
MIT 6.S890 — Topics in Multiagent Learning Tue, Sep 23rd 2024

Lecture 6
Learning in games: Algorithms (Part II)

Instructor: Prof. Gabriele Farina (  gfarina@mit.edu)★

★These notes are class material that has not undergone formal peer review. The TAs and I are grateful for any reports of
typos.

1  Predictivity, optimism, and acceleration
In recent years, there has been a lot of interest in the idea of optimism in learning algorithms. The funda-
mental idea behind optimism is the following:

When all players learn at the same time, the environment is stationary but not necessarily adversarial.
Can one then take advantage of this to design learning algorithms with better regret guarantees and
convergence properties?

1.1  Predictive algorithms

The idea of predictive is to anticipate the next utility gradient 𝑔(𝑡+1) by having a prediction 𝑚(𝑡+1). Based
on the prediction, the three following predictive algorithms can be defined.

Non-predictive version Predictive version

FTRL 𝑥(𝑡+1) ≔ arg max
𝑥∈𝒳

{⟨∑
𝑡

𝜏=1
𝑔(𝜏), 𝑥⟩ −

1
𝜂
𝜓(𝑥)} 𝑥(𝑡+1) ≔ arg max

𝑥∈𝒳
{⟨𝑚(𝑡+1) +∑

𝑡

𝜏=1
𝑔(𝜏), 𝑥⟩ −

1
𝜂
𝜓(𝑥)}

OMD 𝑥(𝑡+1) ≔ arg max
𝑥∈𝒳

{⟨𝑔(𝑡), 𝑥⟩ −
1
𝜂
D𝜓(𝑥 ‖ 𝑥(𝑡))}

● Non-reflected version:

𝑧(𝑡+1) ≔ arg max
𝑧∈𝒳

{⟨𝑔(𝑡), 𝑧⟩ −
1
𝜂
D𝜓(𝑧 ‖ 𝑧(𝑡))}

𝑥(𝑡+1) ≔ arg max
𝑥∈𝒳

{⟨𝑚(𝑡+1), 𝑥⟩ −
1
𝜂
D𝜓(𝑥 ‖ 𝑧(𝑡+1))}

● Reflected version:

𝑥(𝑡+1) ≔ arg max
𝑥∈𝒳

{⟨𝑔(𝑡) +𝑚(𝑡+1) −𝑚(𝑡), 𝑥⟩ −
1
𝜂
D𝜓(𝑥 ‖ 𝑥(𝑡))}

While the three predictive algorithms are in general different, they coincide in the special case of Legendre
regularizers (see also Remark 2.1 in Lecture 5).

Remark 1.1.  For Legendre regularizers (i.e., when 𝜓’s gradients go to infinity at the boundary of 𝒳),
the three predictive algorithms (FTRL, non-reflected OMD, reflected OMD) coincide.

It is also worth noting that the predictive versions of the algorithms subsume the non-predictive versions
as a special case, as we point out in the next remark.
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Remark 1.2.  The standard (non-predictive) FTRL and OMD algorithms correspond to the case where
the prediction is set to zero, i.e., 𝑚(𝑡) = 0 at all times 𝑡.

1.2  Optimism

The idea of optimism is to use predictivity with the specific guess 𝑚(𝑡+1) = 𝑔(𝑡) at all times 𝑡. This corre-
sponds to predicting that the feedback is slow-changing.

Example 1.1 (Optimistic online gradient ascent).  The non-reflective OMD algorithm instantiated with
squared Euclidean norm 𝜓(𝑥) = 1

2‖𝑥‖
2
2 gives rise to the (non-reflective) optimistic online gradient ascent

algorithm, whose update rule is

𝑧(𝑡+1) ≔Π𝒳(𝑧(𝑡) + 𝜂𝑔(𝑡)), 𝑥(𝑡+1) ≔Π𝒳(𝑧(𝑡+1) + 𝜂𝑔(𝑡)). (1)

Example 1.2 (Optimistic MWU).  For the MWU algorithm, the optimistic version of FTRL, non-
reflective OMD, and reflective OMD all coincide, and give rise to the following update rule:

𝑥(𝑡+1) ∝ exp(𝜂𝑟(𝑡) + 𝜂(𝑟(𝑡) − 𝑟(𝑡−1))).

In two-player games, optimism serves as a form of negative momentum that pushes the iterates towards
the equilibrium. We illustrate this in the following example. We will give a quantitative analysis of the
effect of optimism in the convergence of learning algorithms in Section 2.

Example 1.3.  The plots on the right show the dynamics of the optimistic and non-optimistic
versions of MWU and OGD in the small
two-player zero-sum game we used in Ex-
ample 2.2 of Lecture 5, whose utility ma-
trix is

U1 ≔ (20
1
2).

The multiplicative weights update algo-
rithm was set up with constant learning
rate 𝜂 = 0.25, while the online gradient
descent algorithm was set up with learn-
ing rate 𝜂 = 0.1. The optimistic version of
online projected gradient descent (OGD)
was non-reflective. The purple dot in-
dicates the starting strategy. The gray
dotted line tracks the profile of average
strategies.

As mentioned, the optimistic dynamics
exhibit a “push” towards equilibrium,
due to the negative momentum effect,
which results in convergence towards the
unique Nash equilibrium 𝑥∗ = (2/3, 1/3),
𝑦∗ = (1/3, 2/3).
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1.3  Predictive regret bounds (RVU)

Intuitively, one would expect that predictions help in reducing the regret of the learning algorithm. At one
extreme, one would presumably hope that if the prediction is perfect, then the regret would be very small.
This is indeed the case, as shown by [Syr+15].

Theorem 1.1 (RVU bound, [Syr+15]).  Predictive FTRL and Predictive OMD satisfy the following
regret bound, which is often called RVU bound (regret bounded by variation in utilities):

Reg(𝑇 ) ≤ max
𝑥̂∈𝒳

𝜓(𝑥) − 𝜓(𝑥(1))
𝜂

+ 𝜂∑
𝑇

𝑡=1
‖𝑔(𝑡) −𝑚(𝑡)‖2

∗
−
1
8𝜂
∑
𝑇

𝑡=2
‖𝑥(𝑡) − 𝑥(𝑡−1)‖2,

where ‖·‖∗ is the dual norm of ‖·‖.

Remark 1.3.  A consequence of the previous regret bound is the fact that—assuming 𝑚(𝑡) = 𝑔(𝑡) is
omniscent—the regret of the learning algorithm does not grow with time.

1.4  Accelerated convergence to Nash equilibria in two-player zero-sum games

As noted by [Syr+15], the RVU bound implies accelerated convergence to Nash equilibria in two-player
zero-sum games. The proof is quite elementary, and we present it next.

Theorem 1.2 (Accelerated convergence to Nash equilibria in two-player zero-sum games, [Syr+15]).
Consider any two-player zero-sum game; let U1 ∈ ℝ𝑚×𝑛 be the utility matrix for Player 1. If the players
employ regret minimizers that guarantee RVU regret bounds of the form

Reg(𝑇 )1 ≤
Ω1
𝜂
+ 𝜂∑

𝑇

𝑡=1
‖U1(𝑦(𝑡) − 𝑦(𝑡−1))‖

2
∗
−
1
8𝜂
∑
𝑇

𝑡=1
‖𝑥(𝑡) − 𝑥(𝑡−1)‖2

Reg(𝑇 )2 ≤
Ω2
𝜂
+ 𝜂∑

𝑇

𝑡=1
‖U1⊤(𝑥(𝑡) − 𝑥(𝑡−1))‖

2

∗
−
1
8𝜂
∑
𝑇

𝑡=1
‖𝑦(𝑡) − 𝑦(𝑡−1)‖2,

and 𝜂 ≤ 1/(4‖U1‖op), where ‖U1‖op ≔ max𝑧∈ℝ𝑛 ‖U1𝑧‖∗/‖𝑧‖ is the operator norm of U1, then, at any
time 𝑇 , the sum of the regrets of the players satisfies the bound

Reg(𝑇 )1 +Reg(𝑇 )2 ≤
Ω1 +Ω2
𝜂

which is constant with respect to time. This immediately implies convergence to the set of Nash equi-
libria in two-player zero-sum games at the rate of 𝑂𝑇 (1/𝑇 ).

Proof .  The statement follows from summing up the RVU bounds, and observing that the middle terms
cancel out with the right-most terms. More precisely, we have

Reg(𝑇 )1 ≤
Ω1
𝜂
+ 𝜂‖U1‖op∑

𝑇

𝑡=1
‖𝑦(𝑡) − 𝑦(𝑡−1)‖2

∗
−
1
8𝜂
∑
𝑇

𝑡=1
‖𝑥(𝑡) − 𝑥(𝑡−1)‖2

Reg(𝑇 )2 ≤
Ω2
𝜂
+ 𝜂‖U1‖op∑

𝑇

𝑡=1
‖𝑥(𝑡) − 𝑥(𝑡−1)‖2

∗
−
1
8𝜂
∑
𝑇

𝑡=1
‖𝑦(𝑡) − 𝑦(𝑡−1)‖2

Summing and using the fact that 𝜂 ≤ 1/4‖U1‖op by assumption, we obtain the statement. □
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1.5  Accelerated convergence to coarse correlated equilibria in general games

Rates of 𝑂̃(1/𝑇 ) for coarse correlated and correlated equilibria (CCE) via learning in normal-form games
(and beyond) are also known for the multiplayer case, but they are significantly harder to prove. One of
the main obstacles is due to the fact that convergence to CCE is driven by the maximum of the regrets of
the players, and not the sum as in two-player zero-sum Nash equilibria.

We mention some of the results in this direction.

• Syrgkanis, V., Agarwal, A., Luo, H., & Schapire, R. E. [Syr+15] showed 𝑂(𝑛 log|𝐴| 𝑇−34) for OMWU
using RVU bounds.

• This result was later improved by Chen, X., & Peng, B. [CP20] to 𝑂(𝑛 log56 |𝐴| 𝑇−56) for two-player
general-sum games only.

• Daskalakis, C., Fishelson, M., & Golowich, N. [DFG21] showed 𝑂(𝑛 log|𝐴| log
4 𝑇
𝑇 ) convergence for

OMWU using a very complicated analysis based on the idea of high-order stability.

• Farina, G., Anagnostides, I., Luo, H., Lee, C.-W., Kroer, C., & Sandholm, T. [Far+22] showed 
𝑂(𝑛 |𝐴| log𝑇𝑇 ) convergence rates using RVU bounds paired with a special regularizer.

2  Convergence in iterates
The convergence results we have seen so far pertain to the average strategies (either individual, or the
average of the product) produced by learning dynamics. One might then wonder what is known about the
iterate convergence to equilibrium. Complexity-theoretic considerations regarding the hardness of approx-
imating Nash equilibria preclude this phenomenon beyond two-player zero-sum games. As we now argue,
in two-player zero-sum games the phenomenon is indeed possible.

■ Best-iterate convergence.   Anagnostides, I., Panageas, I., Farina, G., & Sandholm, T. [Ana+22] showed
that when both players use optimistic gradient ascent, the best iterate converges to the Nash equilibrium in
two-player zero-sum games at the rate of 𝑂𝑇(1/

√
𝑇). At a high level, the proof of this result is in two steps.

First, the authors show that the sum of the squared distances between consecutive iterates is bounded
by a constant. This implies that at least one iterate is close to the previous one. Second, they show that
small simultaneous movements imply proximity to a Nash equilibrium. Both of these steps require only
elementary calculations; feel free to try to reproduce the result yourself or check the details in the original
paper.

■ Last-iterate convergence.   Cai, Y., Oikonomou, A., & Zheng, W. [COZ22] improved the best-iterate
result mentioned above by showing last iterate converges to the Nash equilibrium at the rate of 𝑂𝑇(1/

√
𝑇)

for optimistic OGD. Their analysis is significantly more involved, and revolves around studying a Lyapunov
potential function that was discovered via semidefinite programming.

Both of the results mentioned above pertain to optimistic OGD. Arguably, it was believed for a while in
the community that good last-iterate convergence of OMWU were in the air, just “one good trick” away.
After all, OMWU had always spoiled us with its good properties. Furthermore, the paper by Hsieh, Y.-
G., Antonakopoulos, K., & Mertikopoulos, P. [HAM21] showed asymptotic (i.e., in the limit, but without
any concrete rates) convergence of optimistic MWU to the set of equilibria in two-player zero-sum games.
So, it seemed pretty likely that good, concrete rates of convergence could be established beyon optimistic
gradient ascent. However, in a recent twist, it was shown that the sitution is less rosy than expected. We
illustrate this with an example.
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Example 2.1 (Poor last-iterate convergence of FTRL, [Cai+24]).  Consider the two-player zero-sum
game with utility matrix for Player 1 given by

U1(𝛿) ≔ (
1
2 + 𝛿
0

1
2
1
).

The game admits the unique Nash equilibrium (𝑥∗, 𝑦∗) where 𝑥∗ = ( 1
1+𝛿 ,

𝛿
1+𝛿), 𝑦

∗ = ( 1
2(1+𝛿) ,

1+2𝛿
2(1+𝛿)). In

particular, when 𝛿 is small, the equilibrium strategy for Player 1 is approximately 𝑥∗ = (1 − 𝛿, 𝛿) and
thus very close to the boundary of the strategy polytope of the player. This proximity to the bound-
ary affects the performance of all known instantiations of the the optimistic FTRL algorithm. To see
this numerically, the next four plots show the evolution of three optimistic FTRL variants (entropic,
Euclidean, and logarithmic) and the optimistic gradient ascent algorithm, in the game defined by 
𝛿 = 10−2.

   

The dynamics for the the first two algorithms get extremely close to the boundary—for example, when
using OMWU, iterates reached strategies with 1 − 𝑒−50 < 𝑥1 < 1.

By studying the dynamics produced by instantiations of the FTRL algorithm in the previous game, the
following result can be established.

Theorem 2.1 (Informal, [Cai+24]).  Under standard assumptions about the regularizer, there is no
function 𝑓 such that optimistic FTRL produces a last-iterate convergence rate of 𝑓(|𝐴1|, |𝐴2|, 𝑇 ) → 0
when all payoffs of the game are in [0, 1], and |𝐴1| and |𝐴2| are the number of actions of the players.
In other words, the last-iterate convergence rate must depend on some form of condition number of
the game.

Bibliography
[Syr+15] V. Syrgkanis, A. Agarwal, H. Luo, and R. E. Schapire, “Fast convergence of regularized learning

in games,” Advances in Neural Information Processing Systems (NeurIPS), vol. 28, 2015.

5



[CP20] X. Chen and B. Peng, “Hedging in games: Faster convergence of external and swap regrets,”
Advances in Neural Information Processing Systems, vol. 33, pp. 18990–18999, 2020.

[DFG21] C. Daskalakis, M. Fishelson, and N. Golowich, “Near-optimal no-regret learning in general
games,” Advances in Neural Information Processing Systems, vol. 34, pp. 27604–27616, 2021.

[Far+22] G. Farina, I. Anagnostides, H. Luo, C.-W. Lee, C. Kroer, and T. Sandholm, “Near-optimal no-
regret learning dynamics for general convex games,” Advances in Neural Information Processing
Systems, vol. 35, pp. 39076–39089, 2022.

[Ana+22] I. Anagnostides, I. Panageas, G. Farina, and T. Sandholm, “On Last-Iterate Convergence Be-
yond Zero-Sum Games,” in International Conference on Machine Learning,  2022.

[COZ22] Y. Cai, A. Oikonomou, and W. Zheng, “Finite-Time Last-Iterate Convergence for Learning in
Multi-Player Games,” in Advances in Neural Information Processing Systems (NeurIPS),  2022.
[Online].  Available: https://proceedings.neurips.cc/paper_files/paper/2022/file/db2d2001
f63e83214b08948b459f69f0-Paper-Conference.pdf

[HAM21] Y.-G. Hsieh, K. Antonakopoulos, and P. Mertikopoulos, “Adaptive learning in continuous games:
Optimal regret bounds and convergence to nash equilibrium,” in Conference on Learning The-
ory,  2021, pp. 2388–2422.

[Cai+24] Y. Cai et al., “Fast Last-Iterate Convergence of Learning in Games Requires Forgetful Algo-
rithms,” arXiv, Jun. 2024, doi: 10.48550/arXiv.2406.10631.

Changelog
• Sep 24: typos fixed.
• Sep 24: added Example 1.3.
• Sep 25: expanded discussion on constant regret and best-iterate convergence.
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