consider the following strategy profile for each
MIN-player. Let f : V → {0, 1} be a maximum cut. Pretend to be a MAX-player, and let v′i be the vertex
that would be played by that MAX-player. Play f(v′i).

First, consider any MAX-player strategy profile for which, for some player i and some vi, the probability that
v′i 6= vi exceeds 1/L

2. Then MAX gets a penalty of roughly L2 in expectation, but now setting L large enough
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would forces MAX to have utility worse than −1, so that MAX would rather simply play vi with probability
1.

Now, condition on the event that vi = v′i for all i (probability at least 1−Θ(1/L2)). In that case, the utility
of MAX is exactly −c∗, because MIN is playing according to the maximum cut. Thus, the utility of MAX is
bounded by −(1− Θ(1/L2))c∗ + Θ(1/L2 · L) ≤ −c∗/n2 +Θ(n/L) < c∗ + 1/2 for sufficiently large L. Thus,
solving the hidden-role game to sufficient precision and rounding the result would give the maximum cut,
completing the proof.

Theorem D.3. Even in 5-vs-4 hidden-role games, the uncoordinated hidden-role value problem with public
communication is ΣP

2 -hard.

Proof. We reduce from ∃∀3-DNF-SAT, which is ΣP
2 -complete [H̊astad, 2001]. The ∃∀3-DNF-SAT problem

is the following. Given a 3-DNF formula φ(x, y) with k clauses, where x ∈ {0, 1}m and y ∈ {0, 1}n, decide
whether ∃x∀y φ(x, y). Consider the following game. There are 9 players, 5 on team MAX and 4 on team
MIN. One designated player, who we will call P0, is MAX and has no role in the game. (The sole purpose
of this player is so that MAX is a majority.) The other players are randomly assigned teams. These other
players are randomly assigned teams. For the sake of analysis, we number the remaining players P1 through
P8 such that P1, P3, P4, P5 are on team MAX and P2, P6, P7, P8 are on team MIN. MIN knows the entire
team assignment, whereas MAX dos not. We will call P3–P8 “regular players”, and P1–P2 “guessers”. The
game proceeds as follows.

1. For each regular MAX-player, chance selects a literal (either xj or ¬xj), uniformly at random. For each
regular MIN-player (P6–8), chance selects a literal (either yj or ¬yj), also uniformly at random. Each
player privately observes the variable (index j), but not the sign of that variable.

2. After some communication, the following actions happen simultaneously.

(a) P3–P8 select assignments (0 or 1) to their assigned variables.

(b) P1 (who observes nothing) guesses a player (among the six players P3–P8) that P1 believes is on
team MIN.

(c) P2 (who observes nothing) guesses one literal for each MAX-player (there are K := (2m)3 such
possible guesses.)

3. The following utilities are assigned. (L is a large number to be picked later, and each item in the list
represents an additive term in the utility function)

(a) (Satisfiability) Chance selects three regular players at random. If the three literals given to those
players form a clause in φ, and that clause is satisfied, MAX gets utility 1.

(b) (Consistency) If chance selected the same variable three times, if the three players did not give
the same assignment, then the team (MAX if the variable was an xi and MIN if the variable was a
yj) gets utility −L

2.

(c) (Privacy for MAX) If P2 guesses the three literals correctly, MIN gets utility L3K; otherwise, MIN

gets utility −L3.17

(d) (Privacy for MIN) If P1 guesses a MIN-player, MAX gets utility L; otherwise, MAX gets utility −L.

We claim that the value of this game with public communication is at least 1 if and only if φ is ∃∀-satisfiable.
Intuitively, the rest of the proof goes as follows:

17These utilities are once again selected so that a uniformly random guess gets utility 0.
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1. MAX will not use the public communication channels if φ is ∃∀-satisfiable. By the Privacy for MIN

term, MIN-players therefore cannot do so either without revealing themselves immediately. Thus, MAX

will get utility at least 1 if φ is ∃∀-satisfiable.

2. If φ is not ∃∀-satisfiable, then consider any MAX-team strategy profile. By the Privacy for MAX term,
team MAX cannot make nontrivial use of the public communication channel without leaking information
to P9. By the Consistency term, P1 through P3 must play the same assignment, or else incur a large
penalty. So, MAX must play essentially an assignment to the variables in x, but such an assignment
cannot achieve positive utility because there will exist a y that makes φ unsatisfied.

We now formalize this intuition. Suppose first that φ is ∃∀-satisfiable, and let x be the satisfying assignment.
Suppose that MAX-players never communicate and assign according to x, and P4 guesses any player that
sends a message. Then any MIN-strategy that sends a message is bad for sufficiently large L because it
guarantees a correct guess from MAX; any MIN-strategy that is inconsistent is bad because it will lose utility
at least L; and any MIN-strategy that is consistent will cause MAX to satisfy at least one clause. Thus MAX

guarantees utility at least 1.

Now suppose that φ is not ∃∀-satisfiable. Consider any strategy profile for MAX. Suppose that the MIN-
players play as follows. During the public communication phase, each MIN-player samples a literal from
the set {x1,¬x1, . . . , xm,¬xm} uniformly at random and pretends to be a MAX-player given that literal.
P8 observes the public transcript, and selects the triplet of literals that is conditionally most likely given
the transcript. By an identical argument to that used in Theorem 4.5, MAX then cannot profit from using
the communication channel for sufficiently large L. Therefore we can assume that MAX does not use the
communication channels, and therefore by the argument in the previous paragraph, neither does MIN.

Now, the strategy of each MAX-player i can be described by a vector si ∈ [0, 1]m, where sij is the probability
that player i assigns 1 to variable xt. For sufficiently large L, we have si ∈ [0, ε] ∪ [1− ε, 1] where ε = 1/L,
because otherwise MAX would incur a penalty proportional to L2ε > k and would rather just play (for
example) the all-zeros profile, which guarantees value 0. Condition on the event that every player at every
variable chooses to play the most-likely assignment according to the sis. This happens with probability
at least 1 − Θ(mε). These assignments must be consistent (i.e., every player must have the same most-
likely assignment), or else the players would once again incur a large penalty proportional to L2. Call that
assignment x, and let y be such that φ(x, y) is unsatisfied. Suppose MIN plays according to y. Then MAX’s
expected utility is bounded above by Θ(mεk): with probability 1−Θ(mε) it is bounded above by 0; otherwise
it is bounded above by k. For ε < Θ(1/mk) this completes the proof.

E The Game Avalon

E.1 Equivalence of Split-Personality Games

In this section, we show that the choice of whether to use USplit or CSplit—that is, whether MIN is
coordinated—is irrelevant for the instantiations of Avalon that we investigate in this paper. We refer to
Section 7 for a complete description of the Avalon game.

For this section, we assume that all MIN players know the roles of all other MIN players. This is always
true in the instances considered in the experiments. In particular, we considered instances with six or fewer
players and no Oberon role, which is a MIN member which is not revealed as such to both Merlin and the
other MIN members. This guarantees that both the MIN-players can deduce their respective roles. Conversely
this is not guaranteed, as for example with 7 players (and hence k = 3) and Mordred, the two non-Mordred
MIN-players do not know the identity of Mordred.

The main observation we make in this subsection states that the choice of whether to use USplit or CSplit

does not matter.

Theorem E.1. In Avalon with private communication, assuming that all MIN players know each others’ roles,
every r-round uncoordinated hidden-role equilibrium is also an r-round coordinated hidden-role equilibrium.
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Before proving the result, we first observe that we cannot a priori assume the use the results in Section 4.1
for this proof, because they do not apply to the symmetric hidden-role equilibrium.

Fortunately, a variant of the revelation principle for mediated games (Theorem 4.1) and the resulting zero-
sum game theorem (Theorem 4.2) still holds almost verbatim: the lone change is that the zero-sum game
formed from symmetric splitting, which we will denote Γ̃0, is a zero-sum team game, where the MIN players
cannot perfectly coordinate with each other, and the equality of value becomes an inequality:

Proposition E.2. Let Γ∗ be a mediated hidden-role game, and let Γ0 be the zero-sum version posed by
Theorem 4.2. Let Γ̃0 be the game that is identical to Γ0, except that the MIN-players are not coordinated and
thus cannot communicate except as permitted in Γ. That is, Γ̃0 is a team game with the mediator as the
MAX-player and the adversaries as the MIN-players. Then UValpriv(Γ

∗) ≤ TMEVal(Γ̃0), where TMEVal is the
TME value function (with MAX committing first).18

Proof. The revelation principle (Theorem 4.1) applies verbatim in this setting, so we may assume that MAX

in Γ∗ uses the mediator as specified in the revelation principle. With this assumption, the only difference
that remains between Γ∗ and Γ̃0 is that, in the latter, MIN-players cannot coordinate at all, whereas in Γ∗,
MIN-players are able to somewhat coordinate by sending private messages (albeit at the cost of revealing
themselves as adversaries). But this is a strict disadvantage for MIN in Γ̃0.

We therefore have the inequality chain

Val(Γ0) = CValpriv(Γ) ≤ UValpriv(Γ) ≤ UValpriv(Γ
∗) ≤ TMEVal(Γ̃0)

where Γ0 is the zero-sum game that appears in Theorem 4.2, with asymmetric splitting, Val is the zero-sum
game value, and Val is the zero-sum value.

So far, this inequality chain would hold for any hidden-role game Γ. We will now show that, specifically for
Avalon, we have TMEVal(Γ̃0) = Val(Γ0), which would complete the proof of Theorem E.1. This part of the
proof depends on the special structure of Avalon.

The only difference between Γ0 and Γ̃0 is that, in the latter, MIN-players cannot communicate among each
other because Theorem 4.2 only consider communication with the mediator. But, what would MIN-players
even need to communicate? Their information is entirely symmetric, except that they do not know the
recommendations that were given to their teammates in the mission proposal and voting phases. We will
show the following result.

Lemma E.3. For both Γ̃0 and Γ0, the game value does not change if we make the assumption that the
mediator unilaterally dictates missions (circumventing the mission proposal and voting process).

Proof Sketch. Make the following restrictions to strategy spaces.

• The mediator picks a single mission proposal in each round, and recommends that proposal and that
everyone vote in favor of it, until it is approved, and ignores any information gained during this phase.

• Spies follow the above recommendations, and ignore all information except the eventually-approved
mission.

Consider any TMECor of the restricted game. We claim that it also must be a TMECor of the full game:

• The mediator cannot do better, because Spies are following all recommendations and ignoring any
information gained except the eventual actual mission.

• Spies cannot do better, because deviations are ignored by the mediator and will ultimately not affect
the approved mission. (because the number of mission proposals and the number of Resistance players
both exceed the number of Spies).

18Since MIN is the nontrivial team and MAX commits first, the TME and TMECor values of Γ̃0 coincide here.
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This completes the proof.

But, having restricted the strategy spaces in the above manner, Γ̃0 and Γ0 become identical, because there
is no other source of asymmetric information. Therefore, TMEVal(Γ̃0) = Val(Γ0), and we are done.

E.2 Abstractions

In this section we describe the abstractions employed on the original game in order to transforming into a
smaller version, which can then be solved tabularly. The abstractions employed are lossless, in the sense that
they do not change the value of the game, and that any Nash equilibrium in the abstracted game corresponds
to a Nash equilibrium in the original one.

In particular, our main interest in the experiments is to compute one strategy belonging to a Nash equilibria
for each player. This allows us to iteratively remove many actions without loss of generality.

Note that throughout this section, we interchangeably use the standard names Resistance and Spies to refer
to the teams instead of MAX and MIN.

We apply Theorems 4.1 to 4.3 to an Avalon game instance in order to compute a hidden-communication
equilibria. In the first communication round, anybody can claim to the mediator to be a specific role and to
know specific knowledge about other player’s roles. (For example, a MIN-player, that is, a Spy, could claim
to be Merlin and lie about who is on team MAX.) Thanks to the revelation principle (Theorem 4.1), we can
assume that each player in the Resistance team truthfully communicates their information, while each Spies
player may decide correlate with the others to emit a specific fake claim. During the game, the mediator
recommends an action to each player anytime it is their move. In this case, the revelation principle allows to
assume WLOG that Resistance players always obey the recommendations received from the mediator, while
Spies can decide to deviate. Overall we obtain a two-player zero-sum game in which the Resistance team is
represented by a mediator and the Spies team is a single player.

In the following, we list the abstractions we applied to our Avalon instances, and for each we sketch a proof
of correctness. Each proof will have the same structure: we will impose a restriction on the strategy spaces
of both teams, resulting in a smaller zero-sum game; we will then show that any equilibrium of this smaller
zero-sum game cannot have a profitable deviation in the full game.

1. The recommendations emitted by the mediator to the player in charge of the mission proposal should
never be rejected. That is, the mediator has unilateral power to dictate who goes on missions.

This is Lemma E.3.

2. Call the following information common knowledge:

• The sets of good players claimed by players claiming to be Merlin, but not the identities of the
claimants themselves (because MIN does not know the true Merlin)

• Mission proposals and results

• Any claimant whose claim is disproven by common-knowledge information is a Spy

Call a subset S ⊆ [n] plausible if, based on common-knowledge information, it is possible that S contains
only good players. Every mission proposal should be plausible.

Proof sketch. Make the following restrictions to strategy spaces.

• Every mission proposal by the mediator is plausible.

• If the mediator proposes an implausible set, the Spies pick a plausible set at random, announce
it publicly, and act as if the mediator proposed that set instead.

Consider any Nash equilibrium of the restricted game. We claim that it also must be a Nash equilibrium
of the full game.
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• The mediator cannot improve, because Spies will pretend that the mediator played a plausible set
anyway, and the mediator can simulate how the spies will do this.

• Spies cannot improve, because against a mediator who always proposes a plausible set, the strategy
space of the spies is not limited.

3. If any player is contained in every plausible set S, then that player should always be included on
missions if possible. We call such players safe.

Proof sketch. Make the following restrictions to strategy spaces.

• The mediator always sends all safe players on missions, if possible.

• Spies pretend that all safe players are always sent on missions. More precisely, if i is safe, not
sent on a mission, and at least one unsafe player j is sent on that mission, Spies pick such a pair
(i, j) at random, announce both i and j publicly, and pretend that i was sent in place of j. (If
there are multiple such replacements that can be done, this process is simply repeated.)

Consider any Nash equilibrium of the restricted game. We claim that it also must be a Nash equilibrium
of the full game.

• The mediator cannot improve, because spies will pretend that all safe players are always sent
regardless of how the mediator actually proposes missions, and the mediator can simulate how
spies will perform the replacement.

• Spies cannot improve, because against a mediator who always sends all safe players on missions,
the strategy space of the spies is not limited.

4. If a mission of size s passes, all missions will pass until the next mission whose size is > s. (In
particular, any maximum-size mission passing implies that all remaining missions pass.)

Proof sketch. Suppose that a mission M0 of size s0 has passed, and suppose the next t missions have
sizes s1, . . . , st ≤ s0. Make the following restrictions to strategy spaces.

• The mediator randomly19 selects subsets M ′
i ⊆ M0 to send on missions si for i = 1, . . . , t. If

any of them (say, Mi) fails, the mediator pretends that M0 failed instead. Then, the mediator
generates and publicly announces the missions M ′

1, . . . ,M
′
i that it would have proposed had M0

failed, assuming that each M ′
j passes. The mediator then pretends that that is what happened.

The mediator does not use the Mis to inform future decisions.

• For each i = 1, . . . , t, Spies automatically pass Mi and ignore what missions are proposed by the
mediator.

Consider any Nash equilibrium of the restricted game. We claim that it also must be a Nash equilibrium
of the full game.

• The mediator has no incentive to propose a mission different from a random Mi ⊆ M0 in the
unrestricted game, because against spies who ignore and always pass missions M1, . . . , t, any
mediator mission would lead to the same outcome of having a mission passing, no change in
behavior from Spies, and no information gained.

• The Spies have no incentive to fail mission Mi for i > 0 if they pass mission M0. This is true
because the mediator strategy is such that Spies passing missionsM0, . . . ,Mi−1 and failing mission
Mi would be equivalent to Spies failing M0 and passing missions M ′

1, . . .M
′
i .

19The fact that this is random instead of dictated by the mediator allows us to avoid issues of imperfect recall.

35



Christiano [2018] used a very strong reduction that allowed the assumption that the smallest two missions
are guaranteed to pass. The reduction is sound in the base game Resistance, as well as when the mediator’s
strategy is manually constrained to never reveal information about Merlin, as is the case in Christiano’s
analysis. It turns out, however, that this reduction is not sound in general, because its proof assumes that
all mission proposals—even those that occur after Resistance has already reached the required number of
missions—are public information. However, in our setting, it is possible that each mission proposal leaks
more and more information about Merlin, so there is incentive to reveal as few missions as possible. Indeed,
in the 6-player variants with Mordred, we observe that removing the two smallest missions causes a small
but nonzero change in the game value, whether or not future mission proposals are published. However, a
more refined analysis can be used to partially recover a reduction in the number of missions.

With five players, the refined analysis allows the same result Christiano [2018]: the first two missions should
automatically pass.

In 5-player Avalon, the mission sizes are 2, 2, 3, 3, 3 in that order.

Proposition E.4. In 5-player Avalon with private communication, the hidden-role value is the same if the
two missions of size 2 are automatically passed (hence skipped).

Proof Sketch. Make the following restrictions to strategy spaces.

• The mediator privately picks three missions M1,M2,M3 of size 3. Then the mediator proposes M1 (or
a subset thereof) until it fails, then M2 or a subset thereof until that fails, and finally M3 until that
fails.

• Spies ignore and automatically pass the first two mission proposals, and fail the last three missions if
possible.

Consider any Nash equilibrium of the restricted game. We claim that it also must be a Nash equilibrium of
the full game.

• The mediator has no incentive to behave differently, because Spies are ignoring the first two missions
regardless.

• Spies win if either three missions are failed, or they guess Merlin. But if at least one mediator guess is
the true set of good players, only two missions can fail, and so Spies cannot increase their probability
of failing three missions. As for guessing Merlin, Spies cannot increase the amount of information
gained. Let i be the index such that Mi is the true good set, and i = 4 if all mediator guesses were
wrong. Spies are currently gaining the information M≤i, and Spies cannot gain more information from
deviating because the mediator always plays the missions in order.

This completes the proof.

Our analysis is refined compared to Christiano [2018] in that we must consider the possibility that Spies
can gain more information about Merlin by deviating from the restricted strategy space. With five players,
this turns out not to have an effect, but with six players, it will. With six players, the refined analysis only
allows the first mission to be removed.

In six-player Avalon, the mission sizes are 2, 3, 4, 3, 4. The problem in adapting the analysis of the previous
result is that the final size-3 mission comes between the size-4 missions, preventing its removal.

Proposition E.5. In 6-player Avalon with private communication, the hidden-role value is the same if the
mission of size 2 is automatically passed (hence skipped).

Proof Sketch. Consider any strategy x for the mediator in the restricted game in which the first mission is
ignored. We will extend x to a full-game strategy x′. Strategy x′ works as follows. The mediator maintains
a simulator of strategy x.
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1. The mediator queries the x-simulator for its second mission M2 (of size 3), and plays a random size-2
subset of M2. If this mission passes, the mediator plays M2 itself on the second mission, then plays
the rest of the game according to x.

2. If the first mission fails, the mediator tells the x-simulator that M2 failed. The x-simulator will then
output its third mission M3 (of size 3). The mediator picks a random size-3 subset of M3 to send on
the second mission. If this mission passes, the mediator plays M3 again on the third mission, and once
again plays the rest of the game according to x.

3. If the second mission fails, the mediator tells the x-simulator that M3 failed. The x-simulator will
then output its fourth mission M4 (of size 3). The mediator immediately tells the x-simulator that M4

passed. The x-simulator will then output its fifth mission M5, of size 4. The mediator plays random
subsets of M5 until the game ends.

We claim that, against this mediator, the adversary cannot do better by failing the first mission than by
passing it.

• If the adversary fails the first mission and passes the second, then the adversary will have, in the first
three missions, observed a random subset of M2 and the whole set M3. But the adversary could have
accomplished more by passing the first mission and failing M2—the behavior of the mediator would be
the same in both cases (by construction of the mediator), and the adversary would observe the whole
set M2 instead of merely a random subset.

• If the adversary fails the first two missions, the adversary (regardless of what else happens in the game)
will have observed a random subset of M2, a random subset of M3, and M5 by the end of the game.
Further, three missions will pass if and only if M5 is the true good set. The adversary, however, could
have accomplished more by passing the first mission, failing the second and third (M2 and M3), and
passing the fourth—the adversary induces the same outcome in the game, but instead observes all four
missions M2,M3,M4,M5.

Thus, the adversary is always better off failing the first mission, and therefore x and x′ have the same
value.

E.3 A Description of Avalon in Reduced Representation

The optimized Avalon game instances can be succinctly represented as follows:

1. At the start of the game, Chance player deals the roles.

2. [if Merlin is present in the game] Merlin reports who the Spies are (except Mordred). Spies may also
(falsely) do the same.

3. [if Percival is present in the game] Percival reports who Merlin is. Spies may also falsely do the same.

4. Until the number of mission passed is less than 3, the mediator sends a mission, and the Spies are
offered the option to fail it if any of them is on it. The space of possible missions to be proposed is
constrained according to the previous optimizations

5. If the number of missions failed is 3, the game ends with a win for the Spies.

6. If the number of mission won is 3 and Merlin is present, the Spies have to guess the player with the
Merlin role. If they guess correctly, they win, otherwise they lose. If Merlin is absent, the game ends
with a win for the Resistance.
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5 Players 6 Players

Variant |Z| RW MG |Z| RW MG

No special roles (Resistance) 5.9× 103 0.3000 n/a 1.4× 106 0.3333 n/a
Merlin only 1.5× 104 1.0000 0.3333 6.0× 105 1.0000 0.2500
Merlin + Mordred 4.9× 105 0.6691 0.3869 1.8× 108 0.7529 0.3046
Merlin + 2 Mordreds 9.0× 104 0.5000 0.4444 2.8× 107 0.4088 0.2886
Merlin+Mordred+Percival+Morgana 2.4× 106 0.9046 0.3829 unknown unknown unknown

Table 3: Breakdown of equilibrium outcome probabilities for each variant of Avalon. |Z|: number of terminal
nodes in the reduced game tree. ‘RW’: probability of Resistance passing three missions. ‘MG’: probability of
Spies guessing Merlin correctly, conditioned on Resistance passing three missions. (The game value, which
appears in Table 2, is RW · (1 −MG)).

E.4 Example of Optimal Play in Avalon

In this section, we fully describe one of the equilibria claimed in Table 2: the case of 5 players with Merlin
and both MIN players “Mordred” (hidden from Merlin). We choose this version because it is by far the
easiest to describe the equilibrium: the other new values listed in Table 2 are very highly mixed and difficult
to explain.

Similarly to what happens in the example provided in Section 1.4, this case is different from the case with
no Merlin (even if Merlin does not have any useful knowledge), due to the effect of added correlation. In
particular, if Merlin were not known to the mediator, then the equilibrium value would be 3/10 · 2/3 = 2/10:
3/10 from the value of pure Resistance (no Merlin), and the factor of 2/3 from a blind Merlin guess.

By the discussion above, it suffices to analyze the reduced game with three missions, each of size 3, where
MAX need only win one mission to win the game.

The following strategy pair constitutes an equilibrium for this Avalon variant:

Strategy for MAX The mediator’s strategy is different depending on how many players claim to it to be
Merlin.

One claim. Randomly label the players A through E such that A is Merlin. Send missions ABC, ABD, and
ABE.

There are six possible correct sets (ABC, ABD, ABE, ACD, ACE, ADE), and MAX has three guesses, so MAX

wins the regular game with probability 1/2. If the first mission succeeds, MIN learns nothing about Merlin, so
Merlin is guessed correctly with probability 1/3. Otherwise, MIN knows that Merlin is either A or B, so Merlin
is guessed correctly with probability 1/2. Thus, this strategy attains value (1/6)(2/3) + (1/3)(1/2) = 5/18.

Two claims. Randomly label the players A through E such that A and B are the Merlin claimers. Send
missions ACD, BCE, and ADE.

Three claims. The non-claimants are guaranteed to be good. Pick a non-claimant at random, pretend that
they are Merlin, and execute the strategy from the one-claim case. This does strictly better than the one-
claim case, because MIN learns only information about who is not Merlin instead of who is Merlin. (This
strategy may not be subgame-perfect, but for the sake of this analysis it is enough for this strategy to achieve
value at least 5/18).

The analysis of the one-claim case applies nearly verbatim: there are six possible correct sets, and the second
mission narrows down MIN’s list of possible Merlins from 3 to 2 (namely, A or D), so again the value for MIN

is 5/18.

Strategy for MIN Emulate the behavior of a non-Merlin MAX-player (i.e., do not claim to be Merlin).

1. If the first guess by MAX is correct, guess Merlin at random from the good players.
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2. If the second guess by MAX is correct, guess Merlin at random from the good players included on both
guesses.

3. If the third guess by MAX is correct, guess Merlin at random among all good players sent on at least
two missions, weighting any player sent on all three missions double. (for example, if there was one
player sent on all three missions and one player sent on two, guess the former with probability 2/3 and
the latter with probability 1/3).

Against this strategy, the mediator’s only decision is what three distinct missions to send.

1. If Merlin is sent on one mission, the probability of winning is at most 1/6 because only that mission
has a chance of being the correct one.

2. If Merlin is sent on two missions, then the probability of one mission passing is at most 1/3. If the first
mission passes, Merlin is guessed correctly with probability 1/3. If the second mission passes, Merlin
may not be guessed correctly at all (it is possible for Merlin to only have been sent on the second mission,
but not the first). If the third mission passes, Merlin is guessed correctly with probability at least 1/5.
Thus, the probability of winning for good is at most (1/3)(1− (1/3 + 0 + 1/5)/3) = 37/135 < 5/18.

3. If Merlin is sent on all three missions, the probability of a mission passing is at most 1/2. If the first
mission passes, Merlin is guessed correctly with probability 1/3. Otherwise, Merlin is guessed correctly
with probability at least 1/2, since the only way to decrease this probability under 1/2 would be for
the last mission to pass and for another player to also have been sent on all three missions, but in
that case it is impossible for anyone to have been sent on two missions. Therefore, the probability of
winning for good is at most (1/2)(1− (1/3 + 1/2 + 1/2)/3) = 5/18.
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