
MIT 6.S890 — Topics in Multiagent Learning Thu, Nov 14th 2024

Lecture 16

Markov (aka stochastic) games

Instructor: Prof. Gabriele Farina (  gfarina@mit.edu)★

In this last lecture for Part III, we take a quick peek at one last model of games that is especially popular
in (multi-agent) reinforcement learning: Markov games.

1  The model
The model of Markov games, also known as stochastic games, was introduced by Shapley, L. S. [Sha53]
as a generalization of the Markov decision process to the multi-agent setting. In this model, the agents
interact with each other and with the environment, and the environment is affected by the joint actions
of the agents. In this lecture, we will draw a distinction between infinite-horizon games, and finite-horizon
games (also known as episodic). We start from the former class.

Definition 1.1 (Infinite-horizon stochastic game).  An 𝑚-player, infinite-horizon, finite state/action
space, stochastic (aka Markov) game is a tuple 𝐺 = (𝑆,𝐴, ℙ, 𝑟, 𝛾, 𝜇) where

• 𝑆 is a finite set of states,
• 𝐴 = 𝐴1 × 𝐴2 × … × 𝐴𝑚 is the set of joint actions,
• ℙ(𝑠′|𝑠, 𝑎), for 𝑠, 𝑠′ ∈ 𝑆, 𝑎 ∈ 𝐴 is the transition matrix of the environment,
• 𝑟 = (𝑟1,…, 𝑟𝑚) is a tuple of reward functions, wjere 𝑟𝑖(𝑠,𝑎) specifies the reward of player 𝑖 for

taking action 𝑎 in state 𝑠,
• 𝛾 ∈ (0, 1) is a discount factor, and
• 𝜇 ∈ Δ(𝑆) is the initial state distribution.

Given an infinite state-action sequence (𝑠(𝑡), 𝑎(𝑡))
𝑡
, each player derives a discounted utility

𝑢𝑖((𝑠(𝑡), 𝑎(𝑡))
𝑡
) ≔ ∑

𝑡≥0
𝛾𝑡 ⋅ 𝑟𝑖(𝑠(𝑡), 𝑎(𝑡)).

As the name suggests, an infinite-horizon stochastic game is played over an infinite number of steps. The
goal of each player is to maximize their discounted utility. By fixing the number of steps, we instead obtain
a finite-horizon stochastic game, as defined next.

Definition 1.2 (Finite-horizon stochastic game).  In the finite-horizon case, the game is endowed with
an addition parameter 𝐻 ∈ ℕ, called the horizon, which indicates for how many steps the game will
unfold. For these games, a value of 𝛾 = 1 (i.e., no discounting) is acceptable since the utility is a finite
sum and therefore it cannot diverge.

★These notes are class material that has not undergone formal peer review. The TA and I are grateful for any reports of
typos.
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2  Strategies: Markovianity and stationarity
In general, when we talk about a strategy, or policy, we allow for the possibility that the players remember
their past actions and transitions. In other words, when left unqualified, the term policy allows for history-
dependence and we think of it as a mapping

𝜋𝑖 : 𝑆 × (𝑆 × 𝐴)∗ → Δ(𝐴𝑖),

where the asterisk denotes a tuple of arbitrary length representing the history of play up to any point.

When further restrictions are imposed on how the policy can depend on the history, we arrive at two
important distinctions.

Definition 2.1 (Markovian policy). A policy is history-independent, or Markovian, if it only depends on
the current state and time. This means that given any two histories of the same length, the policy is
the same. In other words, the policy is a function

𝜋𝑖 : 𝑆 × ℕ → Δ(𝐴𝑖).

Definition 2.2 (Stationary policy). A policy is stationary if it only depends on the current state and
not even time. In other words, the policy is just a function of the current state

𝜋𝑖 : 𝑆 → Δ(𝐴𝑖).

(Note that stationarity implies Markovianity).

3  Equilibria in Markov games

3.1  The finite-horizon case
If we are seeking non-Markovian strategies, a finite-horizon stochastic game can just be “unrolled” and
converted into a perfect-recall extensive-form game.

When Markovian strategies are sought, then the process is not as straightforward. However, the game can
still be solved efficiently via backward induction. We illustrate this with an example.

The idea is to solve right-to-left the game, but inductively picking strategies that maximize the immediate
reward plus the continuation value 𝑉𝑖,𝑡(𝑠) at every state 𝑠.

backward induction

⋯

⋯

⋯

⋯

𝑡 = 0 𝑡 𝐻 − 1 ▶ Initialization:
• 𝑉𝑖,𝐻 ≔ 0 for all states 𝑠 ∈ 𝑆 and players 𝑖

▶ Inductive step (at time 𝑡):

• Assume given 𝑉𝑖,𝑡+1 : 𝑆 → ℝ.

• For each 𝑠 ∈ 𝑆, construct a game where 𝑖’s utility
is defined as

𝐹𝑖,𝑠(𝑎) ≔ 𝑟𝑖(𝑠, 𝑎) + 𝔼𝑠′∼ℙ(⋅|𝑠,𝑎)[𝑉𝑖,𝑡+1(𝑠′)].

• Compute a Nash equilibrium of the normal-form
game given by the utilities 𝐹 , and let that be

𝜋(⋅ |𝑠, 𝑡) ∈ Δ(𝐴).

• Set 𝑉𝑖,𝑡(𝑠) ≔ 𝔼𝑎∼𝜋(⋅|𝑠,𝑡)[𝐹𝑖,𝑠(𝑎)].
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Finally, we remark that in finite-horizon games, stationary policies are typically not optimal, because
optimal behavior usually depends on the amount of time left. In infinite-horizon games, however, equilibria
in stationary policies exist, as we show next.

3.2  The infinite-horizon case

Theorem 3.1 ([Fin64; Tak64]).  Every infinite-horizon discounted, stochastic game with a finite number
of states, actions, and players, has a Nash equilibrium in stationary, Markovian strategies. More
formally, there exists a collection of policies 𝜋1,…, 𝜋𝑚 where 𝜋𝑖 : 𝑆 → Δ(𝐴𝑖) such that

𝑢𝑖(𝜋𝑖, 𝜋−𝑖) ≥ 𝑢𝑖(𝜋′
𝑖, 𝜋−𝑖) ∀𝑖, 𝜋′

𝑖,

where 𝜋′
𝑖 is any policy for player 𝑖, not necessarily Markovian.

Proof .  Given a policy profile 𝜋 = (𝜋1, .., ., 𝜋𝑚) and a player 𝑖 ∈ [𝑚], we will introduce the following
notation:

• 𝑣𝜋
𝑖 (𝑠) , for 𝑠 ∈ 𝑆, is the infinite discounted utility of player 𝑖 if the game started at state 𝑠 and all

players used policies 𝜋1,…, 𝜋𝑚. In symbols,

𝑣𝜋
𝑖 (𝑠) = ∑

𝑎
𝑟𝑖(𝑠, 𝑎) ⋅ 𝜋(𝑎|𝑠)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕ 𝑟𝜋𝑖 (𝑠)

+ 𝛾 ∑
𝑠′

𝑣𝜋
𝑖 (𝑠′)∑

𝑎
𝜋(𝑎|𝑠) ⋅ ℙ(𝑠′|𝑠, 𝑎)

⏟⏟⏟⏟⏟⏟⏟⏟⏟
≕ Γ𝜋(𝑠, 𝑠′)

.

This is a linear system of equations in the variables 𝑣𝜋
𝑖 (𝑠), which we can rewrite more compactly as

(𝐼 − 𝛾Γ𝜋)𝑣𝜋
𝑖 = 𝑟𝜋𝑖 .

We now argue that the matrix 𝐼 − 𝛾Γ𝜋 is invertible. To see this, note that the matrix Γ𝜋 is a
stochastic matrix:

∑
𝑠′

Γ𝜋(𝑠, 𝑠′) = ∑
𝑠′

∑
𝑎

𝜋(𝑎|𝑠)ℙ(𝑠′|𝑠, 𝑎) = ∑
𝑎

𝜋(𝑎|𝑠)(∑
𝑠′

ℙ(𝑠′|𝑠, 𝑎)) = ∑
𝑎

𝜋(𝑎|𝑠) = 1.

Since 𝛾 < 1 by Definition 1.1, we have that 𝐼 − 𝛾Γ𝜋 is strictly diagonally dominant, which implies
that 𝐼 − 𝛾Γ𝜋 cannot be singular. Therefore, the system of equations has a unique solution, which
corresponds to

𝑣𝜋
𝑖 = (𝐼 − 𝛾Γ𝜋)−1𝑟𝜋𝑖 .

Furthermore, the values 𝑣𝜋
𝑖  are continuous in the policies 𝜋.

• 𝑞𝜋𝑖 (𝑠, 𝑎𝑖) , for 𝑠 ∈ 𝑆 and 𝑎𝑖 ∈ 𝐴𝑖, is the infinite discounted utility of player 𝑖 if the game started

at state 𝑠, and players used policies 𝜋1,…, 𝜋𝑚, with the only exception that the very first action
of player 𝑖 is set to 𝑎𝑖. In symbols,

𝑞𝜋𝑖 (𝑠, 𝑎𝑖) = ∑
𝑎−𝑖

𝑟𝑖(𝑠, 𝑎) ⋅ 𝜋−𝑖(𝑎−𝑖|𝑠) + 𝛾 ∑
𝑠′

𝑣𝜋
𝑖 (𝑠′)∑

𝑎−𝑖

𝜋(𝑎−𝑖|𝑠) ⋅ ℙ(𝑠′|𝑠, 𝑎𝑖).

Like before, the function 𝑞𝜋𝑖  is continuous in the policies 𝜋, since everything on the right-hand side
is continuous, including the 𝑣𝜋

𝑖  as discussed above. Furthermore,

𝑣𝜋
𝑖 (𝑠) = ∑

𝑎𝑖

𝜋𝑖(𝑎𝑖|𝑠) ⋅ 𝑞𝜋𝑖 (𝑠, 𝑎𝑖). (1)
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We now define a Nash-type function 𝜑, similar to what we used in Lecture 2, mapping policy profiles
to improved policy profiles as follows:

∀𝑖, 𝑠, 𝑎𝑖 : 𝜋′
𝑖(𝑎𝑖|𝑠) ←

𝜋𝑖(𝑎𝑖|𝑠) + [𝑞𝜋𝑖 (𝑠, 𝑎𝑖) − 𝑣𝜋
𝑖 (𝑠)]

+

1 + ∑𝑎′
𝑖
[𝑞𝜋𝑖 (𝑠, 𝑎′

𝑖) − 𝑣𝜋
𝑖 (𝑠)]

+ .

This mapping is continuous over the convex compact set of all stationary Markov policy profiles. Hence,
by Brouwer’s fixed-point theorem, there exists a fixed point 𝜋∗ = 𝜑(𝜋∗).

To complete the proof, we then only have to argue that the fixed point 𝜋∗ is a Nash equilibrium. Using
the same logic as Lecture 2, we infer that

∀𝑖 ∈ [𝑚], 𝑠 ∈ 𝑆, and 𝑎𝑖 ∈ 𝐴𝑖, 𝑣𝜋∗

𝑖 (𝑠) ≥ 𝑞𝜋∗

𝑖 (𝑠, 𝑎𝑖). (2)

We need to show that, fixing 𝜋∗
−𝑖, 𝜋∗

𝑖  is a best response for each player 𝑖. From the point of view of
player 𝑖, computing a best response amounts to solving a Markov decision process (MDP) supported on
𝑆 with rewards and transitions given by

�̃�𝑖(𝑠, 𝑎𝑖) ≔ ∑
𝑎−𝑖

𝑟(𝑠, 𝑎) ⋅ 𝜋−𝑖(𝑎−𝑖|𝑠),

ℙ̃(𝑠′|𝑠, 𝑎𝑖) ≔ ∑
𝑎−𝑖

𝑃(𝑠′|𝑠, 𝑎) ⋅ 𝜋−𝑖(𝑎−𝑖|𝑠).

Equations (1) and (2) together imply that the expected discounted payoff 𝑣𝜋∗
𝑖

𝑖 (𝑠) starting at 𝑠 in MDP
satisfies

∀𝑠 ∈ 𝑆, 𝑣𝜋∗
𝑖

𝑖 (𝑠) = max
𝑎𝑖

{�̃�𝑖(𝑠, 𝑎𝑖) + 𝛾 ∑
𝑠′

𝑣𝜋∗
𝑖

𝑖 (𝑠′)ℙ̃(𝑠′|𝑠, 𝑎𝑖)}.

The previous condition is the Bellman equation for the MDP. From the theory of MDPs, we conclude
that 𝜋∗

𝑖  is an optimal policy for the MDP, and therefore 𝜋∗
𝑖  is a best response to 𝜋∗

−𝑖. □

From a computational point of view, finding equilibria in Markov games is a challenging task. In general,
the problem is open already in the two-player zero-sum case. However, this becomes tractable if the discount
factor 𝛾 is bounded away from 1, and the goal is approximate equilibria. The computation of correlated
and coarse correlated equilibria is also mostly open, with some hardness results depending on the type of
strategies under consideration.

3.3  Shapley’s theorem for two-player zero-sum Markov games
Finally, we mention a result by Shapley, L. S. [Sha53] that characterizes the value of two-player zero-sum
Markov games. The result is a generalization of the minimax theorem for two-player zero-sum games.

Theorem 3.2 (Shapley’s minimax theorem).  The value of a two-player zero-sum Markov game is
given by

𝑣 = max
𝜋1

min
𝜋2

𝑢1(𝜋1, 𝜋2) = min
𝜋2

max
𝜋1

𝑢1(𝜋1, 𝜋2),

where the max and min can be taken over all policies, Markov policies, and for infinite-horizon games,
even stationary Markov policies.

The proof of the theorem is based on showing contraction of a certain Bellman iterator.
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• Nov 14, 2024: Fix two typos.
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