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Abstract

In the literature on game-theoretic equilibrium finding, focus has mainly been on solving
a single game in isolation. In practice, however, strategic interactions—ranging from routing
problems to online advertising auctions—evolve dynamically, thereby leading to many similar
games to be solved. To address this gap, we introduce meta-learning for equilibrium finding
and learning to play games. We establish the first meta-learning guarantees for a variety
of fundamental and well-studied classes of games, including two-player zero-sum games,
general-sum games, and Stackelberg games. In particular, we obtain rates of convergence to
different game-theoretic equilibria that depend on natural notions of similarity between the
sequence of games encountered, while at the same time recovering the known single-game
guarantees when the sequence of games is arbitrary. Along the way, we prove a number of
new results in the single-game regime through a simple and unified framework, which may
be of independent interest. Finally, we evaluate our meta-learning algorithms on endgames
faced by the poker agent Libratus against top human professionals. The experiments show
that games with varying stack sizes can be solved significantly faster using our meta-learning
techniques than by solving them separately, often by an order of magnitude.

∗Equal contribution.
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1 Introduction

Research on game-theoretic equilibrium computation has primarily focused on solving a single
game in isolation. In practice, however, there are often many similar games which need to be
solved. One use-case is the setting where one wants to find an equilibrium for each of multiple
game variations—for example poker games where the players have various sizes of chip stacks.
Another use-case is strategic interactions that evolve dynamically: in online advertising auctions,
the advertiser’s value for different keywords adapts based on current marketing trends [Nekipelov
et al., 2015]; routing games—be it Internet routing or physical transportation—reshape depending
on the topology and the cost functions of the underlying network [Hoefer et al., 2011]; and resource
allocation problems [Johari and Tsitsiklis, 2004] vary based on the values of the goods/services.
Successful agents in such complex decentralized environments must effectively learn how to
incorporate past experience from previous strategic interactions in order to adapt their behavior
to the current and future tasks.

Meta-learning, or learning-to-learn [Thrun and Pratt, 1998], is a common formalization for
machine learning in dynamic single-agent environments. In the meta-learning framework, a
learning agent faces a sequence of tasks, and the goal is to use knowledge gained from previous
tasks in order to improve performance on the current task at hand. Despite rapid progress in
this line of work, prior results have not been tailored to tackle multiagent settings. This begs the
question: Can players obtain provable performance improvements when meta-learning across a
sequence of games? We answer this question in the affirmative by introducing meta-learning for
equilibrium finding and learning to play games, and providing the first performance guarantees
in a number of fundamental multiagent settings.

1.1 Overview of Our Results

Our main contribution is to develop a general framework for establishing the first provable
guarantees for meta-learning in games, leading to a comprehensive set of results in a variety
of well-studied multiagent settings. In particular, our results encompass environments ranging
from two-player zero-sum games with general constraint sets (and multiple extensions thereof),
to general-sum games and Stackelberg games. See Table 1 for a summary of our results. Our
refined guarantees are parameterized based on natural similarity metrics between the sequence
of games. For example, in zero-sum games we obtain last-iterate rates that depend on the
variance of the Nash equilibria (Theorem 3.2); in potential games based on the deviation of the
potential functions (Theorem 3.4); and in Stackelberg games our regret bounds depend on the
similarity of the leader’s optimal commitment in hindsight (Theorem 3.8). All of these measures
are algorithm-independent, and tie naturally to the underlying game-theoretic solution concepts.

Importantly, our algorithms are agnostic to how similar the games are, but are nonetheless
specifically designed to adapt to the similarity. Our guarantees apply under a broad class of
no-regret learning algorithms, such as optimistic mirror descent (OMD) [Chiang et al., 2012,
Rakhlin and Sridharan, 2013b], with the important twist that each player employs an additional
regret minimizer for meta-learning the parameterization of the base-learner; the latter component
builds on the meta-learning framework of Khodak et al. [2019]. For example, in zero-sum games
we leverage an initialization-dependent RVU bound [Syrgkanis et al., 2015] in order to meta-learn
the initialization of OMD across the sequences of games, leading to per-game convergence rates
to Nash equilibria that closely match our refined lower bound (Theorem 3.3). More broadly,
in the worst-case—i.e., when the sequence of games is arbitrary—we recover the near-optimal
guarantees known for static games, but as the similarity metrics become more favorable we
establish significant gains in terms of convergence to different notions of equilibria.

Along the way, we also obtain new insights and results even from a single-game perspective,
including convergence rates of OMD and the extra-gradient method in Hölder continuous variational
inequalities [Rakhlin and Sridharan, 2013a], and certain nonconvex-nonconcave problems such
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as those considered by [Diakonikolas et al., 2021] and stochastic games. Further, our analysis is
considerably simpler than prior techniques and unifies several prior results. Finally, in Section 4
we evaluate our techniques on a series of poker endgames faced by the poker agent Libratus [Brown
and Sandholm, 2018] against top human professionals. The experiments show that our meta-
learning algorithms offer significant gains compared to solving each game in isolation, often by
an order of magnitude.

Table 1: A summary of our key theoretical results on meta-learning in games.

Class of games Specific problem Key results Location

Bilinear saddle-point problems Theorems 3.1 and 3.2 Section 3.1
Zero-sum games Hölder continuous VIs Theorems C.17 and C.34 Appendices C.2 and C.6

Lower bound Theorem 3.3 Section 3.1

Potential games Theorem 3.4 Section 3.2
General-sum games (Coarse) Correlated equilibria Theorems D.7 and D.10 Appendices D.2 and D.3

Approximately optimal welfare Theorem 3.6 Section 3.2

Stackelberg games Security games Theorem 3.8 Section 3.3

1.2 Related Work

The study of online learning algorithms in games has engendered a prolific area of research, tracing
back to the pioneering works of Robinson [1951] and Blackwell [1956]. While traditional analyses
rely on black-box guarantees from the no-regret framework [Cesa-Bianchi and Lugosi, 2006], recent
works have established exponential improvements over those guarantees when specific learning
dynamics are in place (e.g., [Daskalakis et al., 2015, Syrgkanis et al., 2015, Daskalakis et al., 2021]).

However, that line of work posits that the underlying game remains invariant. Yet, there
is ample motivation for studying games that gradually change over time, such as online advertis-
ing [Nekipelov et al., 2015, Lykouris et al., 2016, Nisan and Noti, 2017] or congestion games [Hoefer
et al., 2011, Bertrand et al., 2020, Meigs et al., 2017]. Indeed, a number of prior works study the
performance of learning algorithms in time-varying zero-sum games [Zhang et al., 2022b, Fiez
et al., 2021b, Duvocelle et al., 2022, Cardoso et al., 2019]; there, it is natural to espouse dynamic
notions of regret [Yang et al., 2016, Zhao et al., 2020]. A work closely related to ours is the recent
paper by Zhang et al. [2022b], which provides regret bounds in time-varying bilinear saddle-point
problems parameterized by the similarity of the payoff matrices and the equilibria of those games.
In contrast to our meta-learning setup, they study a more general setting in which the game can
change arbitrarily from round-to-round. While our problem can be viewed a special type of a time-
varying game in which the boundaries between different games are fixed and known, algorithms
designed for generic time-varying games will not perform as well in our setting, as they do not
utilize this extra information. As a result, we view these results as complementary to ours. For a
more detailed discussion, see Appendix A. Another related direction consists of warm starting for
solving zero-sum extensive-form games [Brown and Sandholm, 2016], which is typically employed
in conjunction with abstraction-based techniques [Brown and Sandholm, 2014, 2015a, Kroer and
Sandholm, 2018, Brown and Sandholm, 2015b]. Specifically, there one constructs a sequence of
progressively finer abstractions for an underlying game, so that the equilibria of each game can
assist the solution of the next one. Perhaps the cardinal difference with our setting is that in
abstraction-based applications one is only interested in the performance in the ultimate game.

An emerging paradigm for modeling such considerations is meta-learning, which has gained
increasing popularity in the machine learning community in recent years; for a highly incomplete
set of pointers, we refer to [Balcan et al., 2015b, Al-Shedivat et al., 2018, Finn et al., 2017,
2019, Balcan et al., 2019, Li et al., 2017, Chen et al., 2022], and references therein. Our work
constitutes the natural coalescence of meta-learning with the line of work on (decentralized)
online learning in games. Although, as we pointed out earlier, learning in dynamic games has
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already received considerable attention, we are the first (to our knowledge) to formulate and
address such questions within the meta-learning framework; c.f., see [Kayaalp et al., 2020, 2021,
Li et al., 2022]. Finally, our methods may be viewed within the algorithms with predictions
paradigm [Mitzenmacher and Vassilvitskii, 2020]: we speed up equilibrium computation by
learning to predict equilibria across multiple games, with the task-similarity the measure of
prediction quality. For further related work, see Appendix A.

2 Our Setup: Meta-Learning in Games

Notation We use boldface symbols to represent vectors and matrices. Subscripts are typically
reserved to indicate the player, while superscripts usually correspond to the iteration or the
index of the task. We let N := {1, 2, . . . , } be the set of natural numbers. For T ∈ N, we use the
shorthand notation [[T ]] := {1, 2, . . . , T}. For a nonempty convex and compact set X , we denote by
ΩX its `2-diameter: ΩX := maxx,x′∈X ‖x−x′‖2. Finally, to lighten the exposition we use the O(·)
notation to suppress factors that depend polynomially on the natural parameters of the problem.

The general setup We consider a setting wherein players interact in a sequence of T repeated
games (or tasks), for some N 3 T � 1. Each task itself consists ofm ∈ N iterations. Any fixed task
t corresponds to a multiplayer game G(t) between a set [[n]] of players, with n ≥ 2; it is assumed for
simplicity in the exposition that n remains invariant across the games, but some of our results apply
more broadly. Each player k ∈ [[n]] selects a strategy xk from a convex and compact set of strategies
Xk ⊆ Rdk with nonempty relative interior. For a given joint strategy profile x := (x1, . . . ,xn) ∈
×n

k=1Xk, there is a multilinear utility function uk : x 7→ 〈xk,uk(x−k)〉 for each player k, where
x−k := (x1, . . . ,xk−1,xk+1, . . . ,xn). We will also let L > 0 be a Lipschitz parameter of each
game, in the sense that for any player k ∈ [[n]] and any two strategy profiles x−k,x′−k ∈×k′ 6=k Xk′ ,

‖uk(x−k)− uk(x′−k)‖2 ≤ L‖x−k − x′−k‖2. (1)

Here, we use the `2-norm for convenience in the analysis; (1) can be translated to any equiv-
alent norm. Finally, for a joint strategy profile x ∈×n

k=1Xk, the social welfare is defined as
SW(x) :=

∑n
k=1 uk(x), so that OPT := maxx∈×nk=1 Xk SW(x) denotes the optimal social welfare.

A concrete example encompassed by our setup is that of extensive-form games. More broadly,
it captures general games with concave utilities [Rosen, 1965, Hsieh et al., 2021].

Online learning in games Learning proceeds in an online fashion as follows. At every iter-
ation i ∈ [[m]] of some underlying game t, each player k ∈ [[n]] has to select a strategy x(t,i)

k ∈ Xk.
Then, in the full information setting, the player observes as feedback the utility corresponding to
the other players’ strategies at iteration i; namely, u(t,i)

k := uk(x
(t,i)
−k ) ∈ Rdk . For convenience, we

will assume that ‖uk(x
(t,i)
−k )‖∞ ≤ 1. The canonical measure of performance in online learning is

that of external regret, comparing the performance of the learner with that of the optimal fixed
strategy in hindsight:

Definition 2.1 (Regret). Fix a player k ∈ [[n]] and some game t ∈ [[T ]]. The (external) regret
of player k is defined as

Reg
(t,m)
k := max

x̊
(t)
k ∈Xk

{
m∑
i=1

〈x̊(t)
k ,u

(t,i)
k 〉

}
− 〈x(t,i)

k ,u
(t,i)
k 〉.

We will let x̊(t)
k be an optimum-in-hindsight strategy for player k in game t; ties are broken

arbitrarily, but according to a fixed rule (e.g., lexicographically). In the meta-learning setting,
our goal will be to optimize the average performance—typically measured in terms of convergence
to different game-theoretic equilibria—across the sequence of games.
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Optimistic mirror descent Suppose that Rk : Xk → R is a 1-strongly convex regularizer with
respect to a norm ‖ · ‖. We let BRk(xk ‖ x′k) := Rk(xk)−Rk(x′k)− 〈∇Rk(x′k),xk − x′k〉 denote
the Bregman divergence induced by Rk, where x′k is in the relative interior of Xk. Optimistic
mirror descent (OMD) [Chiang et al., 2012, Rakhlin and Sridharan, 2013b] is parameterized by a
predictionm(t,i)

k ∈ Rdk and a learning rate η > 0, and is defined at every iteration i ∈ N as follows.

x
(t,i)
k := arg max

xk∈Xk

{
〈xk,m

(t,i)
k 〉 − 1

η
BRk(xk ‖ x̂

(t,i−1)
k )

}
,

x̂
(t,i)
k := arg max

x̂k∈Xk

{
〈x̂k,u

(t,i)
k 〉 − 1

η
BRk(x̂k ‖ x̂

(t,i−1)
k )〉

}
.

Further, x̂(1,0)
k := arg minx̂k∈Xk Rk(x̂k) =: x

(1,0)
k , and m(t,0)

k := uk(x
(t,0)
−k ). Under Euclidean

regularization, Rk(xk) := 1
2‖xk‖

2
2, we will refer to OMD as optimistic gradient descent (OGD).

3 Meta-Learning How to Play Games

In this section, we present our main theoretical results: provable guarantees for online and
decentralized meta-learning in games. We commence with zero-sum games in Section 3.1, and we
then transition to general-sum games (Section 3.2) and Stackelberg (security) games (Section 3.3).

3.1 Zero-Sum Games

We first highlight our results for bilinear saddle-point problems (BSPPs), which take the form
minx∈X maxy∈Y x

>Ay, where A ∈ Rdx×dy is the payoff matrix of the game. A canonical ap-
plication for this setting is on the solution of zero-sum imperfect-information extensive-form
games [Romanovskii, 1962, Koller and Megiddo, 1992], as we explore in our experiments (Section 4).
Next we describe a number of extensions to gradually more general settings, and we conclude with
our lower bound (Theorem 3.3). The proofs from this subsection are included in Appendix C.

We first derive a refined meta-learning convergence guarantee for the average of the players’
strategies. Below, we denote by V 2

x := 1
T minx∈X

∑T
t=1 ‖x̊(t) − x‖22 the task similarity metric for

player x, written in terms of the optimum-in-hindsight strategies; analogous notation is used
for player y.

Theorem 3.1 (Informal; Detailed Version in Corollary C.2). Suppose that both players employ
OGD with a suitable (fixed) learning rate and a meta-learning algorithm for the initialization.
Then, the game-average duality gap of the players’ average strategies is bounded by

1

T

T∑
t=1

1

m

(
Reg(t,m)

x + Reg(t,m)
y

)
≤ 2L

m

(
V 2
x + V 2

y

)
+

8L(1 + log T )

mT

(
Ω2
X + Ω2

Y
)
. (2)

Here, the second term in the right-hand side of (2) becomes negligible for a large number
of games T , while the first term depends on the task similarity measures. For any sequence of
games, Theorem 3.1 nearly matches the lower bound in the single-task setting [Daskalakis et al.,
2015], but our guarantee can be significantly better when V 2

x , V
2
y � 1. To achieve this, the basic

idea is to use—on top of OGD—a “meta” regret minimization algorithm that, for each player,
learns a sequence of initializations by taking the average of the past optima-in-hindsight, which is
equivalent to follow-the-leader (FTL) over the regret-upper-bounds of the within-task algorithm;
see Algorithm 1 (in Appendix B) for pseudocode of the meta-version of OGD we consider. Similar
results can be obtained more broadly for OMD (c.f., see Appendices D.2 and D.3). We also obtain
analogous refined bounds for the individual regret of each player (Corollary C.4).

One caveat of Theorem 3.1 is that the underlying task similarity measure could be algorithm-
dependent, as the optimum-in-hindsight for each player could depend on the other player’s
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behavior. To address this, we show that if the meta-learner can initialize using Nash equilibria
(NE) (recall Definition C.5) from previously seen games, the game-average last-iterate rates
gracefully decrease with the similarity of the Nash equilibria of those games. More precisely,
if z := (x,y) ∈ X × Y =: Z, we let V 2

NE := 1
T maxz(1,?),...,z(T,?) minz∈Z

∑T
t=1 ‖z(t,?) − z‖22, where

z(t,?) is any Nash equilibrium of the t-th game. As we point out in the sequel, we also obtain results
under a more favorable notion of task similarity that does not depend on the worst sequence of NE.

Theorem 3.2 (Informal; Detailed Version in Theorem C.8). When both players employ OGD with
a suitable parameterization, then

m̄ ≤
2V 2

NE
ε2

+
8(1 + log T )

Tε2
(
Ω2
X + Ω2

Y
)

iterations suffice to reach an O(ε)-approximate Nash equilibrium of an average game.

Theorem 3.2 recovers the optimal m−1/2 rates for OGD [Golowich et al., 2020a,b] under an
arbitrary sequence of games, but offers substantial gains when the Nash equilibria of the games are
close. For example, when they lie within a ball of `2-diameter

√
δ(Ω2

X + Ω2
Y), for some δ ∈ (0, 1],

Theorem 3.2 improves upon the rate of OGD by at least a multiplicative factor of 1/δ as T →∞.
While generic—roughly speaking, randomly perturbed—zero-sum (normal-form) games have a
unique Nash equilibrium [van Damme, 1987], the worst-case NE similarity metric used in Theo-
rem 3.2 can be loose under multiplicity of equilibria. For that reason, in Appendix C.1.2 we further
refine Theorem 3.2 using the most favorable sequence of Nash equilibria; this requires that players
know each game after its termination, which is arguably a well-motivated assumption in some
applications. We further remark that Theorem 3.2 can be cast in terms of the similarity V 2

x +V 2
y ,

instead of V 2
NE, using the parameterization of Theorem 3.1. Finally, since the base-learner can be

viewed as an algorithm with predictions—the number of iterations to compute an approximate NE
is smaller if the Euclidean error of a prediction of it (the initialization) is small—Theorem 3.2 can
also be viewed as learning these predictions [Khodak et al., 2022] by targeting that error measure.

Extensions Moving beyond bilinear saddle-point problems, we extend our results to gradually
broader settings. First, in Appendix C.2 we apply our techniques to general variational inequality
problems under a Lipschitz continuous operator for which the so-called MVI property [Mer-
tikopoulos et al., 2019] holds. Thus, Theorems 3.1 and 3.2 are extended to settings such as
smooth convex-concave games and zero-sum polymatrix (multiplayer) games [Cai et al., 2016].
Interestingly, extensions are possible even under the weak MVI property [Diakonikolas et al.,
2021], which captures certain “structured” nonconvex-nonconcave games. In a similar vein, we
also study the challenging setting of Shapley’s stochastic games [Shapley, 1953] (Appendix C.5).
There, we show that there exists a time-varying—instead of constant—but non-vanishing learning
rate schedule for which OGD reaches minimax equilibria, thereby leading to similar extensions
in the meta-learning setting. Next, we relax the underlying Lipschitz continuity assumption
underpinning the previous results by instead imposing only α-Hölder continuity (recall Defini-
tion C.32). We show that in such settings OGD enjoys a rate of m−α/2 (Theorem C.34), which is to
our knowledge a new result; in the special case where α = 1, we recover the recently established
m−1/2 rates. Finally, while we have focused on the OGD algorithm, our techniques apply to other
learning dynamics as well. For example, in Appendix C.7 we show that the extensively studied
extra-gradient (EG) algorithm [Korpelevich, 1976] can be analyzed in a unifying way with OGD,
thereby inheriting all of the aforementioned results under OGD; this significantly broadens the
implications of [Mokhtari et al., 2020], which only applied in certain unconstrained problems.
Perhaps surprisingly, although EG is not a no-regret algorithm, our analysis employs a regret-based
framework using a suitable proxy for the regret (see Theorem C.35).
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Lower bound We conclude this subsection with a lower bound, showing that our guarantee
in Theorem 3.1 is essentially sharp under a broad range of our similarity measures. Our result
significantly refines the single-game lower bound of Daskalakis et al. [2015] by constructing an
appropriate distribution over sequences of zero-sum games.

Theorem 3.3 (Informal; Precise Version in Theorem C.39). For any ε > 0, there exists a
distribution over sequences of T zero-sum games, with a sufficiently large T = T (ε), such that

1

T

T∑
t=1

E[Reg(t,m)
x + Reg(t,m)

y ] ≥ 1

2

(
V 2
x + V 2

y

)
− ε =

1

2
V 2

NE − ε.

3.2 General-Sum Games

In this subsection, we switch our attention to general-sum games. Here, unlike zero-sum games, no-
regret learning algorithms are instead known to generally converge—in a time-average sense—to
correlated equilibrium concepts, which are more permissive than the Nash equilibrium. Never-
theless, there are structured classes of general-sum games for which suitable dynamics do reach
Nash equilibria; perhaps the most notable example being that of potential games. In this context,
we first obtain meta-learning guarantees for potential games, parameterized by the similarity of
the potential functions. Then, we derive meta-learning algorithms with improved guarantees for
convergence to correlated and coarse correlated equilibria. Finally, we conclude this subsection
with improved guarantees of convergence to near-optimal—in terms of social welfare—equilibria.
Proofs from this subsection are included in Appendices B and D.

Potential games A potential game is endowed with the additional property of admitting a
potential: a player-independent function that captures the player’s benefit from unilaterally
deviating from any given strategy profile (Definition D.2). In our meta-learning setting, we
posit a sequence of potential games (Φ(t))1≤t≤t, each described by its potential function. Unlike
our approach in Section 3.1, a central challenge here is that the potential function is in general
nonconcave/nonconvex, precluding standard regret minimization approaches. Instead, we find
that by initializing at the previous last-iterate the dynamics still manage to adapt based on the
similarity V∆ := 1

T

∑T−1
t=1 ∆(Φ(t),Φ(t+1)), where ∆(Φ,Φ′) := maxx(Φ(x)−Φ′(x)), which captures

the deviation of the potential functions. This initialization has the additional benefit of being
agnostic to the boundaries of different tasks. Unlike our results in Section 3.1, the following
guarantee applies even for vanilla (i.e., non-optimistic) projected gradient descent (GD).

Theorem 3.4 (Informal; Detailed Version in Corollary D.5). For an average potential game, GD
with suitable parameterization requires

O

(
V∆

ε2
+

Φmax

ε2T

)
iterations to reach an ε-approximate Nash equilibrium, where maxx,t |Φ(t)(x)| ≤ Φmax.

Theorem 3.4 matches the known rate of GD for potential games in the worst case, but offers
substantial gains when the games are similar. For example, if |Φ(t)(x)− Φ(t−1)(x)| ≤ α, for all
x ∈×n

k=1Xk and t ≥ 2, then O(α/ε2) iterations suffice to reach an ε-approximate NE on an
average game, as T → +∞. Such a scenario may arise in, e.g., a sequence of routing games if
the cost functions for each edge change only slightly between games.

Convergence to correlated equilibria In contrast, for general games the best one can hope
for is to obtain improved rates for convergence to correlated or coarse correlated equilibria [Hart
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and Mas-Colell, 2000, Blum and Mansour, 2007]. It is important to stress that learning cor-
related equilibria is fundamentally different than learning Nash equilibria—which are product
distributions. For example, for the former any initialization—which is inevitably a product distri-
bution in the case of uncoupled dynamics—could fail to exploit the learning in the previous task
(Proposition D.1): unlike Nash equilibria, correlated equilibria (in general) cannot be decomposed
for each player, thereby making uncoupled methods unlikely to adapt to the similarity of CE.
Instead, our task similarity metrics depend on the optima-in-hindsight for each player. Under
this notion of task similarity, we obtain task-average guarantees for CCE by meta-learning the
initialization (by running FTL) and the learning rate (by running the EWOO method of Hazan
et al. [2007] over a sequence of regret upper bounds) of optimistic hedge [Daskalakis et al., 2021]
(Theorem D.7)—OMD with entropic regularization. Similarly, to obtain guarantees for CE, we use
the no-swap-regret construction of Blum and Mansour [2007] in conjuction with the logarithmic
barrier [Anagnostides et al., 2022a] (Theorem D.10).

3.2.1 Social Welfare Guarantees

We conclude this subsection with meta-learning guarantees for converging to near-optimal
equilibria (Theorem 3.6). Let us first recall the following central definition.

Definition 3.5 (Smooth games [Roughgarden, 2015]). A game G is (λ, µ)-smooth, with λ, µ > 0,
if there exists a strategy profile x? ∈×n

k=1Xk such that for any x ∈×n
k=1Xk,

n∑
k=1

uk(x
?
k,x−k) ≥ λOPT− µSW(x). (3)

Smooth games capture a number of important applications, including network congestion
games [Awerbuch et al., 2013, Christodoulou and Koutsoupias, 2005] and simultaneous auc-
tions [Christodoulou et al., 2016, Roughgarden et al., 2017] (see Appendix B for additional
examples); both of those settings are oftentimes non-static in real-world applications, thereby
motivating our meta-learning considerations. In this context, we assume that there is a sequence
of smooth games (G(t))1≤t≤T , each of which is (λ(t), µ(t))-smooth (Definition 3.5).

Theorem 3.6 (Informal; Detailed Version in Theorem B.11). If all players use OGD with suitable
parameterization in a sequence of T games (G(t))1≤t≤T , each of which is (λ(t), µ(t))-smooth, then

1

mT

T∑
t=1

m∑
i=1

SW(x(t,i)) ≥ 1

T

T∑
t=1

λ(t)

1 + µ(t)
OPT(t) − 2L

√
n− 1

m

n∑
k=1

V 2
k − Õ

(
1

mT

)
, (4)

where OPT(t) is the optimal social welfare attainable at game G(t) and Õ(·) hides logarithmic
terms.

The first term in the right-hand side of (4) is the average robust PoA in the sequence of
games, while the third term vanishes as T → ∞. The orchestrated learning dynamics reach
approximately optimal equilibria much faster when the underlying task similarity is small; without
meta-learning one would instead obtain the m−1 rate known from the work of Syrgkanis et al.
[2015]. Theorem 3.6 is established by first providing a refined guarantee for the sum of the players
regrets (Theorem B.3), and then translating that guarantee in terms of the social welfare using
the smoothness condition for each game (Proposition B.10). Our guarantees are in fact more
general, and apply for any suitable linear combination of players’ utilities (see Corollary B.12).

3.3 Stackelberg (Security) Games

To conclude our theoretical results, we study meta-learning in repeated Stackelberg games.
Following the convention of Balcan et al. [2015a], we present our results in terms of Stackelberg
security games, although our results apply to general Stackelberg games as well (see [Balcan
et al., 2015a, Section 8] for details on how such results extend).
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Stackelberg security games A repeated Stackelberg security game is a sequential interaction
between a defender and m attackers. In each round, the defender commits to a mixed strategy
over d targets to protect, which induces a coverage probability vector x ∈ ∆d over targets. After
having observed coverage probability vector, the attacker best responds by attacking some target
b(x) ∈ [[d]] in order to maximize their utility in expectation. Finally, the defender’s utility is
some function of their coverage probability vector x and the target attacked b(x).

It is a well-known fact that no-regret learning in repeated Stackelberg games is not possible
without any prior knowledge about the sequence of followers [Balcan et al., 2015a, Section 7], so
we study the setting in which each attacker belongs to one of k possible attacker types. We allow
sequence of attackers to be adversarially chosen from the k types, and assume the attacker’s type
is revealed to the leader after each round. We adapt the methodology of Balcan et al. [2015a]
to our setting by meta-learning the initialization and learning rate of the multiplicative weights
update (henceforth MWU) run over a finite (but exponentially-large) set of extreme points E ⊂ ∆d.1

Each point x ∈ E corresponds to a leader mixed strategy, and E can be constructed in such a way
that it will always contain a mixed strategy which is arbitrarily close to the optima-in-hindsight
for each task.2

Our results are given in terms of guarantees on the task-average Stackelberg regret, which
measures the difference in utility between the defender’s deployed sequence of mixed strategies
and the optima-in-hindsight, given that the attacker best responds.

Definition 3.7 (Stackelberg Regret). Denote attacker f (t,i)’s best response to mixed strategy x
as bf (t,i)(x). The Stackelberg regret of the attacker in a repeated Stackelberg security game t is

StackReg(t,m)(x̊(t)) =

m∑
i=1

〈x̊(t),u(t)(bf (t,i)(x̊(t)))〉 − 〈x(t,i),u(t)(bf (t,i)(x(t,i)))〉.

In contrast to the standard notion of regret (Definition 2.1), Stackelberg regret takes into
account the extra structure in the defender’s utility in Stackelberg games; namely that it is a
function of the defender’s current mixed strategy (through the attacker’s best response).

Theorem 3.8 (Informal; Detailed Version in Theorem E.1). Given a sequence of T repeated
Stackelberg security games with d targets, k attacker types, and within-game time-horizon m,
running MWU over the set of extreme points E as defined in Balcan et al. [2015a] with suitable
initialization and sequence of learning rates achieves task-averaged expected Stackelberg regret

1

T

T∑
t=1

E[StackReg(t,m)] = O(
√
H(ȳ)m) + oT (poly(m, |E|)),

where the sequence of attackers in each task can be adversarially chosen, the expectation is with
respect to the randomness of MWU, ȳ := 1

T

∑T
t=1 ẙ

(t), where ẙ(t) is the optimum-in-hindsight
distribution over mixed strategies in E for game t, H(ȳ) is the Shannon entropy of ȳ, and oT (1)
suppresses terms which decay with T .

H(ȳ) ≤ log |E|, so in the worst-case our algorithm asymptotically matches the O(
√
m log |E|)

performance of the algorithm of Balcan et al. [2015a]. Entropy H(ȳ) is small whenever the
same small set of mixed strategies are optimal for the sequence of T Stackelberg games. For
example, if in each task the adversary chooses from s� k attacker types who are only interested
in attacking u � d targets (unbeknownst to the meta-learner), H(ȳ) = O(s2u log(su)). In
Stackelberg security games |E| = O((2d + kd2)ddk), so log |E| = O(d2k log(dk)). Finally, the
distance between the set of optimal strategies does not matter, as ȳ is a categorical distribution
over a discrete set of mixed strategies.

1This is likely unavoidable, as Li et al. [2016] show computing a Stackelberg strategy is strongly NP-Hard.
2For a precise definition of how to construct E , we point the reader to [Balcan et al., 2015a, Section 4].
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Sequences Decision Points Payoff Matrix
Game Board Pot Pl. 1 Pl. 2 Pl. 1 Pl. 2 num. nonzeros

Endgame A J« K« 5¨ Q« 7© 3,700 18,789 19,237 6,710 6,870 14,718,298
Endgame B 4« 8ª 10¨ 9ª 2« 500 46,875 47,381 16,304 16,480 62,748,525
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Endgame B [sorted stacks]
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1
Meta learning (avg. best-in-hindsight) Meta learning (last iterate) No meta learning

Figure 1: (Top) Parameters of each endgame. (Bottom) The task-averaged NE gap of the players’
average strategies across 200 tasks, 2 endgames, and 3 different stack orderings. Both players use
OGD with η := 0.01. For the random stacks, we repeated each experiment 10 times with different
random seeds. The plots show the mean (thick line) as well as the minimum and maximum
values. We see that across all task sequencing setups, meta-learning the initialization (using either
technique) leads to up to an order of magnitude better performance compared to vanilla OGD. When
stacks are sorted, initializing to the last iterate of the previous game obtains the best performance,
whereas when stacks are alternated or random, initializing according to Theorem 3.1 performs best.

4 Experiments

In this section, we evaluate our meta-learning techniques in two River endgames that occurred in
the Brains vs AI competition [Brown and Sandholm, 2018]. We use the two public endgames that
were released by the authors,3 denoted ‘Endgame A’ and ‘Endgame B,’ each corresponding to a
zero-sum extensive-form game. For each of these endgames, we produced T := 200 individual tasks
by varying the size of the stacks of each player according to three different task sequencing setups :4

1. (random stacks) In each task we select stack sizes for the players by sampling uniformly at
random a multiple of 100 in the range [1000, 20000].

2. (sorted stacks) Task t ∈ {1, . . . , 200} corresponds to solving the endgame where the stack
sizes are set to the amount t× 100 for each player.

3. (alternating stacks) We sequence the stack amounts of the players as follows: in task 1, the
3Obtained from https://github.com/Sandholm-Lab/LibratusEndgames.
4While in the general meta-learning setup it is assumed that the number of tasks is large but per-task data is

limited (i.e., T � m), we found that setting T := 200 was already sufficient to see substantial benefits.
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stacks are set to 100; in task 2 to 200, 000; in task 3 to 200; in task 4 to 199, 900; and so on.
For each endgame, we tested the performance when both players (1) employ OGD while meta-

learning the initialization (Theorem 3.1), (2) employ OGD while setting the initialization equal
to the last iterate of the previous task (see Remark B.8), and (3) use the vanilla initialization of
OGD—i.e., the players treat each task as a separate game. For each task, players run m := 1000
iterations. The `2 projection to the sequence-form polytope [Romanovskii, 1962, Koller and
Megiddo, 1992]—the strategy set of each player in extensive-form games—required for the steps
of OGD is implemented via an algorithm originally described by Gilpin et al. [2012], and further
clarified in [Farina et al., 2022, Appendix B]. We tried different learning rates for the players
selected from the set {0.1, 0.01, 0.001}. Figure 1 illustrates our results for η := 0.01, while the
others are deferred to Appendix F. In the table at the top of Figure 1 we highlight several
parameters of the endgames including the board configuration, the dimensions of the players’
strategy sets—i.e., the sequences—and the number of nonzero elements in each payoff matrix.
Because of the scale of the games, we used the Kronecker sparsification algorithm of Farina and
Sandholm [2022, Technique A] in order to accelerate the training.

5 Conclusions and Future Research

In this paper, we introduced the study of meta-learning in games. In particular, we considered
many of the most central game classes—including zero-sum games, potential games, general-
sum multi-player games, and Stackelberg security games—and obtained provable performance
guarantees expressed in terms of natural measures of similarity between the games. Experi-
ments on several sequences of poker endgames that were actually played in the Brains vs AI
competition [Brown and Sandholm, 2018] show that meta-learning the initialization improves
performance even by an order of magnitude.

Our results open the door to several exciting directions for future research, including
meta-learning in other settings for which single-game results are known, such as general
nonconvex-nonconcave min-max problems [Suggala and Netrapalli, 2020], the nonparametric
regime [Daskalakis and Golowich, 2022], and partial feedback (such as bandit) models [Wei and
Luo, 2018, Hsieh et al., 2022, Balcan et al., 2022, Osadchiy et al., 2022]. Another interesting, yet
challenging, avenue for future research would be to consider strategy sets that can vary across tasks.
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A Additional Related Work

In this section, we provide an additional discussion on related work. Let us first compare in
more detail our setting with that considered in [Zhang et al., 2022b]. Zhang et al. [2022b]
study a setting which is more general than ours, thus making their algorithms applicable in the
meta-learning setting we consider. Intuitively, their algorithms should not perform as well in the
meta-learning setting, as they do not use knowledge of the game boundaries. More precisely,
we begin by introducing the notion of dynamic Nash Equilibrium (NE) regret from Zhang et al.
[2022b], and show that in the meta-learning setting it corresponds to an unnormalized version of
the maximum task average regret with respect to both players.5

Definition A.1 (Dynamic NE regret, Zhang et al. [2022b]). Given a sequence of two-player
zero-sum games characterized by payoff matrices A(1), . . . ,A(τ) and player strategy sets ∆dx and
∆dy ,

NE-Reg :=

∣∣∣∣∣
τ∑
s=1

(x(s))>A(s)y(s) − min
x∈∆dx

max
y∈∆dy

x>A(s)y

∣∣∣∣∣ .
In our meta-learning setting, τ = T ·m, and A(t,i) = A(t), ∀i ∈ [[m]], t ∈ [[T ]]. Using this

information, we can rewrite NE-Reg in our setting as

NE-Reg =

∣∣∣∣∣
T∑
t=1

m∑
i=1

(x(t,i))>A(t)y(t,i) − min
x∈∆dx

max
y∈∆dy

x>A(t)y

∣∣∣∣∣ .
Therefore,

1

T
NE-Reg = max

{
1

T

T∑
t=1

Reg(t,m)
x ,

1

T

T∑
t=1

Reg(t,m)
y

}
.

Given this characterization, we now informally restate Theorem 6 of Zhang et al. [2022b],
written in terms of task-average regret.

Theorem A.2 (Informal, Zhang et al. [2022b]). When the x-player follows Algorithm 1 of Zhang
et al. [2022b] and the y-player follows Algorithm 2 of Zhang et al. [2022b],

max

{
1

T

T∑
t=1

Reg(t,m)
x ,

1

T

T∑
t=1

Reg(t,m)
y

}
≤ Õ

(
1

T
min{

√
(1 + V )(1 + P ) + P, 1 +W}

)
,

where V ∈ R≥0 is a measure of the path-length variation of (A(t))1≤t≤T , P ∈ R≥0 is a measure
of the variation of the corresponding Nash equilibrium strategies, W ∈ R≥0 is a measure of the
variance of (A(t))1≤t≤T , and Õ(·) hides logarithmic-in-T factors.

It is easy to construct a sequence of games for which V, P,W are all Ω(T ) (e.g., consider
an alternating sequence of two games with different payoff matrices and NE strategies for each
player). Under such a setting, when players play according to the algorithms of Zhang et al.
[2022b], their task average regret guarantee will actually grow with the number of tasks (albeit
at a logarithmic rate). This is to be expected, as their algorithms are designed for a more general
setting and therefore do not take the game boundaries into consideration. This is also in contrast
to our results for two-player zero-sum games, where the parts of our bounds which explicitly
depend on the number of games decrease as the number of games grows large (e.g., Theorem 3.1).

5The results of Zhang et al. [2022b] are only applicable to two-player zero-sum games, so we will focus only on
that setting in our comparison.
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Broader context Moving beyond the line of work on learning in dynamic games, our results
are related to the literature on algorithms with predictions; e.g., see the excellent survey
of Mitzenmacher and Vassilvitskii [2020], and the many references therein. More broadly, our
setting can be viewed as a specific instance of online learning under more structured sequences,
a topic that has received extensive attention in the literature [Block et al., 2022, Rakhlin and
Sridharan, 2013a, Haghtalab et al., 2022, Cesa-Bianchi et al., 2007, Chiang et al., 2012, Hazan
and Kale, 2010, 2011, Luo and Schapire, 2015]. Finally, our work provides a number of new
insights on the last-iterate convergence of optimistic no-regret learning algorithms in a variety of
important settings; that line of work was pioneered by Daskalakis et al. [2018], and has thereafter
witnesses rapid progress (see [Mokhtari et al., 2020, Mertikopoulos et al., 2019, Golowich et al.,
2020b,a, Wei et al., 2021, Azizian et al., 2021, Fiez et al., 2021a] for a highly incomplete list).

B Proofs from Section 3.2.1: Meta-Learning Approximately Op-
timal Equilibria

In this section, we study how meta-learning can improve the convergence rate of learning
algorithms to approximately optimal equilibria, establishing the proofs omitted from Section 3.2.1.
First, we provide some key preliminary results for meta-learning, which will be used throughout
this paper beyond the proofs of Section 3.2.1, and in particular Appendix C. Then, equipped
with those ingredients, we leverage the smoothness condition (Definition 3.5) to eventually arrive
at the main theorem of Section 3.2.1 (Theorem 3.6), as well as extensions thereof.

B.1 Bounding the Social Regret

Here, we establish refined meta-learning bounds for the sum of the players’ regrets—oftentimes
referred to as social regret—under appropriate learning dynamics. A central ingredient of our
analysis will be the so-called property of regret bounded by variation in utilities (RVU), crystallized
by Syrgkanis et al. [2015], a refined regret bound known to be satisfied by optimistic learning
algorithms, such as OMD and optimistic follow the regularized leader (OFTRL) [Syrgkanis et al.,
2015]. For our purposes, it will be crucial to use an RVU bound parameterized in terms of the
initialization. Indeed, the regret guarantee below can be readily extracted from [Rakhlin and
Sridharan, 2013b, Syrgkanis et al., 2015]; we remark that our assumptions are indeed compatible
with the ones made in [Syrgkanis et al., 2015]. We further clarify that, in order to reduce the
notational burden, when the underlying player or task are not necessary for our statement (as is
below), we drop those dependencies from our notation.

Theorem B.1 (Initialization-Dependent RVU Bound [Syrgkanis et al., 2015]). Suppose that we
employ OMD with a 1-strongly convex regularizer R with respect to the norm ‖ · ‖. For any observed
sequence of utilities (u(i))1≤i≤m, the regret Reg(m) of OMD up to time m ∈ N and initialized at
x(0) ∈ X can be bounded as

Reg(m) ≤ 1

η
BR(x̊ ‖ x(0)) + η

m∑
i=1

‖u(i) −m(i)‖2∗ −
1

8η

m∑
i=1

‖x(i) − x(i−1)‖2, (5)

where x̊ ∈ X is an optimal strategy in hindsight, and (x(i))1≤i≤m is the sequence of strategies
produced by OMD.

A similar regret bound applies for OFTRL as well [Syrgkanis et al., 2015], but with the important
caveat that the first term in the right-hand side of (5) is not refined in terms of the initialization.
That deficiency is a crucial impediment towards providing provable meta-learning guarantees
under OFTRL, although under certain assumptions the mirror-descent viewpoint is known to be
equivalent to the follow-the-regularider-leader one [McMahan, 2011]. Also, it is worth noting that
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Theorem B.1 also applies under a broader class of prediction mechanisms—beyond the “one-step
recency bias,” which consists of m(i) := u(i−1)—without altering qualitatively the regret bound,
as formalized by Syrgkanis et al. [2015]; such extensions will not be made precise here as they
are direct.

Now, as it turns out, the RVU bound (Theorem B.1) is a powerful tool for obtaining O(1)
bounds for the social regret, as was first shown by Syrgkanis et al. [2015]. Below, we follow their
approach to give an initialization-dependent bound for the social regret.

Corollary B.2. Fix any t ∈ [[T ]], and suppose that L(t) is the Lipschitz parameter of G(t)—in
the sense of (1). If all players employ OGD with learning rate η ≤ 1

4L(t)
√
n−1

, then

n∑
k=1

Reg
(t,m)
k ≤ 1

η

n∑
k=1

BRk(x̊
(t)
k ‖ x

(t,0)
k )− 1

16η

n∑
k=1

m∑
i=1

‖x(t,i)
k − x(t,i−1)

k ‖22.

Before we proceed with the proof, let us point out that we generally make the very mild
assumption that players know the total number of players n and the Lipschitz parameter L(t) of
each game G(t)—or, equivalently, reasonable upper bounds thereof, in order to tune the learning
rate according to Corollary B.2. If that is not the case, one can still obtain similar guarantees
using the by now standard “doubling trick” to estimate a suitable learning rate. Concretely, for a
given learning rate, each player can compute at every iteration i ∈ [[m]] the growth of the second
and the third term in (5) based on its “local” information. If at any iteration the sum of those
terms is (strictly) positive, then we can simply halve the learning rate, and subsequently proceed
by repeating the previous process; Corollary B.2 guarantees termination in a logarithmic (in the
range of the parameters) number of repetitions, while only incurring a negligible increase in the
social regret. While this protocol is not full uncoupled, given that some additional communication
is required to notify the players to halve the learning rate, this is only a mild limitation that
will not be addressed further in this work. The same discussion also applies to our results in the
sequel.

Proof of Corollary B.2. By the Lipschitz continuity assumption (1), we have that for any player
k ∈ [[n]] and iteration i ∈ [[m]],

‖uk(x
(t,i)
−k )− uk(x

(t,i−1)
−k )‖2 ≤ L(t)‖x(t,i)

−k − x
(t,i−1)
−k ‖2.

Thus, combining with Theorem B.1 under ‖ · ‖ = ‖ · ‖2 (since we use OGD), we have that the
regret Reg

(t,m)
k (x̊

(t)
k ) of player k ∈ [[n]] is upper bounded by

1

η
BRk(x̊

(t)
k ‖ x

(t,0)
k ) + η

m∑
i=1

‖u(i)
k − u

(i−1)
k ‖22 −

1

8η

m∑
i=1

‖x(t,i)
k − x(t,i−1)

k ‖22

≤ 1

η
BRk(x̊

(t)
k ‖ x

(t,0)
k ) + η(L(t))2

∑
k′ 6=k

m∑
i=1

‖x(t,i)
k′ − x

(t,i−1)
k′ ‖22 −

1

8η

m∑
i=1

‖x(t,i)
k − x(t,i−1)

k ‖22,

since ‖x(t,i)
−k −x

(t,i−1)
−k ‖22 =

∑
k′ 6=k ‖x

(t,i)
k′ −x

(t,i−1)
k′ ‖22 (Pythagorean theorem). In turn, this implies

that the sum of the players’ regrets
∑n

k=1 Reg
(t,m)
k (x̊

(t)
k ) is upper bounded by

1

η

n∑
k=1

BRk(x̊
(t)
k ‖ x

(t,0)
k ) +

(
η(L(t))2(n− 1)− 1

8η

) n∑
k=1

m∑
i=1

‖x(t,i)
k − x(t,i−1)

k ‖22

≤ 1

η

n∑
k=1

BRk(x̊
(t)
k ‖ x

(t,0)
k )− 1

16η

n∑
k=1

m∑
i=1

‖x(t,i)
k − x(t,i−1)

k ‖22,

where the last bound follows since η ≤ 1
4L(t)

√
n−1

(by assumption). This concludes the proof.
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ALGORITHM 1: Meta-OGD
Data:
• Number of players n ∈ N \ {1};
• Dimension of strategy set dk ∈ N for each k ∈ [[n]]; and
• Lipschitz constant L > 0.

Initialize x(1,0)
k = 1

dk
1dk
∈ Xk for each player k ∈ [[n]] ;

for game t = 1, . . . , T do
Each player k runs OGD for m iterations using initialization x(t,0)

k and learning rate η = 1
4L
√
n−1 ;

Each player k computes the next initialization as x(t+1,0)
k = 1

t

∑t
s=1 x̊

(t)
k ;

end

We remark that in the proof above we used the assumption thatm(t,1)
k := uk(x

(t,0)
−k ), which is

also needed in [Syrgkanis et al., 2015]—although it was not explicitly mentioned by the authors.
That assumption can be circumvented using standard techniques; as such, it will be lifted
in Appendix C.8.

Armed with Corollary B.2, we are now ready to state the key result of this subsection: a
refined guarantee for the sum of the players’ regrets, parameterized in terms of the similarity of
the optimal in hindsight of each player. The meta-version of OGD that we consider is summarized
in Algorithm 1.

Theorem B.3. Suppose that each player k ∈ [[n]] employs OGD with learning rate η = 1
4L
√
n−1

,

with L := max1≤t≤T L
(t), and initialization x(t,0)

k :=
∑

s<t x̊
(s)
k

/
(t− 1), for t ≥ 2. Then,

1

T

T∑
t=1

n∑
k=1

Reg
(t,m)
k ≤ 2L

√
n− 1

n∑
k=1

V 2
k +

4L
√
n− 1(1 + log T )

T

n∑
k=1

Ω2
Xk . (6)

In light of Corollary B.2, the main ingredient for establishing this theorem is a meta-algorithm
that determines the initialization of OGD. As we shall see, the initialization seen in Theorem B.3,
namely x(t,0)

k :=
∑

s<t x̊
(s)
k

/
(t− 1), is what comes out of follow the leader FTL—the “unregularized”

version of FTRL. To justify this, we will need the following auxiliary results. We note that, for
convenience, the guarantee below is stated in terms of an underlying sequence of losses, instead
of utilities; naturally, those two viewpoints are equivalent.

Proposition B.4 ([Khodak et al., 2019]). Let R : X → R be a 1-strongly convex regularizer with
respect to the norm ‖ · ‖. Then, for any sequence x(1), . . . ,x(T ) ∈ X , FTL run on the sequence of
losses α(1)BR(x(1) ‖ ·), . . . , α(T )BR(x(T ) ‖ ·), where α ∈ RT>0, has regret Reg(T ) bounded as

Reg(T ) ≤ 2CΩX

T∑
t=1

(α(T ))2G(T )

α(t) + 2
∑

s<t α
(s)
,

where C ∈ R>0 is such that ‖x‖ ≤ C‖x‖2 for any x ∈ X ; ΩX is the `2-diameter of X ; and G(t)

is the Lipschitz constant of the function BR(x(t) ‖ ·) with respect to ‖ · ‖.

In particular, in this section we will be using this proposition for the Bregman divergence
induced by the Euclidean regularizer R : x 7→ 1

2‖x‖
2
2, in which case the sequence of losses

encountered by the FTL algorithm happens to be strongly convex; for that special case, logarithmic
regret under FTL is well-known from earlier works [Cesa-Bianchi and Lugosi, 2006]. Proposition B.4
can then be further simplified so that C = 1 and G(t) ≤ ΩX , for any t ∈ [[T ]], where we recall
that ΩX is the `2-diameter of X . To see this, we simply note that for any x,x′ ∈ X ,∣∣∣BR(x(t) ‖ x)− BR(x(t) ‖ x′)

∣∣∣ =

∣∣∣∣〈x− x′, x+ x′

2
− x(t)

〉∣∣∣∣ ≤ ΩX ‖x− x′‖2,
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since x+x′

2 ∈ X (by convexity). Further, FTL takes a natural form, as implied by the following
simple claim. We recall again that X it always assumed to be nonempty convex and compact.

Claim B.5. Consider a sequence of points x(1), . . . ,x(T ) ∈ X ⊆ Rd, for d ∈ N. Then, the
function

X 3 x 7→ 1

2

T∑
t=1

α(t)‖x(t) − x‖22,

with α ∈ RT>0, attains its (unique) minimum at x? :=
∑T

t=1 α
(t)x(t)

/∑T
t=1 α

(t).

We point out that, by convexity, x? is indeed a feasible point in X . Such a characterization
(Claim B.5) is known to be extended beyond Euclidean regularization [Banerjee et al., 2005],
which will be used in the proofs of Theorems D.7 and D.10. We are now ready to establish
Theorem B.3.

Proof of Theorem B.3. First, by Corollary B.2, we have that for any task t ∈ [[T ]],

n∑
k=1

Reg
(t,m)
k ≤ 4L

√
n− 1

n∑
k=1

BRk(x̊
(t)
k ‖ x

(t,0)
k ), (7)

where we used the fact that η := 1
4L
√
n−1
≤ 1

4L(t)
√
n−1

for each task t ∈ [[T ]], by definition of
L := max1≤t≤T L

(t), thereby satisfying the precondition of Corollary B.2. Thus,

1

T

T∑
t=1

n∑
k=1

Reg
(t,m)
k ≤ 4L

√
n− 1

T

n∑
k=1

T∑
t=1

BRk(x̊
(t)
k ‖ x

(t,0)
k ) (8)

=
2L
√
n− 1

T

n∑
k=1

T∑
t=1

‖x̊(t)
k − x

(t,0)
k ‖22 (9)

=
2L
√
n− 1

T

n∑
k=1

min
xk∈X

T∑
t=1

‖x̊(t)
k − xk‖

2
2

+
2L
√
n− 1

T

n∑
k=1

(
T∑
t=1

‖x̊(t)
k − x

(t,0)
k ‖22 − min

xk∈X

T∑
t=1

‖x̊(t)
k − xk‖

2
2

)

≤ 2L
√
n− 1

T

n∑
k=1

min
xk∈X

T∑
t=1

‖x̊(t)
k − xk‖

2
2 +

8L
√
n− 1(1 + log T )

T

n∑
k=1

Ω2
Xk

(10)

=
2L
√
n− 1

T

n∑
k=1

T∑
t=1

‖x̊(t)
k − x̄k‖

2
2 +

8L
√
n− 1(1 + log T )

T

n∑
k=1

Ω2
Xk (11)

= 2L
√
n− 1

n∑
k=1

V 2
k +

8L
√
n− 1(1 + log T )

T

n∑
k=1

Ω2
Xk , (12)

where

• (8) follows from (7);

• (9) uses the fact that OGD corresponds to OMD with Rk : Xk 3 xk 7→ 1
2‖xk‖

2
2, thereby

implying that BRk(x̊(t) ‖ x(t,0
k ) = 1

2‖x̊
(t) − x(t,0)

k ‖22;

23



• (10) uses Proposition B.4 with ‖ · ‖ = ‖ · ‖2. In particular, the quantity

1

2

T∑
t=1

(
‖x̊(t)

k − x
(t,0)
k ‖22 − min

xk∈X
‖x̊(t)

k − xk‖
2
2

)
(13)

can be recognized as the regret incurred by the FTL algorithm used by each player k ∈ [[n]],
which in turn follows since we have initialized as x(t,0)

k :=
∑

s<t x̊
(s)
k

/
(t− 1), for t ≥ 2,

which by Claim B.5 is exactly the update of FTL under α(1) = · · · = α(t) = 1. As a result,
by Proposition B.4, the regret of FTL (13) for each player k ∈ [[n]] can be upper bounded by

2Ω2
X

T∑
t=1

1

2t− 1
≤ 2Ω2

X

T∑
t=1

1

t
≤ 2Ω2

X (1 + log T ),

where the last bound uses the well-known inequality that the t-th harmonic number H(t) is
upper bounded by 1 + log T , where log(·) here denotes the natural logarithm.

• (11) uses the fact that the function xk 7→
∑T

t=1 ‖x̊(t) − xk‖22 is minimized at x̄k :=∑T
t=1 x̊

(t)
k

/
T (by Claim B.5); and

• (12) uses the notation V 2
k := 1

T

∑T
t=1 ‖x̊

(t)
k − x̄k‖

2
2 for the similarity of the optimal in

hindsight of player k ∈ [[n]].

Remark B.6. For the sake of simplicity in the exposition, in Theorem B.3 we have assumed that
players use the same learning rate for each task, but that guarantee can be further improved if
players use different learning rates, as long as Corollary B.2 can be applied. Indeed, Proposition B.4
is versatile enough to capture the case where the Bregman divergences have different weights,
though the induced expression in that case is rather convoluted.

Remark B.7. Theorem B.3 can be directly applied if the left-hand side of (6) is replaced by
1
T

∑T
t=1 α

(t)
∑n

k=1 Reg
(t,m)
k , in which case the right-hand side of (6) ought to be multiplied by

max1≤t≤T α
(t), for some vector α ∈ RT>0. This simple fact will be exploited in the proof of

Theorem 3.6.

Remark B.8. From (9), if each player k ∈ [[n]] initializes to x(t,0)
k = x̊

(t−1)
k , i.e., the optima-in-

hindsight of the previous game, then 1
T

∑T
t=1

∑n
k=1 Reg

(t,m)
k ≤ 2L

√
n−1
T

∑T
t=1

∑n
k=1 ‖x̊

(t)
k −x̊

(t−1)
k ‖22,

where by convention x̊(0)
k := x

(1,0)
k . Similarly, if each player initializes to x(t,0)

k = x
(t−1,m)
k , i.e.,

the last iterate of the previous game, then 1
T

∑T
t=1

∑n
k=1 Reg

(t,m)
k ≤ 2L

√
n−1
T

∑T
t=1

∑n
k=1 ‖x̊

(t)
k −

x
(t−1,m)
k ‖22, where by convention x(0,m)

k := x
(1,0)
k . While the bound in Theorem B.3 might be

generally better if there is no sequential structure to the games encountered, it may be desirable
to instead use one of the other initializations if some form of sequential structure is known to
exist, as illustrated in our experiments (Section 4).

B.2 Implications for the Social Welfare

Having refined the guarantee in terms of the social regret (Theorem B.3), we can proceed with
the proof of Theorem 3.6. Let us first further comment on Definition 3.5, which was introduced
earlier in Section 3.2.1. To do so, we first give some basic background on normal-form (or
strategic-form) games; this will also make our setup in Section 2 more concrete. In a normal-form
game, each player k ∈ [[n]] has a finite and nonempty set of available actions Ak. For a joint
action profile a = (a1, . . . , an) ∈×n

k=1Ak, there is a utility function uk : a 7→ uk(a), assigning
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a utility to each player k given a. Players are allowed to randomize by selecting a probability
distribution over their set of actions. Indeed, Xk := ∆(Ak) corresponds to the strategy set of
player k ∈ [[n]]. In the setting described in Section 2, uk :×n

k=1Xk → R is the mixed extension of
the utility function: uk : x 7→ Ea∼x[uk(a)]. That is, players act so as to maximize their expected
utility.

In this context, Roughgarden [2015] introduced his notion of smoothness with respect to pure
strategies:

n∑
k=1

uk(a
?
k,a−k) ≥ λOPT− µSW(a), (14)

for any two joint action profiles a,a? ∈×n
k=1Ak; in fact, a? can be restricted to be an action

profile that maximizes social welfare [Roughgarden, 2015]. Thus, Definition 3.5, stated in terms
of mixed strategies, can be obtained by taking an expectation in (14) and restricting x? to be a
pure strategy—namely, a?.

For a (λ, µ)-smooth game G, we recall that the robust price of anarchy is defined as ρ :=
λ/(1 + µ); it was coined “robust” by Roughgarden [2015] because—among others—it gives a
guarantee for any coarse correlated equilibrium of G—not just the Nash equilibria. We note
that the robust price of anarchy might be different than the price of anarchy—the ratio between
the worst Nash equilibrium (in terms of social welfare)—and the optimal state—hypothetically
imposed by a benevolent dictator. The importance of Roughgarden’s smoothness framework is
that for many classes of games ρ is remarkably close to the actual price of anarchy [Roughgarden,
2015]. Indeed, we give in Table 2 a number of important settings for which ρ is close to 1,
including games/mechanisms discussed by Hartline et al. [2015].

Table 2: Smoothness parameters for well-studied games/mechanisms in the literature. For some
of those settings, smoothness—in the sense of Definition 3.5—was only subsequently crystallized
by Roughgarden [2015] based on the earlier arguments.

Game/Mechanism (λ, µ) Reference

Simultaneous first-price auction with
submodular bidders

(
1− 1

e
, 1

)
[Syrgkanis and Tardos, 2013]

First-price multi-unit auction
(

1− 1

e
, 1

)
[Syrgkanis and Tardos, 2013]

Simultaneous second-price auctions (1, 1) [Christodoulou et al., 2016]

Greedy combinatorial auction with
d-complements

(
1− 1

e
, d

)
[Lucier and Borodin, 2010]

Valid utility games (1, 1) [Vetta, 2002]

Congestion games with affine costs
(

5

3
,

1

3

)
[Christodoulou and Koutsoupias, 2005]

Now, for the sake of generality, let us treat the problem of maximizing welfare from a slightly
broader standpoint. More precisely, for a vector α ∈ Rn>0, we define SWα(x) :=

∑n
k=1 αkuk(x).

That is, the utility of each player k ∈ [[n]] is weighted using a coefficient αk > 0; when
α1 = · · · = αn = 1, we recover the standard notion of (utilitarian) social welfare we introduced
earlier. We also let OPTα := maxx∈X SWα(x). In this context, we consider the following
generalized notion of smoothness.
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Definition B.9 (Extension of Definition 3.5). A game G is (λ, µ)-smooth with respect to α ∈ Rn>0,
with λ, µ > 0, if there exists a strategy profile x? ∈×n

k=1Xk such that for any x ∈×n
k=1Xk,

n∑
k=1

αkuk(x
?
k,x−k) ≥ λOPTα − µSWα(x). (15)

In the sequel, when α will remain unspecified it will be implied that α1 = · · · = αn = 1.
Below we show a simple extension of an observation due to Roughgarden [2015].

Proposition B.10. Suppose that each player k ∈ [[m]] incurs regret at most Reg
(m)
k in a (λ, µ)-

smooth game G with respect to α ∈ Rn>0. Then,

1

m

m∑
i=1

SWα(x(i)) ≥ λ

1 + µ
OPTα −

1

1 + µ

1

m

n∑
k=1

αk Reg
(m)
k ,

where λ/(1 + µ) is the (robust) price of anarchy.

Proof. Suppose that x? ∈×n
k=1Xk is the strategy profile for which (15) is satisfied. Then, by

definition, for any player k ∈ [[n]] and iteration i ∈ [[m]],

αk Reg
(m)
k ≥

m∑
i=1

αkuk(x
?
k,x

(i)
−k)− αk

m∑
i=1

uk(x
(i)),

since αk > 0 (by assumption). So, summing over all players,
n∑
k=1

αk Reg
(m)
k ≥ λmOPT− µ

m∑
i=1

SWα(x(i))−
m∑
i=1

SWα(x(i)),

and rearranging the last inequality concludes the proof.

Next, we first focus on the case where α1 = · · · = αn = 1, and we then give the more general
result. In particular, below we show Theorem 3.6, the informal version of which was stated earlier
in Section 3.2.1.

Theorem B.11 (Detailed Version of Theorem 3.6). If all players use OGD with learning rate
η = 1

4L
√
n−1

, with L := max1≤t≤T L
(t), and initialization x(t,0)

k :=
∑

s<t x̊
(s)
k

/
(t− 1), for t ≥ 2

and k ∈ [[n]], in a sequence of T games (G(t))1≤t≤T , each of which is (λ(t), µ(t))-smooth, then

1

mT

T∑
t=1

m∑
i=1

SW(x(t,i)) ≥ 1

T

T∑
t=1

λ(t)

1 + µ(t)
OPT(t) − 2L

√
n− 1

m

n∑
k=1

V 2
k − Õ

(
1

mT

)
,

where x(t,i) := (x
(t,i)
1 , . . . ,x

(t,i)
n ) is the strategy produced by the players at iteration i of task t,

and OPT(t) is the optimal social welfare attainable at game G(t).

Proof. First, using Proposition B.10 we have that for any task t ∈ [[T ]],

1

m

m∑
i=1

SW(x(t,i)) ≥ λ(t)

1 + µ(t)
OPT(t) − 1

1 + µ(t)

1

m

n∑
k=1

Reg
(t,m)
k , (16)

since each game G(t) is assumed to be (λ(t), µ(t))-smooth with optimal social welfare OPT(t).
Hence, taking the average of (16) over all t ∈ [[T ]] yields that

1

mT

T∑
t=1

m∑
i=1

SW(x(t,i)) ≥ 1

T

T∑
t=1

λ(t)

1 + µ(t)
OPT(t) − 1

mT

T∑
t=1

1

1 + µ(t)

n∑
k=1

Reg
(t,m)
k .

Finally, using Theorem B.3 along with the refinement discussed in Remark B.7—with
α(t) := 1

1+µ(t) ∈ [0, 1]—concludes the proof.
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For the more general result in which we allow any weight vector α ∈ Rn>0, it suffices to refine
Corollary B.2 as follows.

Corollary B.12 (Extension of Corollary B.2). Fix any t ∈ [[T ]], and suppose that L(t) is the
Lipschitz parameter of G(t)—in the sense of (1). If all players employ OGD with learning rate

η ≤ 1

2
√

2L(t)
max
k∈[[n]]

√
αk∑

k′ 6=k αk′
, (17)

where α ∈ Rn>0, then
n∑
k=1

αk Reg
(t,m)
k ≤ 1

η

n∑
k=1

αkBRk(x̊
(t)
k ‖ x

(t,0)
k ). (18)

The proof is analogous to Corollary B.2, but we include it below for completeness. We
remark that if αk = 1, for some player k ∈ [[n]], and the rest of the coefficients approach to
0, Corollary B.12 gives a vacuous guarantee: the learning rate required in (17) approaches to
0, thereby making the right-hand side of (18) unbounded. This is precisely the reason why
obtaining near-optimal Õ(1) bounds for maxk∈[[n]] Reg

(m)
k , instead of

∑n
k=1 Reg

(m)
k , requires more

refined techniques [Daskalakis et al., 2021].

Proof of Corollary B.12. Similarly to Corollary B.12, by L(t)-Lipschitz continuity (1) and Theo-
rem B.1, we have that αk Reg

(t,m)
k (x̊

(t)
k ) can be upper bounded by

αk
η
BRk(x̊

(t)
k ‖ x

(t,0)
k ) + ηαk(L

(t))2
∑
k′ 6=k

m∑
i=1

‖x(t,i)
k′ − x

(t,i−1)
k′ ‖22 −

αk
8η

m∑
i=1

‖x(t,i)
k − x(t,i−1)

k ‖22,

for any player k ∈ [[k]], where we used the fact that αk > 0. As a result, we have that∑n
k=1 αk Reg

(t,m)
k (x̊

(t)
k ) can be in turn upper bounded by

1

η

n∑
k=1

αkBRk(x̊
(t)
k ‖ x

(t,0)
k ) +

n∑
k=1

η(L(t))2
∑
k′ 6=k

αk′ −
αk
8η

 m∑
i=1

‖x(t,i)
k − x(t,i−1)

k ‖22.

Combining this with the bound on the learning rate (17) completes the proof.

C Proofs from Section 3.1: Meta-Learning in Zero-Sum Games

In this section, we primarily focus on meta-learning in two-player zero-sum games. We also give
a number of gradual extensions and generalizations.

C.1 Bilinear Saddle-Point Problems

We begin by considering the bilinear saddle-point problem

min
x∈X

max
y∈Y

x>Ay, (19)

where we recall that X ⊆ Rdx is the nonempty convex and compact set of strategies of player x
with dx ∈ N; Y ⊆ Rdy is the nonempty convex and compact set of strategies of player y with
dy ∈ N; and A ∈ Rdx×dy is the coupling (payoff) matrix of the game. In what follows in the
coming subsections, we will extend our results to more general settings.

We will first apply Theorem B.3 (proven in Appendix B) for the bilinear saddle-point
problem (19). To do so, we first note that the Lipschitz continuity assumption (1) for a fixed task
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t is satisfied with L(t) := ‖A(t)‖2, where ‖A(t)‖2 is the spectral norm of A(t). Indeed, for player x
it holds that u(t)

x (y) := −A(t)y, thereby implying that ‖u(t)
x (y)− u(t)

x (y′)‖2 ≤ ‖A(t)‖2‖y − y′‖2,
for any y,y′ ∈ Y , by definition of the spectral norm A(t); similar reasoning applies for the utility
vectors observed by player y given that ‖(A(t))>‖2 = ‖A(t)‖2.

Theorem C.1 (Sum of Regrets in BSPPs). Suppose that both players employ OGD with initializa-
tion x(t,0)

k :=
∑

s<t x̊
(s)
k

/
(t− 1), for t ≥ 2, and learning rate η := 1

4L , where L := maxt∈[T ] ‖A(t)‖2.
Then, the average sum of the players’ regrets over all tasks can be upper bounded by

1

T

T∑
t=1

(
Reg(t,m)

x + Reg(t,m)
y

)
≤ 2L

(
V 2
x + V 2

y

)
+

8L(1 + log T )

T

(
Ω2
X + Ω2

Y
)
.

Here, we recall that we use the notation V 2
y , V

2
y for the task similarity in terms of the optimal

in hindsight for player x and y, respectively. We will also obtain results that depend on the
similarity of the Nash equilibria. In Theorem C.1 it is assumed that players know the Lipschitz
constant of the game; such an assumption can be met by first rescaling the payoff matrix, so
that L will be a universal constant. Alternatively, one can employ the doubling trick (see our
discussion after Corollary B.2).

In light of the well-known connection that the sum of the players’ regrets drives the rate of
convergence of the average strategies to the set of Nash equilibria (e.g., see [Freund and Schapire,
1997]), Theorem C.1 yields the following consequence.

Corollary C.2 (Average Duality Gap in BSPPs; Detailed Version of Theorem 3.1). In the
setting of Theorem C.1, let x̄(t), ȳ(t) be the average strategy of the two players, respectively, at
each task t ∈ [[T ]]. Then,

1

T

T∑
t=1

DualGap(t)(x̄(t), ȳ(t)) ≤ 2L

m

(
V 2
x + V 2

y

)
+

8L(1 + log T )

mT

(
Ω2
X + Ω2

Y
)
.

Here, we used the notation

DualGap(t) : X × Y 3 x̂× ŷ 7→ max
y∈Y

x̂>A(t)y −min
x∈X

x>A(t)ŷ.

Proof of Corollary C.2. The claim follows from Theorem C.1, using the fact that for any task
t ∈ [[T ]],

1

m

(
Reg(t,m)

x + Reg(t,m)
y

)
=

1

m

(
min
y?∈Y

〈
y?,

m∑
i=1

(A(t))>x(t,i)

〉
− max
x?∈X

〈
x?,

m∑
i=1

A(t)y(t,i)

〉)

= DualGap(t)

(∑m
i=1 x

(t,m)

m
,

∑m
i=1 y

(t,m)

m

)
.

This guarantee can significantly improve over the standard m−1 rates in zero-sum games
(when each game is treated separately) [Daskalakis et al., 2015]. We next provide bounds in
terms of the individual regret of each player using a simple observation in [Anagnostides et al.,
2022b]. First, we connect the so-called second-order path lengths of the dynamics with the first
term in the RVU bound (Theorem B.1):

Proposition C.3 (Bounded Second-Order Path Length). Fix any task t ∈ [[T ]] associated with
the bilinear saddle-point problem (19) under matrix A(t). If both players employ OGD with learning
rate η ≤ 1

4‖A(t)‖2
, then

m∑
i=1

‖x(t,i) − x(t,i−1)‖22 +
m∑
i=1

‖y(t,i) − y(t,i−1)‖22 ≤ 8
(
‖x̊(t) − x(t,0)‖22 + ‖ẙ(t) − y(t,0)‖22

)
.
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Proof. The claim is immediate from Corollary B.2, using the fact that Reg
(t,m)
x + Reg

(t,m)
y =

Reg
(t,m)
x (x̊(t)) + Reg

(t,m)
y (ẙ(t)) ≥ 0, by definition of x̊(t) ∈ X and ẙ(t) ∈ Y.

When combined with the RVU bound, this proposition can be used to derive the following
refined guarantee for the individual regret experienced by each player.

Corollary C.4 (Individual Per-Player Regret). In the setting of Theorem C.1, it holds that

1

T

T∑
t=1

max
{

Reg(t,m)
x ,Reg(t,m)

y

}
≤ 4L

(
V 2
x + V 2

y

)
+

16L(1 + log T )

T

(
Ω2
X + Ω2

Y
)
.

Proof. Let us first fix any task t ∈ [[T ]]. Combining Theorem B.1 and Proposition C.3, we have
that

max
{

Reg(t,m)
x ,Reg(t,m)

y

}
≤ 4L

(
‖x̊(t) − x(t,0)‖22 + ‖ẙ(t) − y(t,0)‖22

)
.

Thus, the statement follows similarly to Theorem B.3.

Analogous guarantees apply to games beyond two-player zero-sum, such as strategically
zero-sum and zero-sum polymatrix games, using the same technique [Anagnostides et al., 2022b].

C.1.1 Last-Iterate Bounds

We next switch gears and focus on obtaining bounds on the number of iterations required so
that the iterates of OGD—instead of the average iterates—reach approximate Nash equilibria, the
definition of which is recalled below for general multiplayer games.

Definition C.5 (Approximate Nash Equilibria). A joint strategy profile x? ∈×n
k=1Xk is an

ε-approximate Nash equilibrium, with ε ≥ 0, if for any player k ∈ [[n]] and any possible deviation
xk ∈ Xk,

uk(x
?) ≥ uk(x?−k,xk)− ε.

Nash equilibria are known to exist under general assumptions [Rosen, 1965]. In this context,
we will need the following refined RVU bound, which can be readily extracted from [Syrgkanis
et al., 2015, Rakhlin and Sridharan, 2013b].

Theorem C.6 ([Syrgkanis et al., 2015, Rakhlin and Sridharan, 2013b]). For any observed
sequence of utilities (u(i))1≤i≤m, the regret of OMD up to time m ∈ N can be bounded as

Reg(m) ≤ 1

η
BR(x̊ ‖ x(0))+η

m∑
i=1

‖u(i)−u(i−1)‖2∗−
1

2η

m∑
i=1

‖x(i)− x̂(i)‖2− 1

2η

m∑
i=1

‖x(i)− x̂(i−1)‖2,

where x̊ ∈ X is an optimal strategy in hindsight; (x(i))1≤i≤m is the primary sequence of strategies
of OMD, while (x̂(i))1≤i≤m is the secondary sequence of strategies of OMD.

Using this refined bound, the guarantee below follows analogously to Proposition C.3. For
convenience, we will use the notation z := (x,y) ∈ X × Y =: Z in order to concatenate the
strategies of the two players. The primary importance of the following refinement is that the
second-order path length bound is now parameterized in terms of any Nash equilibrium of the
game.

Corollary C.7 (Refinement of Proposition C.3). In the setting of Proposition C.3,

m∑
i=1

‖z(t,i) − ẑ(t,i)‖22 +
m∑
i=1

‖z(t,i) − ẑ(t,i−1)‖22 ≤ 2‖z(t,?) − z(t,0)‖22,

for any z(t,?) ∈ Z(t,?)—the set of Nash equilibria of the BSPP associated with A(t).
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Proof. Let Reg(t,m)(z) = Reg
(t,m)
x (x) + Reg

(t,m)
y (y), where z = (x,y) ∈ Z and a fixed task

t ∈ [[T ]]. We claim that Reg(t,m)(z(t,?)) ≥ 0 for any Nash equilibrium pair z(t,?) ∈ Z(t,?). Indeed,
for any step i ∈ [[m]],

(x(t,i))>A(t)y(t,i) − (x(t,?))>A(t)y(t,i) + (x(t,i))>A(t)y(t,?) − (x(t,i))>A(t)y(t,i) ≥ 0. (20)

Here, if v(t) is the value of the game associated with A(t), which exists by the minimax theorem,
we used the fact that (x(t,?))>A(t)y ≤ v(t), for any equilibrium strategy x(t,?) for player x and
any y ∈ Y , and similarly, x>A(t)y(t,?) ≥ v(t), for any equilibrium strategy y(t,?) for player y and
any x ∈ X . Thus, summing (20) for all i ∈ [[m]] verifies our claim: Reg(t,m)(z(t,?)) ≥ 0 for any
z(t,?) ∈ Z(t,?). Finally, the statement follows analogously to Proposition C.3.

Next, we combine this guarantee with Proposition B.4 to obtain an iteration-complexity
bound that depends on the worst-case similarity of the equilibria, defined as

V 2
NE := max

z(1,?),...,z(T,?)
min
z̄∈Z

T∑
t=1

‖z(t,?) − z̄‖22, (21)

subject to the constraint that z(t,?) ∈ Z(t,?) for each task t ∈ [[T ]]. We recall that the set of Nash
equilibria in BSSPs is nonempty convex and compact, and so (21) is indeed well-defined. It is
worth noting that in generic zero-sum games—roughly speaking, any zero-sum game perturbed
with random noise—there is a unique Nash equilibrium [van Damme, 1987]. In that case, there
are no equilibrium selection issues, and (21) happens to reduce to the smallest possible deviation
of the Nash equilibria.

Theorem C.8 (Detailed Version of Theorem 3.2). Suppose that both players employ OGD with
learning rate η ≤ 1

4L , where L := max1≤t≤T ‖A(t)‖2, and initialization z(t,0) :=
∑

s<t z
(t,?)
/

(t−1),
for any z(t,?) ∈ Z(t,?) and t ≥ 2. Then, for an average game t ∈ [[T ]]⌈

2V 2
NE
ε2

+
8(1 + log T )

Tε2
(
Ω2
X + Ω2

Y
)⌉

iterations suffice to reach an ε
(

2 max{ΩX ,ΩY}
η + ‖A(t)‖2

)
-approximate Nash equilibrium, where

V 2
NE is defined as in (21).

Proof. First, using Corollary C.7 for each game t ∈ [[T ]],

1

T

T∑
t=1

(
m∑
i=1

‖z(t,i) − ẑ(t,i)‖22 +

m∑
i=1

‖z(t,i) − ẑ(t,i−1)‖22

)
≤ 2

T

T∑
t=1

‖z(t,?) − z(t,0)‖22, (22)

for any sequence of Nash equilibria (z(t,?))1≤t≤T . Thus, analogously to Theorem B.3, the
right-hand side of (22) can be in turn upper bounded by

2V 2
NE +

8(1 + log T )

T

(
Ω2
X + Ω2

Y
)
.

As a result, for an average game⌈
2V 2

NE
ε2

+
8(1 + log T )

Tε2
(
Ω2
X + Ω2

Y
)⌉

iterations suffice to reach an iterate such that ‖z(t,i)−ẑ(t,i)‖2, ‖z(t,i)−ẑ(t,i−1)‖2 ≤ ε, which in turn
implies that z(t,i) is an ε

(
2 max{ΩX ,ΩY}

η + ‖A(t)‖2
)
-approximate Nash equilibrium [Anagnostides

et al., 2022b, Claim A.14].
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Here, we have assumed that after the termination of each game the players obtain an exact
Nash equilibrium of that game—in order to implement the initialization of Theorem C.8. If
that is not the case, players have still learned an O(1/m)-approximate Nash equilibrium of the
game after m iterations of learning. So, Theorem C.8 can be modified by considering the task
similarity metric (21) with respect to O(1/m)-approximate Nash equilibrium (Definition C.5)
(instead of exact Nash equilibria).

C.1.2 Improving the Task Similarity

The notion of task similarity used in Theorem C.8, namely (21), depends on the sequence of the
worst Nash equilibria of the games. We can improve those guarantees under the assumption that
the players observe the game G(t) at the end of each task. In particular, each player can employ
a meta-learning algorithm that observes as loss after task t the function

x(t) 7→ 1

2
min

x(t,?)∈X (t,?)
‖x(t) − x(t,?)‖22, (23)

where X (t,?) is the set of Nash equilibria of game G(t) projected to X . The function (23) is easily
seen to be convex, and its gradient can be computed if we have a (Euclidean) projection oracle
for the set X (t,?). So, the meta-learning algorithm will perform at least as good as

min
x∈X

1

2

T∑
t=1

min
x(t,?)∈X (t,?)

‖x− x(t,?)‖22, (24)

modulo an o(T ) additive term (from the regret bound). Similar reasoning applies for player y.

An illustrative example To demonstrate the difference between the notions of task similarity—
based on Nash equilibria—we have considered so far, we study a simple sequence of games. In
particular, we let

G :=

 1 −1 0
−1 1 0
0 0 0

 and G′ :=

1.1 −1.1 0
−1 1 0
0 0 0

 (25)

be two zero-sum games in normal form described by their payoff matrix. Then, for t ∈ [[T ]], we let

G(t) :=

{
G if t mod 2 = 1,

G′ if t mod 2 = 0.

The point of this example is that the games G and G′ have a common Nash equilibrium, but
also different ones:

Claim C.9. The strategy ((0, 0, 1), (0, 0, 1)) is a Nash equilibrium in both G and G′, defined
in (25). On the other hand, the pair of strategies ((1

2 ,
1
2 , 0), (1

2 ,
1
2 , 0)) is a Nash equilibrium for

G, but it is 0.05-far from being a Nash equilibrium in G′. Conversely, the pair of strategies
((10

21 ,
11
21 , 0), (1

2 ,
1
2 , 0)) is a Nash equilibrium for G′, but it is 1

21 -far from being a Nash equilibrium
for G.

Here, we say that a pair of strategies is α-far from being a Nash equilibrium if there exists a
unilateral deviation with (additve) benefit at least α > 0 for that player. This simple example
shows that the task similarity based on (24) can be 0, while the improved task similarity (21)
can be Ω(1).
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C.1.3 Further Refinements

Moreover, we obtain further refinements when either the strategy set of each player corresponds to
a probability simplex, or when the game is strongly convex-concave. In particular, let us treat the
more general min-max optimization problem where f(x,y) is an L-smooth, convex-concave and
differentiable function; a more general setting that encompasses such problems is discussed in more
detail in Appendix C.2. We begin by noting the following general property of OMD. For convenience,
we use a prediction based on the secondary sequence of OMD: m(i)

x := −∇xf(x̂(i−1), ŷ(i−1)) and
m

(i)
y := ∇yf(x̂(i−1), ŷ(i−1)).

Proposition C.10 (OMD Approaches the Set of NE). For any learning rate η ≤ 1
4L and for

any iteration i ∈ [[m]], OMD with m(i)
x := −∇xf(x̂(i−1), ŷ(i−1)) and m(i)

y := ∇yf(x̂(i−1), ŷ(i−1))
satisfies

BRx(x? ‖ x̂(i−1)) + BRy(y? ‖ ŷ(i−1))− BRx(x? ‖ x̂(i))− BRy(y? ‖ ŷ(i)) ≥ 0, (26)

for any Nash equilibrium pair (x?,y?) ∈ X × Y. In particular, equality in (26) holds if and only
x̂(i) = x̂(i−1) and ŷ(i) = ŷ(i−1).

Interestingly, this property follows by relying on the analysis of the RVU bound (Theorem B.1),
but only for a single iteration of OMD.

Proof of Proposition C.10. First, for player x we have that for any x? ∈ X , the term 〈x(i) −
x?,∇xf(x(i),y(i)) is upper bounded by

1

η

(
BRx(x? ‖ x̂(i−1))− BRx(x? ‖ x̂(i))

)
+ 〈x̂(i) − x(i),∇xf(x̂(i−1), ŷ(i−1))−∇xf(x(i),y(i))〉

− 1

2η

(
‖x(i) − x̂(i−1)‖2 + ‖x(i) − x̂(i)‖2

)
. (27)

Similarly, we have that for any y? ∈ Y the term 〈y? − y(i),∇yf(x(i),y(i))〉 is upper bounded by

1

η

(
BRy(y? ‖ ŷ(i−1))− BRy(y? ‖ ŷ(i))

)
+ 〈ŷ(i) − y(i),∇yf(x(i),y(i))−∇yf(x̂(i−1), ŷ(i−1))〉

− 1

2η

(
‖y(i) − ŷ(i−1)‖2 + ‖y(i) − ŷ(i)‖2

)
. (28)

As a result, for η ≤ 1
4L it follows that 〈x(i) − x?,∇xf(x(i),y(i)) + 〈y? − y(i),∇yf(x(i),y(i))〉 is

upper bounded by

1

η

(
BRx(x? ‖ x̂(i−1))− BRx(x? ‖ x̂(i))

)
+

1

η

(
BRy(y? ‖ ŷ(i−1))− BRy(y? ‖ ŷ(i))

)
− 1

4η

(
‖x(i) − x̂(i−1)‖2 + ‖x(i) − x̂(i)‖2

)
− 1

4η

(
‖y(i) − ŷ(i−1)‖2 + ‖y(i) − ŷ(i)‖2

)
,

due to (27) and (28). Finally, the proof follows since 〈x(i) − x?,∇xf(x(i),y(i))〉 + 〈y? −
y(i),∇yf(x(i),y(i))〉 ≥ f(x(i),y?) − f(x?,y(i)) ≥ 0, by convexity-concavity of f along with
the fact that (x?,y?) is assumed to be a Nash equilibrium.

While this proposition guarantees that OMD approaches the set of Nash equilibria—in the
sense of (26), the improvement could be arbitrarily small. So, below we impose further structure
on the problem.

First, we assume that the objective of player x is µ-strongly convex when the strategy of
player y is fixed, and the objective of player y is µ-strongly concave when the strategy of player
x is fixed. Under that assumption, (26) can be further strengthened in that the improvement is
not only strict, but increases with the modulus of strong convexity.
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Corollary C.11. Let µ > 0 be the modulus of strong convexity and strong concavity of f(·,y)

and f(x, ·), respectively. Then, in the setting of Proposition C.10 with η ≤ min
{

1
4L ,

1
2µ

}
,(

‖x? − x̂(i−1)‖22 + ‖y? − ŷ(i−1)‖22
)
≥
(

1 +
µ

2

)(
‖x? − x̂(i)‖22 + ‖y? − ŷ(i)‖22

)
, (29)

for any Nash equilibrium pair (x?,y?) ∈ X × Y.

In proof, the key difference is that now 〈x(i)−x?,∇xf(x(i),y(i))〉 ≥ f(x(i),y(i))−f(x?,y(i))+
µ
2‖x

? − x(i)‖22, by µ-strong convexity of f(·,y(i)). Further, 1
4η‖x

(i) − x̂(i)‖22 + µ
2‖x

(i) − x?‖22 ≥
µ
4‖x̂

(i) − x?‖22, by Young’s inequality and the fact that η ≤ 1
2µ . Similar reasoning applies for

player y, leading to Corollary C.11.
Using (29) inductively yields that(

‖x? − x̂(m)‖22 + ‖y? − ŷ(m)‖22
)
≤
(

1

1 + µ/2

)m (
‖x? − x̂(0)‖22 + ‖y? − ŷ(0)‖22

)
,

for any Nash equilibrium pair (x?,y?), in turn implying that (x̂(m), ŷ(m)) converges to the
projection of Z? with a linear rate of 1/(1 + µ/2) ∈ (0, 1). Perhaps surprisingly, linear rate is
also achievable without any strong convexity assumptions in games with polyhedral sets [Wei
et al., 2021, Theorem 8], although the rate there depends on condition number-like quantities
and can be arbitrarily slow even in 2× 2 games.

From a meta-learning standpoint, that property of OMD—converging to the projection to the
set of Nash equilibria—is useful, and can partially address the bad example we show earlier
in (25). In particular, as long as the number of iterations is large enough, the dynamics will
project to the set of Nash equilibria of G and G′ in tandem, gradually approaching the common
Nash equilibrium. Yet, if the “angle” between those sets is small it would take a large number of
tasks T so that the dynamics reach close to the common Nash equilibrium.

Remark C.12 (Alternating Updates). So far, we have studied the setting where both players
update their strategies simultaneously—as in the definition of OMD. A different approach that has
received extensive attention in the literature [Wibisono et al., 2022], not least due to its practical
superiority [Tammelin, 2014], consists of performing the update rule in an alternating fashion.
Interestingly, within the framework of optimistic mirror descent, alternation can be captured
through the predictions: the first player uses the standard optimistic prediction (if any), but the
player who updates second has a perfect prediction; that is, the prediction does not correspond
to the previous strategy of the opponent, but the current one. All of our guarantees immediately
apply under alternating updates using this simple observation.

C.2 Beyond Bilinear Saddle-Point Problems: A VI Perspective

In this subsection, we extend our scope beyond the bilinear saddle-point problems of (19). In
particular, we take a broader variational inequality (VI) perspective, which is commonly espoused
in the context of min-max optimization.

Let us suppose that F : Z → Z is a singe-valued operator; many of our results below readily
apply even if F is multi-valued, such as the subdifferential operator of a non-differentiable
function. We begin by making some standard assumptions on the operator F below. We will
then explain how the assumptions below immediately capture BSSPs. We remark that both
of those assumptions will be weakened in the sequel: Lipschitz continuity (Assumption C.13)
is relaxed in Appendix C.6 where we only assume Hölder continuity, while the MVI property
(Assumption C.14) is relaxed in Appendix C.2.1 where we consider the so-called weak MVI
property.

Assumption C.13. F is L-Lipschitz continuous, in the sense that for any z, z′ ∈ Z, it holds
that ‖F (z)− F (z′)‖2 ≤ L‖z − z′‖2.
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Assumption C.14 (MVI Property [Mertikopoulos et al., 2019, Gidel et al., 2019]). There exists
a point z? ∈ Z such that 〈F (z), z − z?〉 ≥ 0 for any z ∈ Z.

To relate those assumptions to the bilinear saddle-point problem we considered earlier in
Appendix C.1, we take F : z 7→ (Ay,−A>x). Then, given that 〈z, F (z)〉 = 0 for any z ∈ Z,
Assumption C.14 requests the existence of a point (x?,y?) ∈ Z so that x>Ay?−(x?)>Ay ≥ 0, for
any (x,y) ∈ X ×Y , which is a well-known consequence of the minimax theorem; Assumption C.13
also follows immediately for BSPPs.

More broadly, Assumptions C.13 and C.14 induce a standard setup in min-max optimization,
where F := (∇xf(x,y),−∇yf(x,y)) for certain differentiable and smooth objective functions
f : X × Y → R. Importantly, our techniques in Appendix C.1 can be readily applied to this
more general setting. In particular, Corollary C.7 can be cast as follows.

Corollary C.15. Consider an operator F : Z → Z that satisfies Assumptions C.13 and C.14.
Then, under OGD with learning rate η ≤ 1

4L ,

m∑
i=1

‖z(t,i) − ẑ(t,i)‖22 +
m∑
i=1

‖z(t,i) − ẑ(t,i−1)‖22 ≤ 2‖z(t,?) − z(t,0)‖22,

where z(t,?) ∈ Z is any point that satisfies the MVI property (Assumption C.14).

To analyze OGD in this more general setup, we define the regret up to time m ∈ N as

Reg(m)
L := max

z?∈Z

{
m∑
i=1

〈z(i) − z?, F (z(i))〉

}
. (30)

When F := (∇xf(x,y),−∇yf(x,y)), (30) is precisely the sum of the “linearized” regrets incurred
by the two players.

Proof of Corollary C.15. First, analogously to Theorem C.6, it follows that

Reg(m)
L (z(t,?)) ≤ 1

2η
‖z(t,?) − z(t,0)‖22+η

m∑
i=1

‖F (z(t,i))− F (z(t,i−1))‖22

− 1

2η

m∑
i=1

(
‖z(t,i) − ẑ(t,i)‖22 + ‖z(t,i) − ẑ(t,i−1)‖22

)
.

Next, using the L-Lipschitz continuity of F (Assumption C.13), we have that for η ≤ 1
4L ,

Reg(m)
L (z(t,?)) ≤ 1

2η
‖z(t,?) − z(t,0)‖22 −

1

4η

m∑
i=1

(
‖z(t,i) − ẑ(t,i)‖22 + ‖z(t,i) − ẑ(t,i−1)‖22

)
. (31)

But, if a point z(t,?) satisfies the MVI property (Assumption C.14), it follows that

〈z(t,i) − z(t,?), F (z(t,i))〉 ≥ 0,

for any iteration i ∈ [[m]], and summing over all i ∈ [[m]] implies that Reg(m)
L (z(t,?)) ≥ 0. Thus,

the result follows immediately by rearranging (31).

Before we proceed with the analog of Theorem C.8, let us first clarify our solution concept.
We will say that a point z? ∈ Z is an ε-approximate solution to the Stampacchia variational
inequality (SVI) problem if

〈z − z?, F (z?)〉 ≥ −ε, ∀z ∈ Z. (SVI)
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We point out that when F is a monotone operator, meaning that 〈F (z)− F (z′), z − z′〉 ≥ 0
for any z, z′ ∈ Z, then an ε-approximate solution to (SVI) also satisfies 〈z − z?, F (z)〉 ≥ −ε,
for any z ∈ Z; a point z? satisfying the later property is referred to as an ε-approximate weak
solution to the variational inequality problem. We will use the following property, which follows
analogously to [Anagnostides et al., 2022b, Claim A.14].

Claim C.16. Suppose that the sequences (z(i))0≤i≤m and (ẑ(i))0≤i≤m are updated using OGD
with learning rate η > 0. If ‖z(i) − ẑ(i−1)‖2, ‖z(i) − ẑ(i)‖2 ≤ ε for some iteration i ∈ [[m]], then
z(i) ∈ Z is an ε

(
2ΩZ
η + ‖F (z(i))‖2

)
-approximate solution to the (SVI) problem.

Now in a complete analogy to Equation (21), we will use the following basic notion of task
similarity.

V 2
MVI := sup

z(1,?),...,z(T,?)

min
z̄∈Z

T∑
t=1

‖z(t,?) − z̄‖22, (32)

where z(1,?), . . . ,z(T,?) are constrained to be in the (nonempty) set of points that satisfy the
MVI property for the corresponding game.

Theorem C.17 (Extension of Theorem C.8). Consider an operator F : Z → Z that satisfies
Assumptions C.13 and C.14. Suppose further that we employ OGD with learning rate η ≤ 1

4L , where
L := max1≤t≤T L

(t), and initialization z(t,0) :=
∑

s<t z
(t,?)
/

(t − 1), for any z(t,?) ∈ Z(t,?) and
t ≥ 2, where ∅ 6= Z(t,?) ⊆ Z is the set of points that satisfy the MVI property (Assumption C.14).
Then, for an average game t ∈ [[T ]]⌈

2V 2
MVI
ε2

+
8(1 + log T )

Tε2
Ω2
Z

⌉
iterations suffice to reach an ε

(
2ΩZ
η + ‖F (z(t,i))‖2

)
-approximate solution to the (SVI), where

V 2
MVI is defined as in (32).

It is also worth pointing out how to obtain in this setting an improved guarantee for the
average sequence of OGD. Let z? ∈ Z. Assuming that F is a monotone operator, the average
regret—in the sense of (30)—can be lower bounded as

1

m
Reg(m)

L (z?) =
1

m

m∑
i=1

〈z(i) − z?, F (z(i))〉 ≥ 1

m

m∑
i=1

〈z(i) − z?, F (z?)〉 = 〈z̄ − z?, F (z?)〉,

where z̄ :=
∑m

i=1 z
(i)
/
m. Further, assuming that F is Lipchitz continuous (Assumption C.13),

following the proof of Theorem C.17 we have that the average regret decays as O(1/m) (assuming
that Z is bounded). In other words, assuming monotonicity we have that

〈z̄ − z, F (z)〉 ≤ O
(

1

m

)
, ∀z ∈ Z.

That is, z̄ is an O(1/m)-approximate weak solution to the variational inequality problem.

C.2.1 Weak MVI Property

Nevertheless, there are important problems for which the MVI property fails. For that reason,
Diakonikolas et al. [2021] introduced a weaker property, recalled below.
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Assumption C.18 (Weak MVI Property). The operator F : Z → Z is said to satisfy the weak
MVI property if there exists z? ∈ Z such that

〈F (z), z − z?〉 ≥ −ρ
2
‖F (z)‖22, ∀z ∈ Z, (33)

for a sufficiently small parameter ρ > 0.

We note that we use the `2-norm in the right-hand side of (33) for convenience, although
that definition can be stated more broadly. This is related to a condition known in the literature
as cohypomonotonicity [Bauschke et al., 2021, Combettes and Pennanen, 2004].

Definition C.19 (Cohypomonotonicity). We say that an operator F : Z → Z is ρ-cohypomonotone,
with ρ > 0, if for any z, z′ ∈ Z,

〈z − z′, F (z)− F (z′)〉 ≥ −ρ‖F (z)− F (z′)‖22. (34)

It is evident that (34) recovers the notion of monotonicity when ρ = 0, but cohypomonotonicity
is a non-trivial extension of monotonicity. An operator that satisfies (34) is also sometimes
referred to as −ρ-comonotone.

As in [Diakonikolas et al., 2021], here we focus on the unconstrained setting: Z := Rd, for
some d ∈ N. In that case, OGD can be simplified as

z(i) := ProjZ

(
ẑ(i−1) − ηF (z(i−1))

)
= ẑ(i−1) − ηF (z(i−1)),

ẑ(i) := ProjZ

(
ẑ(i−1) − ηF (z(i))

)
= ẑ(i−1) − ηF (z(i)).

In this context, below we establish a bound on the number of iterations requires to make the
norm of the operator at most ε. We point out that in the special case of min-max optimization,
F (z) = (∇xf(x,y),−∇yf(x,y)), we have that ‖F (z)‖22 = ‖∇xf(x,y)‖22 +‖∇yf(x,y)‖22, which
is perhaps the most natural measure of convergence in unconstrained min-max optimization.

Theorem C.20 (OGD under the weak MVI). If F : Z → Z is L-Lipschitz continuous (Assump-
tion C.13) and satisfies the weak MVI property with parameter 0 < ρ < 1

8L (Assumption C.18),
then for 2ρ < η < 1

4L , OGD satisfies

m−1∑
i=1

‖F (z(i))‖22 ≤
2

η(η − 2ρ)
‖z? − z(0)‖22 +

2ρ

η − 2ρ
‖F (z(m))‖22,

where z? ∈ Z is any point that satisfies the weak MVI property. In particular, there is an iterate
z(i) ∈ Z such that

‖F (z(i))‖2 ≤
1√
m− 1

√
2

η(η − 2ρ)
‖z? − z(0)‖22 +

2ρ

η − 2ρ
‖F (z(m))‖22.

Proof. Similarly to the proof of Corollary C.15, it follows that

Reg(m)
L (z?) ≤ 1

2η
‖z? − z(0)‖22 −

1

4η

m∑
i=1

(
‖z(i) − ẑ(i)‖22 + ‖z(i) − ẑ(i−1)‖22

)
. (35)

But, the weak MVI property (Assumption C.18) implies that there exists z? ∈ Z such that

Reg(m)
L (z?) ≥

m∑
i=1

〈z(i) − z?, F (z(i))〉 ≥ −ρ
2

m∑
i=1

‖F (z(i))‖22.
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Thus, combining with (35),

0 ≤ 1

2η
‖z? − z(0)‖22 +

ρ

2

m∑
i=1

‖F (z(i))‖22 −
η

4

m∑
i=1

‖F (z(i−1))‖22,

since z(i) = ẑ(i−1) − ηF (z(i−1)). Thus,

(η
4
− ρ

2

)m−1∑
i=1

‖F (z(i))‖22 ≤
1

2η
‖z? − z(0)‖22 +

ρ

2
‖F (z(m))‖22.

The proof then follows by rearranging, given that η > 2ρ (by assumption).

In light of this theorem, the meta-learning version is completely analogous to Theorem C.17,
and it is therefore omitted. An interesting question is to extend our analysis in Theorem C.20 in
the constrained setting.

C.3 Weighting the Strategies

A common strategy used in order to compute faster (approximate) saddle-points consists of
weighting the players’ strategies in a non-uniform way (e.g., [Zhang et al., 2022a, Brown and
Sandholm, 2019, Gao et al., 2021]). In this subsection, we formalize the fact that the guarantees
we established for the ergodic average (Corollary C.2) can still be applied under a broad class
of weighting schemes. To establish this, we first provide a refined analysis of OMD, but with
the twist that our guarantee will apply for a weighted notion of regret. Namely, for a sequence
α(1), . . . , α(m) ∈ R>0, we define alpha regret as

α-Reg(m) := max
x̊∈X

{
m∑
i=1

α(i)〈x̊− x(i),u(i)〉

}
. (36)

This generalized notion of regret has been proved useful, for example, in obtaining accelerates
rates for the Frank-Wolfe algorithm in convex optimization [Abernethy et al., 2018]; see also [Wang
et al., 2021]. We will insist on ensuring that

∑m
i=1 α

(i) = m. Typical choices used in the literature
include the so-called linear averaging, in which α(i) := 2i

m+1 , or quadratic averaging, in which
α(i) := 6i2

(m+1)(2m+1) . Below, we show that OMD enjoys similar RVU-type guarantees (Theorem B.1)
under a broad family of weighting sequences; this is perhaps unexpected given that OMD is designed
to minimize (unweighted) regret.

Theorem C.21. Consider any α ∈ Rm>0 with α(1) ≤ · · · ≤ α(m), and suppose that we use OMD
with a 1-strongly convex regularizer R with respect to the norm ‖ · ‖. For any observed sequence
of utilities (u(i))1≤i≤m, the alpha regret α-Reg(m) of OMD up to time m ∈ N and initialized at
x̂(0) ∈ X can be upper bounded by

α(1)

η
BR(x̊ ‖ x̂(0)) +

(α(m) − α(1))

η
max

1≤i≤m−1
BR(x̊ ‖ x̂(i)) + η

m∑
i=1

α(i)‖u(i) −m(i)‖2∗

− 1

2η

m∑
i=1

α(i)‖x(i) − x̂(i−1)‖2 − 1

2η

m∑
i=1

α(i)‖x(i) − x̂(i)‖2,

for any x̊ ∈ X .

The proof of this theorem closely follows the argument due to Rakhlin and Sridharan [2013b],
but it is included below for completeness.
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Proof. Fix any x? ∈ X . First, by 1-strong convexity of the Bregman divergence (with respect to
the first argument), we have that for any iteration i ∈ [[m]],

〈x(i),m(i)〉 − 1

2η
‖x(i) − x̂(i−1)‖2 − 〈x̂(i),m(i)〉+

1

η
BR(x̂(i) ‖ x̂(i−1)) ≥ 1

2η
‖x(i) − x̂(i)‖2. (37)

Similarly, for any iteration i ∈ [[m]],

〈x̂(i),u(i)〉 − 1

η
BR(x̂(i) ‖ x̂(i−1))− 〈x̊,u(i)〉+

1

η
BR(x̊ ‖ x̂(i−1)) ≥ 1

η
BR(x̊ ‖ x̂(i)). (38)

Further, for any step i ∈ [[m]] it holds that

〈x̊− x(i),u(i)〉 = 〈x̊,u(i)〉 − 〈x̂(i),u(i)〉 − 〈x(i),m(i)〉+ 〈x̂(i),m(i)〉+ 〈x̂(i) − x(i),u(i) −m(i)〉.

Combining with (37) and (38),

α-Reg(m)(x̊) ≤1

η

m∑
i=1

α(i)
(
BR(x̊ ‖ x̂(i−1))− BR(x̊ ‖ x̂(i))

)
+

m∑
i=1

α(i)〈x̂(i) − x(i),u(i) −m(i)〉

− 1

2η

m∑
i=1

α(i)‖x(i) − x̂(i−1)‖2 − 1

2η

m∑
i=1

α(i)‖x(i) − x̂(i)‖2. (39)

It is also easy to see that ‖x̂(i) − x(i)‖ ≤ η‖u(i) −m(i)‖∗. So, it suffices to appropriately bound
the first term in the right-hand side of (39). We have

m∑
i=1

α(i)
(
BR(x̊ ‖ x̂(i−1))− BR(x̊ ‖ x̂(i))

)
= α(1)BR(x̊ ‖ x̂(0))− α(m)BR(x̊ ‖ x̂(m))

+

m∑
i=2

BR(x̊ ‖ x̂(i−1))(α(i) − α(i−1)),

which in turn is upper bounded by

α(1)BR(x̊ ‖ x̂(0)) + (α(m) − α(1)) max
1≤i≤m−1

BR(x̊ ‖ x̂(i)).

Here, we used the fact that α(m) ≥ 0 and BR(· ‖ ·) ≥ 0, as well as the assumption that
α(i)−α(i−1) ≥ 0 for any 2 ≤ i ≤ m, which results in the telescopic sum above. Combing with (39)
concludes the proof.

This characterization has some interesting implications. First, it lifts many of the results
of Syrgkanis et al. [2015] to any class of monotone weighting schemes (Theorem C.21), even
though the underlying algorithm (OMD) remains the same. For example, we state the following
immediate consequence of the sum of the players’ regets.

Corollary C.22. Suppose that all players employ OGD with learning rate η ≤ 1
4L
√
n−1

.

• If α(i) := 2i
m+1 , then

1
m

∑n
k=1α-Reg

(m)
k ≤ 4L

√
n− 1

∑n
k=1 Ω2

Xk
1
m .

• If α(i) := 6i2

(m+1)(2m+1) , then
1
m

∑n
k=1α-Reg

(m)
k ≤ 12L

√
n− 1

∑n
k=1 Ω2

Xk
m2+1

m(m+1)(2m+1) .

This is important since, as we explained earlier, linear or quadratic averaging have shown to
substantially improve performance in practice. From a meta-learning standpoint, it is possible
that assigning different weights to different tasks could improve performance in practice, although
this is not pursued in this paper.
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C.4 Adaptive Regularization

In this subsection, we extend our scope to OGD [Chiang et al., 2012, Rakhlin and Sridharan, 2013b]
under adaptive regularization, or preconditioning. That is, we will endow OGD with an adaptive
regularizer, leading to OptAdaGrad, an extension of the popular AdaGrad algorithm [Duchi et al.,
2011]. To this end, let Q(i) ∈ Rd×d be a positive definite and symmetric matrix, for any i ∈ [[m]],
that will serve as the preconditioner. We also let ‖x‖Q(i) :=

√
x>Q(i)x be the (Mahalanobis)

norm induced by Q(i), and R(i)(x) := 1
2‖x‖

2
Q(i) be the associated regularizer. If we denote by

ProjQ
(t)

X (x) := arg minx̂∈X ‖x− x̂‖2Q(i) , OptAdaGrad can be expressed via the following update
rule for all i ∈ N.

x(i) := ProjQ
(i)

X

(
x̂(i−1) + (Q(i))−1m(i)

)
,

x̂(i) := ProjQ
(i)

X

(
x̂(i−1) + (Q(i))−1u(i)

)
.

(OptAdaGrad)

Further, we define x(0) = x̂(0) := minx∈X ‖x‖22. When Q(t) = 1
η Id×d, for some learning rate

η > 0, OptAdaGrad reduces to OGD. While this algorithm can be impractical in high dimensions,
if we restrict the preconditioner Q(i) to be, for example, a diagonal matrix, the inverse can be
computed in linear time. A central theme in AdaGrad [Duchi et al., 2011] is that the preconditioner
Q(i) has to vary slowly over time. In our setting, we formalize that requirement in the following
condition.

Condition C.23. Fix some time horizon m ≥ 2. The sequence of preconditioners (Q(i))1≤i≤m
is such that

∑m−1
i=1 ‖Q(i+1) −Q(i)‖2 ≤ σ(m), for some function σ(m) = om(m).

Before we proceed with the regret analysis of OptAdaGrad, let us make some observations.
First, R(i) is 1-strongly convex with respect to the norm ‖ · ‖Q(i) since

R(i)(x) ≥ R(i)(x′) + 〈∇R(i)(x′),x− x′〉+
1

2
‖x− x′‖2

Q(i) ,

for any i ∈ [[m]] and x,x′ ∈ X . In this setup, it will be convenient to express OptAdaGrad in the
following form for i ∈ [[m]]:

x(i) := arg max
x∈X

{
Φ(i) := 〈x,m(i)〉 − 1

2
(x− x̂(i−1))>Q(i)(x− x̂(i−1))

}
,

x̂(i) := arg max
x̂∈X

{
Ψ(i) := 〈x̂,u(i)〉 − 1

2
(x̂− x̂(i−1))>Q(i)(x̂− x̂(i−1))

}
.

(40)

Theorem C.24. Suppose that Condition C.23 holds for some function σ(m). Then, the regret
of OptAdaGrad up to time m ∈ N can be bounded as

Reg(m)(x̊) ≤ 1

2
‖x̊− x(0)‖2

Q(1) +
Ω2
X
2
σ(m) +

m∑
i=1

‖u(i) −m(i)‖2∗,Q(i) −
1

2
Σ(m), (41)

where

Σ(m) :=
m∑
i=1

(
‖x(i) − x̂(i−1)‖2

Q(i) + ‖x(i) − x̂(i)‖2
Q(i)

)
.

This regret bound differs from the analysis of AdaGrad [Duchi et al., 2011] in that we
incorporate optimism. Theorem C.24 also goes beyond the analysis of [Rakhlin and Sridharan,
2013b] in that the regularizer varies over time, while we recover the guarantee of OGD in the
special case where σ(m) = 0.
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Proof. First, given that R(i) is 1-strongly convex with respect to the norm ‖ · ‖Q(i) , it follows
that both Φ(i) and Ψ(i) (recall the definition in (40)) are also 1-strongly convex with respect to
‖ · ‖Q(i) . In turn, this implies that

〈x(i),m(i)〉− 1

2
‖x(i)− x̂(i−1)‖2

Q(i)−〈x̂(i),m(i)〉+ 1

2
‖x̂(i)− x̂(i−1)‖2

Q(i) ≥
1

2
‖x(i)− x̂(i)‖2

Q(i) ; (42)

and

〈x̂(i),u(i)〉 − 1

2
‖x̂(i) − x̂(i−1)‖2

Q(i) − 〈x̊,u(i)〉+
1

2
‖x∗ − x̂(i−1)‖2

Q(i) ≥
1

2
‖x̂(i) − x̊‖2

Q(i) , (43)

for any x̊ ∈ X . Furthermore, we have that

〈x̊− x(i),u(i)〉 = 〈x̊,u(i)〉 − 〈x̂(i),u(i)〉 − 〈x(i),m(i)〉+ 〈x̂(i),m(i)〉+ 〈x̂(i) − x(i),u(i) −m(i)〉.

As a result, combining this identity with (42) and (43) we get that for any x̊ ∈ X ,

Reg(m)(x̊) ≤ 1

2

m∑
i=1

(
‖x̊− x̂(i−1)‖2

Q(i) − ‖x̊− x̂(i)‖2
Q(i)

)
+

m∑
i=1

‖x̂(i) − x(i)‖Q(i)‖u(i) −m(i)‖∗,Q(i)

− 1

2

m∑
i=1

(
‖x(i) − x̂(i−1)‖2

Q(i) + ‖x(i) − x̂(i)‖2
Q(i)

)
, (44)

where we also used that 〈x̂(i) − x(i),u(i) − m(i)〉 ≤ ‖x̂(i) − x(i)‖Q(i)‖u(i) − m(i)‖∗,Q(i) (by
Cauchy-Schwarz inequality). Next, to further bound (44) we will show the following simple
claims.

Claim C.25. It holds that

‖x̂(i) − x(i)‖Q(i) ≤ ‖u(i) −m(i)‖∗,Q(i) .

Proof. By 1-strong convexity of Φ(i) with respect to ‖ · ‖Q(i) ,

〈x(i),m(i)〉− 1

2
‖x(i)− x̂(i−1)‖2

Q(i)−〈x̂(i),m(i)〉+ 1

2
‖x̂(i)− x̂(i−1)‖2

Q(i) ≥
1

2
‖x(i)− x̂(i)‖2

Q(i) ; (45)

Similarly,

〈x̂(i),u(i)〉 − 1

2
‖x̂(i) − x̂(i−1)‖2

Q(i) − 〈x(i),u(i)〉+ 1

2
‖x(i) − x̂(i−1)‖2

Q(i) ≥
1

2
‖x̂(i) −x(i)‖2

Q(i) . (46)

Hence, summing (45) and (46) yields that

〈x(i) − x̂(i),m(i) − u(i)〉 ≥ ‖x(i) − x̂(i)‖2
Q(i) =⇒ ‖x(i) − x̂(i)‖Q(i) ≤ ‖u(i) −m(i)‖∗,Q(i) ,

by Cauchy-Schwarz inequality.

Claim C.26. Suppose that
∑m−1

i=1 ‖Q(i+1) −Q(i)‖2 ≤ σ(m). Then,

1

2

m∑
i=1

(
‖x̊− x̂(i−1)‖2

Q(i) − ‖x̊− x̂(i)‖2
Q(i)

)
≤ 1

2
‖x̊− x̂(0)‖2

Q(1) +
Ω2
X
2
σ(m).

Proof. First, we observe that

1

2

m∑
i=1

(
‖x̊− x̂(i−1)‖2

Q(i) − ‖x̊− x̂(i)‖2
Q(i)

)
≤ 1

2

m∑
i=2

(x̊− x̂(i−1))>(Q(i) −Q(i−1))(x̊− x̂(i−1))

+
1

2
‖x̊− x̂(0)‖2

Q(1) −
1

2
‖x̊− x̂(m)‖2

Q(m) .
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The first term on the right-hand side can be further bounded as

(x̊− x̂(i−1))>(Q(i) −Q(i−1))(x̊− x̂(i−1)) ≤ ‖x̊− x̂(i−1)‖2‖(Q(i) −Q(i−1))(x̊− x̂(i−1))‖2
≤ ‖Q(i) −Q(i−1)‖2‖x̊− x̂(i−1)‖22
≤ Ω2

X ‖Q(i) −Q(i−1)‖2.

As a result, we conclude that

1

2

m∑
i=1

(
‖x̊− x̂(i−1)‖2

Q(i) − ‖x̊− x̂(i)‖2
Q(i)

)
≤ 1

2
‖x̊− x̂(0)‖2

Q(1) +
Ω2
X
2
σ(m).

Finally, combining Claim C.25 and Claim C.26 with (44) completes the proof.

An important advantage of this guarantee is that the term in (41) that captures the mispre-
diction error depends on the sequence of preconditioners, which could be potentially selected in
a dynamics way to minimize that term.

C.5 Stochastic Games

In this subsection, we study another settings that has received considerable attention, especially in
recent years; namely, stochastic games [Shapley, 1953]. In particular, we will extend our previous
results in (infinite-horizon) two-player zero-sum stochastic games, but with an important caveat
that will be explained in the sequel. Such games are not covered by our previous techniques, as
it will become clear shortly.

For the sake of simplicity in the exposition, we will focus on a simple stochastic games
that—in a certain sense—captures the difficulty of the problem, known as Von Neumann’s ratio
game [Neumann, 1945], defined as

V (x,y) :=
x>Ry

x>Sy
, (47)

where x ∈ ∆dx ; y ∈ ∆dy ; and R,S ∈ Rdx×dy . It is further assumed that for any x ∈ ∆dx

and y ∈ ∆dy it holds that x>Sy ≥ ζ > 0, which ensures that the objective (47) is indeed
well-defined. The ratio game (47) can be interpreted as a single-state stochastic game, in which
the immediate reward under actions (ax, ay) ∈ Ax × Ay is given by R[ax, ay], while S[ax, ay]
represents the probability of stopping at reach round. We point out that the subsequent analysis
can be extended to general infinite-horizon (discounted) two-player zero-sum stochastic games by
appropriately performing the analysis for each state.

The ratio game (47) evidently captures bilinear saddle-point problems (studied in Ap-
pendix C.1) in the special case when x>Sy = 1 for any (x,y) ∈ ∆dx×∆dy , but the objective (47)
is in general nonconvex-nonconcave. In fact, as pointed out in [Daskalakis et al., 2020, Proposition
2], the MVI property (Assumption C.14) could fail in such games. It is subsequently an open
problem to understand whether OGD converges in such games [Daskalakis et al., 2020, Open
Problem 1]. Here, we will show that there exists a learning rate schedule, time-varying but
non-vanishing, that ensures that OGD reaches a minimax equilibrium of (47); the main caveat is
that we have not been able to identify such a learning rate schedule in an algorithmically useful
way.

Let us first state some useful properties. Two-player zero-sum (discounted) stochastic games,
and in particular Von Neumann’s ratio game (47), admit a minimax theorem, as was shown in
the pioneering work of Shapley [1953]:
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Fact C.27 ([Shapley, 1953, Neumann, 1945]). Let V : ∆dx ×∆dy → R be defined as in (47).
Then,

min
x?∈X

max
y?∈Y

V (x?,y?) = max
y?∈Y

min
x?∈X

V (x?,y?).

The second useful property we will require is the so-called gradient dominance property
(see [Agarwal et al., 2021] and references therein), which is formalized below.

Fact C.28 (Gradient Dominance [Agarwal et al., 2021]). Let V : ∆dx ×∆dy → R be defined as
in (47). There is a parameter C ∈ R>0 such that for any fixed y ∈ ∆dy ,

V (x,y)− min
x?∈X

V (x?,y) ≤ C max
x?∈X

〈x− x?,∇xV (x,y)〉. (48)

Furthermore, an analogous relation holds for player y.

Establishing (48) for the ratio game is immediate, but that property holds generally—under
relatively mild assumptions on the underlying stochastic game. The importance of Fact C.28
it that it guarantees that approximate stationary points of gradient-descent-type algorithms
are also globally optimal for each player—even though the optimization problem faced by each
player is nonconvex (nonconcave). In light of the fact that the MVI property (Assumption C.14)
fails even for the ratio game [Daskalakis et al., 2020], when F := (∇xV (x,y),−∇yV (x,y)), we
introduce a more general condition below.

Property C.29 (Generalized MVI for Min-Max Problems). Consider the operator F :=
(∇xV (x,y),−∇yV (x,y)). For any sequence z(1), . . . ,z(m) ∈ Z, there exists (x?,y?) ∈ X×Y and
sequences of weights α(1)

x , . . . , α
(m)
x ∈ R>0 and α(1)

y , . . . , α
(m)
y ∈ R>0, with 0 < ` ≤ α(i)

x , α
(i)
y ≤ h,

for each i ∈ [[m]], such that

m∑
i=1

α(i)
x 〈∇xV (x(i),y(i)),x(i) − x?〉+

m∑
i=1

α(i)
y 〈∇yV (x(i),y(i)),y? − y(i)〉 ≥ 0. (49)

Further, for any 2 ≤ i ≤ m, there exists W ∈ R>0 such that

α
(i)
x

α
(i−1)
x

,
α

(i)
y

α
(i−1)
y

≤ 1 +W‖z(i) − z(i−1)‖2. (50)

It is evident that if the MVI property holds, (49) and (50) also follow with all the coefficients
being equal to 1, but, unlike the MVI property, as we shall see Property C.29 it satisfied for
stochastic games. The sequence of weights in (49) is designed to take into account the distribution
shift, a central challenge in reinforcement learning. We now observe that Property C.29 is satisfied
for the ratio game.

Proposition C.30. Let F := (∇xV (x,y),−∇yV (x,y)), where V is the ratio game defined
in (47). Then, Property C.29 is satisfied with ` = ζ/Smax and h = Smax/ζ, where Smax :=
max(x,y)∈X×Y x

>Sy and min(x,y)∈X×Y x
>Sy ≥ ζ.

Before we proceed with the proof of Proposition C.30, we remark that Property C.29—and
subsequently Proposition C.30—can be directly extended to multi-state stochastic games as well.

Proof of Proposition C.30. Consider any sequence z(1), . . . ,z(m) ∈ Z, for some m ∈ N. We first
see that for any (x,y) ∈ X × Y,

∇xV (x,y) =
Ry(x>Sy)− Sy(x>Ry)

(x>Sy)2
,
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and similarly,

∇yV (x,y) =
R>x(x>Sy)− S>x(x>Ry)

(x>Sy)2
.

As a result, for any x? ∈ X ,
m∑
i=1

(
V (x(i),y(i))− V (x?,y(i))

)
=

m∑
i=1

(
(x(i))>Ry(i)

(x(i))>Sy(i)
− (x?)>Ry(i)

(x?)>Sy(i)

)

=
m∑
i=1

(
(x(i))>Ry(i)(x?)>Sy(i) − (x(i))>Sy(i)(x?)>Ry(i)

(x(i))>Sy(i)(x?)>Sy(i)

)

=
m∑
i=1

(x(i))>Sy(i)

(x?)>Sy(i)
〈x(i) − x?,∇xV (x(i),y(i))〉

=
m∑
i=1

α(i)
x 〈x(i) − x?,∇xV (x(i),y(i))〉, (51)

where

α(i)
x (x?) :=

(x(i))>Sy(i)

(x?)>Sy(i)
. (52)

Similarly, for any y? ∈ Y,
m∑
i=1

(
V (x(i),y?)− V (x(i),y(i))

)
=

m∑
i=1

α(i)
y 〈y? − y(i),∇yV (x(i),y(i))〉, (53)

where

α(i)
y (y?) :=

(x(i))>Sy(i)

(x(i))>Sy?
. (54)

But, optimizing over (x?,y?), the sum of the left-hand sides of (51) and (53) can be lower
bounded by

max
y?∈Y

{
m∑
i=1

V (x(i),y?)

}
− min
x?∈X

{
m∑
i=1

V (x?,y(i))

}
≥ mmax

y?∈Y
min
x?∈X

V (x?,y?)−m min
x?∈X

max
y?∈Y

V (x?,y?) ≥ 0,

by Fact C.27, which in turn implies that Property C.29 is satisfied with coefficients as defined in
(52) and (54). Indeed, bounding those coefficients is immediate, yielding (49), while (50) also
follows directly from (52) and (54).

Importantly, for a min-max problem that enjoys Property C.29, one can employ OGD, but
with learning rate that adapts to the sequence of weights associated with Property C.29. In
particular, we analyze the following variant of OGD, defined for any iteration i ∈ N as

x(i) := ProjX

(
x̂(i−1) − ηα(i−1)

x ∇xf(x(i−1),y(i−1))
)
,

x̂(i) := ProjX

(
x̂(i−1) − ηα(i)

x ∇xf(x(i),y(i))
)
,

where α(i−1)
x , α

(i)
x are defined as in (52). A similar update rule holds for player y.

Theorem C.31. Consider the ratio game V (x,y) defined in (47). If both players employ OGD with
a suitable learning rate schedule, O(1/ε2) iterations suffices to reach a point (x(i),y(i)) ∈ X × Y
such that

V (x(i),y(i))−min
x∈X

V (x,y(i)) ≤ ε and max
y∈Y

V (x(i),y)− V (x(i),y(i)) ≤ ε.
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Sketch of Proof. First, for any iteration i ∈ [[m]],

α(i−1)
x 〈x(i),∇(i−1)

x 〉 − 1

2η
‖x(i) − x̂(i−1)‖22 − α(i−1)

x 〈x̂(i),∇(i−1)
x 〉+

1

2η
‖x̂(i) − x̂(i−1)‖22

≥ 1

2η
‖x(i) − x̂(i)‖22,

where we used the shorthand notation ∇(i)
x := ∇xf(x(i),y(i)). In turn, this implies that

α(i)
x 〈x(i),∇(i−1)

x 〉 − α
(i)
x

2α
(i−1)
x η

‖x(i) − x̂(i−1)‖22 − α(i)
x 〈x̂(i),∇(i)

x 〉+
α

(i)
x

2α
(i−1)
x η

‖x̂(i) − x̂(i−1)‖22

≥ α
(i)
x

2α
(i−1)
x η

‖x(i) − x̂(i)‖22. (55)

Further, for any iteration i ∈ [[m]],

α(i)
x 〈x̂(i),∇(i)

x 〉 −
1

2η
‖x̂(i) − x̂(i−1)‖22 − α(i)

x 〈x?,∇
(i)
x 〉+

1

2η
‖x? − x̂(i−1)‖22

≥ 1

2η
‖x? − x̂(i)‖22. (56)

Moreover, we have
‖x(i) − x̂(i)‖2 ≤ ηα(i−1)

x ‖∇xf(x(i−1),y(i−1))‖2, (57)

since the Euclidean projection operator Proj(·) is nonexpansive with respect to ‖ · ‖2. Similarly,

‖x̂(i) − x̂(i−1)‖2 ≤ ηα(i)
x ‖∇xf(x(i),y(i))‖2. (58)

Thus, combining (57) and (58) with (50) of Property C.29 implies that for a sufficiently small
learning rate η > 0, it holds that α

(i)
x

α
(i−1)
x

≤ 1 + γ, for a sufficiently small universal constant γ.
Now when combining (55) and (56) there is a mismatch term of the form

α
(i)
x

2α
(i−1)
x η

‖x̂(i) − x̂(i−1)‖22 −
1

2η
‖x̂(i) − x̂(i−1)‖22 ≤

γ

2η
‖x̂(i) − x̂(i−1)‖22.

Thus, when α
(i)
x

α
(i−1)
x

≥ 1 this mismatch term will be subsumed by the other terms in (55). As

a result, we can obtain an RVU bound for the weighted regret
∑m

i=1 α
(i)
x 〈x(i) − x?,∇(i)

x 〉, and
similar reasoning applies for player y. As a result, analogously to the proof of Theorem C.17, we
conclude that O(1/ε2) suffice so that ‖x(i)− x̂(i)‖2, ‖x(i)− x̂(i−1)‖2, ‖y(i)− ŷ(i)‖2, ‖y(i)− ŷ(i)‖2 ≤
ε (using Proposition C.30). Finally, this implies that maxx∈X 〈x(i) − x,∇(i)

x 〉 = O(ε) and
maxy∈Y〈y − y(i),∇(i)

y 〉 = O(ε), and the gradient dominance property (Fact C.28) yields the
statement.

Finally, it is immediate to derive the meta-learning version of Theorem C.31, parameterized
in terms of the similarity of the minimax equilibria of the underlying stochastic games.

C.6 Hölder Smooth Games

So far our analysis has (either implicitly or explicitly) required some form of Lipschitz continuity in
order to appropriate massage the RVU bound. In this subsection, we will relax that condition. In
particular, we study variational inequality problems for which the operator is Hölder continuous,
in the following precise sense.
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Definition C.32. Consider an operator F : Z → Z. We say that F is α-Hölder continuous,
with α ∈ (0, 1], if for any z, z′ ∈ Z,

‖F (z)− F (z′)‖2 ≤ H‖z − z′‖α2 , (59)

for some parameter H > 0.

Naturally, (59) reduces to Lipschitz continuity of F when α = 1. This class of problems
was also studied in the seminal work of Rakhlin and Sridharan [2013b]. Indeed, the following
argument partially overlaps with [Rakhlin and Sridharan, 2013b, Lemma 3]. For convenience,
below we use a prediction based on the secondary sequences of OGD.

Proposition C.33 (Refinement of Corollary C.7 under Hölder Smoothness). Suppose that
F : Z → Z is α-Hölder smooth, with α ∈ (0, 1), and satisfies the MVI property (Assumption C.14).
Then, for OGD with prediction m(i) := F (x̂(i−1)) and learning rate η > 0 set as

η(m) :=

(
‖z? − z(0)‖22
mH

2
1−α g(α)

) 1−α
2

, (60)

where g(α) = (1 + α)(2 + 2α)
1−α
1+α , it holds that

m∑
i=1

‖z(i) − ẑ(i)‖22 +

m∑
i=1

‖z(i) − ẑ(i−1)‖22 ≤ 2‖z? − z(0)‖22,

where z? ∈ Z is any point that satisfies the MVI property (Assumption C.14).

In the argument below we do not make any attempt to optimize factors that depend (solely)
on α—the modulus of Hölder continuity (Definition C.32).

Proof. First, analogously to the proof of Corollary C.7, we have that for any z? ∈ Z?,

0 ≤ 1

2η
‖z? − z(0)‖22+H

m∑
i=1

〈z(i) − ẑ(i), F (z(i))− F (ẑ(i−1))〉

− 1

2η

m∑
i=1

(
‖z(i) − ẑ(i)‖22 + ‖z(i) − ẑ(i−1)‖22

)
.

Further, by Cauchy-Schwarz inequality we have that 〈z(i) − ẑ(i), F (z(i))− F (ẑ(i−1))〉 ≤ ‖z(i) −
ẑ(i)‖2‖F (z(i))− F (ẑ(i−1))‖2, in turn implying that

0 ≤ 1

2η
‖z? − z(0)‖22+H

m∑
i=1

‖z(i) − ẑ(i)‖1+α
2 +H

m∑
i=1

‖z(i) − ẑ(i−1)‖1+α
2

− 1

2η

m∑
i=1

(
‖z(i) − ẑ(i)‖22 + ‖z(i) − ẑ(i−1)‖22

)
, (61)

where we used the fact that ‖F (z(i))−F (ẑ(i−1))‖2 ≤ H‖z(i)−ẑ(i−1)‖α2 (by α-Hölder smoothness),
and Young’s inequality, ab ≤ ap

p + bq

q for any a, b ∈ R≥0 and p, q ∈ R>0 such that 1
p + 1

q = 1,
implying that ‖z(i) − ẑ(i)‖2‖z(i) − ẑ(i−1)‖α2 ≤ 1

1+α‖z
(i) − ẑ(i)‖1+α

2 + α
1+α‖z

(i) − ẑ(i−1)‖1+α
2 ≤

‖z(i) − ẑ(i)‖1+α
2 + ‖z(i) − ẑ(i−1)‖1+α

2 (for p = 1 + α and q = 1+α
α ). Let us now bound the middle
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terms in the right-hand side of (61). We have

H
m∑
i=1

‖z(i) − ẑ(i)‖1+α =
m∑
i=1

H ((2 + 2α)η)
1+α

2

(
‖z(i) − ẑ(i)‖√

(2 + 2α)η

)1+α

≤

(
m∑
i=1

H
2

1−α ((2 + 2α)η)
1+α
1−α

) 1−α
2
(

m∑
i=1

‖z(i) − ẑ(i)‖22
(2 + 2α)η

) 1+α
2

(62)

≤ 1− α
2

mH
2

1−α ((2 + 2α)η)
1+α
1−α +

1

4η

m∑
i=1

‖z(i) − ẑ(i)‖22, (63)

where (62) uses Hölder’s inequality with conjugate powers (1 − α)/2 and (1 + α)/2, and (63)
uses the (weighted) AM-GM inequality. Similarly,

H
m∑
i=1

‖z(i) − ẑ(i−1)‖1+α ≤ 1− α
2

mH
2

1−α ((2 + 2α)η)
1+α
1−α +

1

4η

m∑
i=1

‖z(i) − ẑ(i−1)‖22.

We now optimize the following function
1

2η
‖z? − z(0)‖22 + (1− α)mH

2
1−α (2 + 2α)

1+α
1−α η

1+α
1−α (64)

in terms of the learning rate η > 0. In particular, if we let g(α) := (1 + α)(2 + 2α)
1−α
1+α , a simple

calculation yields that the optimal value for η is

η(m) :=

(
‖z? − z(0)‖22
2mH

2
1−α g(α)

) 1−α
2

,

which gives a value to (64) equal to(
H‖z? − z(0)‖1+α

2
1+α

2 (g(α))
α−1

2

)
m

1−α
2 .

Plugging this bound to (61) and rearranging concludes the proof.

Above, we have assumed access to a point z? ∈ Z that satisfies the MVI property in order to
optimally tune the learning rate. That assumption can be sidestepped similarly to our approach
in Appendix D.2. While Proposition C.33 still guarantees that the second-order path lengths are
bounded ((60)), the difference with our previous bounds under Lipschitz continuity is that the
learning rate η has to decay with the time horizon m. This is reflected on a worse bound on
the number of iterations required to reach an approximate solution to the VI problem, as we
formalize below. To our knowledge, the following guarantee is the first of its kind.

Theorem C.34 (Rates for Hölder Smooth Functions). Consider an α-Hölder continuous operator
F : Z → Z that satisfies the MVI property (Assumption C.14). Then, after O(m) iterations of
OGD with the learning rate of Proposition C.33 there is an iterate that is an m−α/2-approximate
strong solution to the VI problem.

Proof. By Proposition C.33, after m iterations there is an iterate i ∈ [[m]] such that ‖z(i) −
ẑ(i)‖2, ‖z(i) − ẑ(i−1)‖2 ≤ 2‖z?−z(0)‖2√

m
. Thus, the statement follows from Claim C.16.

In the special case where α = 1, the guarantee above recovers the recently established m−1/2

rates of OGD under Lipschitz continuity, which is known to be tight [Golowich et al., 2020a,b].
An interesting question is to derive lower bounds under the weaker Hölder continuity assumption
studied in the present subsection. Finally, obtaining a meta-learning version of Theorem C.34
follows immediately from our previous techniques. We caution that one has to also meta-learn
the learning rate in this case as Proposition C.33 assumes knowledge of z? ∈ Z; this is analogous
to our approach in Theorem D.7, presented in Appendix D.2.
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C.7 The Extra-Gradient Method

In this subsection, we extend our results to the extra-gradient method. Starting from the
seminal work of Korpelevich [1976], that method—and variants thereof—has received tremendous
attention in the literature; we refer to the excellent discussion of Hsieh et al. [2019] for further
pointers. We will consider a generalized version of the extra-gradient method, defined with the
following update rule for i ∈ N.

x̂(i) := arg max
x̂∈X

{
〈x̂,u(i−1)〉 − 1

η
BR(x̂ ‖ x(i−1))

}
,

x(i) := arg max
x∈X

{
〈x, û(i)〉 − 1

η
BR(x ‖ x(i−1))

}
.

(65)

The initialization is defined as in OGD. For brevity, we will refer to this algorithm as EG. We
remark that the update rule presented in (65) is more general than the standard extra-gradient
method, which corresponds to (65) with Euclidean regularization. While similar to OGD, EG
has one central difference: the update of x(i) uses an auxiliary feedback û(i). For this reason,
unlike OGD, EG does not fit into the traditional online learning framework. In fact, any non-
trivial modification of EG fails to provide meaningful regret guarantees when faced against an
adversarially selected sequence of utilities [Golowich et al., 2020a]. That additional feedback û(i)

is also unsatisfactory since it requires two gradient-oracle calls per iteration—unlike single-call
variants, such as OGD [Hsieh et al., 2019].

In this context, the main purpose of this subsection is to show that EG can be analyzed in
the same framework as OGD, which will ensure that the guarantees we have provided so far for
OGD can be translated to EG as well. In particular, although EG does not lie in the no-regret
framework, we will show that it still admits an RVU-type bound; this leads to a unifying analysis
of OGD and EG, and recovers several well-known results from the literature in a much simpler
fashion. The first key idea is to consider the regret incurred by the secondary sequence of EG
(x̂(i))1≤i≤m, and with respect to the auxiliary sequence of utilities (û(i))1≤i≤m:

R̂eg
(m)

(x̊) :=
m∑
i=1

〈x̊− x̂(i), û(i)〉. (66)

Below, we show that EG also admits an RVU-type bound, but with respect to the notion of
regret introduced in (66).

Theorem C.35 (RVU-type Bound for Extra-Gradient). For the extra-gradient method (65) it
holds that

∑m
i=1〈x̊− x̂(i), û(i)〉 can be upper bounded, for any x̊ ∈ X , as

1

η
BR(x̊ ‖ x(0)) + η

m∑
i=1

‖û(i) − u(i−1)‖2∗ −
1

2η

m∑
i=1

(
‖x̂(i) − x(i)‖2 + ‖x̂(i) − x(i−1)‖2

)
.

Proof. Fix any i ∈ [[m]]. By 1-strong convexity of R with respect to ‖ · ‖,

〈x̂(i),u(i−1)〉− 1

η
BR(x̂(i) ‖ x(i−1))−〈x(i),u(i−1)〉+ 1

η
BR(x(i) ‖ x(i−1)) ≥ 1

2η
‖x̂(i)−x(i)‖2, (67)

and for any x̊ ∈ X ,

〈x(i), û(i)〉 − 1

η
BR(x(i) ‖ x(i−1))− 〈x̊, û(i)〉+

1

η
BR(x̊ ‖ x(i−1)) ≥ 1

η
BR(x̊ ‖ x(i)). (68)

Moreover, for any i ∈ [[m]],

〈x̊− x̂(i), û(i)〉 = 〈x̊, û(i)〉− 〈x(i), û(i)〉+ 〈x(i),u(i−1)〉− 〈x̂(i),u(i−1)〉+ 〈x(i)− x̂(i), û(i)−u(i−1)〉.
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Combining with (67) and (68) yields that
∑m

i=1〈x̊− x̂(i), û(i)〉 is upper bounded by

1

η
BR(x̊ ‖ x(0)) +

m∑
i=1

‖x(i) − x̂(i)‖‖û(i) − u(i−1)‖∗ −
1

2η

m∑
i=1

(
‖x̂(i) − x(i)‖2 + ‖x̂(i) − x(i−1)‖2

)
,

(69)
where we further used Cauchy-Schwarz inequality for the dual pair of norms (‖ · ‖, ‖ · ‖∗) to
obtain that 〈x(i) − x̂(i), û(i) − u(i−1)〉 ≤ ‖x(i) − x̂(i)‖‖û(i) − u(i−1)‖∗, as well as the telescopic
summation

1

η

m∑
i=1

(
BR(x̊ ‖ x(i−1))− BR(x̊ ‖ x(i))

)
=

1

η
BR(x̊ ‖ x(0))− 1

η
BR(x̊ ‖ x(m)) ≤ 1

η
BR(x̊ ‖ x(0)),

since BR(· ‖ ·) ≥ 0. Finally, we will need the following stability bound.

Claim C.36. For any i ∈ [[m]],

‖x(i) − x̂(i)‖ ≤ η‖û(i) − u(i−1)‖∗.

Proof of Claim C.36. By replacing x̊ := x̂(i) in (68) and summing with (67),

〈x̂(i),u(i−1)〉 − 〈x(i),u(i−1)〉+ 〈x(i), û(i)〉 − 〈x̂(i), û(i)〉 ≥ 1

η
‖x̂(i) − x(i)‖2,

in turn implying that

〈x(i) − x̂(i), û(i) − u(i−1)〉 ≥ 1

η
‖x̂(i) − x(i)‖2 =⇒ ‖x̂(i) − x(i)‖ ≤ η‖û(i) − u(i−1)‖∗,

where the last bound follows from the Cauchy-Schwarz inequality.

Finally, the statement follows by combining Claim C.36 with (69).

This regret bound allows us to automatically inherit the many and important consequences
of the RVU bound for EG as well. For example, assuming Lipschitz continuity for the underlying
operator F , Theorem C.35 guarantees that the sum of the regrets of the secondary sequences—in
the sense of (66)—will be bounded by O(1); assuming that F is also monotone, that implies
that the average secondary sequences yields an O(1/m)-approximate (weak) solution to the
VI problem. Further, assuming the MVI property, it holds that the sum of the regrets of the
secondary sequences is always nonnegative, thereby implying bounded second-order path lengths
for EG (as in Corollary C.7); in turn, that gives that O(1/ε2) iterations suffice to reach an
ε-approximate (strong) solution to the VI problem. The implications we have derived earlier for
OGD in the meta-learning setting also follow directly.

C.8 Lower Bounds

Finally, this subsection derives lower bounds on the players’ regrets in the meta-learning setting.
We begin by first recalling the lower bound for a single zero-sum game (in normal-form) due
to Daskalakis et al. [2015] (Proposition C.37). We then extend their idea to the meta-learning
setting.

The basic idea is to consider the family of games for which the only nonzero entries of the
d× d payoff matrix are at a single row. In particular, for an index r ∈ [[d]], we let

Ar[ax, ay] =

{
1 if ax = r,

0 otherwise.
(70)
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We then consider the family of games described by {Ar}1≤r≤d. We suppose for convenience that
the entries of each matrix correspond to the utility of the row player. Now in any zero-sum game
from that class, the column player has no impact on the game since each payoff matrix (70)
remains invariant under changes in the columns. Further, the row player is clearly just searching
for the index r, which indicates the row with entries all-ones. Since the row player has no
knowledge about the payoff matrix in the beginning of the game, there is a high probability that
the row player will incur constant regret in the first iteration of the game. Conditioned on that
event, this means that Reg

(m)
x + Reg

(m)
y = Ω(1), for any m ∈ N, given that Reg

(m)
y = 0.

Proposition C.37 ([Daskalakis et al., 2015]). There exists a class of zero-sum games for which
E[Reg

(m)
x + Reg

(m)
y ] = Ω(1), where the expectation is with respect to the agents’ randomization.

The construction is the meta-learning setting Now let us imagine that one repeats the
previous construction for a sequence of zero-sum games derived from the class in (70). If every
such zero-sum game is selected uniformly at random, then Proposition C.37 still applies since
there is no additional structure that can be exploited by the meta-learner. In this context, the
key idea to refine that lower bound in the meta-learning setting is to assume that there is some
prior distribution p ∈ ∆d over indexes, which is in fact assumed to be known by the agents.
Then, the sequence of games is produced by selecting a zero-sum game A(t) from the family
{Ar}1≤r≤d according to distribution p; those random draws in the course of the t games are
independent of each other. The following observation is a direct extension of Proposition C.37.

Proposition C.38. Consider a sequence of zero-sum games (A(t))1≤t≤T such that each matrix
A(t) is produced by selecting from the set {Ar}1≤r≤d (70) with probability according to p. Then,
1
T

∑T
t=1 E[Reg

(t,m)
x + Reg

(t,m)
y ] ≥ 1−max1≤r≤d p[r].

Now, for any ε > 0 and δ ∈ (0, 1), if T = poly(d, 1/ε, log(1/δ)) is sufficiently large, standard
arguments imply that the empirical frequency p̂ ∈ ∆d is ε-close to p in terms of total variation
distance from p, meaning that 1

2

∑d
r=1 |p[r]− p̂[r]| ≤ ε, with probability at least 1− δ. Moreover,

from the perspective of player x, both the Nash equilibrium and the optimal in hindsight strategy
is obvious: for a game Ar, for some r ∈ [[d]], select (with probability 1) the action indexed by r;
the perspective of player y is of no consequence since player y does not incur any regret. Further,
let r? ∈ [[d]] be amongst the most frequent indeces of p, that is r? ∈ arg max1≤r≤d p[r], and let
πr? ∈ ∆d be such that πr? [r?] = 1. Thus, conditioned on the event that p̂ is ε-close to p in terms
of total variation distance,

V 2
x :=

1

T
min
x∈X

T∑
t=1

‖x̊(t) − x‖22 ≤
1

T

T∑
t=1

‖πr(t) − πr?‖22 ≤
1

T

T∑
t=1

max
r 6=r′
‖πr − πr′‖221{r? 6= r(t)}

= 2
∑
r 6=r?

p̂[r] ≤ 2(1− max
1≤r≤d

p[r]) + 4ε,

where r(t) is the index of the unique nonzero row of the payoff matrix A(t). Combining this with
Proposition C.38, we are now ready to establish our lower bound. Below, we point out that
V 2
y is 0 since any possible strategy for player y yields the same utility (recall our tie-breaking

convention for ẙ(t) made after Definition 2.1), while we make a similar convention for V 2
NE to

avoid trivialities.

Theorem C.39 (Precise Verison of Theorem 3.3). Consider a sequence of zero-sum games
(A(t))1≤t≤T such that each matrix A(t) is produced by selecting from the set {Ar}1≤r≤d (70) with
probability according to p. Then, for any ε > 0 and a sufficiently large T = poly(d, 1/ε),

1

T

T∑
t=1

E[Reg(t,m)
x + Reg(t,m)

y ] ≥ 1

2

(
V 2
x + V 2

y

)
− ε =

1

2
V 2

NE − ε.
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D Proofs from Section 3.2: Meta-Learning in General-Sum Games

In this section, we switch our attention to general-sum games. Unlike zero-sum games, where
computing a Nash equilibrium can be phrased as a linear program, there are inherent computa-
tional barriers for finding Nash equilibria in general-sum games [Chen et al., 2009, Daskalakis
et al., 2009]. Instead, learning algorithms are known to converge to different notions of correlated
equilibria [Hart and Mas-Colell, 2000, Blum and Mansour, 2007], which are more permissive than
the Nash equilibrium [Aumann, 1974].

In our meta-learning context, it is natural to ask whether one can obtain refined regret bounds
that are parameterized based on the similarity of the correlated equilibria of the games. However,
that appears hard to achieve using uncoupled learning algorithms. Indeed, suppose that after
a sufficient number of iterations the agents have converged—in terms of the average product
distribution of play—to a, say, coarse correlated equilibrium (CCE) of the underlying game.
Then, under uncoupled methods, any initialization at the next game will inevitably produce a
product distribution, which could be far from the previous CCE. In other words, we may fail
to appropriately leverage the learning of the previous task since the initialization alone is not
enough to encode the previous CCE. The separation we are alluding to is summarized below.

Proposition D.1 (Separation between Zero-Sum and General-Sum). Consider the two-player
games G and G′ with maximum pairwise difference [Candogan et al., 2013] d(G,G′) ≤ ε, for a
sufficiently small ε ≤ 1/max{poly(G′), poly(G)}.

• If G,G′ are both zero-sum, then no-regret learning in G allows the players to have O(ε)
regret from the first iteration in G′.

• On the other hand, if the games are general-sum, then even if the players have 0 regret
in G, finding an initialization with O(ε) regret from the first iteration in G′ is PPAD-hard,
even if the games are known.

One way to bypass the aforedescribed difficulties is by incorporating some form of centralization
into the learning process. Indeed, computing a correlated equilibrium can be phrased as a zero-
sum game between a “mediator,” which will serve as the coordinating party, and the players (see,
e.g., [Hart and Schmeidler, 1989]). As such, one can leverage our previous results for zero-sum
games even in general games, where it is more likely to obtain bounds that depend on the
similarity of the correlated equilibria. Nonetheless, investigating this further is not in our scope
since it deviates substantially from the online learning paradigm we follow in this paper.

Instead, in Appendices D.2 and D.3 we primarily focus on obtaining refined convergence
bounds to correlated and coarse correlated equilibria that depend on the task similarity of the
optimal in hindsight. But first, we remark that learning algorithms are known to lead to Nash
equilibria in some “structued” general-sum games. Perhaps the most prominent example is that
of potential games [Kleinberg et al., 2009, Hofbauer and Sandholm, 2002, Candogan et al., 2013],
which is pursued in Appendix D.1 below. Two other interesting directions for which obtaining
meta-learning guarantees is left for future work are supermodular games [Milgrom and Roberts,
1990] and games possessing strict Nash equilibria [Giannou et al., 2021].

D.1 Potential Games

Here we study meta-learning on potential games given in strategic form (the strategic-form
representation was introduced in the beginning of Appendix B.2); we suspect that similar results
apply more generally to Markov potential games [Leonardos et al., 2022]. We first recall the
definition of a potential game we will use throughout this subsection.
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Definition D.2 (Potential Game). A strategic-form game G is potential if there exists a function
Φ :×n

k=1Xk → R such that for any player i ∈ [[n]], joint strategy x ∈×n
k=1Xk and action

ak ∈ Ak,
∂Φ(x)

∂xk[ak]
= uk(ak,x−k).

We let Φmax be an upper bound on the function |Φ(x)|. In potential games, unlike zero-sum
games, variants of mirror descent, such as gradient descent (GD), are known to reach Nash
equilibria. In this context, we assume that players face a sequence of potential games (Φ(t))1≤t≤T ,
described by their potential functions, and the goal will be to obtain parameterized regret bounds
that depend on the similarity of the potential functions. In particular, we will use the following
result [Anagnostides et al., 2022b, Corollary 4.4], which gives an initialization-dependent bound
on the second-order path length of GD.

Proposition D.3 ([Anagnostides et al., 2022b]). Suppose that all players employ GD in a potential
game with a sufficiently small learning rate η > 0. Then,

1

2η

m∑
i=1

n∑
k=1

‖x(t,i)
k − x(t,i−1)

k ‖22 ≤ Φ(t)(x(t,m))− Φ(t)(x(t,0)), (71)

where Φ(t) :×n
k=1Xk → R is the potential function of the t-th game, and x(t,i) = (x

(t,i)
1 , . . . ,x

(t,i)
n )

is the players’ joint strategy at iteration i ∈ [[m]].

Now the main challenge here is that the potential function is in general nonconcave (and
nonconvex). Thus, employing a meta-regret minimizer for learning the initilization appears to be
computationally prohibitive. While there are interesting settings in which the potential function
is concave (see Appendix D.1.1), such as linear Fisher markets [Birnbaum et al., 2011], we will
bypass the need for concavity in the general setting by using a rather simpler initialization. In
particular, let us denote by ∆(Φ,Φ′) := maxx(Φ(x)− Φ′(x)) the difference functional for two
functions Φ,Φ′ :×n

k=1Xk → R. Then, we will use the following notion of similarity for the
sequence of encountered potential games.

V∆ :=
1

T

T−1∑
t=1

∆(Φ(t),Φ(t+1)). (72)

We are now ready to derive a refined bound for the second-order path lengths of GD in terms
of (72). Similar results apply more broadly for other variants of mirror descent.

Corollary D.4. Suppose that all players employ GD in a potential game with a sufficiently small
learning rate η > 0 and initialization x(t,0)

k := x
(t−1,m)
k , for all k ∈ [[n]] and t ≥ 2. Then,

1

2ηT

T∑
t=1

m∑
i=1

‖x(t,i) − x(t,i−1)‖22 ≤
2Φmax

T
+ V∆,

where V∆ is defined as in (72), and x(t,i) = (x
(t,i)
1 , . . . ,x

(t,i)
n ) is the joint strategy at task t ∈ [[t]]

and iteration i ∈ [[m]].
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Proof. By applying Proposition D.3 for each task t ∈ [[T ]], we have

1

2η

T∑
t=1

m∑
i=1

‖x(t,i) − x(t,i−1)‖22 ≤
T∑
t=1

(
Φ(t)(x(t,m))− Φ(t)(x(t,0))

)
≤ 2Φmax +

T−1∑
t=1

(
Φ(t)(x(t,m))− Φ(t+1)(x(t+1,0))

)
≤ 2Φmax +

T−1∑
t=1

(
Φ(t)(x(t,m))− Φ(t+1)(x(t,m))

)
(73)

≤ 2Φmax +
T−1∑
t=1

∆(Φ(t),Φ(t+1)), (74)

where (73) uses the initialization x(t+1,0) := x(t,m) and the definition of Φmax, and (74) follows
from the definition of ∆(·, ·). The statement then follows by averaging (74) over the T tasks and
using (72).

Thus, GD under the initialization of Corollary D.4 enjoys the meta-learning guarantee provided
below. There are also consequences for the players’ regrets, which we omit since they follow
directly.

Corollary D.5 (Detailed Version of Theorem 3.4). Under the assumptions of Corollary D.4,
for an average potential game

m :=

⌈
4ηΦmax

ε2T
+

2ηV∆

ε2

⌉
iterations suffice to reach an

ε

(
maxk∈[[n]] Ωk

η
+
√

max
k∈[[n]]

Ak

)
− approximate Nash equilibrium.

Proof. By Corollary D.4, for an average task t ∈ [[T ]] it follows that
⌈

4ηΦmax
ε2T

+ 2ηV∆

ε2

⌉
iterations

suffice so that ‖x(t,i)
k − x(t,i−1)

k ‖2 ≤ ε, for some i ∈ [[m]], for all k ∈ [[n]]. Then, the statement
follows by [Anagnostides et al., 2022b, Claim B.7].

D.1.1 Refinements under Concave Potentials

Moreover, as we pointed out earlier, there are important settings for which the potential function
is concave, such as linear Fisher markets [Birnbaum et al., 2011]; such settings are not necessarily
expressed in strategic form, but are indeed readily amenable to our techniques. Then, one can
use a meta-algorithm for learning the initialization that receives after the termination of each
task t ∈ [[T ]] the cost function

(x1, . . . ,xn) =: x 7→ Φ(t)(x(t,m))− Φ(t)(x).

In particular, here it is assumed that Φ(t) is also available after the end of the task—a rather
stringent assumption compared to what is required in Corollary D.5. By concavity, the meta-
learner will incur o(T ) regret, thereby leading to an oT (1) overhead in the per-task performance,
which becomes negligible as T → +∞. Concavity also guarantees that the meta-learner can be
implemented efficiently. Moreover, by virtue of Definition D.2, gradient-descent-type algorithms
on the potential function can be in fact implemented in a full decentralized way by having each
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player perform a local update based on the observed utility. As a result, this leads to a task
similarity of the form

min
x?

T∑
t=1

(
Φ(t)(x(t,m))− Φ(t)(x?)

)
,

where x? ∈×n
k=1Xk.

D.2 Coarse Correlated Equilibria

In this subsection, we study meta-learning for coarse correlated equilibria. We will use opti-
mistic Hedge (OptHedge) as our base learner. In particular, we will use the following guaran-
tee [Daskalakis et al., 2021, Theorem 3.1].

Theorem D.6 ([Daskalakis et al., 2021]). There exist universal constants C,C ′ > 0 so that when
all players employ OptHedge with learning rate η < 1

Cn log4(m)
, the regret of each player k ∈ [[n]]

is bounded by

Reg
(m)
k (x̊k) ≤

DKL(x̊k ‖ x
(0)
k )

η
+ ηC ′ log5(m).

We remark that [Daskalakis et al., 2021, Theorem 3.1] was stated slightly differently, but the
statement we include here (Theorem D.6) follows readily from their analysis. Since DKL(· ‖ ·) is
non-Lipschitz near the (relative) boundary of the strategy set, we initialize OptHedge α-away
from the boundary in each task. Since the optimal learning rate will generally depend on the task
similarity, we meta-learn the learning rate by running exponentially-weighted online optimization
(EWOO) [Hazan et al., 2007] over a sequence of strongly convex regret-upper-bounds U1, . . . , UT
(to be specified at a later point in the proof), similar to previous work in meta-learning (i.e.,
Khodak et al. [2019], Osadchiy et al. [2022]). Specifically, we set the learning rate in task t by

η(t) =

∫√D2+ρ2D2

ρ η exp(−β
∑

s<t Us(η))dη∫√D2+ρ2D2

ρ exp(−β
∑

s<t Us(η))dη
,

where β = 2
D min{1, ρ

2

D2 }, DKL(˜̊y(t) ‖ y(t,0))

C′ log5(m)
≤ D2,∀t, and ρ > 0.

Since our regret-upper-bounds are of the form C ′ log5(m)
(
η + DKL(˜̊x(t) ‖ x(t,0))

C′ log5(m)η

)
, they are

non-smooth near zero and not strongly convex if ˜̊x(t) = x(t,0). Therefore, we run EWOO over the
regularized sequence U1, . . . , UT , where

Ut(η) = C ′ log5(m)

η +

DKL(˜̊x(t) ‖ x(t,0))

C′ log5(m)
+D2ρ2

η

 .

We are now ready to present our main result for convergence to CCE.

Theorem D.7. Let x̃ := (1 − α)x + α 1
d1d. When all players employ OptHedge with x(t,0)

k =
1
t−1

∑
s<t

˜̊x(s), learning rate given by EWOO [Hazan et al., 2007] with suitably chosen hyperparam-
eters, and α = 1√

Tm
, there exist universal constants C,C ′ > 0 so that the average regret of each
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player k ∈ [[n]] over a sequence of T repeated games is bounded by

1

T

T∑
t=1

Reg
(t,m)
k ≤ 2

√
m

T

+

√
C ′ log5(m) log(d

√
mT )

min


√

log(d
√
mT )

η∗
√
TC ′ log5(m)

,
1

T 1/4

+
1 + log(T + 1)

2
√
T


+ min

0<η≤η̄

{
ηC ′ log5(m) +

V 2
k

η
+

8d
√
m(1 + log T )

η
√
T

}
,

where η̄ = 1
Cn log4(m)

and V 2
k := 1

T

∑T
t=1DKL(x̊

(t)
k ‖ x̄k) for x̄k := 1

T

∑T
t=1 x̊

(t)
k .

Proof. By Theorem D.6,

1

T

T∑
t=1

Reg
(t,m)
k ≤ 2αm+

1

T

T∑
t=1

(
η(t)C ′ log5(m) +

1

η(t)
DKL(˜̊x

(t)
k ‖ x

(t,0)
k )

)

= 2αm+ ∆U +
1

T
min

0<η≤η̄

{
T∑
t=1

(
ηC ′ log5(m) +

1

η
DKL(˜̊x

(t)
k ‖ x

(t,0)
k )

)}
,

where ∆U := 1
T

∑T
t=1 η

(t)C ′ log5(m) + 1
η(t)DKL(˜̊x

(t)
k ‖ x(t,0)

k ) − 1
T min0<η≤η̄

∑T
t=1 ηC

′ log5(m)

+ 1
ηDKL(˜̊x

(t)
k ‖ x

(t,0)
k ).

1

T

T∑
t=1

Reg
(t,m)
k ≤ 2αm+ ∆U +

1

T
min

0<η≤η̄

{
T∑
t=1

(
ηC ′ log5(m)

)
+ min
xk∈∆d

T∑
t=1

(
1

η
DKL(˜̊x

(t)
k ‖ xk)

)

+

T∑
t=1

(
1

η
DKL(˜̊x

(t)
k ‖ x

(t,0)
k )

)
− min
xk∈∆d

T∑
t=1

(
1

η
DKL(˜̊x

(t)
k ‖ xk)

)}

≤ 2αm+ ∆U +
1

T
min

0<η≤η̄

{
T∑
t=1

(
ηC ′ log5(m)

)
+ min
xk∈∆d

T∑
t=1

(
1

η
DKL(˜̊x

(t)
k ‖ xk)

)
+

8d(1 + log T )

ηα

}

= 2αm+ ∆U +
1

T
min

0<η≤η̄

{
T∑
t=1

(
ηC ′ log5(m)

)
+

T∑
t=1

(
1

η
DKL(˜̊x

(t)
k ‖ ˜̄xk)

)
+

8d(1 + log T )

ηα

}
≤ 2αm+ ∆U + min

0<η≤η̄

{
ηC ′ log5(m)

+
1

ηT

T∑
t=1

(
DKL(x̊

(t)
k ‖ x̄k)

)
+

8d(1 + log T )

ηαT

}
,

where the second inequality follows from Balcan et al. [2022, Lemma A.1] with S = d
α and K = 1,

the inequality follows from the fact that FTL over a sequence of Bregman divergences reduces to
the average [Banerjee et al., 2005], and the third inequality follows from the joint convexity of
KL divergence.
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Next, we bound ∆U using the regret guarantees of EWOO. In particular, we apply Khodak
et al. [2019, Corollary C.2]:

Corollary D.8 (Khodak et al. [2019]). Let {U (t) : R+ → R}t≥1 be a sequence of functions of
form U (t)(η) =

(
(B(t))2

η + η
)
γ(t) for any positive scalars γ(1), . . . , γ(T ) ∈ R+ and adversarially

chosen Bt ∈ [0, D]. Then the ε− EWOO algorithm, for which ε > 0 uses the actions of EWOO run
on the functions Ũt(η) =

(
(B(t))2+ε2

η + η
)
γ(t) over the domain [ε,

√
D2 + ε2] to determine η(t)

achieves regret

min

{
ε2

η∗
, ε

} T∑
t=1

γ(t) +
Dγmax

2
max

{
D2

ε2
, 1

}
(1 + log(T + 1))

for all η∗ > 0.

Applying Corollary D.8 with ε = ρD, γ(t) = C ′ log5(m), ∀t ∈ [[T ]], D =

√
log(d/α)√
C′ log5(m)

, and

ρ = 1
T 1/4 we see that

∆U ≤ DC ′ log5(m)

(
min{ D

η∗
√
T
,

1

T 1/4
}+

1 + log(T + 1)

2
√
T

)

=

√
C ′ log5(m) log(d/α)

min


√

log(d/α)

η∗
√
TC ′ log5(m)

,
1

T 1/4

+
1 + log(T + 1)

2
√
T

 .

Plugging in our upper bound for ∆U into our task average regret-upper-bound, we obtain

1

T

T∑
t=1

Reg
(t,m)
k ≤ 2αm

+

√
C ′ log5(m) log(d/α)

min


√

log(d/α)

η∗
√
TC ′ log5(m)

,
1

T 1/4

+
1 + log(T + 1)

2
√
T


+ min

0<η≤η̄

{
ηC ′ log5(m) +

1

ηT

T∑
t=1

(
DKL(x̊

(t)
k ‖ x̄k)

)
+

8d(1 + log T )

ηαT

}
.

By setting α = 1√
mT

,

1

T

T∑
t=1

Reg
(t,m)
k ≤ 2

√
m

T

+

√
C ′ log5(m) log(d

√
mT )

min


√

log(d
√
mT )

η∗
√
TC ′ log5(m)

,
1

T 1/4

+
1 + log(T + 1)

2
√
T


+ min

0<η≤η̄

{
ηC ′ log5(m) +

V 2
k

η
+

8d
√
m(1 + log T )

η
√
T

}
,

where V 2
k := 1

T

∑T
t=1DKL(x̊

(t)
k ‖ x̄k).

It is worth noting that one can obviate meta-learning the learning rate using an uncoupled
version of clairvoyant hedge [Piliouras et al., 2021], albeit with the need to appropriately average
the iterates.
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D.3 Correlated Equilibria

Finally, we conclude this section with a refined meta-learning guarantee for converging to
correlated equilibria, an important strengthening of coarse correlated equilibria. As in the
previous subsection, we focus on normal-form games. As it turns out [Blum and Mansour, 2007],
converging to the set of correlated equilibria requires minimizing a stronger notion of regret,
referred to as swap regret :

SwapReg
(m)
k := max

φ?∈Φ

{
m∑
i=1

〈φ?(x(i)
k )− x(i)

k ,u
(t)
k 〉

}
, (75)

where Φ includes all possible linear functions φ : ∆(Ak)→ ∆(Ak). Swap regret (75) is clearly
a stronger notion of hindsight rationality, since Φ includes all constants transformations. To
minimize swap regret, Blum and Mansour [2007] gave a general reduction to the problem of
minimizing external regret, which we briefly describe for the sake of completeness.

The algorithm of Blum and Mansour Each player k maintains a separate regret minimizer
for each available action a ∈ Ak. The next strategy is computed by obtaining the next strategy
of each of those individual regret minimizers, and then determining any stationary distribution
x

(i)
k of the induced Markov chain—wherein each state corresponds to an action and the transition

probabilities are given by the startegies of the individual regret minimizers. Finally, upon
receiving as feedback a utility vector u(i)

k ∈ Rdk , it suffices to forward to the regret minimizer
associated with action a the utility u(i)

a := x
(i)
k [a]u

(i)
k , for all a ∈ Ak.

In our meta-learning setting, we will use as base learner OMD with the log-barrier as regularizer.
Recent work [Anagnostides et al., 2022a] established that this leads to an RVU bound for swap
regret. This will also bypass the need to meta-learn the learning rate, as we had to do in
Theorem D.7. We point out that the RVU bound for swap regret in [Anagnostides et al., 2022a]
can be readily expressed in terms of the initialization (e.g., see [Wei and Luo, 2018]), leading to
the following conclusion.

Theorem D.9 ([Anagnostides et al., 2022a]). Suppose that each player k ∈ [[n]] employs the
no-swap-regret algorithm of Blum and Mansour [2007] instantiated with OMD under a logarithmic
regularizer Rk : xk 7→ −

∑
a∈Ak logxk[a]. There exists a sufficiently small learning rate η > 0

such that
n∑
k=1

SwapReg
(m)
k ≤

n∑
k=1

∑
a∈Ak

Reg(m)
a (x̊a) ≤

1

η

n∑
k=1

∑
a∈Ak

BRk(x̊a ‖ x(0)
a ). (76)

In (76) we denote by Reg
(m)
a the external regret up to time m ∈ N of the regret minimizer

associated with action a ∈ Ak of player k ∈ [[n]]. We are now ready to show our refinement for
swap regret in the meta-learning setting.

Theorem D.10. Let x̃k := (1−α)xk +α 1
d1dk , and suppose that each player k ∈ [[n]] employs the

no-swap-regret algorithm of Blum and Mansour [2007] instantiated with OMD under a logarithmic
regularizer Rk : xk 7→ −

∑
a∈Ak logxk[a] with a sufficiently small learning rate η > 0 and

x
(t,0)
a = 1

t−1

∑
s<t

˜̊x
(s)
a , for all a ∈ Ak and t ≥ 2. Then, for α := (mT )−1/3,

1

T

T∑
t=1

SwapReg
(t,m)
k ≤ 1

η

n∑
k=1

∑
a∈Ak

Ṽ 2
k,a +

m2/3

T 1/3

(
2n+

n∑
k=1

8d3
k(1 + log T )

η

)
,

where Ṽ 2
k,a := 1

T

∑T
t=1 BRk(˜̊x

(t)
a ‖ x̄a) for x̄a = 1

T

∑T
t=1

˜̊x
(t)
a is the task similarity for the individual

regret minimizer of player k ∈ [[n]] associated with action a ∈ Ak.
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Proof. By Theorem D.9,

1

T

T∑
t=1

n∑
k=1

SwapReg
(t,m)
k ≤ 2αmn+

1

ηT

T∑
t=1

n∑
k=1

∑
a∈Ak

BRk(˜̊x(t)
a ‖ x(t,0)

a ) (77)

≤ 2αmn+
1

η

n∑
k=1

∑
a∈Ak

1

T

T∑
t=1

BRk(˜̊x(t)
a ‖ x̄a)

+
1

T

n∑
k=1

8d3
k(1 + log T )

ηα2
, (78)

where (77) follows from Theorem D.9 and the fact that for any player k ∈ [[n]],∑
a∈Ak

Reg(t,m)
a (x̊(t)

a ) ≤
∑
a∈Ak

Reg(t,m)
a (˜̊x(t)

a ) + α
m∑
i=1

∑
a∈Ak

‖u(t,i)
a ‖∞‖x̊(t)

a − ˜̊x(t)
a ‖1

≤
∑
a∈Ak

Reg(t,m)
a (˜̊x(t)

a ) + 2α
m∑
i=1

∑
a∈Ak

x
(t,i)
k [a]

≤
∑
a∈Ak

Reg(t,m)
a (˜̊x(t)

a ) + 2αm,

since u(t,i)
a = x

(t,i)
k [a]u

(t,i)
k and ‖u(t,i)

k ‖∞ ≤ 1 (by assumption), and (78) uses [Balcan et al., 2022,

Lemma A.1] with K = 1 and S =
d2
k
α2 . Finally, the statement follows by taking α := (mT )−1/3

and observing that
∑n

k′=1 SwapReg
(t,m)
k′ ≥ SwapReg

(t,m)
k , for any player k ∈ [[n]] and task t ∈ [[T ]],

since swap regret is always nonnegative.6

E Proofs from Section 3.3: Meta-Learning in Stackelberg Games

Theorem E.1. Given a sequence of T repeated Stackelberg security games with d targets, k
attacker types, and within-game time-horizon m, running MWU over the set of extreme points E as
defined in Balcan et al. with initialization y(t,0) = 1

t−1

∑
s<t ẙ

(t) and learning rate given by β-
EWOO [Hazan et al., 2007] with suitably chosen hyperparameters achieves expected task-averaged
Stackelberg regret

1

T

T∑
t=1

E[StackReg(t,m)] ≤ 4

√
m

T

+

√
m log(|E|

√
mT )

min


√

log(|E|
√
mT )

η∗
√
Tm

,
1

T 1/4

+
1 + log(T + 1)

2
√
T


+ min

0<η≤η̄

{
ηm+

H(ȳ)

η
+

8|E|
√
m(log T + 1)

η
√
T

}
,

where the sequence of attackers in each task can be adversarially chosen.

Proof. First, we have

StackReg(t,m) =

m∑
i=1

〈x̊(t),u(t)(bf (t,i)(x̊(t)))〉 − 〈x(t,i),u(t)(bf (t,i)(x(t,i)))〉

≤ max
x(t)∈E

m∑
i=1

〈x(t),u(t)(bf (t,i)(x(t)))〉 − 〈x(t,i),u(t)(bf (t,i)(x(t,i)))〉+ 2γm,

6Better rates may be possible by meta-learning the optimal boundary offset α as in Balcan et al. [2022, Theorem
5], i.e., by running multiplicative weights over a discretized grid of boundary offset values.
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where the inequality follows from Lemma 4.3 of Balcan et al. [2015a]. Let y(t,i) ∈ ∆|E|

denote the distribution over actions the algorithm plays in game t at time i and u(t,i) =
[〈x,u(t)(bf (t,i)(x))〉]x∈E ∈ [−1, 1]|E|. Then,

E[StackReg(t,m)] ≤
m∑
i=1

(
〈ẙ(t),u(t,i)〉 − 〈y(t,i),u(t,i)〉

)
+ 2γm

=
m∑
i=1

(
〈ẙ(t),u(t,i)〉 − 〈˜̊y(t),u(t,i)〉+ 〈˜̊y(t),u(t,i)〉 − 〈y(t,i),u(t,i)〉

)
+ 2γm

≤ 2γm+ 2αm+ η(t)m+
1

η(t)
DKL(˜̊y(t) ‖ y(t,0)),

where ˜̊y(t) := (1− α)ẙ(t) + α
|E|1|E|. As was the case in Theorem D.7, it is necessary to initialize

α-away from the boundary of the strategy space and meta-learn the learning rate using EWOO
[Hazan et al., 2007]. We refer the reader to the proof of Theorem D.7 and references therein for
more details about EWOO.

1

T

T∑
t=1

E[StackReg(t,m)] ≤ 2αm+ 2γm+
1

T

T∑
t=1

(
η(t)m+

DKL(˜̊y(t) ‖ y(t,0))

η(t)

)

= 2αm+ 2γm+
1

T
min
η>0

{
T∑
t=1

(
ηm+

DKL(˜̊y(t) ‖ y(t,0))

η

)}

+
1

T

T∑
t=1

(
η(t)m+

DKL(˜̊y(t) ‖ y(t,0))

η(t)

)

− 1

T
min
η>0

{
T∑
t=1

(
ηm+

DKL(˜̊y(t) ‖ y(t,0))

η

)}

= 2αm+ 2γm+ ∆U +
1

T
min
η>0

{
T∑
t=1

(
ηm+

DKL(˜̊y(t) ‖ y(t,0))

η

)}
,

where ∆U := 1
T

∑T
t=1 η

(t)m+ DKL(˜̊y(t) ‖ y(t,0))

η(t) − 1
T min0<η≤η̄

∑T
t=1 ηm+ DKL(˜̊y(t) ‖ y(t,0))

η .
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1

T

T∑
t=1

E[StackReg(t,m)] ≤ 2αm+ 2γm+ ∆U + min
η>0

{
ηm+

1

T
min
y∈∆|E|

T∑
t=1

DKL(˜̊y(t) ‖ y)

η

+
1

T

T∑
t=1

DKL(˜̊y(t) ‖ y(t,0))

η
− 1

T
min
y∈∆|E|

T∑
t=1

DKL(˜̊y(t) ‖ y)

η

}
≤ 2αm+ 2γm+ ∆U

+ min
η>0

{
ηm+

1

T
min
y∈∆|E|

T∑
t=1

(
DKL(˜̊y(t) ‖ y)

η

)
+

8|E|(log T + 1)

ηαT

}
= 2αm+ 2γm+ ∆U

+ min
η>0

{
ηm+

1

T

T∑
t=1

(
DKL(˜̊y(t) ‖ ˜̄y)

η

)
+

8|E|(log T + 1)

ηαT

}
≤ 2αm+ 2γm+ ∆U

+ min
η>0

{
ηm+

1

T

T∑
t=1

(
DKL(ẙ(t) ‖ ȳ)

η

)
+

8|E|(log T + 1)

ηαT

}

= 2αm+ 2γm+ ∆U + min
η>0

{
ηm+

H(ȳ)

η
+

8|E|(log T + 1)

ηαT

}
,

where the second inequality follows from Lemma A.1 of Balcan et al. [2022] with S = |E|
α and

K = 1 and the first equality follows from the fact that FTL over a sequence of Bregman divergences
reduces to the average [Banerjee et al., 2005].

Applying Corollary D.8 with ε = ρD, γ(t) = m, ∀t ∈ [[T ]], D =

√
log(|E|/α)√

m
, and ρ = 1

T 1/4 we
see that

∆U ≤ Dm
(

min{ D

η∗
√
T
,

1

T 1/4
}+

1 + log(T + 1)

2
√
T

)
=
√
m log(|E|/α)

(
min

{√
log(|E|/α)

η∗
√
Tm

,
1

T 1/4

}
+

1 + log(T + 1)

2
√
T

)
Therefore,

1

T

T∑
t=1

E[StackReg(t,m)] ≤ 2αm+ 2γm

+
√
m log(|E|/α)

(
min

{√
log(|E|/α)

η∗
√
Tm

,
1

T 1/4

}
+

1 + log(T + 1)

2
√
T

)

+ min
0<η≤η̄

{
ηm+

H(ȳ)

η
+

8|E|(log(T ) + 1)

ηαT

}
.

Setting α = γ = 1√
mT

completes the proof.

F Further Experimental Results

In this section, we present some additional experimental results we omitted earlier from Section 4.
In particular, Figures 2 and 3 illustrate the task-averaged Nash equilibrium gap of OGD under
different values for the learning rate.
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Figure 2: Vanilla OGD versus our meta-learning versions of OGD for different values of the learning
rate η in Endgame A. Results for η = 0.1 are not included, as it was too large of a learning rate
for any of the methods to converge in this endgame.
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Figure 3: Vanilla OGD versus our meta-learning versions of OGD for different values of the learning
rate η in Endgame B.
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