
MIT 6.S890 — Topics in Multiagent Learning Thu, Sep 12th 2024
Lecture 3
Setting and equilibria: the correlated equilibrium
Instructor: Prof. Gabriele Farina ( gfarina@mit.edu)
In this lecture, we will continue analyzing the properties of Nash equilibria in normal-form games.
We will then introduce the concept of correlated equilibrium, a relaxation of Nash equilibrium with
desirable properties.
1 Further properties of the Nash equilibrium
We ended Lecture 2 with the definition of a Nash equilibrium. Recall that a strategy profile is a Nash
equilibrium if no player can unilaterally deviate from their strategy to improve their payoff. We also
discussed the existence of Nash equilibria in finite games, which is guaranteed by the Brouwer fixed-
point theorem.
1.1 Nash equilibrium in two-player zero-sum games
As mentioned in the previous lecture, in two-player zero-sum games the Nash equilibria are exactly
those strategy profiles for which both players are playing a maxmin strategy. We formalize this in
the next theorem. First, though, we introduce some notation which will make our life easier when
dealing with two-player games.
Definition 1.1 (Matrices 𝑈1 and 𝑈2 for two-player games).
Consider a generic two-player zero-sum game,
as shown on the right. As usual, we denote the
sets of actions for player by 𝐴1 and 𝐴2.
Let 𝑥 ∈ Δ(𝐴1) denote a strategy of Player 1,
and 𝑦 ∈ Δ(𝐴2) a strategy of Player 2. We can
express the expected utilities for the players
according to the bilinear expressions
action 1 action 2 action 𝑚
action 1 𝑎11, 𝑏11 𝑎12, 𝑏12 ..., ... 𝑎1𝑚, 𝑏1𝑚
action 2 𝑎21, 𝑏21 𝑎22, 𝑏22 ..., ... 𝑎2𝑚, 𝑏2𝑚
, , , ,
action 𝑛 𝑎𝑛1, 𝑏𝑛1 𝑎𝑛2, 𝑏𝑛2 ..., ... 𝑎𝑛𝑚, 𝑏𝑛𝑚
𝑢1(𝑥, 𝑦) = 𝑥𝑈1𝑦,
𝑢2(𝑥, 𝑦) = 𝑥𝑈2𝑦,
where 𝑈1
(
((((((𝑎11
𝑎21

𝑎𝑛1
𝑎12
𝑎22

𝑎𝑛2




𝑎1𝑚
𝑎2𝑚

𝑎𝑛𝑚)
))))))
, and 𝑈2
(
((((((𝑏11
𝑏21

𝑏𝑛1
𝑏12
𝑏22

𝑏𝑛2




𝑏1𝑚
𝑏2𝑚

𝑏𝑛𝑚)
))))))
.
From now on, we will assume that a two-player game has been defined, and we will use the notation
with 𝑈1 and 𝑈2 defined above to refer to the utility matrices of the players.
Theorem 1.1. Consider a two-player zero-sum games, that is, one for which 𝑈2 = −𝑈1. Then,
a strategy profile (𝑥, 𝑦) ∈ Δ(𝐴1) × Δ(𝐴2) is a Nash equilibrium if and only if it is a maxmin
strategy, i.e., if and only if
𝑥 ∈ arg max
𝑥∈Δ(𝐴1)
min
𝑦∈Δ(𝐴2) 𝑥𝑈1𝑦, and 𝑦 ∈ arg max
𝑦∈Δ(𝐴2)
min
𝑥∈Δ(𝐴1) 𝑥𝑈2𝑦.
Proof . We prove the result assuming we trust von Neumann’s minimax theorem, which states
that
max
𝑥∈Δ(𝐴1)
min
𝑦∈Δ(𝐴2) 𝑥𝑈1𝑦 = min
𝑦∈Δ(𝐴2) max
𝑥∈Δ(𝐴1)
𝑥𝑈1𝑦.
This is a direct consequence of linear programming duality.
(⟹) Suppose that (𝑥, 𝑦) is a Nash equilibrium. Then, by the definition of Nash equilibrium
and using the fact that 𝑈2 = −𝑈1, we have that
(𝑥)𝑈1𝑦 = max
𝑥∈Δ(𝐴1)
𝑥𝑈1𝑦, and (𝑥)𝑈1𝑦 = min
𝑦∈Δ(𝐴2) (𝑥)𝑈1𝑦.
Hence, we can write the chain of equalities and inequalities
min
𝑦∈Δ(𝐴2) max
𝑥∈Δ(𝐴1)
𝑥𝑈1𝑦 ≤ max
𝑥∈Δ(𝐴1)
𝑥𝑈1𝑦 = min
𝑦∈Δ(𝐴2) (𝑥)𝑈1𝑦 ≤ max
𝑥∈Δ(𝐴1)
min
𝑦∈Δ(𝐴2) 𝑥𝑈1𝑦.
By the minimax theorem, all inequalities must in fact be equalities, and so (𝑥, 𝑦) satisfies
min
𝑦∈Δ(𝐴2) max
𝑥∈Δ(𝐴1)
𝑥𝑈1𝑦 = max
𝑥∈Δ(𝐴1)
𝑥𝑈1𝑦 𝑦 ∈ arg min
𝑦∈Δ(𝐴2)
max
𝑥∈Δ(𝐴1)
𝑥𝑈1𝑦
max
𝑥∈Δ(𝐴1)
min
𝑦∈Δ(𝐴2) 𝑥𝑈1𝑦 = min
𝑦∈Δ(𝐴2) (𝑥)𝑈1𝑦 𝑥 ∈ arg max
𝑥∈Δ(𝐴1)
min
𝑦∈Δ(𝐴2) 𝑥𝑈1𝑦.
(⟸) Conversely, suppose that 𝑥 and 𝑦 are maxmin strategies. Let 𝑣 be the common value of
both sides of the minimax theorem, that is,
𝑣 max
𝑥∈Δ(𝐴1)
min
𝑦∈Δ(𝐴2) 𝑥𝑈1𝑦 = min
𝑦∈Δ(𝐴2) max
𝑥∈Δ(𝐴1)
𝑥𝑈1𝑦.
We now show that (𝑥, 𝑦) is a Nash equilibrium. By definition, this means we need to
show that
(𝑥)𝑈1𝑦 = max
𝑥∈Δ(𝐴1)
𝑥𝑈1𝑦 and (𝑥)𝑈1𝑦 = min
𝑦∈Δ(𝐴2) (𝑥)𝑈1𝑦.
Using the hypothesis,
𝑥 ∈ arg max
𝑥∈Δ(𝐴1)
min
𝑦∈Δ(𝐴2) 𝑥𝑈1𝑦, 𝑣 = min
𝑦∈Δ(𝐴2) (𝑥)𝑈1𝑦,
𝑥 ∈ arg min
𝑦∈Δ(𝐴2)
max
𝑥∈Δ(𝐴1)
𝑥𝑈1𝑦, 𝑣 = max
𝑥∈Δ(𝐴1)
𝑥𝑈1𝑦.
These equalities imply that 𝑣 ≤ (𝑥)𝑈1𝑦 and 𝑣 ≥ (𝑥)𝑈1𝑦, and thus 𝑣 = (𝑥)𝑈1𝑦.
This shows that the players are best responding to the strategy of the opponent, completing
the proof that (𝑥, 𝑦) is a Nash equilibrium.
Computation. As we will see shortly, Theorem 1.1 gives us nontrivial information about the
structure of Nash equilibria in two-player zero-sum games. But it also gives us a computational tool.
Indeed, the theorem above tells us that finding a Nash equilibrium in a two-player zero-sum game
can be expressed as an optimization problem. Let’s show that this optimization problem is a linear
program. Without loss of generality, let’s focus on Player 1s optimization problem, that is,
𝑥 ∈ arg max
𝑥∈Δ(𝐴1)
min
𝑦∈Δ(𝐴2) 𝑥𝑈1𝑦.
The key insight is that this problem can be rewritten as
max
𝑣
s.t.
𝑣
𝑣 ≤ 𝑥𝑈1𝑎2 ∀𝑎2 ∈ 𝐴2
1𝑥 = 1, 𝑥 ≥ 0
which is a linear program with a linear number of constraints in the number of actions of Player 2.
We can use any linear programming solver to find such a solution. We will see more scalable methods
to compute maxmin strategies from repeat play starting next week.
Connection with linear programming. It is worth pausing for a moment to appreciate some historical
context. We started the proof by assuming von Neumann’s minimax theorem, which we swept away
as a direct consequence of linear programming duality. However, historically, von Neumann did not
have the luxury of linear programming to prove his theorem. And in fact, there are some interesting
things at play here:
• The proof of von Neumann’s minimax theorem essentially hides an optimization duality
argument; the other way around is of course true, and with the luxury of hindsight we can
now flick away the proof of the minimax theorem as a one-line consequence of duality.
• In fact, the connection between linear programming and two-player zero-sum games: as it
turns out, solving linear programming and finding a Nash equilibrium in a two-player zero-
sum games are computationally equivalent. This means that any linear programming problem
(with arbitrary constraints, variables, etc.) can be efficiently converted into a two-player zero-
sum game. This is less obvious than it may seem. For one, the strategy sets in games are
probability simplexes, while linear programs might have arbitrary linear equality and inequality
constraints. Furthermore, linear programs might be unbounded or unfeasible; yet, a Nash
equilibrium of a game always exists. It would have been perfectly reasonably to believe that
linear programming was a significantly more general tool than equilibrium solvers for two-
player zero-sum games, and we know today that that belief would have been wrong. For more
on this, see [Adl13; BR23; Ste23].
• All of this seems simple with the luxury of hindsight. But the two fields were not as closely
connected as we might think. We know this from a transcript of the first encounter between
Dantzig, one of the fathers of linear programming, and von Neumann, one of the fathers of
game theory. And, perhaps in what is a plot twist, it was von Neumann to teach Dantzig about
duality!
On October 3, 1947, I visited him (von Neumann) for the first time at the Institute for Advanced
Study at Princeton. I remember trying to describe to von Neumann, as I would to an ordinary mortal,
the Air Force problem. I began with the formulation of the linear programming model in terms of
activities and items, etc. Von Neumann did something which I believe was uncharacteristic of him.
“Get to the point,” he said impatiently. Having at times a somewhat low kindlingpoint, I said to
myself “O.K., if he wants a quicky, then thats what he will get.” In under one minute I slapped the
geometric and algebraic version of the problem on the blackboard. Von Neumann stood up and said
“Oh that!” Then for the next hour and a half, he proceeded to give me a lecture on the mathematical
theory of linear programs. At one point seeing me sitting there with my eyes popping and my mouth
open (after I had searched the literature and found nothing), von Neumann said: “I don’t want you
to think I am pulling all this out of my sleeve at the spur of the moment like a magician. I have
just recently completed a book with Oskar Morgenstern on the theory of games. What I am doing is
conjecturing that the two problems are equivalent. The theory that I am outlining for your problem
is an analogue to the one we have developed for games.” Thus I learned about Farkas’ Lemma, and
about duality for the first time.
(quote from Dantzig, G. B. [Dan82])
• In light of the above you might be wondering how easy it would be to prove the minimax
theorem without relying on linear programming duality. As you will show in the homework,
the mere existence of learning dynamics in games is enough.
Topological properties. It is important to realize that what Theorem 1.1 is saying is that in two-
player zero-sum games, each player can plan their own strategy independently. Any combination of
maxmin strategies for the players forms an equilibrium. This is in contrast with the general case:
there, in order to specify a Nash equilibrium we need to provide a tuple of strategies for all players.
In two-player zero-sum games, instead, any product of maxmin strategies is an equilibrium. We have
just arrived at the following corollary.
Corollary 1.1. In a two-player zero-sum game, the set of Nash equilibria is a Cartesian product
of nonempty, convex, compact sets.
Since Cartesian products of nonempty, convex, and compact sets are themselves nonempty, convex,
and compact, Corollary 1.1 immediately implies the following as well.
Corollary 1.2. The set of Nash equilibria in a two-player zero-sum games is nonempty, convex,
and compact.
It is worth remarking again that what does the heavy lifting here is really Theorem 1.1; the rest
follows as a direct corollary.
1.2 Nash equilibrium in two-player general-sum games
In the general two-player case, often referred to as two-player general-sum games, many of the nice
properties of the zero-sum case are lost.
Topological properties. Perhaps the most striking is that not only the set of Nash equilibria is
no longer guaranteed to be convex, but it is not even guaranteed to be contractible. We show this
phenomenon with the next example.
Remark 1.1 (Complex topology of Nash equilibria; Kohlberg-Mertens game [KM86]). Beyond
two-player zero-sum games, the set of Nash equilibria in a game can be quite complex.
For one, it is not at all guaranteed that the
set is convex. Even more, the set might be
topologically complex, e.g., exhibiting holes.
This phenomenon was already observed by
Kohlberg, E., & Mertens, J.-F. [KM86], who
considered the two-player three-action game
A B C
A 1, 1 0, −1 −1, 1
B −1, 0 0, 0 −1, 0
C 1, −1 0, −1 −2, −2
The figure on the right, similar to the one in
[Mil+23], shows the projection of the set of
all 0.27-approximate Nash equilibria of this
0.0
0.2
0.4
0.6
0.8
1.0 𝑥A
0.0
0.2
0.4
0.6
0.8
1.0
𝑥B
0.0
0.2
0.4
0.6
0.8
1.0
𝑦A
game, i.e., all strategy profiles such that no player has a unilateral deviation that increases their
utility by more than 0.27.
Computation. In two-player general-sum games, computation of Nash equilibria is not a linear
program. However, it is a linear complementarity problem (LCP), a more general class of problems
than linear feasibility programs, and which are written in the form
find 𝑥, 𝑤 ∈ ℝ s.t. 𝑤 = 𝑀 𝑥 + 𝑞, 𝑥, 𝑤 ≥ 0, 𝑥𝑤 = 0.
The Lemke-Howson algorithm is a well-known algorithm to solve LCPs, and it can be used to find
Nash equilibria in two-player general-sum games. However, the algorithm is not polynomial-time in
the worst case, and it can be hard to find Nash equilibria in practice. An important corollary of the
connection between two-player general-sum games and LCPs is the following:
Corollary 1.3. Any two-player general-sum games with rational payoffs admits a Nash equilib-
rium with rational coordinates.
This follows directly from the way Lemke-Howson works, which is similar to the simplex algorithm.
The algorithm moves along edges of a rational polytope until it finds a Nash equilibrium. Since the
algorithm only moves along the edges of the polytope, it will only generate rational solutions.
An interesting result about the computation of 𝜀-approximate Nash equilibria is due to Lipton, R.
J., Markakis, E., & Mehta, A. [LMM03], and is based on the observation that every game admits
an 𝜀-approximate Nash equilibrium where the strategy of Player 1 is supported on at most 𝑤 ≔
𝑂(log|𝐴2|
𝜀2 ) strategies. This follows from using a Hoeffding bound on samples from the distribution of
Player 1s strategy. One can then check any support for Player 1s strategy of size up to 𝑤, and for
each such support, solve a linear program to verify if a Nash equilibrium with that support exists.
This gives a subexponential-time algorithm (of order 𝑂(𝑠log 𝑠/𝜀2
), where 𝑠 is the size of input) for
computing an 𝜀-approximate Nash equilibrium.
1.3 Nash equilibrium in games with more than two players
In games with more than two players, the behavior of Nash equilibria can be even more problematic.
Analytic properties. As a start, rational numbers might not be enough anymore to store the
probabilities of each player’s actions at equilibrium.
Example 1.1. In his original paper, Nash showed a three-player game with rational payoffs and
with the property that all Nash equilibria prescribe probabilities that are irrational numbers
[Nas51]. Another simple example is also reported by Nau, R., Canovas, S. G., & Hansen, P.
[NCH04], as follows:
left right
top 3, 0, 2 0, 2, 0
bottom 0, 1, 0 1, 0, 0
(action X)
left right
top 1, 0, 0 0, 1, 0
bottom 0, 3, 0 2, 0, 3
(action Y)
A simple calculation shows that the only Nash equilibrium (𝑥, 𝑦, 𝑧) of this game satisfies
(𝑥
1, 𝑦
1, 𝑧
1) = (53
46 −
√601
46 , − 13
24 +
√601
24 , −23
4 +
√601
4 ) ≈ (0.619, 0.480, 0.379).
From a computational point of view, this property raises the question of how a Nash equilibrium
solver could even represent such an output.
Remark 1.2. The issues with irrational numbers do not stop at square roots. In fact, any
polynomial root might be required to represent a Nash equilibrium. This was shown by Bubelis,
V. [Bub79], who showed how to construct games with arbitrary polynomial roots.
Beyond the representation, the topology of Nash equilibria is also in general arbitrarily complex
in three-player games. In particular, Datta, R. S. [Dat03] showed that for any real algebraic
variety, one can come up with some three-player game whose set of Nash equilibria is isomorphic
to that variety.
Computation. On the computational side, the situation is even more dire. As a first consideration,
because Nash equilibria might require irrational numbers, even the question of how to represent the
output equilibrium needs attention. In general, we cannot hope for an exact value. However, even
asking for a constant approximation turns out to be hard. We will talk about this in more detail
at the end of the course, where we relate the computation of (approximate) Nash equilibria to a
complexity class called PPAD.
If one is willing to stomach a worst-case superpolynomial runtime, some methods exist. While the
Lemke-Howson algorithm cannot be used beyond two-player games, other methods (such as [PNS08])
still apply.
2 Correlated equilibrium and coarse correlated equilibrium
The discussion above shows that Nash equilibria can be hard to compute and might not form a
convex (or even contractible) set. This motivates the study of correlated equilibria [Aum74] and
coarse correlated equilibria [MV78], which are a relaxation of Nash equilibria that are easier to
compute, always form a convex set, and for which rational solutions always exist. As we will show
starting in the next lecture, another major advantage of correlated equilibria is that they can be
learned from repeated play, in a way that is fundamentally incompatible with Nash equilibria.¹
2.1 Coarse correlated equilibrium
Remember that in a Nash equilibrium we are seeking a strategy profile (𝑥1, ..., 𝑥𝑛) ∈ Δ(𝐴1) × ⋯ ×
Δ(𝐴𝑛) such that no player can unilaterally deviate to improve their payoff, that is,
𝑢𝑖(𝑎
𝑖, 𝑥−𝑖) ≥ 𝑢𝑖(𝑥𝑖, 𝑥−𝑖) ∀𝑖 ∈ [𝑛], 𝑎
𝑖 ∈ 𝐴𝑖.
Here, 𝑢𝑖 was defined as the expected payoff when all the players randomize independently.
The concept of coarse correlated equilibrium is a relaxation of this definition. In a coarse correlated
equilibrium, instead of asking for the players to pick independent strategies, we allow coordination.
In particular, we define the following.
Definition 2.1 (Coarse correlated equilibrium [MV78]). A coarse correlated equilibrium (CCE)
is a correlated strategy 𝜇 ∈ Δ(𝐴1 × ... × 𝐴𝑛) such that
𝔼(𝑎1,...,𝑎𝑛)∼𝜇[𝑢𝑖(𝑎
1, ..., 𝑎𝑛)] ≤ 𝔼(𝑎1,...,𝑎𝑛)∼𝜇[𝑢𝑖(𝑎1, ..., 𝑎𝑛)] ∀𝑖 ∈ [𝑛], 𝑎
𝑖 ∈ 𝐴𝑖. (1)
Remark 2.1. The definition of a CCE is a relaxation of the definition of a Nash equilibrium. In
a Nash equilibrium, the players randomize independently; in a CCE, they can randomize in a
correlated way. A Nash equilibrium is a CCE 𝜇 that happens to be a product distribution, that
is, 𝜇 = 𝑥1 ⊗ ⋯ ⊗ 𝑥𝑛.
This shows that the set of CCEs is a superset of the set of Nash equilibria. Thus, a coarse
correlated equilibria always exists in every game.
Properties and computation. We can turn Definition 2.1 into an optimization problem. The
variables are the entries of the probability distribution 𝜇. This is a (𝐴1 × ⋯ × 𝐴𝑛)-dimensional
nonnegative vector whose entries must satisfy the linear equality constraint

𝑎1∈𝐴1

𝑎𝑛∈𝐴𝑛
𝜇𝑎1,...,𝑎𝑛 = 1.
Furthermore, expanding the expectation in inequality (1) defines a set of linear constraints

𝑎1∈𝐴1

𝑎𝑛∈𝐴𝑛
𝜇𝑎1,...,𝑎𝑛 𝑢𝑖(𝑎
𝑖, 𝑎−𝑖) ≤
𝑎1∈𝐴1

𝑎𝑛∈𝐴𝑛
𝜇𝑎1,...,𝑎𝑛 𝑢𝑖(𝑎𝑖, 𝑎−𝑖) ∀𝑖 ∈ [𝑛], 𝑎
𝑖 ∈ 𝐴𝑖.
Hence, the set of CCEs is the intersection of a finite set of linear constraints, and so it is a convex
polytope. Note that the number of constraints is polynomial in the game (i.e., in the size of the
payoff table), and so we can use linear programming to compute and even optimize over the set of
CCEs in time polynomial in |𝐴1| × ... × |𝐴𝑛|.
Corollary 2.1. Since the coefficients of the linear constraints are the payoffs of the game, the set
of CCEs is always a rational polytope.
It is worth knowing that a CCE can also be computed in polynomial time in imperfect-information
seqeuntial games, despite the number of “actions” there, which is the number of strategies in the
tree, is exponential in the input. Unfortunately, we lose the ability to optimize over the set.
2.2 Correlated equilibrium
The concept of correlated equilibrium is an intermediate relaxation between Nash equilibrium and
coarse correlated equilibrium.
Definition 2.2 (Correlated equilibrium [Aum74]). A correlated equilibrium (CE) is a correlated
strategy 𝜇 ∈ Δ(𝐴1 × ... × 𝐴𝑛) such that
𝔼(𝑎1,...,𝑎𝑛)∼𝜇[𝑢𝑖(𝜙𝑖(𝑎𝑖), 𝑎−𝑖)] ≤ 𝔼(𝑎1,...,𝑎𝑛)∼𝜇[𝑢𝑖(𝑎𝑖, 𝑎−𝑖)] ∀𝑖 ∈ [𝑛], 𝜙𝑖 : 𝐴𝑖 → 𝐴𝑖, (2)
where the function 𝜙𝑖 : 𝐴𝑖 → 𝐴𝑖 is arbitrary.
Remark 2.2. A CCE is a special case of a CE, where the functions 𝜙𝑖 considered are only
constant functions. Furthermore, it is not hard to show from expanding the definition that any
Nash equilibrium is a CE. Thus, the set of CEs is a superset of the set of Nash equilibria and a
subset of the set of CCEs.
All remarks made about the computation of CCEs in normal-form games apply to CEs as well. In
particular, the set of CEs is a convex polytope, and a CE can be computed in polynomial time using
linear programming.
However, the remark about computation in imperfect-information sequential games does not apply
to CEs. Whether a CE can be computed efficiently in such games is an open question in the field.
Some mild evidence suggests that the problem might be hard. Intuitively, the issue is that the number
of functions 𝜙 in those games might be too large to control.
2.3 How to think about correlated play in games
We can think of the correlation between the strategies of the players in a correlated or coarse
correlated equilibrium as arising from some correlation device in the game. This is a trusted mediator
that can recommend but not enforce behavior. The distribution 𝜇 from which the correlation device
samples recommendations is public knowledge, but the players only get to observe the recommended
action that was sampled for them. A correlated / coarse correlated equilibrium is then a distribution
𝜇 such that no player can unilaterally deviate from the recommended action to improve their payoff.
The distinction between correlated and coarse correlated equilibrium is in when the players decide
when to commit to the recommended action. In a coarse correlated equilibrium, the players commit
to the recommended action before the recommendation is made. In a correlated equilibrium, the
players commit to the recommended action after the recommendation is made.
Bibliography
[BR23] B. Brooks and P. J. Reny, “A canonical game—75 years in the making—showing the
equivalence of matrix games and linear programming,” Econ. Theory Bull., vol. 11, no.
2, pp. 171–180, 2023, doi: 10.1007/s40505-023-00252-8.
[Ste23] B. von Stengel, “Zero-Sum Games and Linear Programming Duality,” Math. Oper. Res.,
Jul. 2023.
[Adl13] I. Adler, “The equivalence of linear programs and zero-sum games,” International Journal
of Game Theory, vol. 42, pp. 165–177, 2013.
[Dan82] G. B. Dantzig, “Reminiscences about the origins of linear programming,” Oper. Res. Lett.,
vol. 1, no. 2, pp. 43–48, 1982, doi: 10.1016/0167-6377(82)90043-8.
[KM86] E. Kohlberg and J.-F. Mertens, “On the strategic stability of equilibria,” Econometrica:
Journal of the Econometric Society, pp. 1003–1037, 1986.
[Mil+23] J. Milionis, C. Papadimitriou, G. Piliouras, and K. Spendlove, “An impossibility theorem
in game dynamics,” Proc. Natl. Acad. Sci. U.S.A., vol. 120, no. 41, 2023, doi: 10.1073/
pnas.2305349120.
[LMM03] R. J. Lipton, E. Markakis, and A. Mehta, “Playing large games using simple strategies,”
in Proceedings of the 4th ACM Conference on Electronic Commerce, New York, NY, USA:
Association for Computing Machinery, 2003, pp. 36–41. doi: 10.1145/779928.779933.
[Nas51] J. Nash, “Non-Cooperative Games,” Annals of Mathematics, vol. 54, no. 2, pp. 286–295,
1951, [Online]. Available: http://www.jstor.org.ezproxyberklee.flo.org/stable/1969529
[NCH04] R. Nau, S. G. Canovas, and P. Hansen, “On the geometry of Nash equilibria and correlated
equilibria,” International Journal of Game Theory, vol. 32, pp. 443–453, 2004.
[Bub79] V. Bubelis, “On equilibria in finite games,” International Journal of Game Theory, vol.
8, pp. 65–79, 1979.
[Dat03] R. S. Datta, “Universality of Nash equilibria,” Mathematics of Operations Research, vol.
28, no. 3, pp. 424–432, 2003.
[PNS08] R. Porter, E. Nudelman, and Y. Shoham, “Simple search methods for finding a Nash
equilibrium,” Games Econom. Behav., vol. 63, no. 2, pp. 642–662, 2008, doi: 10.1016/
j.geb.2006.03.015.
[Aum74] R. J. Aumann, “Subjectivity and correlation in randomized strategies,” J. Math. Econom.,
vol. 1, no. 1, pp. 67–96, 1974, doi: 10.1016/0304-4068(74)90037-8.
[MV78] H. Moulin and J. P. Vial, “Strategically zero-sum games: the class of games whose
completely mixed equilibria cannot be improved upon,” International Journal of Game
Theory, vol. 7, pp. 201–221, 1978.
[BS19] N. Brown and T. Sandholm, “Superhuman AI for multiplayer poker,” Science, vol. 365,
no. 6456, pp. 885–890, 2019, doi: 10.1126/science.aay2400.
Changelog
• Sep 12: fixed typos.
• Sep 14: higher resolution 3d plot for Kohlberg-Mertens game.
• Sep 15: added concrete coordinates in Example 1.1
These notes are class material that has not undergone formal peer review. The TAs and I are grateful for any
reports of typos.
¹A paradigm that has been successful in applications is to learn a correlated equilibrium from repeated play, and
then marginalize it into a profile that is hoped to be close to a Nash equilibrium. This was used for example to reach
superhuman performance in multiplayer poker [BS19].

Content

PDF File

Typo or question?

Get in touch!
gfarina AT mit.edu

Metadata

Course: MIT 6.S890
Term: Fall 2024
Date: 2024-09-12