
MIT 6.S890 — Topics in Multiagent Learning Tue, Oct 8th 2024

Lecture 10

Learning in extensive-form games

Instructor: Prof. Gabriele Farina (gfarina@mit.edu)★

1 Learning algorithms for extensive-form games
Several approaches for constructing no-regret algorithms for extensive-form games have been proposed. For
one, extensive-form games are a particular instance of combinatorial games for which the multiplicative
weights update algorithm can be implemented efficiently in the reduced normal form of the game, despite
the exponential size. We will see more details about this in a later class.

As explained in Lecture 9, the natural representation of strategies to define learning in extensive-form
games is the sequence-form representation. Indeed, in that representation utility functions are linear and
the strategy set of each player a convex polytope, aligning with the requirements of the regret minimization
framework. Thanks to the sequence form representation of strategiesall the results about external regret
minimization we have seen so far apply to extensive-form games as well, including for example the fact
that a Nash equilibrium in a two-player zero-sum game can be found by letting two regret minimizers play
against each other by exchanging equence-form strategies at every iteration according to the canonical
learning setup

ℛ𝒳

ℛ𝒴

𝑢(𝑡−1)𝒳

𝑢(𝑡−1)𝒴

𝑥(𝑡)

𝑦(𝑡) 𝑢(𝑡)𝒴

𝑢(𝑡)𝒳
ℛ𝒳

ℛ𝒴

𝑥(𝑡+1)

𝑦(𝑡+1)

Another example is the computation of coarse correlated equilibria in any multiplayer extensive-form game
via external regret minimization, or computation of best responses against static opponents.

To construct an external regret minimizer that outputs sequence-form strategies, several approaches can
be followed. For one, we have seen that one can always use the online projected gradient ascent algorithm,
which is a particular instantiation of the online mirror descent (OMD) algorithm. The drawback of such
approach is that it requires projecting onto the polytope of sequence form strategies, which might be
laborious. Alternative regularizers (i.e., distance-generating functions) that render projection easier have
been proposed. However, for today we focus on a different approach, which has been extremely popular in
practice: the counterfactual regret minimization (CFR) algorithm.

2 The CFR algorithm
The idea of the CFR algorithm is simple: construct a regret minimizer for the whole tree-form problem
starting from local regret minimizers at each decision point, each learning what actions to play at that
decision point.

★These notes are class material that has not undergone formal peer review. The TAs and I are grateful for any reports of
typos.

1

mailto:gfarina@mit.edu

Example 2.1. As an example, consider the TFDP faced by Player 1 in the game of Kuhn poker [Kuh50],
which we already introduced in Lecture 9. The black nodes are the decision points of the player, and
the white nodes are the observation points.

Since the player has six decision point—denoted 𝑗1,…, 𝑗6 in the figure—the CFR algorithm will use
six local regret minimizer, which we denote ℛ1,…,ℛ6. Each regret minimizer ℛ𝑗 will be responsible
for outputting a local strategy 𝑏𝑗 ∈ Δ(𝐴𝑗) for the decision point 𝑗.

The local distributions output by the different local regret minimizers is then combined to form a sequence-
form strategy that plays according to the local distributions at each decision point.

2.1 Where the magic happens: counterfactual utilities
What is the training signal that each local regret minimizer receives? In other words, what is the utility
that the regret minimizer at decision point 𝑗 observes? The answer is the counterfactual utility.

Remember that in the sequence form representation, the dimensionality of the strategy vectors matches the
number of actions controlled by the players. Hence, the gradient vector received by the regret minimizer
has one entry per each action controlled by the player, intuitively representing whether the “probability
flow” passing through that action scores well or poorly. The idea of counterfactual utilities is to use as
training signal for every ℛ𝑗 the vector of expected utilities in the subtrees rooted at each of the actions
𝑎 ∈ 𝐴𝑗.

It can be shown that the regret cumulated by the CFR algorithm satisfies the following bound.

Theorem 2.1. Let Reg(𝑇)𝑗 (𝑗 ∈ 𝒥) denote the regret cumulated up to time 𝑇 by each of the regret
minimizers ℛ𝑗. Then, the regret Reg(𝑇) cumulated by Algorithm 1 up to time 𝑇 satisfies

Reg(𝑇) ≤∑
𝑗∈𝒥
max{0,Reg(𝑇)𝑗 }.

It is then immediate to see that if each Reg(𝑇)𝑗 grows sublinearly in 𝑇 , then so does Reg(𝑇).

In order to formally introduce counterfactual utility, we recall a bit of notation to deal with tree-form
decision processes.

Notation for tree-form decision processes. We recall the following notation for dealing with tree-form
decision processes (TFDPs), which we introduced in Lecture 9. The notation is also summarized in Table 1.

• We denote the set of decision points in the TFDP as 𝒥, and the set of observation points as 𝒦. At
each decision point 𝑗 ∈ 𝒥, the agent selects an action from the set 𝐴𝑗 of available actions. At each
observation point 𝑘 ∈ 𝒦, the agent observes a signal 𝑠𝑘 from the environment out of a set of possible
signals 𝑆𝑘.

2

• We denote by 𝜌 the transition function of the process. Picking action 𝑎 ∈ 𝐴𝑗 at decision point 𝑗 ∈ 𝒥
results in the process transitioning to 𝜌(𝑗, 𝑎) ∈ 𝒥 ∪𝒦∪ {⊥}, where ⊥ denotes the end of the decision
process. Similarly, the process transitions to 𝜌(𝑘, 𝑠) ∈ 𝒥 ∪𝒦∪ {⊥} after the agent observes signal
𝑠 ∈ 𝑆𝑘 at observation point 𝑘 ∈ 𝒦.

• A pair (𝑗, 𝑎) where 𝑗 ∈ 𝒥 and 𝑎 ∈ 𝐴𝑗 is called a sequence. The set of all sequences is denoted as Σ ≔
{(𝑗, 𝑎) : 𝑗 ∈ 𝒥, 𝑎 ∈ 𝐴𝑗}. For notational convenience, we will often denote an element (𝑗, 𝑎) in Σ as 𝑗𝑎
without using parentheses.

• Given a decision point 𝑗 ∈ 𝒥, we denote by 𝑝𝑗 its parent sequence, defined as the last sequence (that
is, decision point-action pair) encountered on the path from the root of the decision process to 𝑗. If
the agent does not act before 𝑗 (that is, 𝑗 is the root of the process or only observation points are
encountered on the path from the root to 𝑗), we let 𝑝𝑗 = ⌀.

Example 2.2. As an example, consider again the TFDP faced by Player 1 in the game of Kuhn
poker [Kuh50], which was also recalled above in Example 2.1. We have that 𝒥 = {𝑗1,…, 𝑗6} and 𝒦 =
{𝑘1,…, 𝑘4}. We have:

𝐴𝑗1 = 𝑆𝑘4 = {check, raise}, 𝐴𝑗5 = {fold, call}, 𝑆𝑘1 = {jack, queen, king}

𝑝𝑗4 = (𝑗1, check), 𝑝𝑗6 = (𝑗3, check), 𝑝𝑗1 = 𝑝𝑗2 = 𝑝𝑗3 = ⌀.

Furthermore,

𝜌(𝑘3, check) = 𝜌(𝑗2, raise) =⊥, 𝜌(𝑘1, king) = 𝑗3, 𝜌(𝑗2, check) = 𝑘3.

Notation for the components of vectors. Any vector 𝑥 ∈ ℝΣ has, by definition, as many components as
sequences Σ. The component corresponding to a specific sequence 𝑗𝑎 ∈ Σ is denoted as 𝑥[𝑗𝑎]. Similarly,
given any decision point 𝑗 ∈ 𝒥, any vector 𝑥 ∈ ℝ𝐴𝑗 has as many components as the number of actions at
𝑗. The component corresponding to a specific action 𝑎 ∈ 𝐴𝑗 is denoted 𝑥[𝑎].

Symbol Description

𝒥 Set of decision points

𝐴𝑗 Set of legal actions at decision point 𝑗 ∈ 𝒥

𝒦 Set of observation points

𝑆𝑘 Set of possible signals at observation point 𝑘 ∈ 𝒦

𝜌 Transition function:
• given 𝑗 ∈ 𝒥 and 𝑎 ∈ 𝐴𝑗, 𝜌(𝑗, 𝑎) returns the next decision or observation point 𝑣 in 𝒥 ∪𝒦

in the decision tree that is reached after selecting legal action 𝑎 ∈ 𝑗, or ⊥ if the decision
process ends;

• given 𝑘 ∈ 𝒦 and 𝑠 ∈ 𝑆𝑘 , 𝜌(𝑘, 𝑠) returns the next decision or observation point 𝑣 ∈ 𝒥 ∪
𝐾 in the decision tree that is reached after observing signal 𝑠 at 𝑘, or ⊥ if the decision
process ends

Σ Set of sequences, defined as Σ ≔ {(𝑗, 𝑎) : 𝑗 ∈ 𝐽, 𝑎 ∈ 𝐴𝑗}

𝑝𝑗 Parent sequence of decision point 𝑗 ∈ 𝒥, defined as the last sequence (decision point-action
pair) on the path from the root of the TFDP to decision point 𝑗; if the agent does not act
before 𝑗, 𝑝𝑗 = ⌀

Table 1: Summary of notation for tree-form decision processes.

3

2.2 Pseudocode for CFR
Pseudocode for CFR is given in Algorithm 1. Note that the implementation is parametric on the regret
minimization algorithms ℛ𝑗 run locally at each decision point. Any regret minimizer ℛ𝑗 for simplex domains
can be used to solve the local regret minimization problems. Popular options are the regret matching
algorithm, and the regret matching plus algorithm (Lecture 5).

Algorithm 1: CFR regret minimizer

Data: ℛ𝑗 regret minimizer for Δ(𝐴𝑗); one for each decision point 𝑗 ∈ 𝒥 of the TFDP.

1 function NextStrategy()
[▹ Step 1: we ask each of the ℛ𝑗 for their next strategy local at each decision point]

2 for each decision point 𝑗 ∈ 𝒥
3 𝑏(𝑡)𝑗 ∈ Δ(𝐴𝑗) ← ℛ𝑗.NextStrategy()

[▹ Step 2: we construct the sequence-form representation of the strategy that plays according
to the distribution 𝑏(𝑡)𝑗 at each decision point 𝑗 ∈ 𝒥]

4 𝑥(𝑡) = 𝟎 ∈ ℝΣ
5 for each decision point 𝑗 ∈ 𝒥 in top-down traversal order in the TFDP
6 for each action 𝑎 ∈ 𝐴𝑗
7 if 𝑝𝑗 = ⌀
8 𝑥(𝑡)[𝑗𝑎] ← 𝑏(𝑡)𝑗 [𝑎]
9 else

10 𝑥(𝑡)[𝑗𝑎] ← 𝑥(𝑡)[𝑝𝑗] · 𝑏
(𝑡)
𝑗 [𝑎]

[▹ You should convince yourself that the vector 𝑥(𝑡) we just filled in above is a valid sequence-
form strategy, that is, it satisfies the required consistency constraints we saw in Lecture 9. In
symbols, 𝑥(𝑡) ∈ 𝑄]

11 return 𝑥(𝑡)

12 function ObserveUtility(𝑢(𝑡) ∈ ℝΣ)
[▹ Step 1: we compute the expected utility for each subtree rooted at each node 𝑣 ∈ 𝒥 ∪𝒦]

13 𝑉 (𝑡) ← empty dictionary [▹ eventually, it will map keys 𝒥 ∪𝒦∪ {⊥} to real numbers]
14 𝑉 (𝑡)[⊥] ← 0
15 for each node in the tree 𝑣 ∈ 𝒥 ∪𝒦 in bottom-up traversal order in the TFDP
16 if 𝑣 ∈ 𝒥
17 let 𝑗 ← 𝑣
18 𝑉 (𝑡)[𝑗] ← ∑𝑎∈𝐴𝑗 𝑏

(𝑡)
𝑗 [𝑎] · (𝑢(𝑡)[𝑗𝑎] + 𝑉 (𝑡)[𝜌(𝑗, 𝑎)])

19 else
20 let 𝑘 ← 𝑣
21 𝑉 (𝑡)[𝑘] ← ∑𝑠∈𝑆𝑘 𝑉

(𝑡)[𝜌(𝑘, 𝑠)]

[▹ Step 2: at each decision point 𝑗 ∈ 𝒥, we now construct a local utility vector 𝑢(𝑡)𝑗 called
counterfactual utility]

22 for each decision point 𝑗 ∈ 𝒥
23 𝑢(𝑡)𝑗 ← 𝟎 ∈ ℝ𝐴𝑗
24 for each action 𝑎 ∈ 𝐴𝑗
25 𝑢(𝑡)𝑗 [𝑎] ← 𝑢(𝑡)[𝑗𝑎] + 𝑉 (𝑡)[𝜌(𝑗, 𝑎)]
26 ℛ𝑗.ObserveUtility(𝑢(𝑡)𝑗)

4

Bibliography
[Kuh50] H. W. Kuhn, “A Simplified Two-Person Poker,” Contributions to the Theory of Games, vol. 1.

in Annals of Mathematics Studies, 24, vol. 1. Princeton University Press, Princeton, New Jersey,
pp. 97–103, 1950.

5

	Learning algorithms for extensive-form games
	The CFR algorithm
	Where the magic happens: counterfactual utilities
	Pseudocode for CFR

	Bibliography

