
MIT 6.S890 — Topics in Multiagent Learning Nov 5th−7th 2024

Lecture 14

Combinatorial games and Kernelized MWU

Instructor: Prof. Gabriele Farina (gfarina@mit.edu)★

Extensive-form games belong to a larger class of games called combinatorial games. Combinatorial games
are characterized by the following properties:

• For every player 𝑖, the set of deterministic strategies can be represented as a set 𝒱𝑖 of bit strings,
that is, elements in {0, 1}𝑑𝑖 for some appropriate dimension 𝑑𝑖; and

• The utility of every player is a multilinear function of the strategies.

1 Examples of Combinatorial Games
Both normal-form games and extensive-form games, the classes of games we have been studying so far,
are examples of combinatorial games. In this section, we also show that several other important classes of
games are combinatorial games.

1.1 Normal-form games
In normal-form games, we already know that the utility of each player is multilinear in the distributions
over actions used by the players. The deterministic strategies correspond to deterministic distirbutions,
which have the form

(
((
((
((
((
(1
0
0
⋮
0)
))
))
))
))
)

,

(
((
((
((
((
(0
1
0
⋮
0)
))
))
))
))
)

,

(
((
((
((
((
(0
0
1
⋮
0)
))
))
))
))
)

, …,

(
((
((
((
((
(0
0
0
⋮
1)
))
))
))
))
)

.

Hence, normal-form games are combinatorial games.

Remark 1.1. The number of deterministic strategies in a normal-form game is |𝐴𝑖|, where 𝐴𝑖 is the set
of actions of the player.

1.2 Extensive-form games
Perhaps slightly less obvious is that extensive-form games are combinatorial games. There, we already know
that the utility of each player is multilinear when using the sequence form representation of strategies.
Deterministic strategies for the tree in the sequence-form representation contain entries in {0, 1}. As a
reminder, these strategies correspond to the set of all determinstic contingency plans for the entire tree.
We illustrate this with an example.

★These notes are class material that has not undergone formal peer review. The TA and I are grateful for any reports of
typos.

1

mailto:gfarina@mit.edu

Example 1.1. For example, consider the following two-player game, where black nodes belong to Player
1 and white nodes belong to Player 2.

A

P Q

B C D

1 2

3 4 5 6 7 98 7 98

The information set D for Player 1 encodes the fact that Player 1 does not observe Player 2′s action
at Q. In this small game, the following 7 strategies 𝑣1,…, 𝑣7 form the vertices of the sequence-form
polytope.

A

P Q

B C D

1 2

3 4 5 6 7 98 7 98

𝑣1 ≔ (
1 2 3 4 5 6 7 8 9
1 0 1 0 1 0 0 0 0)

A

P Q

B C D

1 2

3 4 5 6 7 98 7 98

𝑣2 ≔ (
1 2 3 4 5 6 7 8 9
1 0 1 0 0 1 0 0 0)

A

P Q

B C D

1 2

3 4 5 6 7 98 7 98

𝑣3 ≔ (
1 2 3 4 5 6 7 8 9
1 0 0 1 1 0 0 0 0)

A

P Q

B C D

1 2

3 4 5 6 7 98 7 98

𝑣4 ≔ (
1 2 3 4 5 6 7 8 9
1 0 0 1 0 1 0 0 0)

A

P Q

B C D

1 2

3 4 5 6 7 98 7 98

𝑣5 ≔ (
1 2 3 4 5 6 7 8 9
0 1 0 0 0 0 1 0 0)

A

P Q

B C D

1 2

3 4 5 6 7 98 7 98

𝑣6 ≔ (
1 2 3 4 5 6 7 8 9
0 1 0 0 0 0 0 1 0)

A

P Q

B C D

1 2

3 4 5 6 7 98 7 98

𝑣7 ≔ (
1 2 3 4 5 6 7 8 9
0 1 0 0 0 0 0 0 1)

Remark 1.2. We remark that the number of deterministic strategies in an extensive-form game is in
general exponential in the size of the game tree. In particular, we can easily bound the number of
deterministic strategies of a generic player 𝑖 as |𝒱𝑖| ≤ 𝐴

|𝐼𝑖|
𝑖 , where 𝐼𝑖 is the set of information sets of

the player and 𝐴𝑖 is the maximum number of actions at any of those information sets.

2

In contrast, the dimension 𝑑𝑖 of the bit strings is just the sum of the number of actions across all
information sets of the player.

1.3 Resource allocation games
Another class of combinatorial games goes under the name of resource allocation games, of which the game
Colonel Blotto is the most famous example. In these games, the set of deterministic strategies is the set of
all possible ways to allocate a fixed amount of resources among a set of activities. In Colonel Blotto, the
resources are soldiers, and the activities are the battlefields. We can represent these allocations using bit
strings that represent a table where on the rows we have activities, and on the columns we have amounts
of allocated resources. We can then one-hot encode how many resources we would like to allocate to each
activity, making sure that the total number of resources allocated matches the number of resources the
player has.

1.4 Games on graphs
Another example of combinatorial games are games on graphs. In these games, the set of deterministic
strategies is the set of all possible paths in the graph. Here, we can use bit strings of length equal to the
number of edges in the graph to represent the paths. We can then one-hot encode which edges are traversed
in the path.

1.5 Games on fixed-size subsets (aka. 𝑚-sets)
Finally, there exist games in which the actions correspond to picking a subsets of a given size. In these
games, the set of deterministic strategies is encoded as binary strings that one-hot encode which of the
elements are selected, that is,

𝒱𝑖 = {𝑥 ∈ {0, 1}𝑑 : ‖𝑥‖1 = 𝑚}.

The setting above goes under the name of m-sets in the machine learning literature.

2 Learning in combinatorial games and kernelization
How can we learn in a combinatorial game? To start, if we had a way to compute projections onto the
convex hull of 𝒱𝑖 (i.e., the polytope spanned by 𝒱𝑖), we could perform projected gradient descent. However,
computing projections onto the convex hull of 𝒱𝑖 might be hard. Furthermore, the regret bounds (and
hence equilibrium approximation rates) are typically far from optimal. For example, in normal-form games
we have observed that projected gradient descent achieves a regret of 𝑂(√𝑑𝑖𝑇), while the optimal regret is
𝑂(√log(𝑑𝑖)𝑇), an exponential improvement in terms of the dimension of the set. We were able to achieve
the latter, optimal bound using the multiplicative weights update (MWU) algorithm.

The reasons to like the MWU algorithm extend even beyond the logarithmic dependence on the number
of actions. As we saw in Lecture 6, the optimistic variant of MWU (OMWU) achieves a very strong
dependence on the number of repetitions 𝑇 , going from a

√
𝑇 dependence to a 𝑂(polylog(𝑇)) dependence.

Alas, multiplicative weights is an algorithm that is designed for probability simplices, and it is not clear
how to apply it to combinatorial games. In this lecture, we show how to kernelize the MWU algorithm
to combinatorial games, and how to implement it efficiently in several important classes of combinatorial
games.

2.1 Multiplicative weights on the set of deterministic strategies
We can use MWU (or OMWU) in combinatorial games by letting it pick distirbutions over the set of
deterministic strategies 𝒱𝑖. In other words, we can run MWU to keep tallies on how each deterministic
strategy is performing, and then use these tallies to compute the next distribution over the strategies

3

(of course, skewing the distribution towards better-performing strategies). We call this approach “Vertex
MWU”.

Algorithm 1: Vertex MWU/OMWU (Player 𝑖)

1 𝜆(1) ≔ uniform distribution over 𝒱𝑖
2 𝑔(0) ≔ 0 ∈ ℝ𝑑𝑖

3 function NextStrategy()
4 Play mixed strategy 𝑥(𝑡) ≔∑𝑣∈𝒱𝑖

(𝜆(𝑡)[𝑣] ⋅ 𝑣) // How to do efficiently?
5 function ObserveUtility(𝑔(𝑡))
6 (If optimistic) Perform optimistic correction 𝑔(𝑡) ≔ 2𝑔(𝑡) − 𝑔(𝑡−1)

7 (If not optimistic) Let 𝑔(𝑡) ≔ 𝑔(𝑡)

8 Update 𝜆(𝑡+1)[𝑣] ∝ 𝜆(𝑡)[𝑣] ⋅ exp{𝜂 ⋅ ⟨𝑔(𝑡), 𝑣⟩} for all 𝑣 ∈ 𝒱𝑖 // How to do efficiently?

Remark 2.1. In the game setting (i.e., what we called the “canonical learning setup” in Lecture 4), the
inputs to ObserveUtility are the gradients of the utility. These can be always computed in polynomial
time in 𝑑 and 𝑛.

2.2 Main result
It is not obvious that we can implement the Vertex MWU/OMWU algorithm (Algorithm 1) efficiently, that
is, without paying linear time in |𝒱𝑖| when the latter set is exponential in the dimension 𝑑𝑖. Yet, as pointed
by Farina, G., Lee, C.-W., Luo, H., & Kroer, C. [Far+22], that is possible in many cases, including all
settings mentioned above. The key insight is that we can use a kernel function to compute the expectations
and the gradients in the algorithm efficiently. Specifically, in this lecture we will prove the following result.
For simplicity, we will assume a player has been fixed and drop the subscript 𝑖 from the notation.

Theorem 2.1 (Main theorem). There exists a kernel function 𝐾𝒱 : ℝ𝑑 ×ℝ𝑑 → ℝ, which depends on
the combinatorial structure of the set 𝒱 of the player, such that Algorithm 1 can be implemented using
𝑑 + 1 evaluations of 𝐾𝒱 at each iteration.

We call this kernelized implementation of Algorithm 1 the Kernelized MWU/OMWU algorith, abbre-
viated as KMWU or KOMWU depending on whether optimism is used.

Note that Theorem 2.1 is crucially independent on the number of strategies |𝒱|, and only depends on
the dimension 𝑑 of the strategy set, which is polynomial in the size of the input game (for example, in
extensive-form games, 𝑑 is upper bounded by the number of edges in the game tree)! The main takeaway
is the following.

Corollary 2.1. As long as the kernel function 𝐾𝒱 can be evaluated efficiently, then Algorithm 1 can be
simulated efficiently too.

2.3 The 0/1-polyhedral kernel
In order to introduce the notion of 0/1-polyhedral kernel, we need to first introduce the notion of 0/1-
polyhedral feature map.

Definition 2.1 (0/1-polyhedral feature map). The 0/1-polyhedral feature map 𝜙𝒱 is defined as

4

𝜙𝒱 : ℝ𝑑 → ℝ𝒱, 𝜙𝒱(𝑥)[𝑣] ≔ ∏
𝑘:𝑣[𝑘]=1

𝑥[𝑘] ∀𝑣 ∈ 𝒱.

As is common with kernels, we define the 0/1-polyhedral kernel as the inner product of the feature maps.

Definition 2.2 (0/1-polyhedral kernel).

𝐾𝒱 : ℝ𝑑 ×ℝ𝑑 → ℝ, 𝐾𝒱(𝑥, 𝑦) ≔ ⟨𝜙𝒱(𝑥), 𝜙𝒱(𝑦)⟩ =∑
𝑣∈𝒱

∏
𝑘:𝑣[𝑘]=1

𝑥[𝑘]𝑦[𝑘].

2.4 Keeping track of the distribution over vertices
We start from showing how the 0/1-polyhedral kernel can help implement Line 8 of Algorithm 1 efficiently.
The key insight is that the strategies 𝜆(𝑡) are fully captured by the feature map of a low-dimensional vector
at all iterations.

Theorem 2.2. At all times 𝑡, the distribution 𝜆(𝑡) over strategies 𝒱 computed by Algorithm 1 is
proportional to the feature map of the vector

𝑏(𝑡) ≔ exp{𝜂∑
𝑡−1

𝜏=1
𝑔(𝜏)}.

Proof . We prove the result by induction over the time 𝑡.

• Base case. At time 𝑡 = 1, we have

𝑏(1) = 1 ⟹ 𝜙𝒱(𝑏(1)) = 1 ∝
1
|𝒱|

= 𝜆(1).

• Inductive step. At time 𝑡 + 1, the probability of the strategy 𝑣 ∈ 𝒱 computed by KOMWU is

𝜆(𝑡+1)[𝑣] ∝ 𝜆(𝑡)[𝑣] ⋅ exp{𝜂⟨𝑔(𝑡), 𝑣⟩}.

The key insight now is that since 𝑣 ∈ {0, 1}𝑑, then

exp{𝜂⟨𝑔(𝑡), 𝑣⟩} = exp
{{
{
{{𝜂 ∑

𝑘:𝑣[𝑘]=1
𝑔(𝑡)[𝑘]

}}
}
}} = ∏

𝑘:𝑣[𝑘]=1
exp{𝜂𝑔(𝑡)[𝑘]}.

Substituting the inductive hypothesis,

𝜆(𝑡+1)[𝑣] ∝ 𝜙𝒱(𝑏(𝑡))[𝑣] ⋅ ∏
𝑘:𝑣[𝑘]=1

exp{𝜂𝑔(𝑡)[𝑘]}

=
(
((∏
𝑘:𝑣[𝑘]=1

𝑏(𝑡)[𝑘]
)
)) ⋅

(
((∏
𝑘:𝑣[𝑘]=1

exp{𝜂𝑔(𝑡)[𝑘]}
)
))

= ∏
𝑘:𝑣[𝑘]=1

𝑏(𝑡+1)[𝑘]

= 𝜙𝒱(𝑏(𝑡+1))[𝑣],

completing the proof. □

In fact, we can even slightly refine the previous result by quantifying exactly the proportionality constant.
We do so in the next corollary.

5

Corollary 2.2. At all times 𝑡, one has

𝜆(𝑡) =
𝜙𝒱(𝑏(𝑡))
𝐾𝒱(𝑏(𝑡), 1)

.

Proof . Since we know from Theorem 2.2 that 𝜆(𝑡)[𝑣] ∝ 𝜙𝒱(𝑏(𝑡))[𝑣], and the sum ∑𝑣∈𝒱 𝜆
(𝑡)[𝑣] = 1, the

proportionality constant must be the inverse of

∑
𝑣∈𝒱

𝜙𝒱(𝑏(𝑡))[𝑣] =∑
𝑣∈𝒱

𝜙𝒱(𝑏(𝑡))[𝑣] ⋅ 1 =∑
𝑣∈𝒱

𝜙𝒱(𝑏(𝑡))[𝑣] ⋅ 𝜙𝒱(1)[𝑣] = 𝐾𝒱(𝑏(𝑡), 1),

completing the proof. □

2.5 Reconstructing the expectation
We now show how one can reconstruct the expectation

∑
𝑣∈𝒱
(𝜆(𝑡)[𝑣] ⋅ 𝑣)

which is needed in NextStrategy. The key is provided in the next theorem, which extends a nice insight by
Takimoto, E., & Warmuth, M. K. [TW03] .

Theorem 2.3. At all times 𝑡, the expectation ∑𝑣∈𝒱 𝜆
(𝑡)[𝑣] ⋅ 𝑣 can be computed via 𝑑 + 1 kernel

computations according to the formula

∑
𝑣∈𝒱
(𝜆(𝑡)[𝑣] ⋅ 𝑣) = (1 −

𝐾𝒱(𝑏(𝑡), 𝑒1)
𝐾𝒱(𝑏(𝑡), 1)

,…, 1 −
𝐾𝒱(𝑏(𝑡), 𝑒𝑑)
𝐾𝒱(𝑏(𝑡), 1)

),

where

𝑒𝑘 ≔ (1,…, 1, 0, 1,…, 1) = 1 − 𝑒𝑘 ∈ ℝ𝑑

is the vector that is equal to 1 in all coordinates except the 𝑖-th one where it is zero.

Proof . The key insight is that, for all 𝑘 ∈ [𝑑],

𝜙𝒱(𝑒𝑘)[𝑣] = ∏
𝑗:𝑣[𝑗]=1

𝑒𝑘[𝑗] = {
0 if 𝑣[𝑘] = 1
1 otherwise

= 1 − 𝑣[𝑘].

So,

(𝜙𝒱(1) − 𝜙𝒱(𝑒𝑘))[𝑣] = 𝜙𝒱(1)[𝑣] − 𝜙𝒱(𝑒𝑘)[𝑣] = 1 − (1 − 𝑣[𝑘]) = 𝑣[𝑘],

and we can write, for all 𝑘 ∈ [𝑑],

(∑
𝑣∈𝒱

𝜆(𝑡)[𝑣] ⋅ 𝑣)[𝑘] =∑
𝑣∈𝒱
(𝜆(𝑡)[𝑣] ⋅ (𝜙𝒱(1) − 𝜙𝒱(𝑒𝑘))[𝑣])

= 1
𝐾𝒱(𝑏(𝑡), 1)

∑
𝑣∈𝒱

𝜙𝒱(𝑏(𝑡))[𝑣] ⋅ (𝜙𝒱(1)[𝑣] − 𝜙𝒱(𝑒𝑘)[𝑣])

= 1
𝐾𝒱(𝑏(𝑡), 1)

(𝐾𝒱(𝑏(𝑡), 1) − 𝐾𝒱(𝑏(𝑡), 𝑒𝑘)) = 1 −
𝐾𝒱(𝑏(𝑡), 𝑒𝑘)
𝐾𝒱(𝑏(𝑡), 1)

,

6

which is the statement. □

3 Examples of efficiently-computable kernels
The previous theorems show that, as long as the kernel can be computed efficiently, then the OMWU
algorithm can be simulated efficiently even if the cardinality of every 𝒱𝑖 is exponential in the size of the
input game.

3.1 Hypercube
When 𝒱 = {0, 1}𝑑, then

𝐾𝒱(𝑥, 𝑦) = (1 + 𝑥[1] 𝑦[1])(1 + 𝑥[2] 𝑦[2]) ⋅ … ⋅ (1 + 𝑥[𝑑] 𝑦[𝑑])

can be evaluated in linear time in 𝑑.

3.2 Multiple choices: m-sets
When 𝒱 = {𝑥 ∈ {0, 1}𝑑 : ‖𝑥‖1 = 𝑚}, the kernel can be computed efficiently by using dynamic programming
or equivalently, by considering the polynomial of 𝛾 given as

(1 + 𝛾 ⋅ 𝑥[1]𝑦[1])(1 + 𝛾 ⋅ 𝑥[2]𝑦[2])⋯(1 + 𝛾 ⋅ 𝑥[𝑑]𝑦[𝑑])

When expanding the product (which can be done in polynomial time in 𝑑), the coefficient of the term 𝛾𝑚
is the kernel value, since it will be precisely the sum of the products of 𝑥, 𝑦 at all choices of subsets of 𝑚
coordinates.

3.3 Set of flows in a DAG
In this case, the kernel can be computed in linear time in the number of DAG edgs by performing dynamic
programming on the topological order of the DAG. This case was already covered by Takimoto, E., &
Warmuth, M. K. [TW03], though we remark that in kernelized OMWU the concept of weight pushing is
not needed, so the final algorithms are slightly different.

3.4 Extensive-form games
In particular, as we will see below, KOMWU can be implemented with linear-time iterations in the number
of sequences 𝑑𝑖.

■ Worst-case linear complexity for a single evaluation. We start by verifying that the sequence-form kernel
can be evaluated in linear time for any pair of points 𝑥, 𝑦 ∈ ℝ𝑑𝑖 . To do so, we introduce a partial kernel
function 𝐾𝐼 : ℝ𝑑𝑖 ×ℝ𝑑𝑖 → ℝ for every information set 𝐼 ∈ ℐ,

𝐾𝐼 : ℝ𝑑𝑖 ×ℝ𝑑𝑖 → ℝ, 𝐾𝐼(𝑥, 𝑦) ≔ ∑
𝑣∈𝒱⪰𝐼

∏
𝑘:𝑣[𝑘]=1

𝑥[𝑘]𝑦[𝑘].

where 𝒱⪰𝐼 denotes the projection of the strategy set 𝒱 onto only those actions at 𝐼 or below (removing
duplicates). We have the following.

Theorem 3.1. For any vectors 𝑥, 𝑦 ∈ ℝ𝑑𝑖 , the two following recursive relationships hold:

𝐾𝒱(𝑥, 𝑦) = ∏
𝐼∈ℐtop

𝐾𝐼(𝑥, 𝑦), (1)

where ℐtop denotes the “top-level” information sets (those information sets that contain nodes where
the player is acting for the first time), and, for all information sets 𝐼 ∈ ℐ,

7

𝐾𝐼(𝑥, 𝑦) = ∑
𝑎∈𝒜(𝐼)(

((𝑥[𝐼𝑎]𝑦[𝐼𝑎] ∏
𝐼′∈𝒞(𝐼)

𝐾𝐼′(𝑥, 𝑦)
)
)), (2)

where 𝒞(𝐼) denotes those information sets that are immediate successors of 𝐼 . In particular, (1) and
(2) give a recursive algorithm to evaluate the polyhedral kernel 𝐾𝒱 associated with the strategy space
of any player 𝑖 in an imperfect-information extensive-form game in linear time in 𝑑𝑖.

Corollary 3.1. For each player 𝑖, KOMWU can be implemented in polynomial time in the size of the
game tree. As a consequence, all the regret guarantees of OMWU can be extended to the setting of
imperfect-information extensive-form games as a black box.

We also make the following tangential remarks.

Remark 3.1. The feasibility of the kernelization approach in extensive-form games counters the common
belief that learning in the normal-form equivalent of an extensive-form game is computationally
infeasible.

Remark 3.2. Surprisingly, even for the non-optimistic version the kernelized MWU algorithm achieves
better regret bounds than all prior algorithms for learning in extensive-form games.

■ Amortizated constant-time kernel computation. We can actually refine the result above by showing
an implementation of KOMWU with linear-time per-iteration complexity in the size of the game tree, by
exploiting the structure of the particular set of kernel evaluations needed at every iteration and amortizing
computation of the 𝑑 + 1 kernels required by KOMWU at each iteration.

Bibliography
[Far+22] G. Farina, C.-W. Lee, H. Luo, and C. Kroer, “Kernelized Multiplicative Weights for 0/1-

Polyhedral Games: Bridging the Gap Between Learning in Extensive-Form and Normal-Form
Games,” in International Conference on Machine Learning, 2022.

[TW03] E. Takimoto and M. K. Warmuth, “Path kernels and multiplicative updates,” Journal of Machine
Learning Research, vol. 4, pp. 773–818, 2003.

8

	Examples of Combinatorial Games
	Normal-form games
	Extensive-form games
	Resource allocation games
	Games on graphs
	Games on fixed-size subsets (aka. m-sets)

	Learning in combinatorial games and kernelization
	Multiplicative weights on the set of deterministic strategies
	Main result
	The 0/1-polyhedral kernel
	Keeping track of the distribution over vertices
	Reconstructing the expectation

	Examples of efficiently-computable kernels
	Hypercube
	Multiple choices: m-sets
	Set of flows in a DAG
	Extensive-form games

	Bibliography

