
MIT 6.S890 — Topics in Multiagent Learning Tue, Sep 17th 2024

Lecture 4
Learning in games: Foundations

Instructor: Prof. Gabriele Farina (  gfarina@mit.edu)★

★These notes are class material that has not undergone formal peer review. The TAs and I are grateful for any reports of
typos.

With this class we begin to explore what it means to “learn” in a game, and how that “learning”, which is
intrinsically a dynamic and local (per-player) concept, relates to the much more static and global concept
of game-theoretic equilibrium.

1  Hindsight rationality and Φ-regret
What does it mean to “learn” in games? Multiple answers are correct. However, today we focus on a
powerful answer through the concept of hindsight rationality.

Take the point of view of one player in a game, and denote with 𝒳 be their set of available strategies. In
normal-form games, we have seen that a strategy is just a distribution over the set of available actions 
U1, so 𝒳 = Δ𝐴. At each time 𝑡 = 1, 2, …, the player will play some strategy 𝑥(𝑡) ∈ 𝒳, receive some form
of feedback, and will incorporate that feedback to formulate a “better” strategy 𝑥(𝑡+1) ∈ 𝒳 for the next
repetition of the game. A typical (and natural) choice of “feedback” is just the utility of the player, given
what all the other agents played.

Now suppose that the game is played infinite times, and looking back at what was played by the player we
realize that every single time the player played a certain strategy 𝑥, they would have been strictly better
by consistently playing different strategy 𝑥′ instead. Can we really say that the player has “learnt” how to
play? Perhaps not. This concept goes under the name of hindsight rationality:

Definition 1.1 (Hindsight rationality, informal).  The player has “learnt” to play the game if looking
back at the history of play, they cannot think of any transformation 𝜙 : 𝒳 → 𝒳 of their strategies that,
when applied at the whole history of play, would have given strictly better utility to the player.

We have thus arrived to the following formalization.

Definition 1.2 (Φ-regret minimizer).  Given the strategy set 𝒳 and a set Φ of linear transformations 
𝜙 : 𝒳 → 𝒳, a Φ-regret minimizer for the set 𝒳 is a model for a decision maker that repeatedly interacts
with a black-box environment. At each time 𝑡, the regret minimizer interacts with the environment
through two operations:

• NextStrategy has the effect that the regret minimizer will output an element 𝑥(𝑡) ∈ 𝒳;
• ObserveUtility(𝑢(𝑡)) provides the environment’s feedback to the regret minimizer, in the form

of a linear utility function 𝑢(𝑡) : 𝒳 → ℝ that evaluates how good the last-output point 𝑥(𝑡) was.
The utility function can depend adversarially on the outputs 𝑥(1), …, 𝑥(𝑡) if the regret minimizer
is deterministic (i.e., does not use randomness internally¹).
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Its quality metric is its cumulative Φ-regret, defined as the quantity

Φ-Reg(𝑇 ) ≔ max
𝜙∈Φ

{∑
𝑇

𝑡=1
𝑢(𝑡)(𝜙(𝑥(𝑡))) − 𝑢(𝑡)(𝑥(𝑡))},

The goal for a Φ-regret minimizer is to guarantee that its Φ-regret grows asymptotically sublinearly
as time 𝑇  increases, no matter the sequence of utility functions 𝑢(𝑡).

¹When randomness is involved, the utility function cannot depend adversarially on 𝑥(𝑡) or guaranteeing sublinear regret
would be impossible. Rather, 𝑢(𝑡) must be conditionally independent on 𝑥(𝑡), given all past random outcomes.

Calls to NextStrategy and ObserveUtility keep alternating to each other: first, the regret minimizer will
output a point 𝑥(1), then it will received feedback 𝑢(1) from the environment, then it will output a new point
𝑥(2), and so on. The decision making encoded by the regret minimizer is online, in the sense that at each
time 𝑡, the output of the regret minimizer can depend on the prior outputs 𝑥(1), …, 𝑥(𝑡−1) and corresponding
observed utility functions 𝑢(1), …, 𝑢(𝑡−1), but no information about future utilities is available.

1.1  Some notable choices for the set of transformations Φ considered

The size of the set of transformations Φ considered by the player defines a natural notion of how “rational”
the agent is. There are several choices of interest for Φ for a normal-form strategy space 𝒳 = Δ𝐴.

• Φ = set of all stochastic matrices, mapping Δ𝐴 → Δ𝐴. This notion of Φ-regret is known under the
name swap regret. This notion is related to convergence to the set of correlated equilibria.

• Φ = set of all “probability mass transport” on 𝒳, defined as

Φ = {𝜙𝑎→𝑏}𝑎,𝑏∈𝐴, where (𝜙𝑎→𝑏(𝑥))𝑠 ≔

⎩
{
⎨
{
⎧0 if 𝑠 = 𝑎 (remove mass from 𝑎...)

𝑥𝑏 + 𝑥𝑎 if 𝑠 = 𝑏 (... and give it to 𝑏)
𝑥𝑠 otherwise.

This is known as internal regret.

Theorem 1.1 (Informal; formal version in Theorem 2.3).  When all agents in a multiplayer gen-
eral-sum normal-form game play so that their internal or swap regret grows sublinearly, their
average correlated distribution of play converges to the set of correlated equilibria of the game.

In sequential games, the above concept extends to Φ = a particular set of linear transformations
called trigger deviation functiona. It is known that in this case the Φ-regret can be efficiently bounded
with a polynomial dependence on the size of the game tree. The reason why this choice of deviation
functions is important is given by the following fact.

Theorem 1.2 (Informal).  When all agents in a multiplayer general-sum extensive-form game
play so that their Φ-regret relative to trigger deviation functions grows sublinearly, their average
correlated distribution of play converges to the set of extensive-form correlated equilibria of the
game.

• Φ = constant transformations. In this case, we are only requiring that the player not regret substi-
tuting all of the strategies they played with the same strategy 𝑥 ∈ Δ𝐴. Φ-regret according to this set
of transformations Φ is usually called external regret, or more simply just regret. While this seems like
an extremely restricted notion of rationality, it actually turns out to be already extremely powerful.
We will spend the rest of this class to see why.
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Theorem 1.3 (Informal; formal version in Theorem 2.3).  When all agents in a multiplayer gen-
eral-sum normal-form game play so that their external regret grows sublinearly, their average
correlated distribution of play converges to the set of coarse correlated equilibrium of the game.

Corollary 1.1 (Informal).  When all agents in a two-player zero-sum normal-form game play so
that their external regret grows sublinearly, their average strategies converge to the set of Nash
equilibria of the game.

1.2  An important special case: regret minimization

The special case where Φ is chosen to be the set of constant transformations is so important that it warrants
its own special definition and notation.

Definition 1.3 (Regret minimizer).  Let 𝒳 be a set. An external regret minimizer for 𝒳—or simply
“regret minimizer for 𝒳”—is a Φconst-regret minimizer for the special set of constant transformations

Φconst ≔ {𝜙�̂� : 𝑥 ↦ 𝑥}�̂�∈𝒳.

Its corresponding Φconst-regret is called “external regret” or simply “regret”, and it is indicated with
the symbol

Reg(𝑇 ) ≔ max
�̂�∈𝒳

{∑
𝑇

𝑡=1
𝑢(𝑡)(𝑥) − 𝑢(𝑡)(𝑥(𝑡))}.

Once again, the goal for a regret minimizer is to have its cumulative regret Reg𝑇  grow sublinearly in 𝑇 .
An important result in the subfield of online linear optimization asserts the existence of algorithms that
guarantee sublinear regret for any convex and compact domain 𝒳, typically of the order Reg𝑇 = 𝑂(

√
𝑇)

asymptotically.

As it turns out, external regret minimization alone is enough to guarantee convergence to Nash equilibrium
in two-player zero-sum games, to coarse correlated equilibrium in multiplayer general-sum games, to best
responses to static stochastic opponents in multiplayer general-sum games, and much more.

■ Teaser: From regret minimization to Φ-regret minimization.   As we have seen, regret minimization is
a very narrow instantiation of Φ-regret minimization—perhaps the smallest sensible instantiation. Then,
clearly, the problem of coming up with a regret minimizer for a set 𝒳 cannot be harder than the problem
of coming up with a Φ-regret minimizer for 𝒳 for richer sets of transformation functions Φ. It might then
seem surprising that there exists a construction that reduces Φ-regret minimization to regret minimization.
We will talk more about it in Lecture 8.

2  Applications of regret minimization
In order to establish regret minimization as a meaningful abstraction for learning in games, we must check
that regret minimizing and Φ-regret minimizing dynamics indeed lead to “interesting” or expected behavior
in common situations.

2.1  Learning a best response against stochastic opponents

As a first smoke test, let’s verify that over time a regret minimizer would learn how to best respond to static,
stochastic opponents. Specifically, consider this scenario. We are playing a repeated 𝑛-player general-sum
game with multilinear utilities (this captures normal-form game and extensive-form games alike), where
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Players 𝑖 = 1, …, 𝑛 − 1 play stochastically, that is, at each 𝑡 they independently sample a strategy 𝑥(𝑡)
𝑖 ∈

𝒳𝑖 from the same fixed distribution (which is unknown to any other player). Formally, this means that

𝔼[𝑥(𝑡)
𝑖 ] = 𝑥𝑖 ∀𝑖 = 1, …, 𝑛 − 1, 𝑡 = 1, 2, ….

Player 𝑛, on the other hand, is learning in the game, picking strategies according to some algorithm that
guarantees sublinear external regret, where the feedback observed by Player 𝑛 at each time 𝑡 is their own
linear utility function:

𝒖(𝑡) ≔ 𝒳𝑛 ∋ 𝑥𝑛 ↦ 𝑢𝑛(𝑥(𝑡)
1 , …, 𝑥(𝑡)

𝑛−1, 𝑥𝑛).

Then, the average of the strategies played by Player 𝑛 converges almost surely to a best response to 
𝑥1, …, 𝑥𝑛−1, that is,

1
𝑇

∑
𝑇

𝑡=1
𝑥(𝑡)

𝑛 ⟶⟶⟶⟶⟶⟶⟶⟶
a.s.

arg max
�̂�𝑛∈𝒳𝑛

{𝑢𝑛(𝑥1, …, 𝑥𝑛−1, 𝑥𝑛)}.

(You should try to prove this!)

2.2  Self-play convergence to bilinear saddle points (such as a Nash equilibrium in a two-
player zero-sum game)

It turns out that regret minimization can be used to converge to bilinear saddle points, that is solutions
to problems of the form

max
𝑥∈𝒳

min
𝑦∈𝒴

𝑥⊤U1𝑦, (1)

where 𝒳 and 𝒴 are convex compact sets and U1 is a matrix. These types of optimization problems are
pervasive in game-theory. The canonical prototype of bilinear saddle point problem is the computation of
Nash equilibria in two-player zero-sum games (either normal-form or extensive-form). There, a Nash equi-
librium is the solution to (1) where 𝒳 and 𝒴 are the strategy spaces of Player 1 and Player 2 respectively
(probability simplexes for normal-form games or sequence-form polytopes for extensive-form games), and 
U1 is the payoff matrix for Player 1. Other examples include social-welfare-maximizing correlated equilibria
and optimal strategies in two-team zero-sum adversarial team games.

The idea behind using regret minimization to converge to bilinear saddle-point problems is to use self play.
We instantiate two regret minimization algorithms, ℛ𝒳 and ℛ𝒴, for the domains of the maximization and
minimization problem, respectively. At each time 𝑡 the two regret minimizers output strategies 𝑥(𝑡) and 
𝑦(𝑡), respectively. Then, they receive feedback 𝑢(𝑡)

𝒳 , 𝑢(𝑡)
𝒴  defined as

𝑢(𝑡)
𝒳 : 𝑥 ↦ (U1𝑦(𝑡))⊤𝑥, 𝑢(𝑡)

𝒴 : 𝑦 ↦ −(U1
⊤𝑥(𝑡))

⊤
𝑦.

We can summarize the process pictorially as follows.

ℛ𝒳

ℛ𝒴

𝑢(𝑡−1)
𝒳

𝑢(𝑡−1)
𝒴

𝑥(𝑡)

𝑦(𝑡) 𝑢(𝑡)
𝒴

𝑢(𝑡)
𝒳

ℛ𝒳

ℛ𝒴

𝑥(𝑡+1)

𝑦(𝑡+1)

A well known folk theorem establish that the pair of average strategies produced by the regret minimizers
up to any time 𝑇  converges to a saddle point of (1), where convergence is measured via the saddle point gap

0 ≤ 𝛾(𝑥, 𝑦) ≔ (max
�̂�∈𝒳

{𝑥⊤U1𝑦} − 𝑥⊤U1𝑦) + (𝑥⊤U1𝑦 − min
𝑦∈𝒴

{𝑥⊤U1𝑦}) = max
�̂�∈𝒳

{𝑥⊤U1𝑦} − min
�̂�∈𝒳

{𝑥⊤U1𝑦}.

A point (𝑥, 𝑦) ∈ 𝒳 × 𝒴 has zero saddle point gap if and only if it is a solution to (1).
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Theorem 2.1.  Consider the self-play setup summarized in the figure above, where ℛ𝒳 and ℛ𝒴 are
regret minimizers for the sets 𝒳 and 𝒴, respectively. Let Reg(𝑇 )

𝒳  and Reg(𝑇 )
𝒴  be the (sublinear) regret

cumulated by ℛ𝒳 and ℛ𝒴, respectively, up to time 𝑇 , and let 𝑥(𝑇 ) and 𝑦(𝑇 ) denote the average of the
strategies produced up to time 𝑇 . Then, the saddle point gap 𝛾(𝑥(𝑇 ), 𝑦(𝑇 )) of (𝑥(𝑇 ), 𝑦(𝑇 )) satisfies

𝛾(𝑥(𝑇 ), 𝑦(𝑇 )) ≤
Reg(𝑇 )

𝒳 + Reg(𝑇 )
𝒴

𝑇
→ 0 as 𝑇 → ∞.

Proof .  By definition of regret,

Reg(𝑇 )
𝒳 + Reg(𝑇 )

𝒴

𝑇
=

1
𝑇

max
�̂�∈𝒳

{∑
𝑇

𝑡=1
𝑢(𝑡)

𝒳 (𝑥)} −
1
𝑇

∑
𝑇

𝑡=1
𝑢(𝑡)

𝒳 (𝑥𝑡) +
1
𝑇

max
𝑦∈𝒴

{∑
𝑇

𝑡=1
𝑢(𝑡)

𝒴 (𝑦)} −
1
𝑇

∑
𝑇

𝑡=1
𝑢(𝑡)

𝒴 (𝑦𝑡)

=
1
𝑇

max
�̂�∈𝒳

{∑
𝑇

𝑡=1
𝑢(𝑡)

𝒳 (𝑥)} +
1
𝑇

max
𝑦∈𝒴

{∑
𝑇

𝑡=1
𝑢(𝑡)

𝒴 (𝑦)} (since 𝑢(𝑡)
𝒳(𝑥(𝑡)) + 𝑢(𝑡)

𝒴(𝑦(𝑡)) = 0)

=
1
𝑇

max
�̂�∈𝒳

{∑
𝑇

𝑡=1
𝑥⊤U1𝑦(𝑡)} +

1
𝑇

max
𝑦∈𝒴

{∑
𝑇

𝑡=1
−(𝑥(𝑡))⊤U1𝑦}

= max
�̂�∈𝒳

{𝑥⊤U1𝑦(𝑇 )} − min
𝑦∈𝒴

{(𝑥(𝑇 ))
⊤
U1𝑦} = 𝛾(𝑥(𝑇 ), 𝑦(𝑇 )).

□

2.3  Proof of the minimax theorem

The very existence of regret minimizers is a powerful enough fact to imply the minimax theorem!

Theorem 2.2 (Minimax theorem).  Let 𝒳 and 𝒴 be convex compact sets, and let U1 be a matrix.
Suppose that a regret minimizer ℛ𝒳 for set 𝒳 guaranteeing sublinear regret no matter the sequence
of utilities can be constructed. Then,

max
𝑥∈𝒳

min
𝑦∈𝒴

𝑥⊤U1𝑦 = min
𝑦∈𝒴

max
𝑥∈𝒳

𝑥⊤U1𝑦.

Proof .  One direction of the equality, specifically

max
𝑥∈𝒳

min
𝑦∈𝒴

𝑥⊤U1𝑦 ≤ min
𝑦∈𝒴

max
𝑥∈𝒳

𝑥⊤U1𝑦,

follows from definition (this is often called weak duality).

To show the reverse inequality, we will interpret the bilinear saddle point min{𝑦∈𝒴} max{𝑥∈𝒳} 𝑥⊤U1𝑦 as
a repeated game. At each time 𝑡, we will let a regret minimizer ℛ𝒳 pick actions 𝑥(𝑡) ∈ 𝒳, whereas we
will always assume that 𝑦(𝑡) ∈ 𝒴 is chosen by the environment to best respond to 𝑥(𝑡), that is,

𝑦(𝑡) ∈ arg min
𝑦∈𝒴

(𝑥(𝑡))⊤U1𝑦.

The utility function observed by ℛ𝒳 at each time 𝑡 is set to the linear function

𝑢(𝑡)
𝒳 (𝑥) = 𝑥⊤U1𝑦(𝑡).

Letting 𝑥(𝑇 ) ∈ 𝒳 and 𝑦(𝑇 ) ∈ 𝒴 be the average strategies output up to time 𝑇 , that is,
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𝑥(𝑇 ) ≔
1
𝑇

∑
𝑇

𝑡=1
𝑥(𝑡) 𝑦(𝑇 ) ≔

1
𝑇

∑
𝑇

𝑡=1
𝑦(𝑡),

then we have

max
𝑥∈𝒳

min
𝑦∈𝒴

𝑥⊤U1𝑦 ≥ min
𝑦∈𝒴

{(𝑥(𝑇 ))
⊤
U1𝑦} =

1
𝑇

min
𝑦∈𝒴

∑
𝑇

𝑡=1
(𝑥(𝑡))⊤U1𝑦 ≥

1
𝑇

∑
𝑇

𝑡=1
(𝑥(𝑡))⊤U1𝑦(𝑡).

The important insight is that the right-hand side can be related to the regret incurred on 𝒳: by defin-
ition,

1
𝑇

∑
𝑇

𝑡=1
(𝑥(𝑡))⊤U1𝑦(𝑡) = −

Reg(𝑇 )
𝒳

𝑇
+

1
𝑇

max
𝑥∈𝒳

{∑
𝑇

𝑡=1
𝑥𝑇 U1𝑦(𝑡)}

= −
Reg(𝑇 )

𝒳
𝑇

+ max
𝑥∈𝒳

𝑥𝑇 U1𝑦(𝑇 )

≥ −
Reg(𝑇 )

𝒳
𝑇

+ min
𝑦∈𝒴

max
𝑥∈𝒳

𝑥𝑇 U1𝑦

Combining the expressions, we obtain

max
𝑥∈𝒳

min
𝑦∈𝒴

𝑥⊤U1𝑦 ≥ min
𝑦∈𝒴

max
𝑥∈𝒳

𝑥⊤U1𝑦 −
Reg(𝑇 )

𝒳
𝑇

.

Letting 𝑇 → ∞ proves the result. □

2.4  Convergence to the set of correlated and coarse-correlated equilibria

The previous result is in fact a direct corollary of the more general connection between Φ-regret minimiza-
tion and the set of coarse-correlated equilibria in multiplayer general-sum games. We present a general
form of this connection in the next theorem.

Theorem 2.3 (Formal version of Theorems 1.1 and 1.3).  Let 𝑥(𝑡)
1 , …, 𝑥(𝑡)

𝑛  the strategies played by the
players at any time 𝑡, and let Φ-Reg(𝑡)

𝑖  denote the internal regret incurred by Player 𝑖 up to time 𝑡.
Consider now the average correlated distribution of play up to any time 𝑇 , that is, the distribution 
𝜇(𝑇 ) that selects a time 𝑡 uniformly at random from the set {1, …, 𝑇}, and selects actions (𝑎1, …, 𝑎𝑛)
independendently according to the 𝑥(𝑡)

𝑖 , that is,

𝜇(𝑇 ) ≔
1
𝑇

∑
𝑇

𝑡=1
𝑥(𝑡)

1 ⊗ … ⊗ 𝑥(𝑡)
𝑛 .

This distribution satisfies the inequality

max
𝜙∈Φ

𝔼𝑎~𝜇(𝑇) [𝑢𝑖(𝜙(𝑎𝑖), 𝑎−𝑖) − 𝑢𝑖(𝑎𝑖, 𝑎−𝑖)] ≤
Φ-Reg(𝑇 )

𝑖
𝑇

.

Proof .  Pick an arbitrary 𝜙 ∈ Φ. With the usual slight abuse of notation, we will denote with 𝜙(𝑎),
where 𝑎 is an action, as the strategy returned by 𝜙 when evaluated in the deterministic strategy that
places all the mass on 𝑎. Expanding the specific structure of 𝜇(𝑇 ), we can decompose the expectation

𝔼𝑎~𝜇(𝑇) [𝑢𝑖(𝜙(𝑎𝑖), 𝑎−𝑖) − 𝑢𝑖(𝑎𝑖, 𝑎−𝑖)]

as
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𝔼𝑎~𝜇(𝑇) [𝑢𝑖(𝜙(𝑎𝑖), 𝑎−𝑖) − 𝑢𝑖(𝑎𝑖, 𝑎−𝑖)]

=
1
𝑇

∑
𝑇

𝑡=1
𝔼𝑎~𝑥(𝑡)

1 ⊗…⊗𝑥(𝑡)
𝑛

[(𝑢𝑖(𝜙(𝑎𝑖), 𝑎−𝑖) − 𝑢𝑖(𝑎𝑖, 𝑎−𝑖))]

=
1
𝑇

∑
𝑇

𝑡=1
(𝑢𝑖(𝔼𝑎𝑖~𝑥(𝑡)

𝑖
𝜙(𝑎𝑖), 𝔼𝑎−𝑖~⊗𝑥(𝑡)

−𝑖
𝑎−𝑖) − 𝑢𝑖(𝔼𝑎𝑖~𝑥(𝑡)

𝑖
𝑎𝑖, 𝔼𝑎−𝑖~⊗𝑥(𝑡)

−𝑖
𝑎−𝑖))

=
1
𝑇

∑
𝑇

𝑡=1
(𝑢𝑖(𝜙(𝔼𝑎𝑖~𝑥(𝑡)

𝑖
𝑎𝑖), 𝔼𝑎−𝑖~⊗𝑥(𝑡)

−𝑖
𝑎−𝑖) − 𝑢𝑖(𝔼𝑎𝑖~𝑥(𝑡)

𝑖
𝑎𝑖, 𝔼𝑎−𝑖~⊗𝑥(𝑡)

−𝑖
𝑎−𝑖))

=
1
𝑇

∑
𝑇

𝑡=1
(𝑢𝑖(𝜙(𝑥(𝑡)

𝑖 ), 𝑥(𝑡)
−𝑖) − 𝑢𝑖(𝑥(𝑡)

𝑖 , 𝑥(𝑡)
−𝑖))

where the second equality follows by linearity of 𝜙 and 𝑢𝑖. Taking now a maximum over 𝜙 ∈ Φ, and
recognizing the definition of Φ-regret on the right-hand side, we obtain the desired inequality. □

Note that Theorem 2.3 holds for any set Φ. The approximate equilibria found this way are sometimes
called approximate Φ-equilibria. In the special cases of Φ = all constant transformations, it is clear that the
previous result implies convergence to the set of coarse correlated equilibria. For correlated equilibria, we
need to convince ourselves that any arbitrary mapping 𝐴 → 𝐴 can be represented via a stochastic matrix.
This is indeed the case, by constructing the matrix whose columns indicate what action is assigned to each
action in 𝐴 by the mapping. (You should convince yourself!) Finally, for the case of Φ = all probability
mass transportations, it is enough to note that the Phi regret of any stochastic matrix transformations is
at most |𝐴| times larger than the worst possible regret of a probability mass transportation between two
actions.
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