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We study the problem of finding optimal correlated equilibria of various sorts: normal-form coarse correlated
equilibrium (NFCCE), extensive-form coarse correlated equilibrium (EFCCE), and extensive-form correlated
equilibrium (EFCE). This is NP-hard in the general case and has been studied in special cases, most notably
triangle-free games [Farina and Sandholm, 2020], which include all two-player games with public chance
moves. However, the general case is not well understood, and algorithms usually scale poorly. In this paper,
we make two primary contributions.

First, we introduce the correlation DAG, a representation of the space of correlated strategies whose structure
and size are dependent on the specific solution concept desired. It extends the team belief DAG of Zhang et al.
[2022] to general-sum games. For each of the three solution concepts, its size depends exponentially only
on a parameter related to the information structure of the game. We also prove a fundamental complexity
gap: while our size bounds for NFCCE are similar to those achieved in the case of team games by Zhang et al.
[2022], this is impossible to achieve for the other two concepts under standard complexity assumptions.

Second, we propose a two-sided column generation approach to compute optimal correlated strategies in
extensive-form games. Our algorithm improves upon the one-sided approach of Farina et al. [2021a] by means
of a new decomposition of correlated strategies which allows players to re-optimize their sequence-form
strategies with respect to correlation plans which were previously added to the support.

Experiments show that our techniques outperform the prior state of the art for computing optimal general-
sum correlated equilibria, and that our two families of approaches have complementary strengths: the
correlation DAG is fast when the parameter is small and the two-sided column generation approach is superior
when the parameter is large. For team games, we show that the two-sided column generation approach
vastly outperforms standard column generation approaches, making it the state of the art algorithm when the
parameter is large. Along the way, we also introduce two new benchmark games: a trick-taking game that
emulates the endgame phase of the card game bridge, and a ride-sharing game, where two drivers traversing a
graph are competing to reach specific nodes and serve requests.
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1 INTRODUCTION
Recent algorithms for computing Nash equilibria in zero-sum imperfect-information extensive-
form games have led to breakthroughs, most notably strong agents for two-player no-limit Texas
hold’em poker [Brown and Sandholm, 2018, Moravčík et al., 2017]. However, in general-sum and/or
multi-player games, computing Nash equilibria is hard even in normal-form games [Chen et al.,
2009]. Further, the assumption in Nash equilibrium that players’ strategies are independent may
not apply in real-world situations, where, for example, agents may have access to a shared random
seed or to a trusted mediator. Both of these concerns motivate the definition and computational
study of notions of correlated equilibria.

In notions of correlated equilibria, an outside mediator can recommend (but not enforce) certain
actions. More precisely, the mediator first draws a strategy profile from a publicly-agreed distribu-
tion, and recommends to each player their chosen strategy. The players may then choose whether
to accept the recommendation or to deviate and play an arbitrary action instead. A normal-form
correlated equilibrium (NFCE) [Aumann, 1974] is a distribution of strategy profiles for which no
player is ever incentivized to deviate. In a normal-form coarse correlated equilibrium (NFCCE) [Celli
et al., 2019, Moulin and Vial, 1978], each player must choose to commit to following the recommen-
dation before receiving it—if a player commits, she must play the recommended strategy; if she
does not commit, she does not receive a recommendation.

Both above notions of correlated equilibria were originally defined only for normal-form games.
More recently, von Stengel and Forges [2008], and Farina et al. [2020] defined and studied notions
of correlated equilibria in extensive-form games. In an extensive-form correlated equilibrium (EFCE),
each player receives recommendations throughout the game at each of their decision point, and
again can choose to follow or ignore the recommendation. In an extensive-form coarse correlated
equilibrium (EFCCE), at each decision point, each player must commit to following the recommen-
dation before seeing it. In both cases, a player that deviates no longer receives recommendations
for the remainder of the game.
Our focus is on computing optimal NFCCEs, EFCCEs, and EFCEs, which are the equilibria that

maximize a given linear objective function. Computing optimal correlated equilibria, in any of
these notions, is NP-hard in the size of the game tree, even in two-player games with chance
nodes, or three-player games without chance nodes [von Stengel and Forges, 2008]. Some special
cases are known to be solvable efficiently. Most notably, Farina and Sandholm [2020] show that
in so-called triangle-free games, which include all two-player games with public chance actions,
optimal equilibria in all three equilibrium notions can be computed in polynomial time.
The problem of computing one EFCE (and, therefore, one NFCCE/EFCCE) can be solved in

polynomial time in the size of the game tree [Huang and von Stengel, 2008] via a variation of the
Ellipsoid Against Hope algorithm [Jiang and Leyton-Brown, 2015, Papadimitriou and Roughgarden,
2008]. Moreover, there exist decentralized no-regret learning dynamics guaranteeing that the
empirical frequency of play after𝑇 rounds is an𝑂 (1/√𝑇 )-approximate EFCE with high probability,
and an EFCE almost surely in the limit [Celli et al., 2020, Farina et al., 2021b]. Furthermore, NFCCE
is the equilibrium notion that gets satisfied when all players in a game play according to any
regret minimizer. Using regret minimizers to play large multi-player games has already led to
superhuman practical performance in multi-player poker [Brown and Sandholm, 2019]. As stated
above, however, computing optimal equilibria is much harder.
Correlated equilibria have a close relationship with adversarial team games, that is, games

where two teams compete against each other. An efficient algorithm for representing the space of
correlated strategies of a team of players also gives an efficient algorithm for solving adversarial
team games. Until recently, the state of the art for solving team games was to represent the space
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of correlated strategies of the team, as if to compute an extensive-form correlated equilibrium
of that team [Farina et al., 2021a]. Recently, Zhang and Sandholm [2022] and Zhang et al. [2022]
have developed new methods of solving team games based on public states. Their work gives a
construction of the decision space of a team whose complexity is dependent on natural parameters
of the game. However, it does not immediately extend to general-sum correlation: for that, we are
not only interested in the reach probabilities of the terminal states, but also, among other things,
in the marginal strategies of each individual player. This difference, as we will explain, creates a
critical separation between adversarial team games and general-sum correlation.

We make the following two primary contributions.
First, we extend the construction of Zhang et al. [2022] to the case of general-sum correlation, by

explicitly accounting for the relevant marginal probabilities. Our construction, like theirs, is based
on a decomposition of the game into public states. It immediately yields a fast LP-based algorithm
for optimal correlation. The size of our construction depends exponentially on the parameter that
Zhang et al. [2022] call 𝑘 , which here we refer to as the information complexity. The information
complexity of a game represents the number of possible player private states, across all players, in
each public state. Like Zhang et al. [2022], in NFCCE, we achieve a bound of1 𝑂∗ ((𝑏 + 1)𝑘 ) in games
of branching factor 𝑏. However, this bound does not extend to EFCCE or EFCE, where instead we
achieve 𝑂∗ ((𝑏 + 𝑑)𝑘 ) and 𝑂∗ ((𝑏𝑑)𝑘 ) respectively, where 𝑑 is the depth of the game. In fact, we
show that matching the bound for NFCCE and teams is impossible for EFCCE and EFCE under
standard complexity assumptions, demonstrating a fundamental complexity-theoretic gap between
correlation in normal and extensive forms.
Second, we propose a new approach to computing optimal correlated equilibria which we call

two-sided column generation. We start by deriving an LP formulation based on the strategy polytope
by von Stengel and Forges [2008], and on the notion of semi-randomized correlation plan introduced
by Farina et al. [2021a] in the context of team games. As in those two papers, this LP formulation
is for two-player games. In the latter of those two prior approaches, one player is chosen to play
a normal-form strategy, and the other plays a sequence-form strategy. Our approach improves
upon this by, in effect, inserting a root node that allows both players to act simultaneously as the
normal-form player, increasing the space of correlation plans reachable from any given support. We
show that we can express any valid correlation plan as a convex combination of semi-randomized
correlation plans. Since their number may be exponential in the size of the game, we incrementally
generate through a mixed-integer-programming-based pricing oracle the support set of semi-
randomized correlation plans which are used in the convex combination. Moreover, we propose
a new decomposition of correlation plans which allows players to make an effective use of the
current support, by letting each player re-optimize their strategy with respect to the marginals of
correlation plans already in the support.

Our two techniques are complementary: where the parameter 𝑘 is small, writing out the DAG is
superior; where it is large, the two-sided column generation is faster and more frugal in its memory
usage. Furthermore, the value of𝑘 can be easily computed, enabling an efficient choice between these
two approaches. In experiments, we demonstrate state-of-the-art practical performance compared
to prior state-of-the-art techniques with at least one, and sometimes both, of our techniques. We also
introduce two new benchmark games: a 2-vs-1 adversarial team game we call the tricks game, which
is the trick-taking (endgame) phase of the card game bridge; and the ride-sharing game, in which
two drivers seek to earn points by serving requests across a road network modeled as an undirected
graph. In the tricks game, we demonstrate empirically that, even for small endgames with only
three cards per player remaining, relaxing the game to be perfect information—as so-called double

1Throughout this paper,𝑂∗ hides factors polynomial in the size of the game.
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dummy bridge endgame solvers do [e.g., Ginsberg 1999]—causes incorrect solutions and game
values to be generated, demonstrating the need for imperfect-information game analysis.

2 PRELIMINARIES
In this section, we review common notions for correlation in extensive-form games.

2.1 Extensive-Form Games
Definition 2.1. An extensive-form game Γ with 𝑛 players, which we will identify with the positive

integers [𝑛] = {1, . . . , 𝑛} consists of the following:
(1) A rooted tree of historiesH , where the edges are labelled with actions. The root node of
H will be denoted ℎ0. The set of leaves, or terminal nodes inH will be denotedZ. The set
of actions at a node ℎ ∈ H will be denoted 𝐴ℎ . The child reached by following action 𝑎 at
node ℎ will be denoted ℎ𝑎.

(2) A partitionH0,H1, . . . ,H𝑛 of the set of nonterminal nodes, whereH𝑖 for 𝑖 > 0 is the set of
decision nodes of player 𝑖 and nodes inH0 are chance nodes.

(3) For each player 𝑖 ∈ [𝑛], a partition I𝑖 of H𝑖 into information sets, or infosets. The set of
actions at every node in a given infoset 𝐼 must be the same, and we will denote it 𝐴𝐼 .

(4) For each player 𝑖 ∈ [𝑛], a utility function 𝑢𝑖 : Z → R, where 𝑢𝑖 (𝑧) is the utility that player 𝑖
achieves upon reaching terminal node 𝑧.

(5) For each chance node ℎ ∈ H0, a fixed distribution 𝑝 (·|ℎ) over𝐴ℎ . We will use 𝑝 (𝑧) to denote
the probability that chance plays all actions on the path from root to 𝑧.

We will use ⪯ to denote the typical precedence relation induced by the game tree—that is, ℎ ⪯ ℎ′

if ℎ is an ancestor of ℎ′ in the tree. If 𝑆 and 𝑆 ′ are sets of nodes, we will use 𝑆 ⪯ ℎ or 𝑆 ⪰ ℎ to mean
that there exists 𝑠 ∈ 𝑆 for which 𝑠 ⪯ ℎ or 𝑠 ⪰ ℎ (respectively), and 𝑆 ⪯ 𝑆 ′ to mean 𝑠 ⪯ 𝑠 ′ for some
𝑠 ∈ 𝑆, 𝑠 ′ ∈ 𝑆 ′. We will use ℎ ∧ ℎ′ to denote the lowest common ancestor of ℎ and ℎ′.

The sequence 𝜎𝑖 (ℎ) and private state 𝜎𝑖 (ℎ) of player 𝑖 at node ℎ are the sequence of information
sets reached and actions played by 𝑖 on the root→ ℎ path. If player 𝑖 plays at ℎ, then 𝜎𝑖 (ℎ) does not
include the infoset at ℎ, while 𝜎𝑖 (ℎ) does2. We assume that every player has perfect recall—that is, at
every player 𝑖 infoset 𝐼 , every ℎ ∈ 𝐼 has the same sequence, denoted 𝜎𝑖 (𝐼 ). The set of sequences of
player 𝑖 will be denoted Σ𝑖 := {𝜎𝑖 (ℎ) : ℎ ∈ H}. In perfect-recall games, a sequence can be identified
with infoset-action pair 𝐼𝑎. We will use this identification.

A pure strategy for a player 𝑖 is an assignment of one action to each information set 𝐼 ∈ I𝑖 . The
sequence form of the pure strategy is the vector 𝝅 𝑖 ∈ {0, 1}Σ𝑖 , where 𝜋𝑖 [𝜎𝑖 ] = 1 if player 𝑖 plays every
action on the path from ∅𝑖 to 𝜎𝑖 . For infosets or nodes 𝑣 , we will use 𝜋𝑖 [𝑣] as overloaded notation
for 𝜋𝑖 [𝜎𝑖 (𝑣)]. A mixed strategy 𝝁𝑖 is a distribution over pure strategies. The reach probability of 𝜎𝑖
under 𝝁𝑖 is 𝜇𝑖 [𝜎𝑖 ] := E𝜋𝑖∼𝝁𝑖 𝜋𝑖 [𝜎𝑖 ]. The set of mixed strategies of player 𝑖 is denoted by 𝑄𝑖 . It is a
convex polytope characterized by a linear constraint system of size3 𝑂 (|Σ𝑖 |) [Koller et al., 1994].
A pure strategy profile 𝝅 = (𝝅1, . . . , 𝝅𝑛) is a collection of pure strategies, one per player. For a

pure strategy profile 𝝅 , we define 𝜋 [ℎ] :=
∏

𝑖∈𝑁 𝜋𝑖 [ℎ] ∈ {0, 1} to be the indicator that all players
play all actions on root→ ℎ path. The expected utility under 𝝅 is 𝑢 (𝜋) :=

∑
𝑧∈Z 𝑝 (𝑧)𝑢𝑖 (𝑧)𝜋 [𝑧].

A correlated strategy profile 𝝁 is a distribution over pure strategy profiles. The reach probability
of ℎ under 𝝁 is 𝜇 [ℎ] := E𝝅∼𝝁 𝜋 [ℎ]. The expected utility under 𝝁 is 𝑢 (𝝁) := E𝝅∼𝝁 𝑢 (𝝅).

2Some prior works on team games, such as Zhang et al. [2022], call �̄�𝑖 (ℎ) the sequence and do not use 𝜎𝑖 (ℎ)—to avoid
confusion, we differentiate the two.
3Throughout this paper, the size of a constraint system 𝑨𝒙 ≤ 𝒃 is nnz(𝑨) .
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2.2 Public States
Throughout this paper, we will require the concept of public states, defined as follows.

Definition 2.2. Two nonterminal nodes ℎ,ℎ′ in the same layer of Γ are connected if:
(1) 𝜎𝑖 (ℎ) = 𝜎𝑖 (ℎ′) for all players 𝑖 , or
(2) there is an infoset 𝐼 such that ℎ ⪯ 𝐼 and ℎ′ ⪯ 𝐼 .

The connectivity graph of Γ is the graph whose nodes are the nonterminal histories in Γ and
whose edges are given by the connectivity relation. A public state is a connected component of
the connectivity graph. We will use P to denote the collection of public states. Intuitively, a public
state 𝑃 is a subset of nodes such that whether 𝑃 has been reached is common knowledge among all
players4. Notice that terminal nodes, under this definition, are not assigned public states.

2.3 Sequential Decision Making on DAGs
In this section, we review a paradigm for sequential decision making [Farina et al., 2019a] on
directed acyclic graphs (DAGs), also used by Zhang et al. [2022].

Definition 2.3. A DAG-form sequential decision problem (DFSDP) is a DAG D = (S, E), where
(1) D has a unique source node 𝑠0 ∈ S,
(2) each node 𝑠 ∈ D is either a decision node, an observation node, or a sink, and
(3) for every pair of paths from the root leading to the same node, the last node common to

both paths is a decision node.

The edges out of decision nodes are called actions, and the edges out of observation nodes are
observations. Like in games, a pure strategy is an assignment of one action to each decision node
of D. The sequence form of a pure strategy is a vector which we will also denote by 𝝅 ∈ {0, 1}S
where 𝜋 [𝑠] = 1 if the pure strategy plays all the actions on some root→ 𝑠 path5, which we will
call the active path to 𝑠 . A mixed strategy 𝜇 is a distribution over pure strategies, and its sequence
form is the vector 𝝁 ∈ [0, 1]S for which 𝜇 [𝑠] = E𝜋∼𝜇 𝜋 [𝑠]. Like sequence-form mixed strategies
in games, we will use 𝑄D to denote the set of sequence-form mixed strategies in a DFSDP, and
this set is a polytope that can be described by a linear constraint system of size 𝑂 ( |E |) via scaled
extensions [Farina et al., 2019c, Zhang et al., 2022].

2.4 Correlated Equilibria in Games
In this section, we formally define the various solution concepts of correlated equilibria that we will
be working with in this paper: normal-form coarse correlated equilibrium (NFCCE), extensive-form
coarse correlated equilibrium (EFCCE), and extensive-form correlated equilibrium (EFCE). We first
give some intuition. These notions of correlated equilibria can be thought of as correlated strategies
of play that can be enforced by a mediator. The mediator selects a strategy profile 𝜋 ∼ 𝜇, and, when
each player reaches an infoset 𝐼 , the mediator gives a recommendation that player to play the action
prescribed by 𝜋 at 𝐼 . The player may also choose to deviate, in which case they do not need to follow
the recommendations of the mediator, but the mediator also no longer gives recommendations for
the remainder of the game. The different notions of correlation are separated by what types of
deviations are allowed.
4With our definitions of private states and public states, it is possible for two nodes in different public states to share the
private state of some player. Intuitively, this is because public states are defined to be “as fine as possible”, while private
states are defined to be “as coarse as possible”. Our analysis, like that of Zhang et al. [2022], relies on the number of private
states per public state, so it is beneficial to define these terms in this way
5Condition 3 in Definition 2.3 ensures that there is at most one such path.
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(1) In NFCCE, a player may only deviate at the very beginning of the game. If she chooses not
to deviate, she must follow all mediator recommendations for the whole game.

(2) In EFCCE, a player may deviate at each of her infosets before seeing a recommendation.
However, if she chooses not to deviate, she must play the recommended action.

(3) In EFCE, a player may deviate at each of her infosets after seeing a recommendation, by
instead playing a different action.

To formalize these notions, we use the language of trigger agents introduced by Gordon et al. [2008].

Definition 2.4. A trigger 𝜏 is:
(1) for NFCCE, the empty sequence ∅𝑖 for some player 𝑖 ∈ [𝑛];
(2) for EFCCE, an infoset; and
(3) for EFCE, a sequence.

Given a solution concept 𝑐 ∈ {NFCCE, EFCCE, EFCE}, we denote by T 𝑐 the set of all triggers
for that concept.Given a trigger 𝜏 ∈ T 𝑐 , we useH[𝜏] to denote the set of nodes at which trigger 𝜏
may be activated. Formally,

(1) for NFCCE,H[∅𝑗 ] = {ℎ0}; and
(2) for EFCCE,H[𝐼 ] = 𝐼 ; and
(3) for EFCE,H[𝐼𝑎] = 𝐼 .

A pure deviation 𝝅 ′𝑖 following a trigger 𝜏 of player 𝑖 is a pure strategy defined on all infosets
𝐼 ⪰ H [𝜏]. Mixed deviations and their sequence forms are defined analogously. We will denote by
𝑄 [𝜏] the set of all sequence-form mixed deviations following 𝜏 . A trigger agent 𝛼 = (𝜏, 𝝅 ′𝑖 ) consists
of a trigger 𝜏 of player 𝑖 and a pure deviation 𝝅 ′𝑖 following 𝜏 .
For a trigger agent 𝛼 = (𝜏, 𝝅 ′𝑖 ) and pure strategy 𝝅 𝑖 , define 𝝅𝛼

𝑖
to be identical to 𝝅 𝑖 unless

𝜋𝑖 [𝜏] = 1, in which case 𝝅 ′𝑖 replaces 𝝅 𝑖 where it is defined. That is, the player 𝑖 plays according
to the original strategy 𝝅 𝑖 unless it prescribes 𝜏 , in which case she replaces her strategy with 𝝅 ′𝑖
where the latter is defined. For a pure strategy profile 𝝅 , define 𝜋𝛼 [ℎ] := 𝜋𝛼

𝑖
[ℎ]∏𝑗≠𝑖 𝜋 𝑗 [ℎ]. For a

correlated strategy 𝝁, define 𝜇𝛼 [ℎ] := E𝝅∼𝝁 𝜋𝛼 [ℎ]. That is, 𝜇𝛼 [ℎ] is the reach probability of ℎ if all
players play 𝝁, except player 𝑖 , who deviates from 𝝁 according to the trigger agent.

Definition 2.5. A trigger agent 𝛼 is profitable if 𝑢𝑖 (𝝁𝛼 ) > 𝑢𝑖 (𝝁).
Definition 2.6. NFCCEs, EFCCEs, and EFCEs are correlated strategy profiles 𝝁 that have no

profitable trigger agents of their respective types.

In this paper, we focus on the problem of computing optimal correlated equilibria of the given
sort. That is, given an objective function 𝑢 : Z → R, our goal is to find the correlated equilibrium 𝝁
of the desired concept that maximizes 𝑢 (𝝁). One example special case of this problem is the social
welfare-maximizing equilibrium, which is the equilibrium maximizing 𝑢SW (𝝁) :=

∑
𝑖∈[𝑛] 𝑢𝑖 (𝝁).

2.5 Normal-Form Correlated Equilibrium
We briefly discuss why this paper does not address the “missing corner of the square”, the normal-
form correlated equilibrium (NFCE). In NFCE, the mediator tells each player her entire pure strategy
𝜋𝑖 at the start of the game, at which point the player may choose to deviate. Unlike the other three
concepts, because NFCE involves the whole recommendation being given upfront, it is impossible
to express it in the language of trigger agents we have introduced. Indeed, it is known computing
optimal NFCEs is NP-hard even in two-player games without chance nodes [von Stengel and Forges,
2008], making it a distinctly difficult problem that is out of the scope of this paper.
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3 CORRELATION PLANS
In this section, we introduce our main contribution of this part of the paper, the correlation DAG. It
is a generalization of the team belief DAG of Zhang et al. [2022] to representing the polytopes Ξ𝑐

instead of just a team polytope6. Before we begin, we must first define the polytope we are trying
to represent—namely, the polytope of correlation plans.

3.1 Correlation Plans and Optimal Correlation via Linear Programs
In this section, we introduce the correlation polytope Ξ, and its projections Ξ𝑐 for each of the
three solution concepts we are concerned with, i.e., 𝑐 ∈ {NFCCE, EFCCE, EFCE}. Unlike previous
works [e.g., Farina and Sandholm 2020], we define Ξ𝑐 to be different for each solution concept. This
allows us to give refined bounds and hardness results that depend on 𝑐 .

Definition 3.1. A trigger history ℎ𝜏 is a history ℎ augmented with an optional trigger 𝜏 such that
H[𝜏] ⪯ ℎ. If there is no trigger, we write 𝜏 = ⊥.

If 𝜏 ≠ ⊥, we say that the player to which 𝜏 belongs is triggered at ℎ𝜏 . The set of trigger histories
for concept 𝑐 will be denotedH𝑐 , and the set of trigger histories 𝑧𝜏 for which 𝑧 is terminal will be
denotedZ𝑐 .
The sequence of a player 𝑖 at a terminal trigger history ℎ𝜏 is defined by 𝜎𝑖 (ℎ𝜏 ) = 𝜎𝑖 (𝜏) if 𝑖 is

triggered at 𝜏 , and 𝜎𝑖 (ℎ𝜏 ) = 𝜎𝑖 (ℎ) otherwise. The joint sequence 𝝈 (ℎ𝜏 ) is the tuple of sequences of
all players, that is, 𝝈 (ℎ𝜏 ) := (𝜎1 (ℎ𝜏 ), . . . , 𝜎𝑛 (ℎ𝜏 )). We call a joint sequence relevant if it appears as
the joint sequence of any ℎ𝜏 for any solution concept, and use Σ to denote the set of relevant joint
sequences. That is, Σ := {𝝈 (ℎ𝜏 ) : ℎ𝜏 ∈ HNFCCE ∪HEFCCE ∪HEFCE}. This notion of relevance is a
generalization of the notion of von Stengel and Forges [2008] to games with more than two players,
and the two notions coincide in the two-player case.

The reach probability 𝜉𝝁 [𝝈] of terminal sequence 𝝈 under correlated strategy profile 𝝁 is defined
to be 𝜉𝝁 [𝝈] = E𝜋∼𝝁

∏
𝑖∈[𝑛] 𝜋𝑖 [𝜎𝑖 ]. That is, 𝜉𝝁 [𝝈] is the probability that all players play to 𝝈 . As

usual, we will use 𝜉 [ℎ𝜏 ] as notational shorthand for 𝜉 [𝝈 (ℎ𝜏 )]. The resulting vector 𝝃 𝝁 ∈ [0, 1]Σ is
called the correlation plan for 𝝁 in concept 𝑐 . We will use Ξ to denote the set of correlation plans.
We now define the restrictions Ξ𝑐 for each solution concept 𝑐 . A joint sequence 𝝈 is called

terminal if 𝝈 = 𝝈 (𝑧𝜏 ) for some 𝑧𝜏 ∈ Z𝑐 . We will use Σ𝑐 to denote the set of terminal joint sequences
in concept 𝑐 , that is, Σ𝑐 := {𝝈 (𝑧𝜏 ) : 𝑧𝜏 ∈ Z𝑐 }. We will call the subvector on Σ𝑐 of a correlation plan
𝝃 ∈ [0, 1]Σ a correlation plan in concept 𝑐 , and use Ξ𝑐 to denote the set of such correlation plans.
Intuitively, Ξ𝑐 is the projection of Ξ onto only the joint sequences that are needed to define that
particular solution concept.

We define the correlation plan polytopes in this way because they have different characteristics:
in particular, ΞNFCCE is a much lower-dimensional object than ΞEFCCE, ΞEFCE, and Ξ. In Section 4.2,
we will show that this difference marks the transition between efficient parameterized algorithms
being possible and impossible in our parameterization.

Given a solution concept 𝑐 , the problem of computing optimal equilibrium point with respect to
an arbitrary objective 𝒈⊤𝝃 amounts to solving the following optimization problem

argmax𝝃 𝒈⊤𝝃 , subject to:
1 Incentive constraints
2 𝝃 ∈ Ξ𝑐

. (∗)

6Indeed, if we disallow all triggers, our correlation DAG recovers effectively the team polytope of Zhang et al. [2022].
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Then, the family of constraints 1 is defined depending on the solution concept 𝑐 . In particular, for
all 𝜏 ∈ T 𝑐 belonging to any player 𝑖 , we have the constraint

min
𝝁′
𝑖
∈𝑄 [𝜏 ]

∑︁
𝑧⪰H[𝜏 ]

𝑢𝑖 (𝑧) 𝑝 (𝑧)
(
𝜉 [𝑧𝜏 ] 𝜇 ′𝑖 [𝑧] − 𝜉 [𝑧]

) ≤ 0.

These constraints can be converted to a system of linear constraints by dualizing, yielding a linear
program. Therefore, we have:

Theorem 3.2 (Farina et al. 2020, 2019b). For each solution concept 𝑐 , the set of solutions Ξ𝑐∗ in
concept 𝑐 can be written in the form Ξ𝑐∗ = {𝝃 ∈ Ξ𝑐 ,𝑨𝝃 ≤ 𝒃}, where 𝑨 ∈ R𝑚×Z𝑐

with𝑚 = poly(|H |).
Therefore, in particular, if Ξ𝑐 has a description of size 𝐷 , then optimizations over Ξ𝑐∗, such as computing
welfare-optimal solutions of concept 𝑐 , can be done in time poly(𝐷).

The remainder of the paper will focus onways of representingΞ orΞ𝑐 . With such a representation,
Theorem 3.2 can be applied directly to yield an efficient algorithm for solving LP (∗).

4 THE CORRELATION DAG
Definition 4.1. A trigger history ℎ𝜏 is active if a mediator must recommend an action at ℎ, that is,

if 𝜏 = ⊥ or the player acting at ℎ is not chance and not triggered.

We say that ℎ𝜏 ∈ 𝐼 if and only if ℎ ∈ 𝐼 and ℎ𝜏 is active. Given a set 𝐵 of trigger histories, an
infoset 𝐼 is active if there exists an active trigger history ℎ𝜏 ∈ 𝐵 ∩ 𝐼 . A prescription 𝒂 at 𝐵 is an
assignment of one action to each active infoset 𝐼 .

Definition 4.2. For a trigger historyℎ𝜏 ∈ H𝑐 with trigger 𝜏 ≠ ⊥, define the trigger point 𝑡 (ℎ𝜏 ) = ℎ′

be the node ℎ′ that caused the trigger 𝜏 to be activated. Formally:
(1) For NFCCE, 𝑡 (ℎ∅𝑖 ) = ℎ0.
(2) For EFCCE, 𝑡 (ℎ𝐼 ) = ℎ′, where ℎ′ ⪯ ℎ is such that ℎ′ ∈ 𝐼 .
(3) For EFCE, 𝑡 (ℎ𝐼𝑎) = ℎ′𝑎, where ℎ′ ⪯ ℎ is such that ℎ′ ∈ 𝐼 .

Note that, in the case of EFCE, we have 𝑡 (ℎ𝜏 ) ⪯̸ ℎ, since ℎ𝜏 can only arise when the mediator
attempts to recommend an action that is then not played by the player.

We now extend the precedence order ⪯ toH𝑐 , as follows. For a trigger history ℎ𝜏 , define the
path to ℎ𝜏 as the path (ℎ𝜏0

0 , ℎ𝜏
1

1 , . . . , ℎ𝜏 ), where (ℎ0, ℎ1, . . . , ℎ) is the path to ℎ in H , and 𝜏 ℓ = ⊥ if
𝜏 = ⊥ or ℎℓ ≺ 𝑡 (ℎ𝜏 ), and 𝜏 ℓ = 𝜏 otherwise. Put simply, the path to ℎ𝜏 is the path of trigger histories
that occurs if node ℎ has been reached and trigger 𝜏 was activated. Now if ℎ̃𝜏 is another trigger
history, we say that ℎ̃𝜏 ⪯ ℎ𝜏 if it is on the path to ℎ𝜏 . We say that ℎ𝜏 is fresh if 𝜏 ≠ ⊥ and ℎ is at the
same layer as 𝑡 (ℎ𝜏 ), that is, the trigger was just activated7.

We are now ready to define the correlation DAG. Like Zhang et al. [2022], we will assume in this
section that the game is timed—i.e., information sets do not span multiple levels of the game tree8.

Definition 4.3. The correlation DAG is a DFSDPD𝑐 = (S𝑐 , E𝑐 ), whose player we call themediator
and whose nodes are identified with subsets of trigger histories 𝑆 ⊆ H𝑐 , defined as follows.

(1) The source node is an observation node 𝑆0 = {ℎ⊥0 }.
(2) At an observation node𝑂 , let �̂� = 𝑂∪{ℎ𝜏 fresh : 𝑡 (ℎ𝜏 )⊥ ∈ 𝑂}.Let P𝑆 = {𝑃 ∈ P : ℎ ∈ 𝑃,ℎ𝜏 ∈

�̂�} be the set of public states containing nodes in �̂� . The mediator observes some public
state 𝑃 ∈ P𝑆 and transitions to the decision node �̂�𝑃 := {ℎ𝜏 ∈ �̂� : ℎ ∈ 𝑃}. Additionally, if

7For NFCCE and EFCCE, this is equivalent to saying ℎ = 𝑡 (ℎ𝜏 ) . For EFCE, it is equivalent to ℎ and 𝑡 (ℎ𝜏 ) sharing a parent.
8This assumption is not without loss of generality, but any game in which the precedence order ⪯ on infosets is a partial
order can be converted to a timed game by adding dummy nodes.
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Fig. 1. An example two-player game (top left), its team DAG (top right; Zhang et al. 2022), and its EFCE DAG.
The NFCCE and EFCCE DAGs are very similar, and can be found in Appendix A. Square nodes are nature,
and triangle nodes are the nodes for the two players. Dotted lines connect nodes in the same information set.
In all the DAGs, nodes with black text on white background are observation nodes, and nodes with white text
on black background are decision nodes. Red shaded regions connect nodes in the same public states. For
each joint terminal sequence, an arbitrary representative was selected. Nodes ℎ⊥ are written without the ⊥
to reduce notational clutter. Triggers are identified by the layer on which they occurred. The top three layers
of both DAGs are also omitted to reduce clutter; they are 𝑎 → 𝑎 → 𝑏𝑐 → 𝑏𝑐 .

𝑧𝜏 ∈ �̂� is terminal9, the mediator may observe 𝑧𝜏 and transition to the singleton terminal
node {𝑧𝜏 }.
Intuitively, at an observation node 𝑆 , we first construct the set 𝑆 of trigger-augmented
histories that could have been reached by a mediator who attempted to reach 𝑆 . Then, the
mediator observes a public state and conditions the world on that public state, and the game
continues.

(3) At a decision node 𝐵, the mediator chooses a prescription 𝒂, and transitions to the observa-
tion node

𝐵𝒂 := {ℎ𝑎[𝐼 ]𝜏 : ℎ ∈ 𝐼 , ℎ𝜏 ∈ 𝐵 active}︸                                 ︷︷                                 ︸
the player at ℎ is recommended action 𝑎 [𝐼 ]

∪ {ℎ𝑎𝜏 : ℎ𝜏 ∈ 𝐵 inactive, 𝑎 ∈ 𝐴ℎ}︸                                  ︷︷                                  ︸
the player at ℎ did not receive a recommendation

.

9Since multiple terminal trigger histories may have the same joint sequence, we do not need to do this for all terminal 𝑧𝜏 ;
indeed, we only need to pick one representative for each joint sequence, and ignore all other terminal trigger histories. This
results in a slightly more compact representation.
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10 Brian Zhang, Gabriele Farina, Andrea Celli, and Tuomas Sandholm

The sets corresponding to decision nodes are called beliefs. The DAG D𝑐 is created by merging
decision nodes that have the same belief.

Pseudocode can be found in Appendix B, and an example can be found in Figure 1.
To check thatD𝑐 is a valid DFSDP, we need to ensure that no two paths from the root to any node

𝑆 ∈ S𝑐 split off at an observation node. This is true because distinct observations at an observation
node result in intersection with distinct public states, which are disjoint. Therefore, they lead to
disjoint beliefs, which can never again meet.

If we do not allow any triggers at all and only consider nodes belonging to a subset of players that
form a team, we recover the team belief DAG of Zhang et al. [2022]. However, the team belief DAG is
not sufficient to parameterize Ξ𝑐 for any of the correlation concepts 𝑐 , because it lacks—among other
things—the marginal strategies of each individual player. As Zhang et al. [2022] have discussed
the case of adversarial team games at length, we do not elaborate on this point in this section and
instead focus our attention on the general-sum correlation case.

Theorem 4.4 (Correctness). Let Γ be a game, and D𝑐 its correlation DAG for any of the
three concepts 𝑐 . For a sequence-form mixed strategy 𝝁 ∈ 𝑄D𝑐 , define the vector 𝝃 𝝁 ∈ [0, 1]Σ𝑐
by 𝜉𝝁 [𝝈 (𝑧𝜏 )] = 𝜇 [{𝑧𝜏 }]. Then we have Ξ𝑐 = {𝝃 𝝁 : 𝝁 ∈ 𝑄D𝑐 }. That is, the correlation plan polytope
Ξ𝑐 is a projection of the set 𝑄D𝑐 of sequence-form mixed strategies in D𝑐 .

Corollary 4.5. Optimization problems over Ξ𝑐 and Ξ𝑐∗, including but not limited to computing
optimal equilibria, can be written as linear programs of size with𝑂∗ (|E𝑐 |) constraints, and thus solved
in time poly( |E𝑐 |, |H |).
We call this linear program the correlation DAG LP.

4.1 Tree Decomposition View
Zhang and Sandholm [2022] introduced a framework based on tree decompostions for solving
zero-sum team games. In this section, we briefly discuss the relationship between our correlation
DAG and that technique. The correlation DAG can also be viewed as the polytope generated by
a certain tree decomposition of the constraint system. Namely, there is a tree decomposition of
a (nonlinear) constraint system defining pure correlation plans such that the bags of the tree
decomposition are exactly the sets 𝑃 ∪ 𝑃 ′ where 𝑃 is the set of trigger histories in a public state,
and 𝑃 ′ is the set of all their descendants. Correctness of the decomposition, that is, Theorem 4.4,
would then follow immediately from the junction tree theorem. To avoid introducing machinery
and notation needlessly, we will not elaborate on this view for this paper and instead focus on the
DAG representation.

4.2 The Size of the Correlation DAG
In light of Corollary 4.5, it is important to discuss the number of edges |E𝑐 | for each possible concept
𝑐 . From a similar analysis to Zhang et al. [2022], we can do this by directly counting beliefs and
edges. We will use the following parameters in our analysis10.
• 𝑘 is the largest number of player private states (across all players) in any public state.
Formally, 𝑘 = max𝑃 ∈P |{𝜎𝑖 (ℎ) : ℎ ∈ 𝑃, 𝑖 ∈ [𝑛]}|. We will call 𝑘 the information complexity
of the game.

10Zhang and Sandholm [2022] also define a parameter 𝑤, which is the greatest number of joint private states in any belief
that correspond to histories with no trigger, and prove complexity bounds with exponential dependence only on 𝑤 for team
games. We cannot match these bounds for optimal correlation, for a fundamental reason: every game with no chance nodes
has 𝑤 = 1, but computing optimal correlated equilibria in three-player games with no chance is already NP-hard [von
Stengel and Forges, 2008]. So, we restrict our attention to the parameters we have defined.
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• 𝑏 is the largest branching factor of any non-chance node in Γ. Formally, 𝑏 = maxℎ∈H\H0 |𝐴ℎ |.
• 𝑑 is the depth of Γ, where a game with only a root node is defined to have depth 1.

Theorem 4.6.
��ENFCCE�� = 𝑂∗

((𝑏 + 1)𝑘 ) , ��EEFCCE�� = 𝑂∗
((𝑏 + 𝑑 − 2)𝑘 ) , and ��EEFCE�� = 𝑂∗

((𝑏𝑑)𝑘 ) .
The bound for NFCCE is the same bound achieved by Zhang et al. [2022] in the setting of team

games. For EFCCE and EFCE, the bounds also depend on the number of triggers that could have
been activated for a given player at a given node. For EFCCE, this is at most 𝑑 ; for EFCE, it is 𝑏𝑑 .
In games with public actions, we can remove the dependencies on 𝑏 for NFCCE and EFCCE.

Definition 4.7. A game has public actions if, for all 𝑃 ∈ P containing at least one non-chance
node, for all actions 𝑎 ∈ ⋃ℎ∈𝑃 𝐴ℎ , the set {ℎ𝑎 : ℎ ∈ 𝑃, 𝑎 ∈ 𝐴ℎ} is a union of public states.

Poker, for example, has this structure: the root public state contains only a chance node, and
every action thereafter is fully public.

Theorem 4.8. In games with public actions, the correlation DAG construction can be modified to
achieve

��ENFCCE�� = 𝑂∗
(
3𝑘
)
and

��EEFCCE�� = 𝑂∗
(
𝑑𝑘

)
.

The bound on
��EEFCE�� is not improved, because the (𝑏𝑑)𝑘 term in that analysis comes from

counting the number of triggers at a given node, which has not changed. Once again, the bound
for NFCCE matches that of Zhang et al. [2022] up to polynomial factors.

4.3 Fixed-Parameter Hardness of Representing ΞEFCCE and ΞEFCE

A natural question is whether it is possible to achieve the same bound for EFCCE and EFCE as
achieved for NFCCE and team games—namely, a construction whose exponential term depends only
on 𝑏 and 𝑘 . It turns out that our construction does not accomplish this, and in fact, no representation
of Ξ𝑐 can have size 𝑂∗ (𝑓 (𝑘)) for any function 𝑓 under standard complexity assumptions even
when 𝑏 = 2. To do this, we first review some fundamental notions of parameterized complexity.

Definition 4.9. A fixed-parameter tractable (FPT) algorithm for a problem is an algorithm that
takes as input an instance 𝑥 and a parameter 𝑘 ∈ N, and runs in time 𝑓 (𝑘) poly( |𝑥 |), where |𝑥 | is
the bit length of 𝑥 and 𝑓 : N→ N is an arbitrary function.

The 𝑘-CLIQUE problem11 is widely conjectured to not admit an FPT algorithm parameterized by
the clique size 𝑘 . In the literature on parameterized complexity, this conjecture is known as FPT ≠

W[1], and is implied by the exponential time hypothesis [Chen et al., 2005]. We now show that
this conjecture implies lower bounds on the complexity of representing the polytopes ΞEFCCE and
ΞEFCE.

Theorem 4.10. Assuming FPT ≠ W[1], there is no FPT algorithm for linear optimization over
ΞEFCCE or ΞEFCE parameterized by information complexity, even in two-player games with constant
branching factor.

Technically speaking, Theorem 4.10 does not establish parameterized hardness of computing
welfare-optimal EFCCEs or EFCEs, as there could hypothetically be a method for doing so that
does not need to construct the correlation plan polytope. However, we know of no technique
that circumvents this need. Therefore, Theorem 4.10 is a lower bound that applies to all known
techniques for computing welfare-optimal EFCCEs and EFCEs.

11The 𝑘-CLIQUE problem is to decide whether a given graph contains a clique of size at least 𝑘 .
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5 TWO-SIDED COLUMN GENERATION APPROACH
In this section, we propose a scalable iterative method which exploits the particular combinatorial
structure of the polytope of correlation plans. Such polytope is typically low-dimensional, but may
have an exponential number of facets. Nonetheless, its geometrical structure can be exploited to
compute solutions even for large game instances. In the analysis, we exploit a particular polytope
introduced by von Stengel and Forges [2008]. In line with previous literature on such polytope, we
describe our framework for games with two players. In principle one could extend the notion of
polytope introduced by von Stengel and Forges [2008] to the case of an arbitrary number of players,
but that is beyond the scope of the present work. The two-sided column generation approach which
we describe is capable of computing optimal NFCCE, EFCCE, EFCE in any two-player general-sum
imperfect-information extensive-form game.

5.1 Semi-Randomized Correlation Plans
We introduce the following notation for two-player games, which was also used by Farina et al.
[2021a]: we write 𝜎1 ⊲⊳ 𝜎2 to denote a relevant sequence pair (𝜎1, 𝜎2) ∈ Σ. For a P1 sequence 𝜎 and
P2 infoset 𝐼 , we write 𝜎 ⊲⊳ 𝐼 if 𝜎 ⊲⊳ 𝐼𝑎 for each action 𝑎. Similarly, for a P1 infoset 𝐼 and P2 infoset 𝜎 ,
we write 𝐼 ⊲⊳ 𝜎 if 𝐼𝑎 ⊲⊳ 𝜎 .

Now, we introduce the strategy representation which we employ in our algorithm. We observe
that variables in LP (∗) (Section 3.1) belong to the convex polytope Ξ, but that polytope cannot
be compactly represented in general. Therefore, we tackle LP (∗) by adopting the notion of semi-
randomized correlation plan proposed by Farina et al. [2021a]. For completeness, we show how semi-
randomized correlation plan can be derived from the von Stengel-Forges polytope [von Stengel and
Forges, 2008] representing interlaced sequence-form “probability mass conservation” constraints
for the two players.

Definition 5.1. The von Stengel-Forges polytope, denotedV , is the polytope of all vectors 𝜻 ∈ RΣ≥0
(i.e., indexed over relevant sequence pairs) such that: A 𝜁 [∅1,∅2] = 1; B

∑
𝑎∈𝐴𝐼

𝜁 [𝐼𝑎, 𝜎2] =

𝜁 [𝜎1 (𝐼 ), 𝜎2] ∀𝐼 ⊲⊳𝜎2 ∈ I1 × Σ2; and C
∑

𝑎∈𝐴𝐼
𝜁 [𝜎1, 𝐼𝑎] = 𝜁 [𝜎1, 𝜎2 (𝐼 )] ∀𝐼 ⊲⊳𝜎2 ∈ I2 × Σ1.

The set of linear constraints definingV is polynomially-sized. Moreover, the set of correlation
plans is a subset of the von Stengel-Forges polytope, that is, Ξ ⊆ V [von Stengel and Forges, 2008].

Finally, a semi-randomized correlation plan is composed of a deterministic sequence form strategy
for one player, while the other player independently plays a mixed strategy.

Definition 5.2 ([Farina et al., 2021a]). The sets of semi-randomized correlation plans are
Ξsr

1 := {𝝃 ∈ V : 𝜉 [∅, 𝜎2] ∈ {0, 1} ∀ 𝜎2 ∈ Σ2} and Ξsr
2 := {𝝃 ∈ V : 𝜉 [𝜎1,∅] ∈ {0, 1} ∀ 𝜎1 ∈ Σ1}.

Given 𝑖 ∈ {1, 2}, a point 𝝃 ∈ Ξsr
𝑖 can be expressed using real and binary variables, in addition to

the linear constraints defining the von Stengel-Forges polytopeV . In particular, we rely on the
observation by Farina et al. [2021a] that Ξ = co(Ξsr

1 ) = co(Ξsr
2 ) = co(Ξsr

1 ∪ Ξsr
2 ).

5.2 Computing Deviations
Given a solution concept 𝑐 ∈ {NFCCE, EFCCE, EFCE}, and a correlation plan 𝝃 , we can compute the
maximum possible deviation (across all players) by exploiting constraints 1 of LP (∗). In particular,
given a trigger 𝜏 ∈ T 𝑐 , we observe that any constraint of type 1 can be written as 𝝃⊤𝑨𝜏𝝁−𝒃⊤𝜏 𝝃 ≤ 0,
where 𝝁 ∈ 𝑄 [𝜏] is an arbitrary mixed sequence-form deviation for trigger 𝜏 , and 𝑨𝜏 , 𝒃𝜏 are suitably
defined sparse matrices/vectors that only depend on 𝜏 . Since 𝑄 [𝜏] is the set of sequence-form
strategies following 𝜏 , we can compactly represent it as 𝑄 [𝜏] :=

{
𝝁 : 𝑭 𝜏𝝁 = 𝒇𝜏 , 𝝁 ≥ 0

}
, for some

suitable choice of 𝑭 𝜏 and 𝒇𝜏 (see, e.g., [Koller et al., 1996, von Stengel, 1996]). Then, we can compute
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the maximum deviation through the following LP.
max𝝀,(𝝁𝜏 )T𝑐

∑
𝜏 ∈T𝑐 𝜆[𝜏]

(
𝝃⊤𝑨𝜏𝝁𝜏 − 𝒃⊤𝜏 𝝃

)
s.t. 𝑭 𝜏𝝁𝜏 = 𝒇𝜏 ∀𝜏 ∈ T 𝑐

1⊤𝝀 = 1
𝜆[𝜏] ≥ 0, 𝝁𝜏 ≥ 0 ∀𝜏 ∈ T 𝑐

=⇒


max𝝀,(�̃�)T𝑐

∑
𝜏 ∈T𝑐

(
𝝃⊤𝑨𝜏 �̃�𝜏 − 𝜆[𝜏]𝒃⊤𝜏 𝝃

)
s.t. 𝑭 𝜏 �̃�𝜏 = 𝜆[𝜏]𝒇𝜏 ∀𝜏 ∈ T 𝑐

1⊤𝝀 = 1
𝜆[𝜏] ≥ 0, �̃�𝜏 ≥ 0 ∀𝜏 ∈ T 𝑐

,

where we obtained the LP on the right via a simple change of variables �̃�𝜏 := 𝜆[𝜏]𝝁𝜏 from the
optimization problem on the left. Then, by taking the dual of the above LP we obtain the following.

min(𝒗𝜏 )T𝑐 ,𝑢 𝑢

s.t. 𝑭⊤𝜏 𝒗𝜏 −𝑨⊤𝜏 𝝃 ≥ 0 ∀𝜏 ∈ T 𝑐

𝑢 − 𝒇⊤𝜏 𝒗𝜏 + 𝝃⊤𝒃𝜏 ≥ 0 ∀𝜏 ∈ T 𝑐

𝒗, 𝑢 free

. (D)

By strong duality, the value of LP (D) is the same as the value of the primal problem (i.e., the
maximum ‘deviation benefit’ across all players and all possible deviations for triggers in T 𝑐 ).

5.3 Correlation-Plan Decomposition and Iterative Framework
We say that a correlation plan 𝝃 is a product correlation plan if, for any (𝜎1, 𝜎2) ∈ Σ, 𝜉 [𝜎1, 𝜎2] =
𝜉 [𝜎1,∅] · 𝜉 [∅, 𝜎2]. Since any semi-randomized correlation plan corresponds to a distribution of
play where one team member plays a pure sequence-form strategy, while the other plays a mixed
sequence-form strategy, 𝝃 ∈ Ξsr

𝑖 is guaranteed to be a product correlation plan for any 𝑖 (see [Farina
et al., 2021a, Lemma 3]). Given 𝝃 ∈ Ξsr

1 ∪Ξsr
2 , let𝒎𝝃 ,1 ∈ RΣ1 be the vector such that𝒎𝝃 ,1 := 𝜉 [·,∅],

and let 𝒎𝝃 ,2 be defined analogously. Moreover, for any 𝒙1 ∈ RΣ1 , 𝒙2 ∈ RΣ2 , let 𝝃 := 𝒙1 ⊗ 𝒙2 be the
correlation plan given by 𝜉 [𝜎1, 𝜎2] = 𝑥1 [𝜎1] 𝑥2 [𝜎2]. Then, we can decompose any correlation plan
𝝃 ∈ Ξsr

1 ∪ Ξsr
2 as

𝝃 = 𝜆 𝝁1 ⊗ 𝒎𝝃 ,2 + (1 − 𝜆)𝒎𝝃 ,1 ⊗ 𝝁2,

for some appropriate choice of 𝜆 ∈ [0, 1], and mixed strategies 𝝁1, 𝝁2 for Player 1 and Player 2,
respectively. Moreover, given 𝝃 ∈ Ξsr

1 ∪ Ξsr
2 , 𝜆 𝝁1 ⊗ 𝒎𝝃 ,2 + (1 − 𝜆)𝒎𝝃 ,1 ⊗ 𝝁2 ∈ co(Ξsr

1 ∪ Ξsr
2 ) for

any 𝜆 ≥ 0 and well-formed sequence-form strategies 𝝁1, 𝝁2.
We define the support 𝑆 ⊆ Ξsr

1 ∪ Ξsr
2 to be an arbitrary subset of semi-randomized correlation

plans. Then, we consider the following optimization problem, which we call the master LP.

max 𝒈⊤𝝃

1 𝑭⊤𝜏 𝒗𝜏 −𝑨⊤𝜏 𝝃 ≥ 0 ∀𝜏 ∈ T 𝑐

2 𝑢 − 𝒇⊤𝜏 𝒗𝜏 + 𝝃⊤𝒃𝜏 ≥ 0 ∀𝜏 ∈ T 𝑐

3 𝝃 =
∑̃︁
𝝃 ∈𝑆

(
�̃� �̃� ,1 ⊗ 𝒎�̃� ,2 +𝒎�̃� ,1 ⊗ �̃� �̃� ,2

)
4 𝑭 𝑖 �̃� �̃� ,𝑖 = 𝜆𝑖 [�̃� ] 𝒇 𝑖 ∀𝑖 ∈ {1, 2}, �̃� ∈ 𝑆
5 𝑢 ≤ 0

6
∑︁

𝑖∈{1,2}

∑̃︁
𝝃 ∈𝑆

𝜆𝑖 [�̃� ] = 1

7 𝝀𝑖 ≥ 0∀𝑖, 𝝁 �̃� ,𝑖 ≥ 0∀(𝑖, �̃� ), 𝒗𝜏 free ∀𝜏

(M)
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As we argued in Section 5.1, we could replace constraint 2 of LP (∗) by forcing all 𝝃 to belong
to co(Ξsr

1 ∪ Ξsr
2 ). Then, if we set 𝑆 = co(Ξsr

1 ∪ Ξsr
2 ), the above LP would have value equal to the

optimal value of LP (∗). To see that, we make the following observations:

• each correlation plan 𝝃 ∈ 𝑆 in the support is represented through the decomposition which
we defined above, where we perform the change of variables �̃� �̃� ,𝑖 := 𝜆𝑖 [�̃� ]𝝁 �̃� ,𝑖 for each 𝑖;
• from the analysis of LP (D), we have that constraint 5 (together with 1 and 2 ), implies

that the maximum deviation benefit is non-positive, that is, family of incentive constraints
1 in LP (∗) is satisfied;

• constraints 4 and 7 imply that �̃�𝝃 ,𝑖 are well-defined mixed strategies rescaled appropriately
according to 𝝀 coefficients;
• constraints 6 and 7 imply that 𝝀 is a point in the 2|𝑆 |-dimensional simplex.

If we could afford to set 𝑆 = co(Ξsr
1 ∪Ξsr

2 ), finding an optimal NFCCE, EFCCE, EFCE for an arbitrary
objective 𝒈 would amount to solving LP (M) once. However, the size of Ξsr

1 ∪ Ξsr
2 is oftentimes

prohibitively large, since it has size exponential in the size of the game. Therefore, we follow the
approach by Ford and Fulkerson [1958] and generate the support 𝑆 iteratively. We say that the
column-generation algorithm of Farina et al. [2021a] is one-sided since one player has to select a
pure strategy, while the other picks a sequence-form strategy after observing the pure strategy. In
contrast, we call our framework two-sided, each player can have both roles, and the parameter 𝝀
dictates who has which role. As such, the correlation-plan decomposition which we introduced
allows us to exploit correlation plans already in the support 𝑆 in a more powerful way than what is
possible in other one-sided column-generation approaches like the one by Farina et al. [2021a]. In
particular, we remark that �̃� �̃� ,1, �̃� �̃� ,1 are continuous variables in LP (M). Therefore, each player is
allowed to re-optimize their mixed strategies 𝝁 �̃� ,𝑖 , enabling them to reach a richer set of correlation
plans starting from the same support set.

Algorithm 1 describes the main steps of our iterative procedure. First, we initialize the support
𝑆 through a seeding phase in which 𝑆 is endowed with one or more correlation plans which are
known to belong to Ξ. In our experiments, we start by assigning to 𝑆 the correlation plan obtained
as the product of one uniform mixed strategy per player (i.e., a strategy such that, at each 𝐼 , the
player draws one action from 𝐴𝐼 according to a uniform probability distribution). Then, we solve
the master LP (M) with the current support 𝑆 . Each time we solve the master LP, we keep track of
the resulting primal and dual variables. In particular, when solving (M), the algorithm keeps track
of the current solution 𝝃 c (i.e., the correlation plan corresponding to the optimal decomposition),
and the vector of dual variables 𝜸c. We observe that, in order to obtain dual variables, we do not
need to solve the dual LP of (M), since modern LP solvers already keep track of dual values. New
correlation plans to be added to 𝑆 are determined through the function Pricer(), which solves the
pricing problem of finding the correlation plan that would lead to the maximum gradient of the
objective (i.e., maximum reduced cost) if it was to be included in the convex combination computed
by (M). Such correlation plan can be computed from the solution to the dual of the master LP, which
we denote by𝜸c. Let𝜸c

1,𝜏 be the sub-vector of the dual variables corresponding to constraints 1 and
trigger 𝜏 of (M), and 𝜸c

2,𝜏 be the sub-vector of dual variables corresponding to constraints 2 and
trigger 𝜏 . Then, by letting 𝒘 :=

∑
𝜏 ∈T𝑐

(
𝐴𝜏𝜸c

1,𝜏 − 𝒃𝜏𝜸c
2,𝜏

)
, the pricing problem amounts to solving

max𝝃 ∈Ξ
(
𝒈⊤𝝃 c − 𝝃⊤𝒘 ) . We know that Ξ = co(Ξsr

𝑖 ), for any 𝑖 . Therefore, by linearity of the objective
and by convexity, we have max𝝃 ∈Ξ

(
𝒈⊤𝝃 c − 𝝃⊤𝒘 ) = max𝝃 ∈Ξsr

𝑖

(
𝒈⊤𝝃 c − 𝝃⊤𝒘 ) . The right hand side

is a well-defined mixed integer LP (MIP), which can be solved through a commercial solver such
as Gurobi. We denote by 𝛿 the optimal value of the pricing problem, and by 𝝃 a correlation plan
attaining such value (see Line 9). When the objective value 𝛿 is non-positive, there is no correlation
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plan which can be added to the support 𝑆 which would result in an increase in the value of the
master LP. When that happens, we know that the optimal solution to the master LP is also an
optimal solution to the original problem (∗) and the main loop terminates.

ALGORITHM 1: Two-Sided Column Generation
1 input: game Γ, concept 𝑐 ∈ {NFCCE, EFCCE, EFCE}, objective 𝒈
2 function ComputeOpt()
3 initialization phase: initialize 𝑆
4 𝝃 c,𝜸c ← solve master LP (M) ⊲ Solving (M) yields primal solution 𝝃 c and dual variables 𝜸c.
5 if (M) is not feasible then go to Line (13)
6 while within computational budget do
7 𝝃 c,𝜸c ← solve master LP (M)
8 if (M) is feasible then
9 𝛿, 𝝃 ← Pricer(𝜸c) ⊲ 𝛿 : maximum deviation benefit, 𝝃 : new correlation plan to be added.

10 if 𝛿 < Tolerance then return 𝝃 c

11 𝑆 ← 𝑆 ∪ 𝝃 , 𝒎𝝃 ,· ← marginalize 𝝃
12 else ⊲ The current support 𝑆 is insufficient to generate any equilibrium
13 Drop constraint 5 and substitute objective with min𝑢. Then solve (M) to obtain 𝜸c

14 _ , 𝝃 ← Pricer(𝜸c)
15 𝑆 ← 𝑆 ∪ 𝝃 , 𝒎𝝃 ,· ← marginalize 𝝃

6 EXPERIMENTS
We ran experiments to evaluate our proposed algorithms on a suite of standard benchmark games,
as well as two new benchmarks that we introduce. Each experiment was allocateed 4 threads, 64
GB of RAM, and 6 hours of runtime. We used Gurobi 9.5 to solve LPs and MIPs.

Implementation details. In the implementation of the two-sided column-generation algorithm
(Algorithm 1), before solving a pricing problem via its MIP formulation, we try to solve the linear
relaxation in which 𝝃 ∈ V . If the solution to such LP is a semi-randomized correlation plan we can
avoid the overhead of solving a MIP. Moreover, our implementation makes use of Gurobis’s solution
pools: since the MIP solver used for pricing problems is already tracking additional suboptimal
feasible solutions, we add, together with the optimal one, such suboptimal correlation plans to 𝑆
with no additional computational cost. This does not affect the optimality of the final solution, and
was shown to improve performances in the team games domain [Farina et al., 2021a].

6.1 Game Instances
We ran experiments on the following standard benchmark games. For compatibility, we use the
same notation for referencing games as Zhang et al. [2022].

(1) 3K𝑟 is 3-player Kuhn poker [Kuhn, 1950] with 𝑟 ranks.
(2) 3L𝑏𝑟𝑠 is 3-player Leduc poker [Southey et al., 2005] with 𝑏 bets per round, 𝑟 ranks, and 𝑠

suits.
(3) 3GL is 3-player Goofspiel [Ross, 1971] with 3 ranks and imperfect information.
(4) 3D𝑑 is 3-player Liar’s Dice [Lisỳ et al., 2015] with one 𝑑-sided die per player.
(5) 2Bℎ𝑤𝑟 is 2-player Battleship [Farina et al., 2019b] on a grid of size ℎ ×𝑤 , one unit-size ship

per player, and 𝑟 rounds.
(6) 2S𝑛𝑏𝑟 is a simplified version of the 2-player Sherrif of Nottingham [Farina et al., 2019b]

game, with 𝑛 items for the smuggler, a maximum bribe of 𝑏, and 𝑟 rounds of bargaining.
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Detailed rules for all of these games can be found in Farina et al. [2021a] and Farina et al. [2019b].
We also introduce two new parametric families of games:

(7) 3T[𝐿] is a trick-taking game, which emulates the trick-taking (endgame) phase of the card
game bridge where each player only has three cards remaining. When 𝐿 is given, 𝐿 deals are
randomly selected at the beginning of the game, and it is common knowledge that the true
deal is among them12. 3TP is the perfect-information (“double-dummy”, as it is known in
the bridge community) variant, which could in principle be solved by perfect-information
techniques such as alpha-beta search. Nonetheless, our algorithms still run in that game, so
we use them.
Bridge is one of the most well-known adversarial team games. To our knowledge, computer
agents in bridge have not achieved performance comparable to top humans, making it an
excellent benchmark for research. The techniques in this paper obviously will not scale
to the full game of bridge, but nonetheless we can show interesting results even on small
endgames.

(8) 2RS𝑖𝑇 is a ride-sharing game. It is played on finite graph. Two drivers seek to earn points by
reaching specific nodes of the graph and serving the requests at those nodes. Parameter 𝑖
specifies the graph configuration, while 𝑇 is the time horizon.
Ride sharing is of course ubiquitous in the modern day. A ride-sharing company is tasked
with directing its drivers in such a way that it maximizes some objective function (say, the
social welfare of all drivers). But the company has no ultimate way of enforcing behavior,
only recommending it. This is exactly the scenario where correlated equilibria are the right
notion. Further, to our knowledge, this game is the only benchmark in the literature in
general-sum correlation in which the relaxation of von Stengel and Forges [2008] is not
tight, and thus for which we know no polynomial-time algorithm. As such, it is a good
testbed for our algorithms, which can run in all games.

Full details on our new benchmarks are given in Appendix D.

6.2 Optimal Correlation
We evaluated the performance of the DAG-based LP and the two-sided column-generation frame-
work against the prior state-of-the art algorithms for computing optimal correlated equilibria in
general-sum extensive-form games: the relaxation by von Stengel and Forges [2008] (denoted by
[vSF08]), which is correct only for a certain family of games called triangle-free games (we denote
with ‘n/a’ when this is not the case), and the one-sided column-generation algorithm by Farina
et al. [2021a] (denoted by [FCGS21]), which we adapted from the team domain. Table 1 (see also
Table 3 in the appendix) summarizes the comparison over two-player game instances. As expected,
the correlation DAG LP has the best running times for games with small information complexity
parameter 𝑘 . When this is the case, it dramatically outperforms previous algorithms: it can solve in a
matter of seconds instances that previously exceeded 6 hours (see, e.g., 2B323 and 2S133), and it can
solve in less than 1 hour instances that previously were not computationally feasible (e.g., 2B324).
On the other hand, when 𝑘 is large (e.g., in 2RS23), the two-sided column-generation algorithm
provides the best running times. For example, when computing optimal EFCE, it requires 6 minutes
while the prior one-sided column-generation algorithm [vSF08] exceeds 6 hours. Combining the
two techniques that we propose yields uniformly better performance than prior work for any value
of the parameter 𝑘 .

12The full game has 𝐿 = 9!/(3!)3 = 1680.
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Game Concept |E𝑐 | Value [vSF08] Column generation DAG
[FCGS21] This paper This paper

|Z| 1,072 NFCCE 7,093 0.000 0.07s 0.97s 0.24s 0.02s
2B222 |Σ| 11,049 EFCCE 22,821 −0.525 0.15s 1m 56s 19.57s 0.05s

𝑘 8 EFCE 20,226 −0.525 0.28s 36m 46s 2m 1s 0.17s

|Z| 191,916 NFCCE 1,060,277 0.000 1m 5s > 6h > 6h 2.82s
2B323 |Σ| 3,893,341 EFCCE 5,820,762 −0.375 2m 14s > 6h > 6h 32.94s

𝑘 12 EFCE 7,236,102 −0.375 oom > 6h oom 1m 55s

|Z| 969,516 NFCCE 6,531,150 0.000 oom oom oom 26.27s
2B324 |Σ| 26,443,741 EFCCE 43,551,248 −0.489 oom oom oom 13m 15s

𝑘 12 EFCE 49,063,556 −0.489 oom oom oom 57m 12s

|Z| 2,376 NFCCE 19,187 13.636 0.26s 18.18s 3.03s 0.04s
2S123 |Σ| 33,633 EFCCE 75,479 10.000 0.59s 1h 1m 5m 52s 0.23s

𝑘 12 EFCE 52,559 10.000 1.22s 1h 11m 7m 6s 0.65s

|Z| 5,632 NFCCE 46,755 18.182 1.05s 3m 21s 9.01s 0.04s
2S133 |Σ| 95,768 EFCCE 179,571 15.000 1.94s > 6h 1h 26m 1.51s

𝑘 12 EFCE 165,859 15.000 6.45s > 6h > 6h 2.46s

|Z| 400 NFCCE 10,366 6.010 n/a 0.04s 0.04s 0.02s
2RS12 |Σ| 613 EFCCE 10,366 6.010 n/a 0.08s 0.06s 0.01s

𝑘 15 EFCE 8,846 6.010 n/a 0.54s 0.13s 0.01s

|Z| 484 NFCCE 34,947 7.188 n/a 0.08s 0.28s 0.20s
2RS22 |Σ| 701 EFCCE 34,947 7.176 n/a 0.13s 0.08s 0.20s

𝑘 15 EFCE 31,503 7.176 n/a 0.56s 0.41s 0.16s

|Z| 4,096 NFCCE oom 10.961 n/a 2.63s 3.12s oom
2RS23 |Σ| 13,277 EFCCE oom 10.820 n/a 1m 51s 56.31s oom

𝑘 44 EFCE oom 10.791 n/a > 6h 6m 35s oom

Table 1. Experiments on general-sum correlated equilibria, comparing both our correlation DAG LP and
two-sided column generation to earlier approaches. More experiments can be found in Table 3 in the appendix.
vSF08 is the relaxation of von Stengel and Forges [2008], which is only correct in triangle-free games [Farina
and Sandholm, 2020]. RS is not triangle-free, so vSF fails in that game. FCGS21 is the one-sided column
generation approach of Farina et al. [2021a]. 𝑘 is the information complexity. All runs were performed to
convergence. ‘oom’: out of memory. Runtimes are colored according to the ratio with the best runtime in that
row, according to the scale

1 10 ≥ 100
.

We also ran experiments on three-player games using the correlation DAG LP (see Table 4 in the
appendix). This shows, for the first time, that it is possible to compute optimal NFCCE/EFCCE/EFCE
in practice for large game instances even when the number of players is greater than two.

6.3 Payoff Space Plots
In Figure 2, we show plots of space the feasible payoffs in several tested games. All three-player
games we tested on were constant sum, so we show a 2D projection of the space of payoffs.

In most games tested, all three payoff spaces are different, and show very detailed boundaries that
almost seem smooth (though, of course, they cannot be, since the payoff space is a polytope). This
confirms the findings of earlier papers, e.g., Farina et al. [2020], and demonstrates the importance
of defining the various notions as separate.
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Game {⊖} Leaves ⊕ Value 𝑘
DAG CFR Column generation

[ZS22] [FCGS21] This paper
3K3 {3} 78 0.000 6 0.00s 0.00s 0.00s
3K4 {3} 312 −0.042 8 0.00s 0.02s 0.01s
3K6 {3} 1,560 −0.024 12 0.01s 0.15s 0.04s
3K8 {3} 4,368 −0.019 16 1.17s 0.36s 0.06s
3K12 {3} 17,160 −0.014 24 oom 1.45s 0.47s
3L132 {3} 4,500 0.293 6 0.01s 51.65s 4.62s
3L133 {3} 6,477 0.215 6 0.01s 1m 22s 8.49s
3L151 {3} 10,020 −0.019 10 0.06s 29.30s 1.14s
3L223 {3} 8,762 0.516 4 0.01s 2m 0s 6.78s
3L523 {3} 775,148 0.953 4 3.51s > 6h 4h 17m
3D2 {3} 504 0.250 4 0.00s 0.08s 0.05s
3D3 {3} 13,797 0.284 6 0.07s 6m 7s 5.76s
3GL {3} 1,296 1.252 2 0.00s 0.71s 0.22s
3T[50] {2} 10,300 0.600 5 0.00s 5.49s 1.02s
3T[100] {2} 20,992 0.710 18 0.14s 13.34s 1.64s
3T[840] {2} 190,228 0.569 141 oom 26m 43s 1m 51s
3T {2} 379,008 ≈ 0.573 141 oom > 6h 53m 23s
3TP {2} 379,008 0.658 2 0.39s 7m 22s 1m 6s

Table 2. Experiments on TMECor in adversarial team games, comparing our two-sided column generation
approach to earlier approaches. DAG CFR is the CFR-based team DAG algorithm of Zhang et al. [2022].
FCGS21 is the one-sided column generation approach of Farina et al. [2021a]. All runtimes are reported
to a target precision of 0.005 times the reward range of the game. The game value of 3T is after our new
incremental algorithm ran to the time limit, and is accurate to ±0.003. All other game values are accurate
to three decimals. Runtimes are colored according to the ratio with the runtime of our two-sided column
generation, according to the scale

≤ 1/10 1 ≥ 10
.

6.4 Adversarial Team Games
We compared our new column generation approach (Algorithm 1) to prior approaches for finding
team-correlated equilibria (TMECor) in zero-sum adversarial team games. Specifically, we compared
to the CFR algorithm on the team DAG introduced by Zhang et al. [2022] and the prior column
generation-based approach of Farina et al. [2021a]. Results can be found in Table 2. Our results
clearly give several conclusions. First, our algorithm is an improvement upon Farina et al. [2021a],
achieving speedups of more than an order of magnitude in some games. Second, our algorithm, like
Zhang et al. [2021], scales well in the information complexity 𝑘 compared to that of Zhang et al.
[2022]: while ours is slower when 𝑘 is small, it begins to match and quickly exceed the performance
of that algorithm when 𝑘 grows larger, as happens in Kuhn poker.
In the Tricks game instances, we observe that the perfect-information value, 0.66, does not

match the team game value, 0.57. The discrepancy of nearly 0.1 tricks is nontrivially large given
that there are only three tricks remaining. This establishes that, even in small endgames with
three cards left, the fact that players do not know the cards of their teammate or opponent is still
relevant information in a game of bridge, showing the importance of viewing bridge as a true
imperfect-information game between two teams, rather than as a perfect-information game as
double dummy bridge endgame solvers do [e.g., Ginsberg 1999].
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Fig. 2. Payoff spaces in several games, with all three notions of equilibrium. More such plots can be found in
the appendix.

7 CONCLUSIONS AND FUTURE RESEARCH
In this paper, we introduced and analyzed two new approaches for finding optimal correlated
equilibria in general-sum games: the correlation DAG and a two-sided column generation algorithm.
The former has complexity parameterizable by the information complexity 𝑘 of the game. The
two techniques have complementary practical strengths and weaknesses: when 𝑘 is small, the
correlation DAG shines; when 𝑘 grows large, the column generation technique is faster and more
frugal in terms of memory usage. Furthermore, the value of 𝑘 can be easily computed, enabling an
efficient choice between the two approaches. Our techniques are the state of the art in practice
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across all the games tested (except two small games where the prior column-generation approach
was slightly faster). Possible directions of future research include the following.

(1) Our correlation DAG does not necessarily have polynomial size even in games with no
chance nodes, so it does not subsume the earlier analyses of Farina and Sandholm [2020]
and von Stengel and Forges [2008]. We leave it to future research to devise a construction
that subsumes all of these.

(2) An intelligent combination—rather than a selection of one versus the other—of the correla-
tion DAG and the column generation algorithm may lead to faster practical algorithms.

(3) Our algorithms for optimal correlation all ultimately reduce to linear programs or mixed-
integer programs. On the other hand, as we have discussed, regret minimization algorithms
are known to be able to find one correlated equilibrium in all the notions we discuss in
the paper, as well as equilibria in adversarial team games. We leave it to future research to
answer whether regret minimization can be made to lead to optimal correlated equilibria.
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A CONTINUED EXAMPLE
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Here, we show the NFCCE and EFCCE DAGs of the game in Figure 1.
The figure uses several notational simplifications for cleanliness:

• For NFCCE: If a non-terminal node contains ℎ⊥, it is also understood to contain ℎ∅1 and
ℎ∅2 . If an observation node contains ℎ𝑎⊥ for a node ℎ of player 𝑖 , it is also understood to
contain ℎ𝑎∅𝑖 for every action 𝑎 ∈ 𝐴ℎ .
• For EFCCE: If any non-terminal node contains ℎ𝐼 , then it is also understood to contain ℎ𝐼 ′

for every 𝐼 ′ ⪯ 𝐼 . If a decision node contains ℎ⊥ for ℎ ∈ 𝐼 , it is also understood to contain ℎ𝐼 .
If an observation node contains ℎ𝑎⊥ for ℎ ∈ 𝐼 , it is also understood to contain ℎ𝑎𝐼 for every
𝑎 ∈ 𝐴ℎ .
• In this particular game, a player (for NFCCE) or a layer (for EFCCE or EFCE) uniquely

identifies a trigger. We therefore use 1, 2 in NFCCE to identify he player triggered, and 1, 2, 3
in EFCCE and EFCE to identify triggers by the layer on which they occurred.

In the example game, the three DAGs are nearly identical; in particular, the first four layers of nodes
are identical. The only difference between the NFCCE and EFCCE DAGs is that the latter contains
an explicit terminal trigger history for the reach probability of 𝑃3, which is an invalid deviation
in NFCCE. The only difference between the EFCCE and EFCE DAGs is the definition of trigger
history: ℎℓ has a different meaning in each. In EFCCE, ℎℓ means that the player at level ℓ deviated
before seeing the recommendation; in EFCE, it means that the player at level ℓ deviated after being
recommended the move that did not lead to ℎ. The three DAGs will grow more dissimilar in games
with large branching factor or large depth.
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B PSEUDOCODE FOR CORRELATION DAG
ALGORITHM 2: Constructing the correlation DAG, and using it to write a constraint system for Ξ𝑐

1 input: game Γ, concept 𝑐 ∈ {NFCCE, EFCCE, EFCE}
2 functionMakeConstraintSystem()
3 𝑠0 ← MakeObservationNode({ℎ0})
4 for each node 𝑠 in the decision problem do introduce variable 𝜇 [𝑠] ≥ 0
5 add constraint 𝜇 [𝑠0] = 1
6 for each decision node 𝑠 do add constraint

∑
𝑝 parent of 𝑠 𝜇 [𝑝] =

∑
𝑎∈𝐴𝑠

𝜇 [𝑠𝑎]
7 for each key 𝝈 in Terminal do
8

(
𝑠, 𝑧𝜏

) ← Terminal[𝝈]
9 𝜉 [𝝈] ← 𝜇 [𝑠]

10 functionMakeObservationNode(set of nodes 𝑂)
11 𝑠 ← new observation node
12 if 𝑐 = NFCCE then �̂� ← {ℎ0} ∪ {ℎ∅𝑖0 : 𝑖 ∈ [𝑛]} if 𝑂 = {ℎ0}, else 𝑂
13 if 𝑐 = EFCCE then �̂� ← 𝑂 ∪ {ℎ𝐼 : ℎ ∈ 𝐼 , ℎ⊥ ∈ 𝑂}
14 if 𝑐 = EFCE then �̂� ← 𝑂 ∪ {ℎ𝐼𝑎𝑎 : ℎ ∈ 𝐼 , ℎ𝑎⊥ ∈ 𝑂, 𝑎 ≠ 𝑎 ∈ 𝐴ℎ}
15 for each 𝑧𝜏 ∈ �̂� ∩Z𝑐 do
16 if Terminal[𝝈 (𝑧𝜏 )] is not defined then
17 𝑠 ′ ← new terminal node
18 Terminal[𝝈 (𝑧𝜏 )]← (𝑠 ′, 𝑧𝜏 )
19

(
𝑠 ′, 𝑧𝜏

) ← Terminal[𝝈 (𝑧𝜏 )]
20 ⊲ Only one representative for each terminal joint sequence 𝝈 is needed. If 𝑧𝜏 is not it, do nothing.
21 if 𝑧𝜏 = 𝑧𝜏 then add edge 𝑠 → 𝑠 ′

22 for each public state 𝑃 intersecting {ℎ : ℎ𝜏 ∈ �̂�} do
23 �̂�𝑃 ← {ℎ𝜏 ∈ �̂� : ℎ ∈ 𝑃}
24 add edge 𝑠 → MakeDecisionNode(�̂�𝑃 )
25 return 𝑠

26 functionMakeDecisionNode(belief 𝐵)
27 if there is already a decision node 𝑠 with belief 𝐵 then return s
28 𝑠 ← new decision node with belief 𝐵
29 I ← {𝐼 : ℎ𝜏 ∈ 𝐵 active, ℎ ∈ 𝐼 }
30 for each prescription 𝒂 ∈>

𝐼 ∈I 𝐼 do
31 𝐵𝒂 ← {ℎ𝑎[𝐼 ]𝜏 : ℎ ∈ 𝐼 , ℎ𝜏 ∈ 𝐵 active} ∪ {ℎ𝑎𝜏 : ℎ𝜏 ∈ 𝐵 inactive, 𝑎 ∈ 𝐴ℎ}
32 add edge 𝑠 → MakeObservationNode(𝐵𝒂)
33 return 𝑠

C PROOFS
C.1 Theorem 4.4 (Correctness of Correlation DAG Construction)
Theorem 4.4 (Correctness). Let Γ be a game, and D𝑐 its correlation DAG for any of the

three concepts 𝑐 . For a sequence-form mixed strategy 𝝁 ∈ 𝑄D𝑐 , define the vector 𝝃 𝝁 ∈ [0, 1]Σ𝑐
by 𝜉𝝁 [𝝈 (𝑧𝜏 )] = 𝜇 [{𝑧𝜏 }]. Then we have Ξ𝑐 = {𝝃 𝝁 : 𝝁 ∈ 𝑄D𝑐 }. That is, the correlation plan polytope
Ξ𝑐 is a projection of the set 𝑄D𝑐 of sequence-form mixed strategies in D𝑐 .

Proof. The proof is very similar to the correctness proof of Zhang et al. [2022]. We prove that
the vertices of 𝑄D𝑐 project onto all the vertices of Ξ𝑐 , which is sufficient because of convexity. Let
𝑧𝜏 ∈ H𝑐

⊥ be an arbitrary terminal trigger history.
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(⇐) Let 𝝅 be a pure strategy profile in Γ. Let 𝝅 ′ be the pure strategy in D𝑐 that always chooses
the prescription 𝒂 according to 𝝅 .
Suppose 𝜋 [𝑧𝜏 ] = 1. To show that 𝜋 ′[{𝑧𝜏 }] = 1, we need to demonstrate that there exists a
path from the root {ℎ0} ∈ S𝑐 to {𝑧𝜏 } such that 𝝅 ′ gives every prescription along this path.
By a simple induction, the path through D𝑐 generated by following prescriptions at belief
nodes and always picking the public state observation containing an ancestor of 𝑧 can be
shown to end at {𝑧𝜏 }, which is what we need.
Conversely, suppose 𝜋 ′[{𝑧𝜏 }] = 1. Then, again by induction, every belief 𝐵 on the active
path to {𝑧𝜏 } in D𝑐 contains a trigger history ℎ̃𝜏 on the path to 𝑧𝜏 . Therefore, in particular,
for every infoset 𝐼 on the path to 𝑧𝜏 in H , 𝐼 must be active in some belief 𝐵 on the path
to {𝑧𝜏 }. Thus, by definition, 𝝅 must play the action at 𝐼 consistent with 𝑧𝜏 . Thus, we have
𝜋 [𝑧𝜏 ] = 1.

(⇒) Let 𝝅 ′ be a pure strategy in D𝑐 . At each public state 𝑃 , 𝝅 ′ must reach (at most) one unique
belief 𝐵. Let 𝒂 be the prescription of 𝝅 ′ at 𝐵. Define the pure strategy 𝝅 for Γ to play the
actions consistent with 𝒂 at active infosets 𝐼 in 𝐵, and arbitrarily otherwise.
Suppose 𝜋 ′[{𝑧𝜏 }] = 1. That is, there is a path to {𝑧𝜏 } at which 𝝅 ′ plays every prescription.
Then, in particular, every belief 𝐵 along this path was used to construct 𝝅 . Thus, 𝜋 must
also play every action on the path to 𝑧𝜏 ; that is, 𝜋 [𝑧𝜏 ] = 1.
Conversely, suppose 𝜋 [𝑧𝜏 ] = 1. Then, again by induction, the belief 𝐵 in every public state
𝑃 ⪯ 𝑧 must contain an ancestor of 𝑧𝜏 , and therefore must be played to. Thus, 𝜋 ′ plays to
{𝑧𝜏 }. This completes the proof. □

C.2 Theorem 4.6 (Correlation DAG Size)
Theorem 4.6.

��ENFCCE�� = 𝑂∗
((𝑏 + 1)𝑘 ) , ��EEFCCE�� = 𝑂∗

((𝑏 + 𝑑 − 2)𝑘 ) , and ��EEFCE�� = 𝑂∗
((𝑏𝑑)𝑘 ) .

Proof. First, we observe that |E𝑐 | = 𝑂∗ ( |S𝑐 |), since every observation point in S has exactly
one parent, and at most as many children as there are public states. Thus, we will bound |S𝑐 |.
NFCCE: To specify a belief-prescription pair 𝐵𝒂 within a given public state 𝑃 , it suffices, for each

player state in 𝑃 , to specify, for each private state 𝜎 at 𝐵, whether the player (1) does not
play to 𝜎 at all, or (2) plays to 𝜎 and chooses one of the 𝑏 actions available therein. There
are at most (𝑏 + 1)𝑘 such choices, which is what we needed to show.

EFCCE: For each of the 𝑘 private states 𝜎 at 𝑃 , we need to specify whether the player played to
reach 𝜎 and then played one of the (at most) 𝑏 actions available there, or she deviated at
one of the (at most) 𝑑 − 2 infosets 𝐼 ≺ 𝜎 . There are at most 𝑏 + 𝑑 − 2 ways to do this.

EFCE: For EFCE, we need to additionally specify which action was recommended at the deviation
point, of which there are at most 𝑏 possibiliities, for a total of 𝑏 (𝑑 − 2) + 𝑏 = 𝑏 (𝑑 − 1)
options.

□

C.3 Theorem 4.8 (Games with Public Actions)
Theorem 4.8. In games with public actions, the correlation DAG construction can be modified to

achieve
��ENFCCE�� = 𝑂∗

(
3𝑘
)
and

��EEFCCE�� = 𝑂∗
(
𝑑𝑘

)
.

Proof. Zhang et al. [2022] devise an algorithm for constructing, starting with a game Γ with
public actions, a new strategically equivalent game Γ′ with branching factor 2, no higher parameter
𝑘 , and at most polynomially larger. The method works by breaking up each high-branching-factor
node into several successive binary decisions, in such a way that public state size is preserved.
For NFCCE, this is sufficient to immediately conclude the desired result. For EFCCE, it suffices to
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Fig. 3. The game used in the proof of Theorem 4.10, for 𝑛 = 𝑘 = 2. P1 is ▲, P2 is ▼, and square nodes are
chance or terminal. Dotted lines connect nodes in the same infoset.

additionally observe that one only needs to care about trigger histories ℎ𝜏 in Γ′ where 𝜏 is a valid
trigger in Γ. The number of these is at most the depth of Γ. □

C.4 Theorem 4.10 (W[1]-Hardness)
Theorem 4.10. Assuming FPT ≠ W[1], there is no FPT algorithm for linear optimization over

ΞEFCCE or ΞEFCE parameterized by information complexity, even in two-player games with constant
branching factor.

Proof. We reduce from 𝑘-CLIQUE. Let 𝐺 = (𝑉 , 𝐸) be a graph with 𝑛 nodes (identified with the
positive integers [𝑛]), and construct the following two-player game Γ:
• Chance chooses an integer 𝑗1 ∈ [𝑘] and tells ▲ but not ▼. Transition to the node ( 𝑗1, 1).
• For each 𝑣1 ∈ [𝑛 + 1], the node ( 𝑗1, 𝑣1) is a decision node for ▲. ▲ may exit or continue. If ▲
exits, transition to the terminal node ( 𝑗1, 𝑣1, E). Otherwise, transition to ( 𝑗1, 𝑣1 + 1).
• At the node ( 𝑗1, 𝑛 + 2), Chance chooses an integer 𝑗2 ∈ [𝑘] and tells ▼, Transition to the
node ( 𝑗1, 𝑗2, E).
• For each 𝑣2 ∈ [𝑛], the node ( 𝑗1, 𝑗2, 𝑣2) is a decision node for ▼. ▼ may exit or continue. If ▼
exits, transition to the terminal node ( 𝑗1, 𝑗2, 𝑣2, E). Otherwise, transition to ( 𝑗1, 𝑣1 + 1).
• Finally, ( 𝑗1, 𝑗2, 𝑛 + 1) is a terminal node for all 𝑗1, 𝑗2.

Since we are only concerned with representing the correlation plan polytope, we do not need to
specify utilities or chance probabilities.

We will identify the information sets of both players 𝑖 by ( 𝑗𝑖 , 𝑣𝑖 ) for 𝑗 ∈ [𝑘], and the infoset-action
pairs by ( 𝑗𝑖 , 𝑣𝑖 , E) and ( 𝑗𝑖 , 𝑣𝑖 ,C) for exiting and continuing respectively.

Γ has information complexity 2𝑘 since every public state has at most 𝑘 sequences for each
player. Every non-chance node has branching factor exactly 2. Given a correlation plan 𝝃 , define
the vector 𝒎𝝃 ∈ [0, 1] [𝑘 ]×[𝑛]×[𝑘 ]×[𝑛] where𝑚𝝃 [ 𝑗1, 𝑣1, 𝑗2, 𝑣2] is the probability that each player 𝑖
exits at exactly the 𝑣𝑖 th opportunity conditioned on observing 𝑗𝑖 . Notice that, for 𝑗1, 𝑗2 ∈ [𝑘] and
𝑣1, 𝑣2 ∈ [𝑛], 𝑚𝝃 [ 𝑗1, 𝑣1, 𝑗2, 𝑣2] is a linear function of both the correlation plan spaces ΞEFCCE and
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ΞEFCE: for 𝝃 ∈ ΞEFCCE, it is exposed as 𝜉 [( 𝑗1, 𝑗2, 𝑣2, E) ( 𝑗1,𝑣1+1) ] − 𝜉 [( 𝑗1, 𝑗2, 𝑣2, E) ( 𝑗1,𝑣1) ]; for 𝝃 ∈ ΞEFCE,
it is exposed as 𝜉 [( 𝑗1, 𝑗2, 𝑣2, E) ( 𝑗1,𝑣1,E) ]. (For ΞNFCCE, 𝒎𝝃 is not a linear function of 𝝃 , so, as expected,
the argument fails here.)
Let 𝑀 = {𝒎𝝃 : 𝝃 ∈ Ξ𝑐 } ⊆ [0, 1] [𝑘 ]×[𝑛]×[𝑘 ]×[𝑛] be the polytope of vectors 𝒎 corresponding

to correlated strategies. At this point, since 𝑀 does not depend on the notion of equilibrium,
we have no more need to distinguish between EFCCE and EFCE. It suffices to show that linear
optimization on 𝑀 can decide 𝑘-CLIQUE. First, we characterize the vertices of 𝑀 . A vertex of
𝑀 is characterized by, for each player 𝑖 ∈ {1, 2} and each 𝑗 ∈ [𝑘], picking at most one vertex
𝑣𝑖, 𝑗 ∈ [𝑛], and constructing𝒎 by setting𝑚[ 𝑗1, 𝑣1, 𝑗2, 𝑣2] = 1

{
𝑣1, 𝑗1 = 𝑣1 and 𝑣2, 𝑗2 = 𝑣2

}
. Now consider

the objective function 𝑓 : 𝑀 → R defined by

𝑓 (𝒎) = E
𝑗1, 𝑗2∈[𝑘 ],𝑣1,𝑣2∈[𝑛]

{
𝑚[ 𝑗1, 𝑣1, 𝑗2, 𝑣2] if 𝑗1 = 𝑗2 and 𝑣1 = 𝑣2 ≤ 𝑛; or 𝑗1 ≠ 𝑗2 and (𝑣1, 𝑣2) ∈ 𝐸
0 otherwise

where the expectation is over a uniformly random sample. We claim that max𝒎∈𝑀 𝑓 (𝒎) = 1 if and
only if 𝐺 has a clique of size 𝑘 .
(⇐) If 𝐺 has a 𝑘-clique {𝑣∗1, . . . , 𝑣∗𝑘 }, then we set 𝑣𝑖, 𝑗 = 𝑣∗𝑗 for both players 𝑖 ∈ {1, 2}, and indeed

this achieves 𝑓 (𝒎) = 1 by construction.
(⇒) If 𝑓 (𝒎) = 1, then for all 𝑗 we must have

∑
𝑣∈[𝑛]𝑚[ 𝑗, 𝑣, 𝑗, 𝑣] = 1, i.e., 𝑣1, 𝑗 = 𝑣2, 𝑗 . But then

{𝑣1, 𝑗 , . . . , 𝑣1,𝑘 } must be a clique by construction, because otherwise there would be some
𝑗1 ≠ 𝑗2 for which𝑚[ 𝑗1, 𝑣1, 𝑗 , 𝑗2, 𝑣1, 𝑗 ] = 0.

This completes the proof. □

D GAMES IN EXPERIMENTS
D.1 Trick-Taking Game (Bridge Endgame)
We introduce a trick-taking game, which is effectively a bridge endgame scenario. There is a fixed
deck of playing cards consisting of 3 ranks (2, 3, 4) of each of four suits (♠, ♥, ♦, ♣). Spades (♠)
is designated as the trump suit. There are four players: two defenders, who sit across from each
other at the table, the dummy, and the declarer. The actions of the dummy will be controlled by the
declarer; as such, there are actually only three players in the game. However, in this section, we
will use the four-player terminology because it is easier to understand.

The whole deck is randomly dealt to four players. The dummy’s cards are then publicly revealed.
Play proceeds in tricks. The player to the left of the declarer leads the first trick. In each trick, the
leader of the trick first plays a card. The suit of that card is the lead suit. Then, in clockwise order
around the table, the other three players play a card from their hand. Players must play a card of
the lead suit if they have such a card; otherwise, they may play any card. If any ♠ has been played,
then whoever plays the highest ♠ wins the trick. Otherwise, the highest card of the lead suit wins
the trick. The winner of one trick leads the next trick. At the end of the game, each player earns
as many points as tricks they have won. For the adversarial team game, the two defenders are
teammates, playing against the declarer (who controls the dummy).
We use T3 to refer to the trick-taking game, where the 3 stands for the number of ranks. In

the perfect information variant TP3, all information is public, creating a perfect-information game.
This is equivalent to what the bridge community calls a double dummy game. In all our games, the
dummy’s hand is fixed as 2♠ 2♥ 3♥.
In the limited deals variant T3[𝐿], 𝐿 deals are randomly selected at the beginning of the game,

and it is common knowledge that the true deal is among them. This limits the size of the game
tree, as well as the parameters on which the complexity of our algorithms depend. Note that
𝐿 = 9!/(3!)3 = 1680 is the full game.
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D.2 Ride-Sharing Game Instances
We introduce a new benchmark which we call ride-sharing game.

General rules of the game. The game models the interaction between two players (a.k.a., drivers),
which compete to serve requests on a road network. In particular, the network is modeled as an
undirected graph 𝐺rs = (𝑉 rs, 𝐸rs). Each vertex 𝑣 ∈ 𝑉 rs corresponds to a ride request to be served.
Each ride request has a reward in R≥0. Each edge in the road network has some cost (representing
the time incurred to traverse the edge). The first driver who arrives on node 𝑣 ∈ 𝑉 rs serves the
corresponding ride, and receives the corresponding reward. Once a node has been served, it stays
clean until the end of the game. The game terminates when all requests have been served, or when
a timeout is met (i.e., there’s a fixed time horizon 𝑇 ). If the two drivers arrive on the same vertex
at the same time they get reward 0. The final utility of each driver is computed as the sum of the
rewards obtained from the beginning until the end of the game. The initial position of the two
drivers is randomly selected at the beginning of the game. Finally, the two drivers can observe
each other’s position only when they are simultaneously on the same node, or they are in adjacent
nodes.

Objective and remarks. Ride-sharing games are particularly well-suited to study the computation
of optimal correlated equilibria because they are two-player, general-sum games which are not
triangle-free [Farina and Sandholm, 2020]. That is not the case for some of the existing two-player
general-sum benchmarks, such as Goofspiel. We take the perspective of a centralized platform that
has the goal of steering the drivers’ behavior so as to maximize the overall social welfare. The
platform can send recommendations to players in the form of navigation instructions. The goal of
the platform is to ensure that such recommendations are incentive compatible, and maximize the
SW attained at the equilibrium. Depending on the type of interaction in place between the platform
and the players, the platform’s goal amounts to finding an optimal (i.e., social-welfare maximizing)
NFCCE/EFCCE/EFCE. For example, if the platform implemented an EFCE-like interaction protocol,
at each new vertex in 𝑉 rs a driver would receive a suggestion about the next road to take from
there. The driver would be free to deviate as such decision point, since they could decide to take
another direction, and that would come at the cost of future recommendations.

Implementation details. In our experiments, we employ road networkswith unitary cost associated
to edges. We write “𝑛RS𝑖𝑇 ” to indicate the game instance has 𝑛 players, and was generated from
map 𝑖 with time horizon𝑇 (i.e., each driver can make at most𝑇 steps). We employ two maps (map 1
and map 2), and we generate the instances 2RS13, 2RS14, 2RS23. In Figure 4 we report the structure
of the two maps. The value between curly brackets is the reward for a request on that node.
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Fig. 4. The two road network configurations which we consider. Left : map 1 (used for 2RS13, 2RS14). Right :
map 2 (used for 2RS23). In both cases the position of the two drivers is randomly chosen at the beginning of
the game, edge costs are unitary, and one reward per node is indicated between curly brackets.
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Game Concept |E𝑐 | Value [vSF08] Column generation DAG
[FCGS21] This paper This paper

|Z| 1,072 NFCCE 7,093 0.000 0.07s 0.97s 0.24s 0.02s
2B222 |Σ| 11,049 EFCCE 22,821 −0.525 0.15s 1m 56s 19.57s 0.05s

𝑘 8 EFCE 20,226 −0.525 0.28s 36m 46s 2m 1s 0.17s

|Z| 19,116 NFCCE 93,121 0.000 2.50s 13m 21s 13.65s 0.21s
2B322 |Σ| 264,541 EFCCE 368,773 −0.317 4.30s > 6h 1h 5m 1.38s

𝑘 12 EFCE 499,667 −0.317 15.23s > 6h > 6h 5.83s

|Z| 191,916 NFCCE 1,060,277 0.000 1m 5s > 6h > 6h 2.82s
2B323 |Σ| 3,893,341 EFCCE 5,820,762 −0.375 2m 14s > 6h > 6h 32.94s

𝑘 12 EFCE 7,236,102 −0.375 oom > 6h oom 1m 55s

|Z| 969,516 NFCCE 6,531,150 0.000 oom oom oom 26.27s
2B324 |Σ| 26,443,741 EFCCE 43,551,248 −0.489 oom oom oom 13m 15s

𝑘 12 EFCE 49,063,556 −0.489 oom oom oom 57m 12s

|Z| 396 NFCCE 3,059 13.636 0.07s 0.70s 0.28s 0.01s
2S122 |Σ| 3,717 EFCCE 8,177 9.565 0.04s 12.00s 0.96s 0.02s

𝑘 12 EFCE 6,227 9.078 0.08s 51.49s 4.09s 0.04s

|Z| 2,376 NFCCE 19,187 13.636 0.26s 18.18s 3.03s 0.04s
2S123 |Σ| 33,633 EFCCE 75,479 10.000 0.59s 1h 1m 5m 52s 0.23s

𝑘 12 EFCE 52,559 10.000 1.22s 1h 11m 7m 6s 0.65s

|Z| 5,632 NFCCE 46,755 18.182 1.05s 3m 21s 9.01s 0.04s
2S133 |Σ| 95,768 EFCCE 179,571 15.000 1.94s > 6h 1h 26m 1.51s

𝑘 12 EFCE 165,859 15.000 6.45s > 6h > 6h 2.46s

|Z| 400 NFCCE 10,366 6.010 n/a 0.04s 0.04s 0.02s
2RS12 |Σ| 613 EFCCE 10,366 6.010 n/a 0.08s 0.06s 0.01s

𝑘 15 EFCE 8,846 6.010 n/a 0.54s 0.13s 0.01s

|Z| 4,356 NFCCE oom 9.398 n/a 3.32s 2.82s oom
2RS13 |Σ| 15,063 EFCCE oom 9.385 n/a 2m 10s 1m 28s oom

𝑘 40 EFCE oom 9.367 n/a > 6h 12m 31s oom

|Z| 484 NFCCE 34,947 7.188 n/a 0.08s 0.28s 0.20s
2RS22 |Σ| 701 EFCCE 34,947 7.176 n/a 0.13s 0.08s 0.20s

𝑘 15 EFCE 31,503 7.176 n/a 0.56s 0.41s 0.16s

|Z| 4,096 NFCCE oom 10.961 n/a 2.63s 3.12s oom
2RS23 |Σ| 13,277 EFCCE oom 10.820 n/a 1m 51s 56.31s oom

𝑘 44 EFCE oom 10.791 n/a > 6h 6m 35s oom

Table 3. Full version of Table 1.
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Game Leaves 𝑘 Concept |E𝑐 | Runtime Optimal value
P1 P2 P3

NFCCE 233,023 0.73s −0.018 −0.007 0.064
3K4 312 12 EFCCE 253,007 0.93s −0.020 −0.012 0.057

EFCE 263,024 0.87s −0.021 −0.013 0.055
NFCCE 3,090,854 21.71s −0.011 0.017 0.057

3K5 780 15 EFCCE 3,378,914 46.81s −0.016 0.015 0.052
EFCE 4,095,962 1m 20s −0.016 0.013 0.052

NFCCE 625,432 2.49s 1.079 0.992 1.146
3L223 8,762 6 EFCCE 6,213,623 39.09s 0.984 0.959 1.033

EFCE 5,592,535 1m 0s 0.887 0.883 0.860
NFCCE 33,926 0.06s 0.250 0.250 0.131

3D2 504 6 EFCCE 52,651 0.09s 0.250 0.250 0.000
EFCE 635,689 1.48s 0.250 0.250 0.000

NFCCE 31,125 0.04s 2.505 2.505 2.505
3GL 1,296 10 EFCCE 38,397 0.06s 2.476 2.476 2.476

EFCE 17,382 0.05s 2.467 2.467 2.467
NFCCE 139,091,992 1m 26s 1.463 1.380 0.887

3T[50] 10,300 15 EFCCE 139,314,061 1m 38s 1.420 1.360 0.840
EFCE 139,721,910 1m 53s 1.420 1.360 0.840

NFCCE 6,838,696 11.99s 1.466 1.477 1.037
3TP 379,008 3 EFCCE 12,786,328 22.07s 1.451 1.442 0.922

EFCE 6,714,256 16.52s 1.423 1.360 0.886

Table 4. Experiments on general-sum correlated equilibria in 3-player games, with the correlation DAG. All
runs were performed to convergence. Since all games tested are constant sum, instead of reporting the social
welfare optimum (which is always the constant sum), we report the optimal utility for each individual agent
in every solution concept.
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