
MIT 6.S890 — Topics in Multiagent Learning Tue, Oct 1st 2024

Lecture 8

Learning in games: Φ-regret minimization

Instructor: Prof. Gabriele Farina (gfarina@mit.edu)★

As we have seen, external regret minimization is a very narrow instantiation of Φ-regret minimization—
perhaps the smallest sensible instantiation. Then, clearly, the problem of coming up with a regret minimizer
for a set 𝒳 cannot be harder than the problem of coming up with a Φ-regret minimizer for 𝒳 for richer
sets of transformation functions Φ. It might then seem surprising that there exists a construction that
reduces Φ-regret minimization to regret minimization. We see this general construction in Section 2. First,
we start with an example of this principle, whose discovery predates the general construction of Section 2,
and which happens to be a special case of it.

1 Blum-Mansour’s swap regret minimization algorithm
Let’s start by considering the task of constructing a swap regret minimizer for probability simplex 𝒳 =
Δ𝑛 over 𝑛 actions 𝐴 = {1, …, 𝑛}. As we mentioned in Lecture 4, when all players in a normal-form game
play according to the strategies generated by such an algorithm, the average product strategy converges to
the set of correlated equilibria of the game. The swap regret minimization algorithm of [BM07] is a simple
and elegant algorithm that minimizes swap regret by starting from multiple copies of an external regret
minimizer.

Recall that in swap regret minimization, the learner wants to minimize the Φ-regret with respect to the
set of strategy transformations Φ represented by stochastic matrices

Φ ≔

{{
{{
{{
{

𝑃 =

(
((
((
(|

𝑝1
↓

|
𝑝2
↓

⋯
|

𝑝𝑛
↓

)
))
))
)

: 𝑝1, …, 𝑝𝑛 ∈ Δ𝑛

}}
}}
}}
}

.

In order to construct a swap regret minimizer for 𝒳 = Δ𝑛, we start with |𝐴| copies of an external regret
minimizer for Δ𝑛, denoted by ℛ𝑖.

• To compute the NextStrategy() of the swap regret minimizer, we first call the NextStrategy() of
each ℛ𝑖 to obtain a distribution 𝑝(𝑡)

𝑖 ∈ Δ𝑛. We will then assemble all 𝑝(𝑡)
𝑖 into a stochastic matrix

𝑃 (𝑡), and will output a fixed point

𝑥(𝑡) = 𝑃 (𝑡)𝑥(𝑡) = ∑
𝑛

𝑖=1
𝑥(𝑡)

𝑖 𝑝(𝑡)
𝑖 ∈ Δ𝑛.

• To compute the ObserveUtility(𝑢(𝑡)) of the swap regret minimizer, we first call the ObserveUtility
of each ℛ𝑖 with the linear utility function

𝑣(𝑡)
𝑖 ≔ 𝑥(𝑡)

𝑖 𝑢(𝑡)

★These notes are class material that has not undergone formal peer review. The TAs and I are grateful for any reports of
typos.

1

mailto:gfarina@mit.edu

that is obtained by rescaling 𝑢(𝑡) by the component 𝑥(𝑡)
𝑖 of the last-output strategy 𝑥(𝑡).

The process can be depicted pictorially as in Figure 1.

External regret
minim. for Δ𝑛

Assemble 𝑃 (𝑡)

(𝑝(𝑡)
1 | ⋯ | 𝑝(𝑡)

𝑛)

External regret
minim. for Δ𝑛

External regret
minim. for Δ𝑛

Fixed point

𝑥(𝑡) = 𝑃 (𝑡)𝑥(𝑡)

Blum-Mansour’s swap regret minimizer

𝑢(𝑡)

Δ𝑛 → ℝ

⋮

𝑥(𝑡)
1 𝑢(𝑡) 𝑝(𝑡)

1

𝑥(𝑡)
2 𝑢(𝑡) 𝑝(𝑡)

2

𝑥(𝑡)
𝑛 𝑢(𝑡)

𝑝(𝑡)
𝑛

𝑥(𝑡) ∈ Δ𝑛

We now claim that the algorithm described above is a swap regret minimizer for Δ𝑛.

Theorem 1.1. Let Reg(𝑇)
𝑖 denote the regret incurred by each external regret minimizer ℛ𝑖 for Δ𝑛 in

the Blum-Mansour construction described above. Then, the swap regret cumulated by the algorithm
satisfies:

SwapReg(𝑇) ≤ ∑
𝑛

𝑖=1
Reg(𝑇)

𝑖 .

In particular, the swap regret grows sublinearly in 𝑇 whenever the extenral regret minimizers ℛ𝑖
guarantee sublinear regret.

Proof . By construction, the external regret incurred by each ℛ𝑖 is

Reg(𝑇)
𝑖 = max

�̃�𝑖∈Δ𝑛
∑
𝑇

𝑡=1
(𝑣(𝑡)(𝑝𝑖) − 𝑣(𝑡)(𝑝(𝑡)

𝑖)). (1)

Pick any 𝑃 = (𝑝1 | … | 𝑝𝑛) ∈ Φ. Then, the swap regret cumulated compared to always transforming
strategies according to 𝑃 is, by definition,

∑
𝑇

𝑡=1
𝑢(𝑡)(𝑃𝑥(𝑡)) − 𝑢(𝑡)(𝑥(𝑡)) = ∑

𝑇

𝑡=1
𝑢(𝑡)(𝑃𝑥(𝑡)) − 𝑢(𝑡)(𝑃 (𝑡)𝑥(𝑡)) (𝑥(𝑡) = 𝑃 (𝑡)𝑥(𝑡))

= ∑
𝑇

𝑡=1
[(∑

𝑛

𝑖=1
𝑥(𝑡)

𝑖 𝑢(𝑡)(𝑝𝑖)) − (∑
𝑛

𝑖=1
𝑥(𝑡)

𝑖 𝑢(𝑡)(𝑝(𝑡)
𝑖))] (linearity of 𝑢(𝑡))

= ∑
𝑇

𝑡=1
(∑

𝑛

𝑖=1
𝑣(𝑡)

𝑖 (𝑝𝑖) − 𝑣(𝑡)
𝑖 (𝑝(𝑡)

𝑖)) (definition of 𝑣(𝑡)
𝑖)

= ∑
𝑛

𝑖=1
(∑

𝑇

𝑡=1
𝑣(𝑡)

𝑖 (𝑝𝑖) − 𝑣(𝑡)
𝑖 (𝑝(𝑡)

𝑖)) (switching summation order)

≤ ∑
𝑛

𝑖=1
Reg(𝑇)

𝑖 . (from (1))

Taking a maximum over all 𝑃 ∈ Φ concludes the proof. □

2

2 A general approach: Gordon-Greenwald-Marks’s reduction
Blum-Mansour’s swap regret minimization algorithm is a special case of a much more general construction.
Gordon, G. J., Greenwald, A., & Marks, C. [GGM08] show that Φ-regret minimization for a strategy set
𝒳 can be constructed starting from the following two ingredients:

1. an external regret minimization for the set Φ; and
2. a fixed point oracle Φ, that is, an algorithm that given any 𝜙 ∈ Φ outputs a fixed point 𝜙(𝑥) = 𝑥 ∈ 𝒳.

Intuitively, the external regret minimizer for Φ has the role of tracking which transformation 𝜙 the decision
maker should focus on at each time time. The linear utility function 𝑈 (𝑡) : Φ → ℝ observed by the external
regret minimizer is constructed from the last-output strategy 𝑥(𝑡) and the utility function 𝑢(𝑡) observed at
time 𝑡, according to the formula

𝑈 (𝑡)(𝜙) = 𝑢(𝑡)(𝜙(𝑥(𝑡))), (2)

where 𝑥(𝑡) is the last-output strategy. The final construction is as follows:

• Each call to NextStrategy() first calls ℛ.NextStrategy() to obtain the next transformation 𝜙(𝑡). Then,
a fixed point 𝑥(𝑡) = 𝜙(𝑡)(𝑥(𝑡)) ∈ 𝒳 is computed and output.

• Each call to ObserveUtility(𝑢(𝑡)) with linear utility function 𝑢(𝑡) constructs the linear utility function
𝑈 (𝑡) : 𝜙 ↦ 𝑢(𝑡)(𝜙(𝑥(𝑡))) given in (2), and passes it to ℛ via ℛ.ObserveUtility(𝑈 (𝑡)).

Graphically, we can summarize the process as in the following block diagram.

Utility
construction
in Φ space

External regret
minimizer for Φ

Fixed point
𝑥(𝑡) = 𝜙(𝑡)(𝑥(𝑡))

Φ-regret minimizer Φ-Reg(𝑇)

Reg(𝑇)
Φ

𝑢(𝑡)

𝒳 → ℝ
𝑈 (𝑡)

Φ → ℝ
𝜙(𝑡) ∈ Φ 𝑥(𝑡) ∈ 𝒳

Figure 2: Gordon-Greenwald-Marks’s construction of a Φ-regret minimizer.

Theorem 2.1 ([GGM08]). The Φ-regret Φ-Reg(𝑇) cumulated up to time 𝑇 by we have just defined is
exactly equal to the (external) cumulative regret Reg(𝑇)

Φ cumulated by ℛ:

Φ-Reg(𝑇) = Reg(𝑇)
Φ ∀𝑇 = 1, 2, ….

Because the regret cumulated by ℛ grows sublinearly by hypothesis of it being a regret minimizer,
then so does the Φ-regret of the Φ-regret minimization algorithm defined above.

Proof . The proof of correctness of the above construction is deceptively simple. Since ℛ outputs trans-
formations 𝜙(1), 𝜙(2), … ∈ Φ and receives utilities 𝜙 ↦ 𝑢(1)(𝜙(𝑥(1))), 𝜙 ↦ 𝑢(2)(𝜙(𝑥(2))), …, its cumulative
regret 𝑅(𝑇) is by definition

Reg(𝑇)
Φ = max

𝜙∈Φ
{∑

𝑇

𝑡=1
(𝑢(𝑡)(𝜙(𝑥(𝑡))) − 𝑢(𝑡)(𝜙(𝑡)(𝑥(𝑡))))}.

Now, since by construction 𝑥(𝑡) is a fixed point of 𝜙(𝑡), 𝜙(𝑡)(𝑥(𝑡)) = 𝑥(𝑡), and therefore we can write

Reg(𝑇)
Φ = max

𝜙∈Φ
{∑

𝑇

𝑡=1
(𝑢(𝑡)(𝜙(𝑥(𝑡))) − 𝑢(𝑡)(𝑥(𝑡)))},

where the right-hand side is exactly the cumulative Φ-regret Φ-Reg(𝑇) incurred by ℛΦ. □

3

Bibliography
[BM07] A. Blum and Y. Mansour, “From external to internal regret.,” Journal of Machine Learning

Research, vol. 8, no. 6, 2007.

[GGM08] G. J. Gordon, A. Greenwald, and C. Marks, “No-regret learning in convex games,” in Proceedings
of the 25th international conference on Machine learning, 2008, pp. 360–367.

Changelog
• Oct 1: Fixed typo in the description of Gordon-Greenwald-Marks’s reduction

4

	Blum-Mansour's swap regret minimization algorithm
	A general approach: Gordon-Greenwald-Marks's reduction
	Bibliography

