
MIT 6.S890 — Topics in Multiagent Learning Tue, Sep 12th 2024

Lecture 3
Setting and equilibria: the correlated equilibrium

Instructor: Prof. Gabriele Farina (  gfarina@mit.edu)★

★These notes are class material that has not undergone formal peer review. The TAs and I are grateful for any reports of
typos.

In this lecture, we will continue analyzing the properties of Nash equilibria in normal-form games. We
will then introduce the concept of correlated equilibrium, a relaxation of Nash equilibrium with desirable
properties.

1  Further properties of the Nash equilibrium
We ended Lecture 2 with the definition of a Nash equilibrium. Recall that a strategy profile is a Nash
equilibrium if no player can unilaterally deviate from their strategy to improve their payoff. We also dis-
cussed the existence of Nash equilibria in finite games, which is guaranteed by the Brouwer fixed-point
theorem.

1.1  Nash equilibrium in two-player zero-sum games

As mentioned in the previous lecture, in two-player zero-sum games the Nash equilibria are exactly those
strategy profiles for which both players are playing a maxmin strategy. We formalize this in the next
theorem. First, though, we introduce some notation which will make our life easier when dealing with two-
player games.

Definition 1.1 (Matrices 𝑈1 and 𝑈2 for two-player games).

Consider a generic two-player zero-sum game, as
shown on the right. As usual, we denote the sets
of actions for player by 𝐴1 and 𝐴2.

Let 𝑥 ∈ Δ(𝐴1) denote a strategy of Player 1, and
𝑦 ∈ Δ(𝐴2) a strategy of Player 2. We can express
the expected utilities for the players according to
the bilinear expressions

action 1 action 2 ⋯ action 𝑚
action 1 𝑎11, 𝑏11 𝑎12, 𝑏12 …, … 𝑎1𝑚, 𝑏1𝑚

action 2 𝑎21, 𝑏21 𝑎22, 𝑏22 …, … 𝑎2𝑚, 𝑏2𝑚

⋮ ⋮ , ⋮ ⋮ , ⋮ ⋱, ⋱ ⋮ , ⋮

action 𝑛 𝑎𝑛1, 𝑏𝑛1 𝑎𝑛2, 𝑏𝑛2 …, … 𝑎𝑛𝑚, 𝑏𝑛𝑚

𝑢1(𝑥, 𝑦) = 𝑥⊤𝑈1𝑦,

𝑢2(𝑥, 𝑦) = 𝑥⊤𝑈2𝑦,
where 𝑈1 ≔

⎝
⎜⎜
⎜⎜
⎛
𝑎11
𝑎21
⋮
𝑎𝑛1

𝑎12
𝑎22
⋮
𝑎𝑛2

⋯
⋯
⋱
⋯

𝑎1𝑚
𝑎2𝑚
⋮

𝑎𝑛𝑚⎠
⎟⎟
⎟⎟
⎞
, and 𝑈2 ≔

⎝
⎜⎜
⎜⎜
⎜⎜
⎛𝑏11
𝑏21
⋮
𝑏𝑛1

𝑏12
𝑏22
⋮
𝑏𝑛2

⋯
⋯
⋱
⋯

𝑏1𝑚
𝑏2𝑚
⋮
𝑏𝑛𝑚⎠

⎟⎟
⎟⎟
⎟⎟
⎞
.

From now on, we will assume that a two-player game has been defined, and we will use the notation with
𝑈1 and 𝑈2 defined above to refer to the utility matrices of the players.
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Theorem 1.1.  Consider a two-player zero-sum games, that is, one for which 𝑈2 = −𝑈1. Then, a strat-
egy profile (𝑥∗, 𝑦∗) ∈ Δ(𝐴1) × Δ(𝐴2) is a Nash equilibrium if and only if it is a maxmin strategy, i.e.,
if and only if

𝑥∗ ∈ arg max
𝑥∈Δ(𝐴1)

min
𝑦∈Δ(𝐴2)

𝑥⊤𝑈1𝑦, and 𝑦∗ ∈ arg max
𝑦∈Δ(𝐴2)

min
𝑥∈Δ(𝐴1)

𝑥⊤𝑈2𝑦.

Proof .  We will prove the result assuming we trust von Neumann’s minimax theorem, which states that

max
𝑥∈Δ(𝐴1)

min
𝑦∈Δ(𝐴2)

𝑥⊤𝑈1𝑦 = min
𝑦∈Δ(𝐴2)

max
𝑥∈Δ(𝐴1)

𝑥⊤𝑈1𝑦.

This is a direct consequence of linear programming duality.

(⟹) Suppose that (𝑥∗, 𝑦∗) is a Nash equilibrium. Then, by the definition of Nash equilibrium and using
the fact that 𝑈2 = −𝑈1, we have that

(𝑥∗)⊤𝑈1𝑦∗ = max
𝑥∈Δ(𝐴1)

𝑥⊤𝑈1𝑦∗, and (𝑥∗)⊤𝑈1𝑦∗ = min
𝑦∈Δ(𝐴2)

(𝑥∗)⊤𝑈1𝑦.

Hence, we can write the chain of equalities and inequalities

min
𝑦∈Δ(𝐴2)

max
𝑥∈Δ(𝐴1)

𝑥⊤𝑈1𝑦 ≤ max
𝑥∈Δ(𝐴1)

𝑥⊤𝑈1𝑦∗ = min
𝑦∈Δ(𝐴2)

(𝑥∗)⊤𝑈1𝑦 ≤ max
𝑥∈Δ(𝐴1)

min
𝑦∈Δ(𝐴2)

𝑥⊤𝑈1𝑦.

By the minimax theorem, all inequalities must in fact be equalities, and so (𝑥∗, 𝑦∗) satisfies

min
𝑦∈Δ(𝐴2)

max
𝑥∈Δ(𝐴1)

𝑥⊤𝑈1𝑦 = max
𝑥∈Δ(𝐴1)

𝑥⊤𝑈1𝑦∗ ⟺ 𝑦∗ ∈ arg min
𝑦∈Δ(𝐴2)

max
𝑥∈Δ(𝐴1)

𝑥⊤𝑈1𝑦

max
𝑥∈Δ(𝐴1)

min
𝑦∈Δ(𝐴2)

𝑥⊤𝑈1𝑦 = min
𝑦∈Δ(𝐴2)

(𝑥∗)⊤𝑈1𝑦 ⟺ 𝑥∗ ∈ arg max
𝑥∈Δ(𝐴1)

min
𝑦∈Δ(𝐴2)

𝑥⊤𝑈1𝑦.

(⟸) Conversely, suppose that 𝑥∗ and 𝑦∗ are maxmin strategies. Let 𝑣∗ be the common value of both
sides of the minimax theorem, that is,

𝑣∗ ≔ max
𝑥∈Δ(𝐴1)

min
𝑦∈Δ(𝐴2)

𝑥⊤𝑈1𝑦 = min
𝑦∈Δ(𝐴2)

max
𝑥∈Δ(𝐴1)

𝑥⊤𝑈1𝑦.

We now show that (𝑥∗, 𝑦∗) is a Nash equilibrium. By definition, this means we need to show that

(𝑥∗)⊤𝑈1𝑦∗ = max
𝑥∈Δ(𝐴1)

𝑥⊤𝑈1𝑦∗ and (𝑥∗)⊤𝑈1𝑦∗ = min
𝑦∈Δ(𝐴2)

(𝑥∗)⊤𝑈1𝑦.

Using the hypothesis,

𝑥∗ ∈ arg max
𝑥∈Δ(𝐴1)

min
𝑦∈Δ(𝐴2)

𝑥⊤𝑈1𝑦, ⟹ 𝑣∗ = min
𝑦∈Δ(𝐴2)

(𝑥∗)⊤𝑈1𝑦,

𝑥∗ ∈ arg min
𝑦∈Δ(𝐴2)

max
𝑥∈Δ(𝐴1)

𝑥⊤𝑈1𝑦, ⟹ 𝑣∗ = max
𝑥∈Δ(𝐴1)

𝑥⊤𝑈1𝑦∗.

These equalities imply that 𝑣∗ ≤ (𝑥∗)⊤𝑈1𝑦∗ and 𝑣∗ ≥ (𝑥∗)⊤𝑈1𝑦∗, and thus 𝑣∗ = (𝑥∗)⊤𝑈1𝑦∗. This
shows that the players are best responding to the strategy of the opponent, completing the proof
that (𝑥∗, 𝑦∗) is a Nash equilibrium. □

■ Computation.  As we will see shortly, Theorem 1.1 gives us nontrivial information about the structure
of Nash equilibria in two-player zero-sum games. But it also gives us a computational tool. Indeed, the
theorem above tells us that finding a Nash equilibrium in a two-player zero-sum game can be expressed as
an optimization problem. Let’s show that this optimization problem is a linear program. Without loss of
generality, let’s focus on Player 1′s optimization problem, that is,
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𝑥∗ ∈ arg max
𝑥∈Δ(𝐴1)

min
𝑦∈Δ(𝐴2)

𝑥⊤𝑈1𝑦.

The key insight is that this problem can be rewritten as
max
𝑣

s.t.

𝑣

𝑣 ≤ 𝑥⊤𝑈1𝑎2 ∀𝑎2 ∈ 𝐴2
1⊤𝑥 = 1, 𝑥 ≥ 0

which is a linear program with a linear number of constraints in the number of actions of Player 2. We can
use any linear programming solver to find such a solution. We will see more scalable methods to compute
maxmin strategies from repeat play starting next week.

■ Connection with linear programming.  It is worth pausing for a moment to appreciate some historical
context. We started the proof by assuming von Neumann’s minimax theorem, which we swept away as a
direct consequence of linear programming duality. However, historically, von Neumann did not have the
luxury of linear programming to prove his theorem. And in fact, there are some interesting things at play
here:

• The proof of von Neumann’s minimax theorem essentially hides an optimization duality argument;
the other way around is of course true, and with the luxury of hindsight we can now flick away the
proof of the minimax theorem as a one-line consequence of duality.

• In fact, the connection between linear programming and two-player zero-sum games: as it turns out,
solving linear programming and finding a Nash equilibrium in a two-player zero-sum games are com-
putationally equivalent. This means that any linear programming problem (with arbitrary constraints,
variables, etc.) can be efficiently converted into a two-player zero-sum game. This is less obvious than
it may seem. For one, the strategy sets in games are probability simplexes, while linear programs
might have arbitrary linear equality and inequality constraints. Furthermore, linear programs might
be unbounded or unfeasible; yet, a Nash equilibrium of a game always exists. It would have been
perfectly reasonably to believe that linear programming was a significantly more general tool than
equilibrium solvers for two-player zero-sum games, and we know today that that belief would have
been wrong. For more on this, see [Adl13; BR23; Ste23].

• All of this seems simple with the luxury of hindsight. But the two fields were not as closely connected
as we might think. We know this from a transcript of the first encounter between Dantzig, one of the
fathers of linear programming, and von Neumann, one of the fathers of game theory. And, perhaps
in what is a plot twist, it was von Neumann to teach Dantzig about duality!

“On October 3, 1947, I visited him (von Neumann) for the first time at the Institute for Advanced
Study at Princeton. I remember trying to describe to von Neumann, as I would to an ordinary
mortal, the Air Force problem. I began with the formulation of the linear programming model in
terms of activities and items, etc. Von Neumann did something which I believe was uncharacteristic
of him. “Get to the point,” he said impatiently. Having at times a somewhat low kindlingpoint, I said
to myself “O.K., if he wants a quicky, then thats what he will get.” In under one minute I slapped the
geometric and algebraic version of the problem on the blackboard. Von Neumann stood up and said
“Oh that!” Then for the next hour and a half, he proceeded to give me a lecture on the mathematical
theory of linear programs. At one point seeing me sitting there with my eyes popping and my mouth
open (after I had searched the literature and found nothing), von Neumann said: “I don’t want you
to think I am pulling all this out of my sleeve at the spur of the moment like a magician. I have
just recently completed a book with Oskar Morgenstern on the theory of games. What I am doing is
conjecturing that the two problems are equivalent. The theory that I am outlining for your problem
is an analogue to the one we have developed for games.” Thus I learned about Farkas’ Lemma, and
about duality for the first time.”

(quote from Dantzig, G. B. [Dan82])

• In light of the above you might be wondering how easy it would be to prove the minimax theorem
without relying on linear programming duality. As you will show in the homework, the mere existence
of learning dynamics in games is enough.
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■ Topological properties.  It is important to realize that what Theorem 1.1 is saying is that in two-player
zero-sum games, each player can plan their own strategy independently. Any combination of maxmin strate-
gies for the players forms an equilibrium. This is in contrast with the general case: there, in order to specify
a Nash equilibrium we need to provide a tuple of strategies for all players. In two-player zero-sum games,
instead, any product of maxmin strategies is an equilibrium. We have just arrived to the following direct
corollary.

Corollary 1.1. In a two-player zero-sum game, the set of Nash equilibria is a Cartesian product of
nonempty, convex, compact sets.

Since Cartesian products of nonempty, convex, and compact sets are themselves nonempty, convex, and
compact, Corollary 1.1 immediately implies the following as well.

Corollary 1.2.  The set of Nash equilibria in a two-player zero-sum games is nonempty, convex, and
compact.

It is worth remarking again that what does the heavy lifting here is really Theorem 1.1; the rest follows as
a direct corollary.

1.2  Nash equilibrium in two-player general-sum games

In the general two-player case, often referred to as two-player general-sum games, many of the nice prop-
erties of the zero-sum case are lost.

■ Topological properties.  Perhaps the most striking is that not only the set of Nash equilibria is no longer
guaranteed to be convex, but it is not even guaranteed to be contractible. We show this phenomenon with
the next example.

Remark 1.1 (Complex topology of Nash equilibria; Kohlberg-Mertens game [KM86]).  Beyond two-
player zero-sum games, the set of Nash equilibria in a game can be quite complex.

For one, it is not at all guaranteed that the set
is convex. Even more, the set might be topolog-
ically complex—for example exhibiting holes.

This phenomenon was already observed by
Kohlberg, E., & Mertens, J.-F. [KM86], who
considered the following two-player three-ac-
tion game:

A B C
A 1, 1 0, −1 −1, 1
B −1, 0 0, 0 −1, 0
C 1, −1 0, −1 −2, −2

The figure on the right, similar to the one in
[Mil+23], shows a projection of the set of all 
0.27-approximate Nash equilibria of this game,
i.e., all strategy profiles such that no player has a unilateral deviation that increases their utility by
more than 0.27 (this superset was chosen to make the set of Nash equilibria more visible).

4



■ Computation.  In two-player general-sum games, computation of Nash equilibria is not a linear program.
However, it is a linear complementarity problem (LCP), a more general class of problems than linear fea-
sibility programs, and which are written in the form

find
𝑥,𝑤∈ℝ

s.t.

𝑥

𝑤 = 𝑀𝑥 + 𝑞
𝑥 ≥ 0,𝑤 ≥ 0
𝑥⊤𝑤 = 0.

The Lemke-Howson algorithm is a well-known algorithm to solve LCPs, and it can be used to find Nash
equilibria in two-player general-sum games. However, the algorithm is not polynomial-time in the worst
case, and it can be hard to find Nash equilibria in practice. An important corollary of the connection
between two-player general-sum games and LCPs is the following:

Corollary 1.3.  In two-player general-sum games with rational payoffs, a rational Nash equilibrium
exists.

This follows directly from the way Lemke-Howson works, which is similar to the simplex algorithm. The
algorithm moves along edges of a rational polytope until it finds a Nash equilibrium. Since the algorithm
only moves along the edges of the polytope, it will only generate rational solutions.

An interesting result about the computation of 𝜀-approximate Nash equilibria is due to Lipton, R. J.,
Markakis, E., & Mehta, A. [LMM03], and is based on the rather simple observation that every game admits
an 𝜀-approximate Nash equilibrium where the strategy of Player 1 is supported on at most 𝑤 ≔ 𝑂( log|𝐴2|𝜀2 )
strategies. This follows from using a Hoeffding bound on samples from the distribution of Player 1′s strat-
egy. One can then check any support for Player 1′s strategy of size up to 𝑤, and for each such support,
solve a linear program to verify if a Nash equilibrium with that support exists. This gives a subexponential-
time algorithm (of order 𝑂(𝑠log 𝑠/𝜀2), where 𝑠 is the size of input) for computing an 𝜀-approximate Nash
equilibrium.

1.3  Nash equilibrium in games with more than two players

In games with more than two players, the behavior of Nash equilibria can be even more erratic.

■ Topological properties.  As a start, rational numbers might not be enough anymore to store the proba-
bilities of each player’s actions at equilibrium.

Example 1.1.  In his original paper, Nash showed a three-player game with rational payoffs and with the
property that all Nash equilibria prescribe probabilities that are irrational numbers [Nas51]. Another
simple example is also reported by Nau, R., Canovas, S. G., & Hansen, P. [NCH04], who proposed the
following three-player game

left right
top 3, 0, 2 0, 2, 0

bottom 0, 1, 0 1, 0, 0

(action X)

left right
top 1, 0, 0 0, 1, 0

bottom 0, 3, 0 2, 0, 3

(action Y)

This is an important result, as it shows that even in simple games, Nash equilibria might require
irrational numbers. From a computational point of view, this immediately raises the question of how
a Nash equilibrium solver could even represent such an output.

5



Remark 1.2.  The issues with irrational numbers do not stop at a simple square root here or there.
In fact, any polynomial root might be required to represent a Nash equilibrium. This was shown by
Bubelis, V. [Bub79], who showed how to construct games with arbitrary polynomial roots.

Beyond the representation, the topology of Nash equilibria is also in general arbitrarily complex in
three-player games. In particular, Datta, R. S. [Dat03] showed that for any real algebraic variety, one
can come up with some three-player game whose set of Nash equilibria is isomorphic to that variety.

■ Computation.  On the computational side, the situation is even more dire. As a first consideration,
because Nash equilibria might require irrational numbers, even the question of how to represent the output
equilibrium needs attention. In general, we cannot hope for an exact value. However, even asking for a
constant approximation turns out to be hard. We will talk about this in more detail at the end of the course,
where we relate the computation of (approximate) Nash equilibria to a complexity class called PPAD.

If one is willing to stomach a worst-case superpolynomial runtime, some methods exist. While the Lemke-
Howson algorithm cannot be used beyond two-player games, other methods (such as [PNS08]) still apply.

2  Correlated equilibrium and coarse correlated equilibrium
The discussion above shows that Nash equilibria can be hard to compute and might not form a convex
(or even contractible) set. This motivates the study of correlated equilibria [Aum74] and coarse correlated
equilibria [MV78], which are a relaxation of Nash equilibria that are easier to compute, always form a
convex set, and for which rational solutions always exist. As we will show starting in the next lecture,
another major advantage of correlated equilibria is that they can be learned from repeated play, in a way
that is fundamentally incompatible with Nash equilibria.¹

¹A paradigm that has been successful in applications is to learn a correlated equilibrium from repeated play, and then
marginalize it into a profile that is hoped to be close to a Nash equilibrium. This was used for example to reach superhuman
performance in multiplayer poker [BS19].

2.1  Coarse correlated equilibrium

Remember that in a Nash equilibrium we are seeking a strategy profile (𝑥1,…, 𝑥𝑛) ∈ Δ(𝐴1) × ⋯ ×Δ(𝐴𝑛)
such that no player can unilaterally deviate to improve their payoff, that is,

𝑢𝑖(𝑎′𝑖, 𝑥−𝑖) ≥ 𝑢𝑖(𝑥𝑖, 𝑥−𝑖) ∀𝑖 ∈ [𝑛], 𝑎′𝑖 ∈ 𝐴𝑖.

Here, 𝑢𝑖 was defined as the expected payoff when all the players randomize independently.

The concept of coarse correlated equilibrium is a relaxation of this definition. In a coarse correlated equilib-
rium, instead of asking for the players to pick independent strategies, we allow coordination. In particular,
we define the following.

Definition 2.1 (Coarse correlated equilibrium [MV78]).  A coarse correlated equilibrium (CCE) is a
correlated strategy 𝜇 ∈ Δ(𝐴1 ×…×𝐴𝑛) such that

𝔼(𝑎1,…,𝑎𝑛)~𝜇[𝑢𝑖(𝑎
′
1,…, 𝑎𝑛)] ≤ 𝔼(𝑎1,…,𝑎𝑛)~𝜇[𝑢𝑖(𝑎1,…, 𝑎𝑛)] ∀𝑖 ∈ [𝑛], 𝑎′𝑖 ∈ 𝐴𝑖. (1)

Remark 2.1.  The definition of a CCE is a relaxation of the definition of a Nash equilibrium. In a Nash
equilibrium, the players randomize independently; in a CCE, they can randomize in a correlated way.
A Nash equilibrium is a CCE 𝜇 that happens to be a product distribution, that is, 𝜇 = 𝑥1 ⊗⋯⊗ 𝑥𝑛.
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This shows that the set of CCEs is a superset of the set of Nash equilibria. Thus, a coarse correlated
equilibria always exists in every game.

■ Properties and computation.  We can turn Definition 2.1 into an optimization problem. The variables
are the entries of the probability distribution 𝜇. This is a (𝐴1 ×⋯×𝐴𝑛)-dimensional nonnegative vector
whose entries must satisfy the linear equality constraint

∑
𝑎1∈𝐴1

⋯ ∑
𝑎𝑛∈𝐴𝑛

𝜇𝑎1,…,𝑎𝑛 = 1.

Furthermore, expanding the expectation in inequality (1) defines a set of linear constraints

∑
𝑎1∈𝐴1

⋯ ∑
𝑎𝑛∈𝐴𝑛

𝜇𝑎1,…,𝑎𝑛𝑢𝑖(𝑎
′
𝑖, 𝑎−𝑖) ≤ ∑

𝑎1∈𝐴1

⋯ ∑
𝑎𝑛∈𝐴𝑛

𝜇𝑎1,…,𝑎𝑛𝑢𝑖(𝑎𝑖, 𝑎−𝑖) ∀𝑖 ∈ [𝑛], 𝑎′𝑖 ∈ 𝐴𝑖.

Hence, the set of CCEs is the intersection of a finite set of linear constraints, and so it is a convex polytope.
Note that the number of constraints is polynomial in the game (i.e., in the size of the payoff table), and
so we can use linear programming to compute and even optimize over the set of CCEs in time polynomial
in |𝐴1| × … × |𝐴𝑛|.

Corollary 2.1. Since the coefficients of the linear constraints are the payoffs of the game, the set of
CCEs is always a rational polytope.

It is worth knowing that a CCE can also be computed in polynomial time in imperfect-information se-
qeuntial games, despite the number of “actions” there, which is the number of strategies in the tree, is
exponential in the input. Unfortunately, we still lose the ability of optimizing over the set.

2.2  Correlated equilibrium

The concept of correlated equilibrium is an intermediate relaxation between Nash equilibrium and coarse
correlated equilibrium.

Definition 2.2 (Correlated equilibrium [Aum74]).  A correlated equilibrium (CE) is a correlated strategy
𝜇 ∈ Δ(𝐴1 ×…×𝐴𝑛) such that

𝔼(𝑎1,…,𝑎𝑛)~𝜇[𝑢𝑖(𝜙𝑖(𝑎𝑖), 𝑎−𝑖)] ≤ 𝔼(𝑎1,…,𝑎𝑛)~𝜇[𝑢𝑖(𝑎𝑖, 𝑎−𝑖)] ∀𝑖 ∈ [𝑛], 𝜙𝑖 : 𝐴𝑖 → 𝐴𝑖, (2)

where the function 𝜙𝑖 : 𝐴𝑖 → 𝐴𝑖 is arbitrary.

Remark 2.2.  A CCE is a special case of a CE, where the functions 𝜙𝑖 considered are only constant
functions. Furthermore, it is not hard to show from expanding the definition that any Nash equilibrium
is a CE. Thus, the set of CEs is a superset of the set of Nash equilibria and a subset of the set of CCEs.

All remarks made about the computation of CCEs in normal-form games apply to CEs as well. In partic-
ular, the set of CEs is a convex polytope, and a CE can be computed in polynomial time using linear
programming.

However, the remark about computation in imperfect-information sequential games does not apply to CEs.
Whether a CE can be computed efficiently in such games is an open question in the field. Some mild
evidence suggests that the problem might be hard. Intuitively, the issue is that the number of functions 𝜙
in those games might be too large to control.
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2.3  How to think about correlated play in games

We can think of the correlation between the strategies of the players in a correlated or coarse correlated
equilibrium as arising from some correlation device in the game. This is a trusted mediator that can
recommend but not enforce behavior. The distribution 𝜇 from which the correlation device samples rec-
ommendations is public knowledge, but the players only get to observe the recommended action that was
sampled for them. A correlated / coarse correlated equilibrium is then a distribution 𝜇 such that no player
can unilaterally deviate from the recommended action to improve their payoff.

The distinction between correlated and coarse correlated equilibrium is in when the players decide when
to commit to the recommended action. In a coarse correlated equilibrium, the players commit to the rec-
ommended action before the recommendation is made. In a correlated equilibrium, the players commit to
the recommended action after the recommendation is made.
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Changelog
• Sep 12: fixed typos.
• Sep 14: higher resolution 3d plot for Kohlberg-Mertens game.
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