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Abstract

A recent line of work has established uncoupled learning dynamics such that,
when employed by all players in a game, each player’s regret after T repeti-
tions grows polylogarithmically in T , an exponential improvement over the tra-
ditional guarantees within the no-regret framework. However, so far these re-
sults have only been limited to certain classes of games with structured strat-
egy spaces—such as normal-form and extensive-form games. The question as
to whether O(polylog T ) regret bounds can be obtained for general convex and
compact strategy sets—which occur in many fundamental models in economics
and multiagent systems—while retaining efficient strategy updates is an impor-
tant question. In this paper, we answer this in the positive by establishing the first
uncoupled learning algorithm with O(log T ) per-player regret in general convex
games, that is, games with concave utility functions supported on arbitrary convex
and compact strategy sets. Our learning dynamics are based on an instantiation of
optimistic follow-the-regularized-leader over an appropriately lifted space using a
self-concordant regularizer that is peculiarly not a barrier for the feasible region.
Our learning dynamics are efficiently implementable given access to a proximal
oracle for the convex strategy set, leading to O(log log T ) per-iteration complex-
ity; we also give extensions when access to only a linear optimization oracle is
assumed. Finally, we adapt our dynamics to guaranteeO(

√
T ) regret in the adver-

sarial regime. Even in those special cases where prior results apply, our algorithm
improves over the state-of-the-art regret bounds either in terms of the dependence
on the number of iterations or on the dimension of the strategy sets.

∗Equal contribution.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



1 Introduction

Regret minimization is a celebrated framework that has been central in the development of online
learning and the theory of multiagent systems. Indeed, fundamental connections have been forged
between no-regret learning and game-theoretic solution concepts [Freund and Schapire, 1999, Hart
and Mas-Colell, 2000, Foster and Vohra, 1997, Roughgarden, 2015]. More broadly, regret is an
intrinsic measure of performance in online learning and games. Furthermore, regret minimization
algorithms have enjoyed a remarkable practical success, being a primary component in recent land-
mark results in AI [Bowling et al., 2015, Moravčı́k et al., 2017, Brown and Sandholm, 2017, 2019].
These advances were guided by game-theoretic principles, made possible by training the AI agents
using self-play under regret-minimizing algorithms, an approach that has proven to be more scal-
able compared to linear programming techniques. Nevertheless, the traditional no-regret framework
is overly pessimistic, insisting on modeling the environment in a fully adversarial way. While this
well-understood worst-case view might be justifiable for applications such a security games, it could
be far from optimal in more benign and predictable environments, including the setting of training
agents using self-play. This begs the question: What are the optimal performance guarantees we
can obtain when learning agents are competing against each other in general games?

This fundamental question was first formulated and addressed by Daskalakis et al. [2011] within
the context of zero-sum games. Since then, there has been a considerable interest in extending their
guarantee to more general settings [Rakhlin and Sridharan, 2013, Syrgkanis et al., 2015, Foster et al.,
2016, Chen and Peng, 2020, Daskalakis and Golowich, 2022, Piliouras et al., 2022]. In particular,
Daskalakis et al. [2021] recently established that when all players in a general normal-form game
employ an optimistic variant of multiplicative weights update (MWU), the regret of each player
grows nearly-optimally as O(log4 T ) after T repetitions of the game, leading to an exponential im-
provement over the guarantees obtained using traditional techniques within the no-regret framework.
However, while normal-form games are a common way to represent strategic interactions in theory,
most settings of practical significance inevitably involve more complex strategy spaces. For those
settings, any faithful approximation of the game using the normal form is typically inefficient, re-
quiring an action space that is exponential in the natural parameters of the problem, thereby limiting
the practical implications of those prior results. This motivates our central question:

Can we establish near-optimal, efficiently implementable, and strongly
uncoupled no-regret learning dynamics in general convex games? (♣)

Convex games are a rich class of games wherein the strategy space of each player is an arbitrary
convex and compact set, while the utility of each player is an arbitrary concave function (see Sec-
tion 2 for a formal description). As such, convex games encompass normal-form and extensive-form
games, but go well-beyond to many other fundamental settings in economic theory including routing
games, resource allocation problems, and competition between firms. Our primary contribution in
this paper is to substantially extend prior results to all such games, addressing Question (♣).

1.1 Our Contributions

In this paper we introduce a novel no-regret learning algorithm, which we coin lifted log-regularized
optimistic follow the regularized leader (LRL-OFTRL). LRL-OFTRL settles Question (♣) in the posi-
tive, as summarized in the following theorem.2

Theorem 1 (Detailed version in Theorem 4). Consider any general convex game. When all players
employ our strongly uncoupled learning dynamics (LRL-OFTRL), the regret of each player grows as
O(log T ). At the same time, if the player is facing adversarial utilities we guarantee O(

√
T ) regret.

Importantly, our learning dynamics are efficiently implementable given access to a proximal oracle
for the set (Equation (7)), requiring only O(log log T ) operations per-iteration (Theorem 5); such
an oracle is weaker than the—relatively standard in convex optimization—quadratic optimization
oracle. We also point out extensions under a weaker linear optimization oracle, albeit with a worse
per-iteration complexity (Theorem 6). Our no-regret learning dynamics imply the first efficiently
implementable and near-optimal regret guarantees in general convex games, significantly extending

2For simplicity in the exposition we use the O(·) notation in our introduction to suppress time-independent
parameters that depend (polynomially) on the game; precise statements are deferred to Section 3.
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Method Applies to Regret bound Cost per iteration
OFTRL / OMD
[Syrgkanis et al., 2015] General convex set O(

√
nRT 1/4) Regularizer- & oracle- dependent

OMWU
[Daskalakis et al., 2021] Simplex ∆d O(n log d log4 T ) O(d)

Clairvoyant MWU
[Piliouras et al., 2022] Simplex ∆d O(n log d)

Subsequence only ‡ O(d)

Kernelized OMWU
[Farina et al., 2022]

Polytope Ω = coV
with V ⊆ {0, 1}d O(n log |V| log4 T ) d× cost of kernel

LRL-OFTRL
[This paper]

General convex set
X ⊆ Rd O(nd∥X∥21 log T )

Oracle-dependent:
• O(log log T ) proximal oracle calls
• O(poly T ) linear opt. oracle calls

Table 1: Comparison of prior results on minimizing external regret in games. For simplicity, we have
suppressed dependencies on the smoothness and the range of the utilities. We use n to denote the
number of players; T to denote the number of repetitions; R to indicate a parameter that depends on
the regularizer; coV to denote the convex hull of V; and ∥X∥1 to denote a bound on the maximum
ℓ1 norm of any strategy. ‡ Unlike all other algorithms, the full sequence of iterates produced by
Clairvoyant MWU (CMWU) is not known to achieve sublinear regret. Rather, after running CMWU
for T iterations, only a smaller subsequence of length Θ(T/ log T ) iterates is known to attain the
regret stated in the table. So, we remark that in order to achieve a comparable approximation of a
coarse correlated equilibrium, CMWU needs to be run for Θ(T log T ) iterations.

the scope of prior O(polylog T )-regret guarantees [Daskalakis et al., 2021, Farina et al., 2022]; a
comparison with prior approaches is included in Table 1. We remark that Theorem 1 establishes
near-optimal regret both under self-play, and in the adversarial regime—meaning that the other
players act so as to minimize the player’s utility; the latter feature of adversarial robustness has
been a central desideratum in this line of work (e.g., see the discussion in [Kangarshahi et al., 2018,
Daskalakis et al., 2011]).

Our proposed learning dynamics lie within the general framework of optimistic no-regret learning,
pioneered by Chiang et al. [2012] and Rakhlin and Sridharan [2013]. We leverage the OFTRL algo-
rithm of Syrgkanis et al. [2015], but with some important twists. First, as detailed in Algorithm 1,
the OFTRL optimization step is performed over a “lifted” space. While prior work in online learn-
ing has employed similar in spirit approaches [Lee et al., 2020, Luo et al., 2022], our lifting is
quite different, ensuring that the regret incurred by OFTRL is nonnegative (Theorem 2). Further,
we employ a logarithmic self-concordant regularizer; interestingly, and perhaps surprisingly, this
is not a barrier for the underlying feasible set. This deviates substantially from the typical use of
self-concordant regularization (especially within the bandit setting [Abernethy et al., 2008, Wei and
Luo, 2018, Bubeck et al., 2019]). A pictorial overview of our construction is given in the caption of
Algorithm 1.

The use of the logarithmic regularizer serves two main purposes. First, we show that it guarantees
multiplicative stability of the strategies, a refined notion of stability that is also leveraged in the
work of Daskalakis et al. [2021]. Nonetheless, we are the first to leverage such properties in gen-
eral domains, going well beyond the guarantees of (Optimistic) MWU on the simplex [Daskalakis
et al., 2021]. Further, the local norm induced by the logarithmic regularizer enables us to cast regret
bounds from the lifted space to the original space, while preserving the RVU property [Syrgka-
nis et al., 2015, Definition 3]. In turn, this implies near-optimal regret by establishing that the
second-order path lengths up to time T are bounded by O(log T ) (Theorem 3), building on a re-
cent technique of Anagnostides et al. [2022a] which crucially leverages the nonnegativity of swap
regret.3

3To see why nonnegativity is crucial, note that the RVU bound implies optimal sum of players’ re-
grets [Syrgkanis et al., 2015]. Thus, nonnegativity would imply the same bound for each player’s regret.
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1.2 Further Related Work

The rich line of work pursuing improved regret guarantees in games was pioneered by Daskalakis
et al. [2011]. Specifically, they developed strongly uncoupled learning dynamics so that the play-
ers’ regrets grow as O(log T ), an exponential improvement over the guarantee one could hope for
in adversarial environments [Shalev-Shwartz, 2012, Cesa-Bianchi and Lugosi, 2006]. Their re-
sult was significantly simplified by Rakhlin and Sridharan [2013]—again in zero-sum games—who
introduced a simple variant of mirror descent with a recency bias—a.k.a. optimistic mirror de-
scent (OMD). It is worth noting that, beyond the benefits of optimism from an optimization stand-
point [Polyak, 1987], recency bias has been experimentally documented in natural learning environ-
ments in economics [Fudenberg and Peysakhovich, 2014].

Subsequently, Syrgkanis et al. [2015] crystallized the RVU property, an adversarial regret bound
applicable for a broad class of optimistic no-regret learning algorithms. Using that property, they
showed that the individual regret of each player grows as O(T 1/4) in general games, thereby con-
verging to the set of coarse correlated equilibria with a rate of O(T−3/4). A near-optimal bound of
O(polylog(T )) in normal-form games was finally established by Daskalakis et al. [2021], while Fa-
rina et al. [2022] generalized that result in a class of polyhedral games that includes extensive-form
games. Some extensions of the previous results have also been established for the stronger notion
of no-swap-regret learning dynamics in normal-form games [Chen and Peng, 2020, Anagnostides
et al., 2022b,a]. In particular, our work builds on a very recent technique of Anagnostides et al.
[2022a], which established O(log T ) swap regret in normal-form games using as a regularizer a
self-concordant barrier function. On the other hand, establishing even sublinear o(T ) swap regret
in extensive-form games is a notorious open question. Finally, an interesting new approach for
obtaining near-optimal external regret in normal-form games was recently proposed in concurrent
work by Piliouras et al. [2022].4

Games with continuous strategy spaces have received a lot of attention in the literature; e.g., see
[Roughgarden and Schoppmann, 2015, Even-Dar et al., 2009, Harks and Klimm, 2011, Hsieh et al.,
2021, Mertikopoulos and Zhou, 2019, Stein et al., 2011, Stoltz and Lugosi, 2007], and references
therein. Such games encompass a wide variety of applications in economics and multiagent systems;
we give several examples in Section 2. Indeed, in many applications of interest a faithful approxi-
mation of the game requires an extremely large or even infinite action space; such settings could be
abstracted as Littlestone games in the sense of the recent work of Daskalakis and Golowich [2022].

2 No-Regret Learning and Convex Games

In this section we review the general setting of convex games5 which encompasses a number of
important applications, as explained in Section 2.2. We then formally define the framework of
uncoupled and online no-regret learning in games in Section 2.3.

Notation We let N = {1, 2, . . . , } be the set of natural numbers. For a vector x ∈ Rd we denote
by x[r] its r-th coordinate, for some index r ∈ [[d]] := {1, 2, . . . , d}. We will typically represent the
players using subscripts; superscripts are reserved for the time index, denoted by the variable t.

2.1 Convex Games

Let [[n]] := {1, 2, . . . , n} be a set of players, with n ∈ N. In a convex game, every player i ∈ [[n]]
has a nonempty convex and compact set of strategies Xi ⊆ Rdi . For a joint strategy profile x =
(x1, . . . ,xn) ∈×n

j=1
Xj , the reward of player i is given by a continuously differentiable utility

function ui :×n

j=1
Xj → R subject to the following standard assumption.

4An earlier version of the paper [Piliouras et al., 2021] proposed a preliminary and not uncoupled version
of the Clairvoyant MWU algorithm whose iterates were guaranteed to be no-regret and require O(d log T )
per-iteration complexity. The 2022 revision of that paper provides an uncoupled version with time-independent
O(d) per-iteration complexity, albeit at the cost of losing the no-regret guarantee on the entire sequence of
iterates. See also footnote ‡ in Table 1.

5Sometimes these are referred to as concave games [Rosen, 1965] or continuous games [Hsieh et al., 2021].
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Assumption 1 (Convex games). The utility function ui(x1, . . . ,xn) of any player i ∈ [[n]] satisfies
the following properties:

1. (Concavity) ui(xi,x−i) is concave in xi for x−i = (x1, . . . ,xi−1,xi+1, . . . ,xn) ∈×j ̸=i Xj;
2. (Bounded gradients) for any (x1, . . . ,xn) ∈×n

j=1
Xj , ∥∇xi

ui(x1, . . . ,xn)∥∞ ≤ B, for some
parameter B > 0; and

3. (L-smoothness) there exists L > 0 so that for any two joint strategy profiles x,x′ ∈×n

j=1
Xj ,

∥∇xiui(x)−∇xiui(x
′)∥∞ ≤ L

∑
j∈[[n]]

∥xj − x′
j∥1.

2.2 Applications and Examples of Convex Games

Here we discuss several different classes of games which can all be analyzed under the common
framework of convex games. For simplicity, we describe Cournot competion in the one-dimensional
setting, but it can be readily generalized in more general domains. For more examples, we refer
to [Even-Dar et al., 2009, Hsieh et al., 2021], and references therein.

Normal-Form Games In normal-form games (NFGs) every player i ∈ [[n]] has a finite and
nonempty set of strategies Ai. Player i’s strategy set contains all probability distributions sup-
ported on Ai; that is, Xi = ∆(Ai). The utility of player i can be expressed as the multilinear
function ui(x) := Ea∼x[Ui(a)], for some arbitrary function Ui :×n

j=1
Aj → R.

Extensive-Form Games Extensive-form games (EFGs) generalize NFGs by capturing both se-
quential and simultaneous moves, stochasticity from the environment, as well as imperfect
information. EFGs are abstracted on a directed tree. Once the game reaches a terminal (or
leaf) node z ∈ Z , each player i ∈ [[n]] receives a utility Ui(z), for some Ui : Z → R. The
strategy space of each player i ∈ [[n]] can be compactly represented using the sequence-form
polytope Qi [Romanovskii, 1962, Koller et al., 1996]. If pc(z) is the probability of reach-
ing terminal node z ∈ Z over “chance moves”, the utility of player i can be expressed as
ui(q) :=

∑
z∈Z pc(z)Ui(z)

∏
j∈[[n]] qj [σj,z], where q = (q1, . . . , qn) ∈×n

j=1
Qj is the joint

strategy profile, and qj [σj,z] is the probability mass assigned to the last sequence σj,z encoun-
tered by player j before reaching z. The smoothness and the concavity of the utilities follow
directly from multilinearity; for a more detailed account on EFGs we refer the interested reader
to the excellent book of Shoham and Leyton-Brown [2008].

Splittable Routing Games In these games [Roughgarden and Schoppmann, 2015] every player has
to route a flow fi from a source to a destination in an undirected graph G = (V,E). Every edge
e ∈ E is associated with a latency function ℓe(fe) mapping the amount of flow passing through
the edge to some latency. The set of strategies of player i corresponds to the possible ways of
“splitting” the flow fi into paths from the source to the destination. Under suitable restrictions
on the latency functions, those games satisfy Assumption 1 (see [Syrgkanis et al., 2015]).

Cournot Competition This game is played among n firms (players). Every firm i decides the
quantity si ∈ Si ⊆ R≥0 of a common good to produce, where Si is an interval. Further, a cost
function ci : Si → R assigns a production cost to a given quantity, while p :×Si → R≥0

is the price of the good determined by the the joint choice of quantity s = (s1, . . . , sn) across
the firms. Then, the utility of firm i is defined as ui(s) := sip(s) − ci(si). In linear Cournot
competition, p(s) := a−b (

∑n
i=1 si), for some a, b > 0, while the cost functions ci are assumed

to be smooth and convex [Even-Dar et al., 2009].

2.3 Online Linear Optimization and No-Regret Learning

In the online learning framework a learning agent has to select a strategy x(t) ∈ X ⊆ Rd at
every time t ∈ N. Then, in the full information model, the learner receives as feedback from the
environment a linear utility function x 7→ ⟨x,u(t)⟩, for some vector u(t) ∈ Rd. The canonical
measure of performance is the notion of regret, defined for a time horizon T ∈ N as follows.

RegT := max
x∗∈X

{
T∑
t=1

⟨x∗,u(t)⟩

}
−

T∑
t=1

⟨x(t),u(t)⟩. (1)
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That is, the performance of the agent is compared to the optimal fixed strategy in hindsight. It is
important to note that regret can be negative. In the context of convex games, it is assumed that
every player i ∈ [[n]] receives at time t the “linearized” utility function xi 7→ ⟨xi,u(t)

i ⟩, where
u
(t)
i := ∇xi

ui(x
(t)). By concavity (Assumption 1),

max
x∗

i ∈Xi

T∑
t=1

(
ui(x

∗
i ,x

(t)
−i)− ui(x

(t))
)
≤ max

x∗
i ∈Xi

T∑
t=1

⟨x∗
i − x

(t)
i ,∇xi

ui(x
(t))⟩.

As a result, a regret bound on the linearized regret—in the sense of (1)—automatically translates to
a regret bound in the convex game.

Strongly Uncoupled Learning Dynamics In this setting, all learning dynamics are uncoupled in
the sense of Hart and Mas-Colell [2003]: every player is oblivious to the other players’ utilities.
In fact, players need not have any prior knowledge about the game, even about their own utilities;
this captures the condition of strong uncoupledness of Daskalakis et al. [2011], along with a suitable
bound on the memory of each player.

3 Near-Optimal No-Regret Learning in Convex Games

In this section we describe our algorithm, Log-Regularized Lifted Optimistic FTRL (henceforth
LRL-OFTRL). The central result of this section, Theorem 4, asserts that when all players learn using
LRL-OFTRL, their regret only grows logarithmically with respect to the number of repetitions of the
game. Detailed proofs for this section are available in Appendix A.

3.1 Setup

In the sequel, we will define and analyze the regret cumulated by LRL-OFTRL from the perspective
of a generic player, omitting player subscripts.

We denote the set of strategies of the player by X ⊆ Rd. Without loss of generality, we will assume
that X ⊆ [0,+∞)d; otherwise, it suffices to first shift the set. Furthermore, we assume without loss
of generality that there is no index r ∈ [[d]] such that x[r] = 0 for all x ∈ X—if not, dropping the
identically-zero dimension would not alter regret. We define the lifting of set X as the following set:

Rd+1 ⊇ X̃ := {(λ,y) : λ ∈ [0, 1],y ∈ λX}. (2)

Further, we define the ℓ1-norm ∥X∥1 of X as the maximum ℓ1-norm of any vector x ∈ X , that is,
∥X∥1 := maxx∈X ∥x∥1; for example, ∥∆d∥1 = 1.

The logarithmic regularizer for Rd+1 is the function

R(λ,y) := − log λ−
d∑
r=1

log y[r], ∀(λ,y) ∈ Rd+1
>0 .

Given any vector (λ,y) ∈ X̃ ∩ Rd+1
>0 , we denote with ∥ · ∥(λ,y) and ∥ · ∥∗,(λ,y) the local norms

centered at (λ,y) induced byR(λ,y), defined as∥∥∥∥(az
)∥∥∥∥

(λ,y)

:=

√√√√(a
λ

)2
+

d∑
r=1

(
z[r]

y[r]

)2

,

∥∥∥∥(az
)∥∥∥∥

∗,(λ,y)
:=

√√√√(aλ)2 +

d∑
r=1

(z[r]y[r])
2

for any (a, z) ∈ Rd+1. These are the norms induced by the Hessian matrix of R at (λ,y) and its
inverse. It is a well-known fact that ∥ · ∥∗,(λ,y) is the dual norm of ∥ · ∥(λ,y), and vice versa.

3.2 Overview of Our Algorithm

Our algorithm (Algorithm 1) leverages optimistic follow the regularized leader (OFTRL), a simple
variant of FTRL introduced by Syrgkanis et al. [2015], but with some important twists. First, the
optimization is performed over the lifting X̃ of the set X . More precisely, at every iteration the
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observed utility u(t) ∈ Rd will be transformed to ũ(t) ∈ Rd+1 according to Line 6; this ensures that
ũ(t) is orthogonal to the vector (1,x(t)). Then, this utility vector ũ(t) is given as input to a regret
minimizer operating over X̃ , employing OFTRL under the logarithmic regularizer R(λ,y); this step
is described in Line 3. We discuss how such an optimization problem can be solved efficiently in
Section 3.5. Below we point out that Line 3 is indeed well-defined.
Proposition 1. For any η ≥ 0 and at all times t ∈ N, the OFTRL optimization problem on Line 3 of
Algorithm 1 admits a unique optimal solution (λ(t),y(t)) ∈ X̃ ∩ Rd+1

>0 .

Finally, given the iterate (λ(t),y(t)) output by the OFTRL step at time t, our regret minimizer over X
selects the next strategy x(t) := y(t)/λ(t) (Line 4); this is indeed a valid strategy in X by definition
of X̃ in (2), as well as the fact that λ(t) > 0 as asserted in Proposition 1.

Algorithm 1: Log-Regularized Lifted Optimistic FTRL (LRL-OFTRL)

Lifting OFTRL with
log regularizer Normalization

u(t) ũ(t) (λ(t),y(t)) x(t) := y(t)

λ(t)

Data: Learning rate η

1 Set Ũ (1),u(0) ← 0 ∈ Rd+1

2 for t = 1, 2, . . . , T do

3 Set
(
λ(t)

y(t)

)
← argmax

(λ,y)∈X̃

{
η

〈
Ũ (t) + ũ(t−1),

(
λ
y

)〉
+ log λ+

d∑
r=1

log y[r]

}
[▷ OFTRL]

4 Play strategy x(t) :=
y(t)

λ(t)
∈ X [▷ Normalization]

5 Observe u(t) ∈ Rd

6 Set ũ(t) ←
(
−⟨u(t),x(t)⟩

u(t)

)
[▷ Lifting]

7 Set Ũ (t+1) ← Ũ (t) + ũ(t)

3.3 Regret Analysis

In this section, we study the regret of LRL-OFTRL under the idealized assumption that the optimiza-
tion problem on Line 3 (OFTRL step) is solved exactly at each time t. In Section 3.5 we will relax
that assumption, and study the regret of LRL-OFTRL when the solution to Line 3 is approximated
using variants of Newton’s method.

To study the regret RegT of LRL-OFTRL, defined in (1), it is useful to introduce the quantity R̃eg
T

,
which measures the regret incurred by the internal OFTRL algorithm (Line 3) up to a time T ∈ N in
the lifted space X̃ , i.e.,

R̃eg
T
:= max

(λ∗,y∗)∈X̃

T∑
t=1

〈
ũ(t),

(
λ∗

y∗

)
−
(
λ(t)

y(t)

)〉
.

As the following theorem clarifies, there is a strong connection between R̃eg
T

and RegT .

Theorem 2. For any time T ∈ N it holds that R̃eg
T
= max{0,RegT }. In particular, it follows that

R̃eg
T ≥ 0 and RegT ≤ R̃eg

T
for any T ∈ N.

The nonnegativity of R̃eg
T

will be a crucial property in establishing Theorem 3. Further, Theorem 2
implies that a guarantee over the lifted space can be automatically translated to a regret bound over
the original space X . Now let

∥ · ∥t := ∥ · ∥(λ(t),y(t)) and ∥ · ∥∗,t := ∥ · ∥∗,(λ(t),y(t)) (3)
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be the local norms centered at point (λ(t),y(t)) produced by OFTRL at time t (Line 3). In the next
proposition we establish a refined RVU (Regret bounded by Variation in Utilities) bound in terms of
this primal-dual norm pair.

Proposition 2 (RVU bound of OFTRL in local norms). Let R̃eg
T

be the regret cumulated up to time
T by the internal OFTRL algorithm. If ∥u(t)∥∞∥x∥1 ≤ 1 at all times t ∈ [[T ]], then for any time
horizon T ∈ N and learning rate η ≤ 1

50 ,

R̃eg
T ≤ 4 +

(d+ 1) log T

η
+ 5η

T∑
t=1

∥∥∥ũ(t) − ũ(t−1)
∥∥∥2
∗,t
− 1

27η

T−1∑
t=1

∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥2
t

.

(We recall that ũ(0) := 0.) Proposition 2 differs from prior analogous results in that the regularizer
is not a barrier over the feasible set. Next, we show that the iterates produced by OFTRL satisfy a
refined notion of stability, which we refer to as multiplicative stability.
Proposition 3 (Multiplicative Stability). For any time t ∈ N and learning rate η ≤ 1

50 , if
∥u(t)∥∞∥x∥1 ≤ 1, ∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥
t

≤ 22η.

Intuitively, this property ensures that coordinates of successive iterates will have a small multiplica-
tive deviation. We leverage this refined notion of stability to establish the following crucial lemma.

Lemma 1. For any time t ∈ N and learning rate η ≤ 1
50 , if ∥u(t)∥∞∥x∥1 ≤ 1,

∥x(t+1) − x(t)∥1 ≤ 4∥X∥1
∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥
t

.

Combining this lemma with Proposition 2 allows us to obtain an RVU bound for the original space
X , with no dependencies on local norms.
Corollary 1 (RVU bound in the original (unlifted) space). Fix any time T ∈ N, and suppose that
∥u(t)∥∞ ≤ B for any t ∈ [[T ]]. If η ≤ 1

256B∥X∥1
,

R̃eg
T ≤ 6B∥X∥1+

(d+ 1) log T

η
+16η∥X∥21

T−1∑
t=1

∥u(t+1)−u(t)∥2∞−
1

512η∥X∥21

T−1∑
t=1

∥x(t+1)−x(t)∥21.

3.4 Main Result

So far, in Section 3.3, we have performed the analysis from the perspective of a single player,
obtaining regret bounds that apply under an arbitrary sequence of utilities. Next, we assume that all
players follow our dynamics such that the variation in one’s utilities is now related to the variation in
the joint strategies based on the smoothness condition of the utility function, connecting the last two
terms of the RVU bound. Further leveraging the nonnegativity of the regrets in the lifted space, we
establish that the second-order path lengths of the dynamics up to time T are bounded by O(log T ):

Theorem 3. Suppose that Assumption 1 holds for some parameters B,L > 0. If all players follow
LRL-OFTRL with learning rate η ≤ min

{
1

256B∥X∥1
, 1
128nL∥X∥2

1

}
, where ∥X∥1 := maxi∈[[n]] ∥Xi∥1,

then
n∑
i=1

T−1∑
t=1

∥x(t+1)
i − x

(t)
i ∥

2
1 ≤ 6144nηB∥X∥31 + 1024n(d+ 1)∥X∥21 log T. (4)

Here we made the mild assumption that each player knows the values of n, L, B and ∥X∥1 in order
to appropriately tune the learning rate; otherwise, similar guarantees are possible via a standard ap-
plication of the doubling trick. It is interesting to point out that (4) holds even without the concavity
condition (recall Assumption 1). We next leverage Theorem 3 to establish Theorem 1, the detailed
version of which is given below.
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Theorem 4 (Detailed Version of Theorem 1). Suppose that Assumption 1 holds for some parameters
B,L > 0. If all players follow LRL-OFTRL with learning rate η = min

{
1

256B∥X∥1
, 1
128nL∥X∥2

1

}
,

then for any T ∈ N the regret RegTi of each player i ∈ [[n]] can be bounded as

RegTi ≤ 12B∥X∥1 + 256(d+ 1)max
{
nL∥X∥21, 2B∥X∥1

}
log T. (5)

Furthermore, the algorithm can be adaptive so that if player i is instead facing adversarial utilities,
then RegTi = O(

√
T ).

For clarity, below we cast (5) of Theorem 4 in normal-form games with utilities normalized in the
range [−1, 1], in which case we can take B = 1, L = 1 and ∥X∥1 = 1.
Corollary 2 (Normal-form Games). Suppose that all players in a normal-form game with n ≥ 2
follow LRL-OFTRL with learning rate η = 1

128n . Then, for any T ∈ N and player i ∈ [[n]],

RegTi ≤ 12 + 256n(d+ 1) log T.

3.5 Implementation and Iteration Complexity

In this section, we discuss the implementation and iteration complexity of LRL-OFTRL. The main
difficulty in the implementation is the computation of the solution to the strictly concave nonsmooth
constrained optimization problem in Line 3. We start by studying how the guarantees laid out in
Theorem 4 are affected when the exact solution to the OFTRL problem (Line 4) in Algorithm 1 is
replaced with an approximation. Specifically, suppose that at all times t the solution to the OFTRL

step (Line 3) in Algorithm 1 is only approximately solved within tolerance ϵ(t), in the sense that∥∥∥∥∥
(
λ(t)

y(t)

)
−

(
λ
(t)
⋆

y
(t)
⋆

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

≤ ϵ(t), (6)

where (λ(t),y(t)) ∈ Rd+1
>0 and(

λ
(t)
⋆

y
(t)
⋆

)
:= argmax

(λ,y)∈X̃

{
η

〈
Ũ (t) + ũ(t−1),

(
λ
y

)〉
+ log λ+

d∑
r=1

log y[r]

}
.

Then, it can be proven directly from the definition of regret that the guarantees given in Corollary 1
deteriorate by an additive factor proportional to the sum of the tolerances

∑T
t=1 ϵ

(t). As an immedi-
ate corollary, when ϵ(t) := ϵ := 1/T , the conclusion of Theorem 4 applies even when the solution to
the optimization problem on Line 3 is only approximated up to ϵ tolerance. Therefore, to complete
our construction, it suffices to show that it is indeed possible to efficiently compute approximate
solutions to the OFTRL step (see Appendix A.5). In the remainder of this section, we show that
this is indeed the case assuming access to two different type of oracles. It should be stressed that
optimizing over a general convex set introduces several challenges not present under simplex do-
mains, inevitably leading to an increased per-iteration complexity compared to algorithms designed
specifically for normal-form games—such as OMWU.

Proximal Oracle First, we will assume access to a proximal oracle in local norm for the set X̃ ,
that is, access to a function that is able to compute the solution to the (positive-definite) quadratic
optimization problem

Πw̃(g̃) := argmin
x̃∈ X̃

{
g̃⊤x̃+

1

2
∥x̃− w̃∥2w̃

}
= argmin

x̃∈ X̃

{
g̃⊤x̃+

1

2

d+1∑
r=1

(
x̃[r]

w̃[r]
− 1

)2
}

(7)

for arbitrary centers w̃ ∈ Rd+1
>0 and gradients g̃ ∈ Rd+1. For certain sets X ⊆ Rd, exact proximal

oracles with polynomial complexity in the dimension d can be given. In particular, we show that
this is the case when X is the strategy set of normal-form and extensive-form games by extending
the approach of Gilpin [2009, pp. 128-133], as formalized below.
Proposition 4. Let X ⊆ Rd be the polytope of sequence-form strategies for a player in a perfect-
recall extensive-form game. Then, the local proximal oracle Πw̃(g̃) defined in (7) can be imple-
mented exactly in time polynomial in the dimension d for any w̃ ∈ Rd+1

>0 and g̃ ∈ Rd+1.
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We provide the details and a more precise statement in Appendix B. In this context, the following
guarantee employs the proximal Newton algorithm of Tran-Dinh et al. [2015]; see Algorithm 2.

Theorem 5 (Proximal Newton). Given any ϵ > 0, it is possible to compute (λ(t),y(t)) ∈ X̃ ∩Rd+1
>0

such that (6) holds for ϵ(t) = ϵ using O(log log(1/ϵ)) operations and O(log log(1/ϵ)) calls to the
proximal oracle defined in Equation (7).

Linear Maximization Oracle Moreover, we consider having access to a weaker linear maximiza-
tion oracle (LMO) for the set X :

LX (u) := argmax
x∈X

⟨x,u⟩. (8)

Such an oracle is more realistic in many settings [Jaggi, 2013], and it is particularly natural in the
context of games, where it can be thought of as a best response oracle. We point out that an LMO
for X automatically implies an LMO for X̃ . The following guarantee follows readily by applying
the Frank-Wolfe (projected) Newton method [Liu et al., 2020, Algotihms 1 and 2].

Theorem 6 (Frank-Wolfe Newton). Given any ϵ > 0, it is possible to compute (λ(t),y(t)) ∈ X̃ ∩
Rd+1
>0 such that (6) holds for ϵ(t) = ϵ using O(poly(1/ϵ)) operations and O(poly(1/ϵ)) calls to the

LMO oracle defined in Equation (8).

Experiments Finally, while our main contribution is of theoretical nature, we also support our
theory by conducting experiments on some standard extensive-form games (Appendix C). The ex-
periments verify that under LRL-OFTRL the regret of each player grows as O(log T ).

4 Conclusions

In this paper we developed LRL-OFTRL, a novel no-regret learning algorithm. We showed that when
all players in a general convex game employ LRL-OFTRL, the regret of each player grows only as
O(log T ), thereby significantly extending and strengthening the scope of all prior work. Further,
our uncoupled no-regret learning dynamics can be efficiently implemented using, for example, a
proximal oracle for the underlying feasible set.

One caveat of our framework applied to the special case of normal-form games is that the depen-
dence on the dimension is linear (Corollary 2) as opposed to logarithmic [Daskalakis et al., 2021].
Whether the entropic regularizer—which induces OMWU—can be incorporated into our framework
is an important open question. Another interesting avenue for future research would be to explore
having access to different types of oracles. For example, is it possible to extend Theorem 4 using a
separation oracle for the underlying set of strategies? If so, the ellipsoid algorithm [Bubeck, 2015]
would be the obvious candidate en route to implementing LRL-OFTRL.
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A Omitted Proofs

In this section we include all of the proofs omitted from the main body. For the convenience of the
reader, we will restate each claim before proceeding with its proof.

A.1 Preliminary Proofs

We commence with the proof of Proposition 1.

Proposition 1. For any η ≥ 0 and at all times t ∈ N, the OFTRL optimization problem on Line 3 of
Algorithm 1 admits a unique optimal solution (λ(t),y(t)) ∈ X̃ ∩ Rd+1

>0 .

Proof. Uniqueness follow immediately from strict convexity. In the rest of the proof we focus on
the existence part.

We start by showing that there exists a point x̃ ∈ X̃ whose coordinates are all strictly positive.
By hypothesis (see Section 3.1), for every coordinate r ∈ [[d]], there exists a point xr such that
xr[r] > 0. Hence, by convexity of X ⊆ [0,+∞)d and by definition of X̃ , the point

(1,x◦) :=

(
1,

1

d

d∑
r=1

xr

)
.

is such that (1,x◦) ∈ X̃ ∩ Rd>0.

Let now M be the ℓ∞ norm of the linear part in the OFTRL step (Line 3 of Algorithm 1). Then, a
lower bound on the optimal value v⋆ of objective is obtained by plugging in the point (1,x◦) at least

v⋆ ≥ −M(1 + ∥X∥1) +
d∑
r=1

logx◦[r]. (9)

Let now

m := exp

{
−(2M + d)(1 + ∥X∥1) +

d∑
r=1

logx◦[r]

}
> 0. (10)

We will show that any point (λ,y) /∈ [m,+∞) ∩ X̃ cannot be optimal for the OFTRL objective.
Indeed, take a point (λ,y) /∈ [m,+∞) ∩ X̃ . Then, at least one coordinate of (λ,y) is strictly less
than m. If λ < m, then the objective value at (λ,y) is at most

Mλ+M∥X∥1 + log λ+
d∑
r=1

log y[r] ≤M(1 + ∥X∥1) + logm+
d∑
r=1

log ∥X∥1

≤M(1 + ∥X∥1) + logm+ d(∥X∥1 − 1)

< (M + d)(1 + ∥X∥1) + logm

= −M(1 + ∥X∥1) +
d∑
r=1

logx◦[r] (from (10))

≤ v∗, (from (9))

where the first inequality follows from upper bounding any coordinate of y with ∥X∥1, and the
second inequality follows from using the inequality log z ≤ z − 1, valid for all z ∈ (0,+∞).
Similarly, if y[s] < m for some s ∈ [[d]], then we can upper bound the objective value at (λ,y) as

M +M∥X∥1 + log 1 +

d∑
r=1

log y[r] ≤M(1 + ∥X∥1) + logm+

d∑
r=1

log ∥X∥1

≤M(1 + ∥X∥1) + (d− 1)(∥X∥1 − 1) + logm

< (M + d)(1 + ∥X∥1) + logm ≤ v∗.
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So, in either case, we see that no optimal point can have any coordinate strictly less than m. Con-
sequently, the maximizer of the OFTRL step lies in the set S := [m,+∞)d+1 ∩ X̃ . Since both
[m,+∞)d+1 and X̃ are closed, and since X̃ is bounded by hypothesis, the set S is compact. Fur-
thermore, note that S is nonempty, as (1,x◦) ∈ S, as for any s ∈ [[d]]

logm = −(2M + d)(1 + ∥X∥1) +
d∑
r=1

logx◦[r]

≤ −(2M + d)(1 + ∥X∥1) + logx◦[s] + (d− 1) log ∥X∥1
≤ −(2M + d)(1 + ∥X∥1) + logx◦[s] + (d− 1)(∥X∥1 − 1)

≤ logx◦[s],

implying that (1,x◦) ∈ [m,+∞)d+1. Since S is compact and nonempty and the objective function
is continuous, the optimization problem attains an optimal solution on S by virtue of Weierstrass’
theorem.

Theorem 2. For any time T ∈ N it holds that R̃eg
T
= max{0,RegT }. In particular, it follows that

R̃eg
T ≥ 0 and RegT ≤ R̃eg

T
for any T ∈ N.

Proof. First, by definition of ũ(t) in Line 6, it follows that for any t,〈
ũ(t),

(
λ(t)

y(t)

)〉
=

〈
ũ(t),

(
1

x(t)

)〉
= 0.

As a result, we have that max{0,RegT } is equal to

max

{
0, max

x∗∈X

T∑
t=1

⟨u(t),x∗ − x(t)⟩

}
= max

{
0, max

x∗∈X

T∑
t=1

〈
ũ(t),

(
1
x∗

)
−
(

1
x(t)

)〉}

=max

{
0, max

x∗∈X

T∑
t=1

〈
ũ(t),

(
1
x∗

)〉}
= max

(λ∗,y∗)∈X̃

T∑
t=1

〈
ũ(t),

(
λ∗

y∗

)〉

= max
(λ∗,y∗)∈X̃

T∑
t=1

〈
ũ(t),

(
λ∗

y∗

)
−
(
λ(t)

y(t)

)〉
= R̃eg

T
,

as we wanted to show.

A.2 Analysis of OFTRL with Logarithmic Regularizer

For notational convenience, we define the log-regularizer ψ : X̃ → R≥0 as

ψ(x̃) := −1

η

d+1∑
r=1

log x̃[r],

and its induced Bregman divergence

Dψ (x̃ ∥ z̃) := 1

η

d+1∑
r=1

h

(
x̃[r]

z̃[r]

)
, where h(a) = a− 1− ln(a).

Moreover, we define

x̃(t) = argmax
x̃∈X̃

−Ft(x̃) = argmin
x̃∈X̃

Ft(x̃), where Ft(x̃) = −
〈
Ũ (t) + ũ(t−1), x̃

〉
+ ψ(x̃).

(11)

We note that Ft is a convex function for each t and x̃(t) is exactly equal to
(
λ(t)

y(t)

)
computed by

Algorithm 1. Further, we define an auxiliary sequence {z̃(t)}t=1,2,... defined as follows.

z̃(t) = argmax
x̃∈X̃

−Gt(x̃) = argmin
x̃∈X̃

Gt(x̃), where Gt(x̃) = −
〈
Ũ (t), x̃

〉
+ ψ(x̃). (12)
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Similarly, Gt is a convex function for each t. We also recall the primal and dual norm notation:

∥z̃∥t =
d+1∑
r=1

(
z̃[r]

x̃(t)[r]

)2

, ∥z̃∥∗,t =
d+1∑
r=1

(
x̃(t)[r]z̃[r]

)2
.

Finally, for a (d + 1) × (d + 1) positive definite matrix M, we use ∥z̃∥M to denote the induced
quadratic norm

√
z̃⊤Mz̃. We are now ready to establish Proposition 2.

Proposition 2 (RVU bound of OFTRL in local norms). Let R̃eg
T

be the regret cumulated up to time
T by the internal OFTRL algorithm. If ∥u(t)∥∞∥x∥1 ≤ 1 at all times t ∈ [[T ]], then for any time
horizon T ∈ N and learning rate η ≤ 1

50 ,

R̃eg
T ≤ 4 +

(d+ 1) log T

η
+ 5η

T∑
t=1

∥∥∥ũ(t) − ũ(t−1)
∥∥∥2
∗,t
− 1

27η

T−1∑
t=1

∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥2
t

.

Proof of Proposition 2. For any comparator x̃ ∈ X̃ , define x̃′ = T−1
T · x̃+ 1

T · x̃
(1) ∈ X̃ , where we

recall x̃(1) = argminx̃∈X̃ F1(x̃) = argminx̃∈X̃ ψ(x̃). Then, we have

T∑
t=1

〈
x̃− x̃(t), ũ(t)

〉
=

T∑
t=1

〈
x̃− x̃′, ũ(t)

〉
+

T∑
t=1

〈
x̃′ − x̃(t), ũ(t)

〉
=

1

T

T∑
t=1

〈
x̃− x̃(1), ũ(t)

〉
+

T∑
t=1

〈
x̃′ − x̃(t), ũ(t)

〉
≤ 4 +

T∑
t=1

〈
x̃′ − x̃(t), ũ(t)

〉
,

where the last inequality follows from Cauchy-Schwarz together with the assumption that
∥u(t)∥∞ ≤ 1

∥X∥1
.

Now, by standard Optimistic FTRL analysis (see Lemma 2), the last term
∑T
t=1

〈
x̃′ − x̃(t), ũ(t)

〉
(cumulative regret against x̃′) is bounded by
T∑
t=1

〈
x̃′ − x̃(t), ũ(t)

〉
≤ ψ(x̃′)− ψ(x̃(1)) +

T∑
t=1

〈
z̃(t+1) − x̃(t), ũ(t) − ũ(t−1)

〉
−

T∑
t=1

(
Dψ

(
x̃(t)

∥∥∥ z̃(t)
)
+Dψ

(
z̃(t+1)

∥∥∥ x̃(t)
))

.

For the term ψ(x̃′)− ψ(x̃(1)), a direct calculation using definitions shows

ψ(x̃′)− ψ(x̃(1)) =
1

η

d+1∑
i=1

log
x̃(1)[i]

x̃′[i]
≤ d+ 1

η
log T.

For the other terms, we apply Lemma 3 and Lemma 5, which completes the proof.

Lemma 2. The update rule (11) ensures the following for any x̃ ∈ X̃ :
T∑
t=1

〈
x̃− x̃(t), ũ(t)

〉
≤ ψ(x̃)− ψ(x̃(1)) +

T∑
t=1

〈
z̃(t+1) − x̃(t), ũ(t) − ũ(t−1)

〉
−

T∑
t=1

(
Dψ

(
x̃(t)

∥∥∥ z̃(t)
)
+Dψ

(
z̃(t+1)

∥∥∥ x̃(t)
))

.

Proof. First note that for any convex function F : X̃ → R and a minimizer x̃⋆, we have for any
x̃ ∈ X̃ :

F (x̃⋆) = F (x̃)− ⟨∇F (x̃⋆), x̃− x̃⋆⟩ −DF (x̃, x̃
⋆) ≤ F (x̃)−DF (x̃, x̃

⋆),

17



where DF is the Bregman Divergence induced by F and the inequality is by the first-order optimal-
ity. Using this fact and the optimality of z̃(t), we have

Gt(z̃
(t)) ≤ Gt(x̃(t))−Dψ

(
x̃(t)

∥∥∥ z̃(t)
)

= Ft(x̃
(t)) +

〈
x̃(t), ũ(t−1)

〉
−Dψ

(
x̃(t)

∥∥∥ z̃(t)
)

Similarly, using the optimality of x̃(t), we have

Ft(x̃
(t)) ≤ Ft(z̃(t+1))−Dψ

(
z̃(t+1)

∥∥∥ x̃(t)
)

= Gt+1(z̃
(t+1)) +

〈
z̃(t+1), ũ(t) − ũ(t−1)

〉
−Dψ

(
z̃(t+1)

∥∥∥ x̃(t)
)

Combining the inequalities and summing over t, we have

G1(z̃
(1)) ≤ GT+1(z̃

(T+1)) +

T∑
t=1

(〈
x̃(t), ũ(t)

〉
+
〈
z̃(t+1) − x̃(t), ũ(t) − ũ(t−1)

〉)
+

T∑
t=1

(
−Dψ

(
x̃(t)

∥∥∥ z̃(t)
)
−Dψ

(
z̃(t+1)

∥∥∥ x̃(t)
))

.

Observe thatG1(z̃
(1)) = ψ(x̃(1)) andGT+1(z̃

(T+1)) ≤ −
〈
x̃, Ũ (T+1)

〉
+ψ(x̃). Rearranging then

proves the lemma.

Lemma 3. If η ≤ 1
50 , then we have∥∥∥z̃(t+1) − x̃(t)

∥∥∥
t
≤ 5η

∥∥∥ũ(t) − ũ(t−1)
∥∥∥
∗,t
≤ 10

√
2η ≤ 15η, (13)∥∥∥x̃(t+1) − x̃(t)

∥∥∥
t
≤ 5η

∥∥∥2ũ(t) − ũ(t−1)
∥∥∥
∗,t
≤ 15

√
2η ≤ 22η. (14)

Proof. The second part of both inequalities is clear by definitions:

∥∥∥ũ(t) − ũ(t−1)
∥∥∥2
∗,t

=
(
λ(t)

(〈
x(t),u(t)

〉
−
〈
x(t−1),u(t−1)

〉))2
+

d∑
r=1

(
y(t)[r]

(
u(t)[r]− u(t−1)[r]

))2
≤ 4(λ(t))2 +

4

∥X∥21

d∑
r=1

(
y(t)[r]

)2
≤ 8,

where we use
〈
x(τ),u(τ)

〉
≤ ∥x(τ)∥1∥u(τ)∥∞ ≤ 1 and |u(τ)[r]| ≤ 1

∥X∥1
for any time τ and any

coordinate r by the assumption, and similarly,

∥∥∥2ũ(t) − ũ(t−1)
∥∥∥2
∗,t

=
(
λ(t)

(
2
〈
x(t),u(t)

〉
−
〈
x(t−1),u(t−1)

〉))2
+

d∑
r=1

(
y(t)[r]

(
2u(t)[r]− u(t−1)[r]

))2
≤ 9(λ(t))2 +

9

∥X∥21

d∑
r=1

(
y(t)[r]

)2
≤ 18

To prove the first inequality in Eq. (13), let Et =
{
x̃ :
∥∥x̃− x̃(t)

∥∥
t
≤ 5η

∥∥ũ(t) − ũ(t−1)
∥∥
∗,t

}
.

Noticing that z̃(t+1) is the minimizer of the convex function Gt+1, to show z̃(t+1) ∈ Et, it suf-
fices to show that for all x̃ on the boundary of Et, we have Gt+1(x̃) ≥ Gt+1(x̃

(t)). Indeed, using

18



Taylor’s theorem, for any such x̃, there is a point ξ on the line segment between x̃(t) and x̃ such that

Gt+1(x̃) = Gt+1(x̃
(t)) +

〈
∇Gt+1(x̃

(t)), x̃− x̃(t)
〉
+

1

2

∥∥∥x̃− x̃(t)
∥∥∥2
∇2Gt+1(ξ)

= Gt+1(x̃
(t))−

〈
ũ(t) − ũ(t−1), x̃− x̃(t)

〉
+
〈
∇Ft(x̃(t)), x̃− x̃(t)

〉
+

1

2

∥∥∥x̃− x̃(t)
∥∥∥2
∇2ψ(ξ)

≥ Gt+1(x̃
(t))−

〈
ũ(t) − ũ(t−1), x̃− x̃(t)

〉
+

1

2

∥∥∥x̃− x̃(t)
∥∥∥2
∇2ψ(ξ)

(by the optimality of x̃(t))

≥ Gt+1(x̃
(t))−

∥∥∥ũ(t) − ũ(t−1)
∥∥∥
∗,t

∥∥∥x̃− x̃(t)
∥∥∥
t
+

1

2

∥∥∥x̃− x̃(t)
∥∥∥2
∇2ψ(ξ)

.

(by Hölder’s inequality)

≥ Gt+1(x̃
(t))−

∥∥∥ũ(t) − ũ(t−1)
∥∥∥
∗,t

∥∥∥x̃− x̃(t)
∥∥∥
t
+

2

9η

∥∥∥x̃− x̃(t)
∥∥∥2
t

(⋆)

= Gt+1(x̃
(t)) +

5

9
η
∥∥∥ũ(t) − ũ(t−1)

∥∥∥2
∗,t

(
∥∥x̃− x̃(t)

∥∥
t
= 5η

∥∥ũ(t) − ũ(t−1)
∥∥
∗,t)

≥ Gt+1(x̃
(t)).

Here, the inequality (⋆) holds because Lemma 4 (together with the condition η ≤ 1
50 ) shows

1
2 x̃

(t)[i] ≤ x̃[i] ≤ 3
2 x̃

(t)[i], which implies 1
2 x̃

(t)[i] ≤ ξ[i] ≤ 3
2 x̃

(t)[i] as well, and thus
∇2ψ(ξ) ⪰ 4

9∇
2ψ(x̃(t)). This finishes the proof for Eq. (13). The first inequality of Eq. (14)

can be proven in the same manner.

Proposition 3 (Multiplicative Stability). For any time t ∈ N and learning rate η ≤ 1
50 , if

∥u(t)∥∞∥x∥1 ≤ 1,

∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥
t

≤ 22η.

Proof. The statement is proved in Lemma 3.

Lemma 4. If x̃ satisfies ∥x̃− x̃(t)∥t ≤ 1
2 , then 1

2 x̃
(t)[i] ≤ x̃[i] ≤ 3

2 x̃
(t)[i] for every coordinate i.

Proof. By definition, ∥x̃ − x̃(t)∥t ≤ 1
2 implies for any i, |x̃[i]−x̃(t)[i]|

x̃(t)[i]
≤ 1

2 , and thus 1
2 x̃

(t)[i] ≤
x̃[i] ≤ 3

2 x̃
(t)[i].

Lemma 5. If η ≤ 1
50 , then we have

T∑
t=1

(
Dψ

(
x̃(t)

∥∥∥ z̃(t)
)
+Dψ

(
z̃(t+1)

∥∥∥ x̃(t)
))
≥ 1

27η

T−1∑
t=1

∥∥∥x̃(t+1) − x̃(t)
∥∥∥2
t
.
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Proof. Recall h(a) = a− 1− ln(a) and Dψ (x̃ ∥ z̃) = 1
η

∑d+1
i=1 h

(
x̃[i]
z̃[i]

)
. We proceed as

T∑
t=1

(
Dψ

(
x̃(t)

∥∥∥ z̃(t)
)
+Dψ

(
z̃(t+1)

∥∥∥ x̃(t)
))

≥
T−1∑
t=1

(
Dψ

(
x̃(t+1)

∥∥∥ z̃(t+1)
)
+Dψ

(
z̃(t+1)

∥∥∥ x̃(t)
))

=
1

η

T−1∑
t=1

d+1∑
i=1

(
h

(
x̃(t+1)[i]

z̃(t+1)[i]

)
+ h

(
z̃(t+1)[i]

x̃(t)[i]

))

≥ 1

6η

T−1∑
t=1

d+1∑
i=1

(
(x̃(t+1)[i]− z̃(t+1)[i])2(

z̃(t+1)[i]
)2 +

(z̃(t+1)[i]− x̃(t)[i])2

(x̃(t)[i])2

)
(h(y) ≥ (y−1)2

6 for y ∈ [ 13 , 3])

≥ 2

27η

T−1∑
t=1

d+1∑
i=1

(
(x̃(t+1)[i]− z̃(t+1)[i])2(

x̃(t)[i]
)2 +

(z̃(t+1)[i]− x̃(t)[i])2

(x̃(t)[i])2

)

≥ 1

27η

T−1∑
t=1

d+1∑
i=1

(
(x̃(t+1)[i]− x̃(t)[i])2(

x̃(t)[i]
)2

)
=

1

27η

T−1∑
t=1

∥∥∥x̃(t+1) − x̃(t)
∥∥∥2
t
.

Here, the second and the third inequality hold because by Lemma 3 and Lemma 4, we have 1
2 ≤

z̃(t+1)[i]
x̃(t)[i]

≤ 3
2 and 1

2 ≤
x̃(t+1)[i]
x̃(t)[i]

≤ 3
2 , and thus 1

3 ≤
x̃(t+1)[i]
z̃(t+1)[i]

≤ 3.

A.3 RVU Bound in the Original Space

Next, we establish an RVU bound in the original (unlifted) space, namely Corollary 1. To this end,
we first proceed with the proof of Lemma 1, which boils down to the following simple claim.

Lemma 6. Let (λ,y), (λ′,y′) ∈ X̃ ∩ Rd+1
>0 be arbitrary points such that∥∥∥∥(λ′y′

)
−
(
λ
y

)∥∥∥∥
(λ,y)

≤ 1

2
.

Then, ∥∥∥∥yλ − y′

λ′

∥∥∥∥
1

≤ 4∥X∥1 ·
∥∥∥∥(λ′y′

)
−
(
λ
y

)∥∥∥∥
(λ,y)

.

Proof. Let µ be defined as

µ := max

{∣∣∣∣λ′λ − 1

∣∣∣∣ ,max
r∈[[d]]

∣∣∣∣y′[r]

y[r]
− 1

∣∣∣∣} . (15)

By definition, ∣∣∣∣λ′λ − 1

∣∣∣∣ ≤ µ,
which in turn implies that

(1− µ)λ ≤ λ′ ≤ (1 + µ)λ. (16)

Similarly, for any r ∈ [[d]],
(1− µ)y[r] ≤ y′[r] ≤ (1 + µ)y[r]. (17)

As a result, combining (16) and (17) we get that for any r ∈ [[d]],

y′[r]

λ′
− y[r]

λ
≤
(
1 + µ

1− µ
− 1

)
y[r]

λ
≤ 4µ

y[r]

λ
= 4µx[r],
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since µ ≤ 1
2 . Similarly, by (16) and (17),

y[r]

λ
− y′[r]

λ′
≤
(
1− 1− µ

1 + µ

)
y[r]

λ
≤ 2µ

y[r]

λ
= 2µx[r].

Thus, it follows that ∣∣∣∣y′[r]

λ′
− y[r]

λ

∣∣∣∣ ≤ 4µx[r],

in turn implying that

∥x′ − x∥1 =

d∑
r=1

∣∣∣∣y′[r]

λ′
− y[r]

λ

∣∣∣∣ ≤ 4µ

d∑
r=1

x[r] ≤ 4µ∥X∥1. (18)

Moreover, by definition of (15),

(µ)
2 ≤

∥∥∥∥(λ′y′

)
−
(
λ
y

)∥∥∥∥2
t

.

Finally, combining this bound with (18) concludes the proof.

Lemma 1. For any time t ∈ N and learning rate η ≤ 1
50 , if ∥u(t)∥∞∥x∥1 ≤ 1,

∥x(t+1) − x(t)∥1 ≤ 4∥X∥1
∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥
t

.

Proof. Since η ≤ 1
50 by assumption, we have∥∥∥x(t+1) − x(t)

∥∥∥
t
≤ 22η <

1

2
.

Hence, we are in the domain of applicability of Lemma 6, which immediately yields the statement.

Corollary 1 (RVU bound in the original (unlifted) space). Fix any time T ∈ N, and suppose that
∥u(t)∥∞ ≤ B for any t ∈ [[T ]]. If η ≤ 1

256B∥X∥1
,

R̃eg
T ≤ 6B∥X∥1+

(d+ 1) log T

η
+16η∥X∥21

T−1∑
t=1

∥u(t+1)−u(t)∥2∞−
1

512η∥X∥21

T−1∑
t=1

∥x(t+1)−x(t)∥21.

Proof. At first, assume that ∥u(t)∥∞ ≤ 1/∥X∥1. By definition of the induced dual local norm in
(3),

∥ũ(t) − ũ(t−1)∥2∗,t ≤ (⟨x(t),u(t)⟩ − ⟨x(t−1),u(t−1)⟩)2(λ(t))2 +
d∑
r=1

(y[r])2(u(t)[r]− u(t−1)[r])2

≤ (⟨x(t),u(t)⟩ − ⟨x(t−1),u(t−1)⟩)2 +
d∑
r=1

(x[r])2(u(t)[r]− u(t−1)[r])2

≤
(
⟨x(t),u(t)⟩ − ⟨x(t−1),u(t−1)⟩

)2
+ ∥X∥21∥u(t) − u(t−1)∥2∞, (19)

for any t ≥ 2. Further, by Young’s inequality,(
⟨x(t),u(t)⟩ − ⟨x(t−1),u(t−1)⟩

)2
≤ 2

(
⟨x(t),u(t) − u(t−1)⟩

)2
+ 2

(
⟨x(t) − x(t−1),u(t−1)⟩

)2
≤ 2∥X∥21∥u(t) − u(t−1)∥2∞ +

2

∥X∥21
∥x(t) − x(t−1)∥21.

Combining with (19),

∥ũ(t) − ũ(t−1)∥2∗,t ≤ 3∥X∥21∥u(t) − u(t−1)∥2∞ +
2

∥X∥21
∥x(t) − x(t−1)∥21,

21



for t ≥ 2, since ∥u∥∞ ≤ 1
∥X∥1

(by assumption). Further, ∥ũ(1) − ũ(0)∥2∗,t = ∥ũ(1)∥2∗,t ≤ 2.

Combining with Proposition 2 and Lemma 1, we get that R̃eg
T

is upper bounded by

6 +
(d+ 1) log T

η
+ 16η∥X∥21

T−1∑
t=1

∥u(t+1) − u(t)∥2∞ +
1

∥X∥21

(
10η − 1

432η

) T−1∑
t=1

∥x(t+1) − x(t)∥21

≤ 6 +
(d+ 1) log T

η
+ 16η∥X∥21

T−1∑
t=1

∥u(t+1) − u(t)∥2∞ −
1

512η∥X∥21

T−1∑
t=1

∥x(t+1) − x(t)∥21.

Finally, we relax the assumption that ∥u(t)∥∞ ≤ 1/∥X∥1. In that case, one can reduce to the
above analysis by first rescaling all utilities by the factor 1/(B∥X∥1)—which in turn is equivalent
to rescaling the learning rate η by 1/(B∥X∥1). We then need to correct for the fact that the norm
of the difference of utilities gets rescaled by a factor 1/(B∥X∥1)2, and that the regret R̃eg

T
with

respect to the original utilities is a factor B∥X∥1 larger than the regret measured on the rescaled
utilities. Taking these considerations into account leads to the statement.

A.4 Main Result: Proof of Theorem 4

Finally, we are ready to establish Theorem 4. To this end, the main ingredient is the bound on the
second-order path lengths predicted by Theorem 3, which is recalled below.
Theorem 3. Suppose that Assumption 1 holds for some parameters B,L > 0. If all players follow
LRL-OFTRL with learning rate η ≤ min

{
1

256B∥X∥1
, 1
128nL∥X∥2

1

}
, where ∥X∥1 := maxi∈[[n]] ∥Xi∥1,

then
n∑
i=1

T−1∑
t=1

∥x(t+1)
i − x

(t)
i ∥

2
1 ≤ 6144nηB∥X∥31 + 1024n(d+ 1)∥X∥21 log T. (4)

Proof. By Assumption 1, it follows that for any player i ∈ [[n]],

(
∥u(t+1)

i − u
(t)
i ∥∞

)2
≤

L n∑
j=1

∥x(t+1)
j − x

(t)
j ∥1

2

≤ L2n

n∑
j=1

∥x(t+1)
j − x

(t)
j ∥

2
1,

by Jensen’s inequality. Hence, by Corollary 1 the regret RegTi of each player i ∈ [[n]] can be upper
bounded by

6B∥X∥1+
(d+ 1) log T

η
+16η∥X∥21L2n

n∑
j=1

T−1∑
t=1

∥x(t+1)
j −x(t)

j ∥
2
1−

1

512η∥X∥21

T−1∑
t=1

∥x(t+1)
i −x(t)

i ∥
2
1,

Summing over all players i ∈ [[n]], we have that
n∑
i=1

R̃eg
T

i ≤ 6nB∥X∥1 + n
(d+ 1) log T

η
+

n∑
i=1

(
16η∥X∥21L2n2 − 1

512η∥X∥21

) T−1∑
t=1

∥x(t+1)
i − x

(t)
i ∥

2
1

≤ 6nB∥X∥1 + n
(d+ 1) log T

η
− 1

1024η∥X∥21

n∑
i=1

T−1∑
t=1

∥x(t+1)
i − x

(t)
i ∥

2
1,

since η ≤ 1
256nL∥X∥2

1
. Finally, the theorem follows since

∑n
i=1 R̃eg

T

i ≥ 0, which in turn follows
directly from Theorem 2.

Theorem 4 (Detailed Version of Theorem 1). Suppose that Assumption 1 holds for some parameters
B,L > 0. If all players follow LRL-OFTRL with learning rate η = min

{
1

256B∥X∥1
, 1
128nL∥X∥2

1

}
,

then for any T ∈ N the regret RegTi of each player i ∈ [[n]] can be bounded as

RegTi ≤ 12B∥X∥1 + 256(d+ 1)max
{
nL∥X∥21, 2B∥X∥1

}
log T. (5)

Furthermore, the algorithm can be adaptive so that if player i is instead facing adversarial utilities,
then RegTi = O(

√
T ).
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Proof. First of all, by Assumption 1 we have that for any player i ∈ [[n]],

∥u(t+1)
i − u

(t)
i ∥

2
∞ ≤

L n∑
j=1

∥x(t+1)
j − x

(t)
j ∥1

2

≤ L2n

n∑
j=1

∥x(t+1)
j − x

(t)
j ∥

2
1.

Hence, summing over all t,
T−1∑
t=1

∥u(t+1)
i − u

(t)
i ∥

2
∞ ≤ L2n

T−1∑
t=1

n∑
j=1

∥x(t+1)
j − x

(t)
j ∥

2
1

≤ 6144n2L2ηB∥X∥31 + 1024n2L2(d+ 1)∥X∥21 log T,
where the last bound uses Theorem 3. As a result, from Corollary 1, if η = 1

128nL∥X∥2
1

,

R̃eg
T

i ≤ 6B∥X∥1 +
(d+ 1) log T

η
+ 16η∥X∥21

T−1∑
t=1

∥u(t+1)
i − u

(t)
i ∥

2
∞

≤ 12B∥X∥1 + 256(d+ 1)nL∥X∥21 log T.

Thus, the bound on RegTi follows directly since RegTi ≤ R̃eg
T

i by Theorem 2. The case where
η = 1

256B∥X∥1
is analogous.

Next, let us focus on the adversarial bound. Each player can simply check whether there exists a
time t ∈ [[T ]] such that

t−1∑
τ=1

∥u(τ+1)
i − u

(τ)
i ∥

2
∞ > 6144n2L2ηB∥X∥31 + 1024n2L2(d+ 1)∥X∥21 log t. (20)

In particular, we know from Theorem 3 that when all players follow the prescribed protocol (20)
will never by satisfied. On the other hand, if there exists time t so that (20) holds, then it suffices to
switch to any no-regret learning algorithm tuned to face adversarial utilities.

A.5 Extending the Analysis under Approximate Iterates

In this subsection we describe how to extend our analysis, and in particular Theorem 4, when the
OFTRL step of Algorithm 1 at time t is only computed with tolerance ϵ(t), in the sense of (6). We
start by extending Proposition 2 below.

Proposition 5 (Extension of Proposition 2). Let R̃eg
T

be the regret cumulated up to time T by the
internal OFTRL algorithm producing approximate iterates (λ(t),y(t)) ∈ X̃ , for any t ∈ [[T ]]. Then,
for any T ∈ N and learning rate η ≤ 1

50 ,

R̃eg
T ≤ 4 +

(d+ 1) log T

η
+ 5η

T∑
t=1

∥∥∥ũ(t) − ũ(t−1)
∥∥∥2
∗,t
− 1

27η

T−1∑
t=1

∥∥∥∥∥
(
λ
(t+1)
⋆

y
(t+1)
⋆

)
−

(
λ
(t)
⋆

y
(t)
⋆

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

+2

T∑
t=1

∥∥∥∥∥
(
λ(t)

y(t)

)
−

(
λ
(t)
⋆

y
(t)
⋆

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

,

where (
λ
(t)
⋆

y
(t)
⋆

)
:= argmax

(λ,y)∈X̃

{
η

〈
Ũ (t) + ũ(t−1),

(
λ
y

)〉
+ log λ+

d∑
r=1

log y[r]

}
.

Proof. Fix any (λ∗,y∗) ∈ X̃ . Then,
T∑
t=1

〈
ũ(t),

(
λ∗

y∗

)
−
(
λ(t)

y(t)

)〉
=

T∑
t=1

〈
ũ(t),

(
λ∗

y∗

)
−

(
λ
(t)
⋆

y
(t)
⋆

)〉
+

T∑
t=1

〈
ũ(t),

(
λ
(t)
⋆

y
(t)
⋆

)
−
(
λ(t)

y(t)

)〉

≤
T∑
t=1

〈
ũ(t),

(
λ∗

y∗

)
−

(
λ
(t)
⋆

y
(t)
⋆

)〉
+ 2

T∑
t=1

∥∥∥∥∥
(
λ(t)

y(t)

)
−

(
λ
(t)
⋆

y
(t)
⋆

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

,
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where the last inequality uses Hölder’s inequality along with the fact that ∥ũ(t)∥∗,(λ(t),y(t)) ≤ 2,
which in turn follows since ∥u(t)∥∞∥X∥1 ≤ 1 (by assumption). Finally, the proof follows as an
immediate consequence of Proposition 2.

We next proceed with the extension of Lemma 1.

Lemma 7 (Extension of Lemma 1). Suppose that ϵ(t) ≤ 1
8 , for any t ∈ [[T ]]. Then, for any time

t ∈ [[T − 1]] and learning rate η ≤ 1
256 ,

∥x(t+1) − x(t)∥1 ≤ 8∥X∥1

∥∥∥∥∥
(
λ
(t+1)
⋆

y
(t+1)
⋆

)
−

(
λ
(t)
⋆

y
(t)
⋆

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

+ 16∥X∥1ϵ(t+1) + 8∥X∥1ϵ(t),

where x(t) := y(t)/λ(t).

Proof. First, by the triangle inequality,∥∥∥∥∥
(
λ
(t+1)
⋆

y
(t+1)
⋆

)
−

(
λ
(t)
⋆

y
(t)
⋆

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

≥
∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

−

∥∥∥∥∥
(
λ
(t+1)
⋆

y
(t+1)
⋆

)
−
(
λ(t+1)

y(t+1)

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

−

∥∥∥∥∥
(
λ
(t)
⋆

y
(t)
⋆

)
−
(
λ(t)

y(t)

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

.

Now given that η ≤ 1
50 , it follows from Proposition 3 that∥∥∥∥∥

(
λ
(t+1)
⋆

y
(t+1)
⋆

)
−

(
λ
(t)
⋆

y
(t)
⋆
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(λ

(t)
⋆ ,y

(t)
⋆ )

≤ 1

2
,

which in turn—combined with Lemma 4—implies that∥∥∥∥∥
(
λ
(t+1)
⋆

y
(t+1)
⋆

)
−
(
λ(t+1)

y(t+1)

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

≤ 2

∥∥∥∥∥
(
λ
(t+1)
⋆

y
(t+1)
⋆

)
−
(
λ(t+1)

y(t+1)

)∥∥∥∥∥
(λ

(t+1)
⋆ ,y

(t+1)
⋆ )

.

Similarly, since ϵ(t) ≤ 1
8 , it follows that∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

≥ 1

2

∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥
(λ(t),y(t))

.

As a result,∥∥∥∥∥
(
λ
(t+1)
⋆

y
(t+1)
⋆

)
−

(
λ
(t)
⋆

y
(t)
⋆

)∥∥∥∥∥
(λ

(t)
⋆ ,y

(t)
⋆ )

≥ 1

2

∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥
(λ(t),y(t))

− 2ϵ(t+1) − ϵ(t). (21)

Next, we will prove that

max

{∣∣∣∣λ(t+1)

λ(t)
− 1

∣∣∣∣ ,max
r∈[[d]]

∣∣∣∣y(t+1)[r]

y(t)[r]
− 1

∣∣∣∣} ≤ 1

2
. (22)

Indeed, since ϵ(t), ϵ(t+1) ≤ 1
8 , it holds that∣∣∣∣1− λ(t)

λ
(t)
⋆

∣∣∣∣ ≤ 1

8
=⇒ 7

8
λ
(t)
⋆ ≤ λ(t) ≤

9

8
λ
(t)
⋆ ,

and ∣∣∣∣1− λ(t+1)

λ
(t+1)
⋆

∣∣∣∣ ≤ 1

8
=⇒ 7

8
λ
(t+1)
⋆ ≤ λ(t+1) ≤ 9

8
λ
(t+1)
⋆ .

Furthermore, for η ≤ 1
256 ,∣∣∣∣∣1− λ

(t+1)
⋆

λ
(t)
⋆

∣∣∣∣∣ ≤ 1

10
=⇒ 9

10
λ
(t)
⋆ ≤ λ(t+1)

⋆ ≤ 11

10
λ
(t)
⋆ ,
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by Proposition 3 and Lemma 4. Thus,

2

3
λ(t+1) ≤ 7

8

10

11

8

9
λ(t+1) ≤ λ(t) ≤ 9

8

10

9

8

7
λ(t+1) ≤ 3

2
λ(t+1),

in turn implying that ∣∣∣∣1− λ(t+1)

λ(t)

∣∣∣∣ ≤ 1

2
.

Similarly, we conclude that for any r ∈ [[d]],∣∣∣∣1− y(t+1)[r]

y(t)[r]

∣∣∣∣ ≤ 1

2
,

confirming (22). Hence, following the proof of Lemma 6, we derive that∥∥∥∥(λ(t+1)

y(t+1)

)
−
(
λ(t)

y(t)

)∥∥∥∥
(λ(t),y(t))

≥ 1

4∥X∥1

∥∥∥∥y(t+1)

λ(t+1)
− y(t)

λ(t)

∥∥∥∥
1

=
1

4∥X∥1
∥x(t+1) − x(t)∥1.

Combining this bound with (21) concludes the proof.

We also state the following immediate implication of Lemma 7.

Corollary 3. Suppose that ϵ(t) ≤ 1
8 , for any t ∈ [[T ]]. Then, for any t ∈ [[T − 1]] and learning rate

η ≤ 1
256 ,

∥x(t+1)−x(t)∥21 ≤ 192∥X∥21

∥∥∥∥∥
(
λ
(t+1)
⋆

y
(t+1)
⋆

)
−

(
λ
(t)
⋆

y
(t)
⋆

)∥∥∥∥∥
2

(λ
(t)
⋆ ,y

(t)
⋆ )

+768∥X∥21(ϵ(t+1))2+192∥X∥21(ϵ(t))2,

where x(t) := y(t)/λ(t).

As a result, combining this bound with Proposition 5 extends Corollary 1 with an error term propor-
tional to

∑T
t=1 ϵ

(t). Finally, the rest of the extension is identical to our proof of Theorem 4.

B Implementation via Proximal Oracles

In this section we provide the omitted proofs from Section 3.5 regarding the implementation of
LRL-OFTRL using proximal oracles (recall Equation (7)).

B.1 The Proximal Newton Method

In this subsection we describe the proximal Newton algorithm of Tran-Dinh et al. [2015], leading
to Theorem 5 we presented in Section 3.5. More precisely, Tran-Dinh et al. [2015] studied the
following composite minimization problem:

min
x̃∈Rd+1

{F (x̃) := f(x̃) + g(x̃)} , (23)

where f is a (standard) self-concordant and convex function, and g : Rd+1 → R ∪ {+∞} is a
proper, closed and convex function. In our setting, we will let g be defined as

g(x̃) :=

{
0 if x̃ ∈ X̃ ,
+∞ otherwise.

Further, for a given time t ∈ N, we let

f : x̃ 7→ −η
〈
Ũ (t) + ũ(t−1), x̃

〉
−
d+1∑
r=1

log x̃[r].

Before we describe the proximal Newton method, let us define s̃k as follows.
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s̃k := argmin
x̃∈X̃

{
f(x̃k) + (∇f(x̃k))⊤(x̃− x̃k) +

1

2
(x̃− x̃k)

⊤∇2f(x̃k)(x̃− x̃k)

}
, (24)

for some x̃k ∈ Rd+1
>0 . We point out that the optimization problem (24) can be trivially solved when

we have access to a (local) proximal oracle—given in Equation (7).

In this context, the proximal Newton method of Tran-Dinh et al. [2015] is given in Algorithm 2.
Their algorithm proceeds in two phases. In the first phase we perform damped steps of proximal
Newton until we reach the region of quadratic convergence. Afterwards, we perform full steps of
proximal Newton until the desired precision ϵ > 0 has been reached. Below we summarize the main
guarantee regarding Algorithm 2, namely [Tran-Dinh et al., 2015, Theorem 9].

Theorem 7 ( [Tran-Dinh et al., 2015]). Algorithm 2 returns x̃K ∈ Rd+1
>0 such that ∥x̃K − x̃∗∥x̃∗ ≤

2ϵ after at most

K =

⌊
f(x̃0)− f(x̃∗)

0.017

⌋
+

⌊
1.5 ln ln

(
0.28

ϵ

)⌋
+ 2

iterations, for any ϵ > 0, where x̃∗ = argminx̃ F (x̃), for the composite function F defined in (23).

To establish Theorem 5 from this guarantee, it suffices to initialize Algorithm 2 at every iteration
t ≥ 2 with x̃0 := x̃(t−1) = (λ(t−1),y(t−1)). Then, as long as ϵ(t−1) is sufficiently small, the num-
ber of iterations predicted by Theorem 7 will be bounded by O(log log(1/ϵ)), in turn establishing
Theorem 5.

Algorithm 2: Proximal Newton [Tran-Dinh et al., 2015]
Data: Initial point x̃0

Precision ϵ > 0
Constant σ := 0.2

1 for k = 1, . . . ,K do
2 Obtain the proximal Newton direction d̃k ← s̃k − x̃k, where s̃k is defined in (24)
3 Set λk ← ∥d̃k∥x̃k

4 if λk > 0.2 then
5 x̃k+1 ← x̃k + αkd̃k, where αk := (1 + λk)

−1 [▷ Damped Step]
6 else if λk > ϵ then
7 x̃k+1 ← x̃k + d̃k [▷ Full Step]
8 else
9 return x̃k

B.2 Proximal Oracle for Normal-Form and Extensive-Form Games

In order to show that the proximal oracle of Section 3.5 can be implemented efficiently for prob-
ability simplexes (i.e., the strategy sets of normal-form games) and sequence-form strategy spaces
(i.e., the strategy sets of extensive-form games), we will prove a slightly stronger result concerning
treeplex sets, of which sequence-form strategy spaces are instances.

Definition 1. A set Q ⊆ [0,+∞)d, d ≥ 1, is treeplex if it is:

1. a simplex Q = ∆d;

2. a Cartesian product of treeplex sets Q1 × · · · ×QK; or

3. (Branching operation) a set of the form

△(Q1, . . . , QK) := {(x,x[1]q1, . . . ,x[K]qK) : x ∈ ∆K , qk ∈ Qk ∀k ∈ [[K]]},

where Q1, . . . , QK are treeplex.
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We will show that any treeplexQ is such that [0, 1]Q admits an efficient (positive-definite) quadratic
optimization oracle. This is sufficient, since it is well-known that every sequence-form strategy space
X is treeplex (e.g., Hoda et al. [2010]) and therefore, by definition, so is the set {(1,x) : x ∈ X}.
Introduce the value function

VQ(t; g,w) := min
x∈tQ

{
−g⊤x+

1

2

d∑
r=1

(
x[r]

w[r]

)2
}

(t ≥ 0,w > 0) (25)

(note the rescaling by t in the domain of the minimization). We will be interested in the derivative
of VQ(t; g,w), which we will denote as6

λQ(t; g,w) :=
d

dt
VQ(t; g,w).

Preliminaries on Strictly Monotonic Piecewise-Linear (SMPL) Functions
Definition 2 (SMPL function and standard representation). Given an interval I ⊆ R and a function
f : I → R, we say that f is SMPL if it is strictly monotonically increasing and piecewise-linear on
I .
Definition 3 (Quasi-SMPL function). A quasi-SMPL function is a function f : R→ [0,+∞) of the
form f(x) = [g(x)]+ where g(x) : R→ R is SMPL and [ · ]+ := max{0, · }.
Definition 4. Given a SMPL or quasi-SMPL function f , a standard representation for it is an ex-
pression of the form

f(x) = ζ + α0x+

S∑
s=1

αs[x− βs]+,

valid for all x in the domain of f , where S ∈ N ∪ {0} and β1 < · · · < βS . The size of the standard
representation is defined as the natural number S.

We now mention four basic results about SMPL and quasi-SMPL functions. The proofs are elemen-
tary and omitted.
Lemma 8. Let f : I → R be SMPL, and consider a standard representation of f of size S. Then,
for any ζ ∈ R and α ≥ 0, a standard representation for the SMPL function I ∋ x 7→ ζ+αf(x) can
be computed in O(S + 1) time.
Lemma 9. The sum f1 + · · ·+ fn of n SMPL (resp., quasi-SMPL) functions fi : I → R is a SMPL
(resp., quasi-SMPL) function I → R. Furthermore, if each fi admits a standard representation of
size Si, then a standard representation of size at most S1 + · · ·+ Sn for their sum can be computed
in O((S1 + · · ·+ Sn + 1) log n) time.
Lemma 10. Let f : R → R be SMPL, and consider a standard representation of f of size S.
Then, for any β ∈ R, a standard representation of size at most S for the quasi-SMPL function
I ∋ x 7→ [f(x)− β]+ can be computed in O(S + 1) time.
Lemma 11. The inverse f−1 : range(f) → R of a SMPL function f : I → R is SMPL. Further-
more, if f admits a standard representation of size S, then a standard representation for f−1 of size
at most S can be computed in O(S + 1) time.
Lemma 12. Let f : R → [0,+∞) be quasi-SMPL. The restricted inverse f−1 : (0,+∞) →
R of f is SMPL, where we restrict the domain to (0,+∞) because f−1(0) may be multivalued.
Furthermore, if f admits a standard representation of size S, then a standard representation of size
at most S for f−1 can be computed in O(S + 1) time.

Proof. We have f(x) = [g(x)]+ where g is SMPL. It follows that the function ḡ : I → R defined
as ḡ(x) = g(x) for the interval I = {x : g(x) > 0} is SMPL as well. For any x such that f(x) > 0
we have x ∈ I , and thus f−1 = g−1, and it follows from Lemma 11 that f−1 is SMPL.

6For t = 0 we define λQ(t; g,w) in the usual way as

λQ(0; g,w) = lim
t→0+

VQ(t; g,w)− VQ(0; g,w)

t
= lim

t→0+

VQ(t; g,w)

t
.
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Lemma 13. Let f : [0,+∞) → R be a SMPL function, and consider the function g that maps
y to the unique solution to the equation x = [y − f(x)]+. Then, g is quasi-SMPL and satisfies
g(y) = [(x+f)−1(y)]+, where (x+f)−1 denotes the inverse of the SMPL function x 7→ x+f([x]+).

Proof. For any y ∈ R, the function hy : x 7→ x − [y − f(x)]+ is clearly SMPL on [0,+∞).
Furthermore, hy(0) ≤ 0 and hy(+∞) = +∞, implying that hy(x) = 0 has a unique solution. We
now show that g(y) = [(x + f)−1(y)]+ is that solution, that is, it satisfies g(y) = [y − f(g(y))]+
for all y ∈ R. Fix any y ∈ R and let

ḡ := (x+ f)−1(y) ⇐⇒ ḡ + f([ḡ]+) = y ⇐⇒ ḡ = y − f([ḡ]+) (26)

There are two cases:

• If ḡ ≥ 0, then g(y) = [ḡ]+ = ḡ, and so we have

g(y) = [ḡ]+ = [y − f([ḡ]+)]+ = [y − f(g(y))]+,

as we wanted to show.

• Otherwise, ḡ < 0 and g(y) = 0. From (26), the condition ḡ < 0 implies y < f([ḡ]+) =
f(0). So, it is indeed the case that

0 = g(y) = [y − f(0)]+ = [y − f(g(0))]+,

as we wanted to show.

Finally, we note that the function (x + f)−1 : R → R is SMPL due to Lemma 11, implying that
g(y) is quasi-SMPL.

Central result The following result is central in our analysis.

Lemma 14. For any treeplex Q ⊆ Rd, gradient g ∈ Rd, and center w ∈ Rd>0, the function t 7→
λQ(t; g,w) is SMPL, and a standard representation of it of size d can be computed in polynomial
time in d.

Proof. We will prove the result by structural induction on Q.

• First, we consider the case where Q is a Cartesian product,

Q = Q1 × · · · ×QK .

In that case, the value function decomposes as follows

VQ(t; g,w) =

K∑
k=1

min
xk∈tQk

{
−g⊤

k xk +
1

2

dk∑
r=1

(
xk[r]

wk[r]

)2
}

=

K∑
k=1

VQk
(t; gk,wk).

By linearity of derivatives, we have

λQ(t; g,w) =

K∑
k=1

λQk
(t; gk,wk).

From Lemma 9, we conclude that λQ(t; g,w) is a SMPL function with domain [0,+∞) which
admits a standard representation of size at most d = d1 + · · · + dK computable in time
O(d logK) starting from the standard representation of each of the λQk

(t; gk,wk).

• Second, consider the case where Q is a simplex or the result of a branching operation

△(Q1, . . . , QK) = {(x,x[1]q1, . . . ,x[K]qK) : x ∈ ∆K , qk ∈ Qk ∀k ∈ [[K]]},

where Qk ∈ Rdk . With a slighty abuse of notation, we will treat the two cases together, consid-
ering the K-simplex ∆K as a branching operation over empty sets Qk = ∅.
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In this case, we can write

g = (g•[1], . . . , g•[K], g1 ∈ Rd1 , · · · , gK ∈ RdK ), and

w = (w•[1], . . . ,w•[K],w1 ∈ Rd1>0, · · · ,wK ∈ RdK>0).

The value function then decomposes recursively as

VQ(t; g,w) = min
x•∈t∆K

{(
−

K∑
r=1

g•[r]x•[r] +
1

2

K∑
r=1

(
x•[r]

w•[r]

)2
)

+

K∑
k=1

min
xk∈x•[k]Qk

{
−g⊤

k xk +

dk∑
r=1

(
xk[r]

wk[r]

)2
}}

= min
x•∈t∆K

{(
−

K∑
r=1

g•[r]x•[r] +
1

2

K∑
r=1

(
x•[r]

w•[r]

)2
)

+ VQk
(x•[k]; gk,wk)

}
.

(27)

Suppose that for each k ∈ [[K]], λQk
(t; gk,wk) is piecewise linear and monotonically increasing

in t. Now we consider the KKT conditions for x• in Equation (27):

−g•[k] +
x•[k]

w•[k]2
+ λQk

(x•[k]; gk,wk) = λ• + µ[k] ∀k ∈ [[K]] (Stationarity)

x• ∈ t ·∆K (Primal feasibility)

λ• ∈ R,µ ∈ Rd≥0 (Dual feasibility)

µ[k]x•[k] = 0 ∀k ∈ [[K]] (Compl. slackness)

Solving for x•[k] in the stationarity condition, and using the conditions x•[k]µ[k] = 0 and
µ[k] ≥ 0, it follows that for all k ∈ [[K]]

x•[k] = w•[k]
2
(
λ• + µ[k] + g•[k]− λQk

(x•[k]; gk,wk)
)

= w•[k]
2
[
λ• + g•[k]− λQk

(x•[k]; gk,wk)
]+
. (28)

Strict monotonicity and piecewise-linearity of x•[k] as a function of λ•. Given the prelim-
inaries on SMPL functions, it is now immediate to see that x•[k] is unique as a function of λ•.
Indeed, note that (28) can be rewritten as

x•[k] =
[
(w•[k]

2)λ• −w•[k]
2(−g•[k] + λQk

(x•[k]; gk,wk))
]+
,

which is a fixed-point problem of the form studied in Lemma 13 for y = (w•[k]
2)λ• and

function fk defined as

fk(x•[k]) = w•[k]
2(−g•[k] + λQk

(x•[k]; gk,wk)),

which is clearly SMPL by inductive hypothesis. Hence, the unique solution to the previous
fixed-point equation is given by the quasi-SMPL function

gk : λ• 7→
1

w•[k]2
[
(x•[k] + fk)

−1(λ•)
]+
,

a standard representation of which can be computed in time O(d+ 1) by combining the results
of Lemmas 8, 10 and 11 given that a standard representation of λQk

(t; gk,wk) of size d is
available by inductive hypothesis.

Strict monotonicity and piecewise-linearity of λ• as a function of t. At this stage, we know
that given any value of the dual variable λ•, the unique value of the coordinate x•[k] that solves
the KKT system can be computed using the quasi-SMPL function gk. In turn, this means that
we can remove the primal variables x• from the KKT system, leaving us a system in λ• and t
only. We now show that the solution λ⋆• of that system is a SMPL function of t ∈ [0,+∞).
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Indeed, the value of λ⋆• that solves the KKT system has to satisfy the primal feasibility condition

t =

K∑
k=1

x•[k] =

K∑
k=1

gk(λ•).

Fix any t > 0. The right-hand side of the equation is a sum of quasi-SMPL functions. Hence,
from Lemma 9, we have that the right-hand side has a standard representation of size at most
K+

∑K
k=1 dk = d can be computed in timeO(d logK). Furthermore, from Lemma 12, we have

that the λ⋆• that satisfies the equation is unique, and in fact that the mapping (0,+∞) ∋ t 7→ λ⋆•
is SMPL with standard representation of size at most d.

Relating λ• and λQ(t; g,w). Since λ⋆•(t) is the coefficient on t in the Lagrangian relaxation
of (27), it is a subgradient of VQ(t; g,w), and since there is a unique solution, we get that it is
the derivative, that is,

λ⋆•(t) = λQ(t; g,w)

for all t ∈ (0,+∞). To conclude the proof by induction, we then need to analyze the
case t = 0, which has so far been excluded. When t = 0, the feasible set tQ is a
singleton, and VQ(0; g,w) = 0. Since VQ(t; g,w) is continuous on [0,+∞), and since
limt→0+ λQ(t; g,w) = limt→0+ λ

⋆
•(t) exists since λ⋆•(t) is piecewise-linear, then by the mean

value theorem,

λQ(0; g,w) = lim
t→0+

λ⋆•(t),

that is, the continuous extension of λ⋆• must be (right) derivative of VQ(t; g,w) in 0. As extend-
ing continuously λ⋆•(t) clearly does not alter its being SMPL nor its standard representation, we
conclude the proof of the inductive case.

Lemma 14 also provides a constructive way of computing the argmin of (25) in polynomial time for
any t ∈ [0,+∞). To conclude the construction of the proximal oracle, it is then enough to show
how to pick the optimal value of t ∈ [0, 1] that minimizes

min
x∈[0,1]Q

{
−g⊤x+

1

2

d∑
r=1

(
x[r]

w[r]

)2
}

= min
t∈[0,1]

VQ(t; g,w).

That is easy starting from the derivative λQ(t; g,w), which is a SMPL function by Lemma 14.
Indeed, if λQ(0; g,w) ≥ 0, then by monotonicity of the derivative we know that the optimal value
of t is t = 0. Else, if λQ(1; g,w) ≤ 0, again by monotonicity we know that the optimal value of t
is t = 1. Else, there exists a unique value of t ∈ (0, 1) at which the derivative of the objective is 0,
and such a value can be computed exactly using Lemma 11.

C Experimental Results

In this section we provide preliminary experimental results in order to verify our theoretical findings,
and in particular the per-player regret bound established in Theorem 4. More specifically, we inves-
tigate the behavior of our learning dynamics (LRL-OFTRL) in four standard extensive-form games
used in the literature: 2-player and 3-player Kuhn poker [Kuhn, 1950]; 2-player Goofspiel [Ross,
1971];7 and the baseline version of (2-player) Sheriff [Farina et al., 2019]. From those games, only
2-player Kuhn poker is a zero-sum game. Our findings are summarized in Figure 1.

7We consider instances of Goofspiel with r = 3 cards and limited information—the actions of the other
player are only observed at the end of the game. Also, we note that the tie-breaking mechanism makes the
game general-sum.
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Figure 1: The regret of the players when they follow our learning dynamics, LRL-OFTRL; after a
very mild tuning process, we selected the same learning rate η := 0.5 for all games. The x-axis
indexes the iteration, while the y-axis the regret. The scale on the x-axis is logarithmic. We observe
that the regret of each player grows as O(log T ), verifying Theorem 4.
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