
Bandit Linear Optimization for Sequential Decision Making
and Extensive-Form Games

Gabriele Farina,1 Robin Schmucker,2 Tuomas Sandholm1,2,3,4,5

1Computer Science Department, Carnegie Mellon University, 2Machine Learning Department, Carnegie Mellon University
3Strategic Machine, Inc., 4Strategy Robot, Inc., 5Optimized Markets, Inc.

gfarina@cs.cmu.edu, rschmuck@cs.cmu.edu, sandholm@cs.cmu.edu

Abstract

Tree-form sequential decision making (TFSDM) extends clas-
sical one-shot decision making by modeling tree-form inter-
actions between an agent and a potentially adversarial en-
vironment. It captures the online decision-making problems
that each player faces in an extensive-form game, as well as
Markov decision processes and partially-observable Markov
decision processes where the agent conditions on observed
history. Over the past decade, there has been considerable
effort into designing online optimization methods for TFSDM.
Virtually all of that work has been in the full-feedback set-
ting, where the agent has access to counterfactuals, that is,
information on what would have happened had the agent cho-
sen a different action at any decision node. Little is known
about the bandit setting, where that assumption is reversed
(no counterfactual information is available), despite this latter
setting being well understood for almost 20 years in one-shot
decision making. In this paper, we give the first algorithm for
the bandit linear optimization problem for TFSDM that offers
both (i) linear-time iterations (in the size of the decision tree)
and (ii) O(

√
T) cumulative regret in expectation compared

to any fixed strategy, at all times T . This is made possible
by new results that we derive, which may have independent
uses as well: 1) geometry of the dilated entropy regularizer,
2) autocorrelation matrix of the natural sampling scheme for
sequence-form strategies, 3) construction of an unbiased es-
timator for linear losses for sequence-form strategies, and 4)
a refined regret analysis for mirror descent when using the
dilated entropy regularizer.

1 Introduction
Tree-form sequential decision making (TFSDM) models
multi-stage online decision-making problems (Farina, Kroer,
and Sandholm 2019). In TFSDM, an agent interacts sequen-
tially with a potentially reactive environment in two ways: (i)
selecting actions at decision points and (ii) partially observing
the environment at observation points. Decision points and
observation points alternate along a tree structure. TFSDM
captures the online decision process that each player faces
in an extensive-form game, as well as Markov decision pro-
cesses and partially-observable Markov decision processes
where the agent conditions on observed history. Regret mini-
mization, one of the main mathematical abstractions in the

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

field of online learning, has proved to be an extremely versa-
tile tool for TFSDM. For instance, over the past decade, regret
minimization algorithms such as counterfactual regret min-
imization (CFR) (Zinkevich et al. 2007) and related newer,
faster algorithms have become popular for solving zero-sum
games (Tammelin et al. 2015; Brown and Sandholm 2015;
Brown, Kroer, and Sandholm 2017; Brown and Sandholm
2017a, 2019a). These newer algorithms served as an impor-
tant component in the computational game-solving pipelines
that achieved several recent milestones in computing super-
human strategies in two-player limit Texas hold’em (Bowl-
ing et al. 2015), two-player no-limit Texas hold’em (Brown
and Sandholm 2017b,c) and multi-player no-limit Texas
hold’em (Brown and Sandholm 2019b).

However, those methods rely on having access to counter-
factuals, that is, information on what would have happened
had the agent chosen a different action at any decision point.
While this assumption is reasonable when regret minimiza-
tion algorithms are used in self-play (for instance, as a way to
converge to a Nash equilibrium in an extensive-form game),
it limits their applicability in online decision-making settings,
where the algorithm is deployed to learn strategies (for in-
stance, exploitative strategies) against a non-stationary and
potentially adversary opponent. In the bandit setting that
assumption is reversed, and no counterfactual information
is available to the online decision maker. Despite this latter
setting being well understood for almost 20 years in one-shot
decision making, surprisingly little is known about the ban-
dit optimization setting in sequential decision making. Part
of the reason for this gap is that the multi-stage nature of
TFSDM poses challenges that are not present in one-shot de-
cision making, such as 1) not knowing what the environment
would have done in parts of the tree that were not reached
(and not even knowing the current path of play if you do
not observe the environment’s actions), and 2) having an ex-
ponential number of available sequential policies to choose
from.

In this paper we give the first algorithm for the well-
established bandit linear optimization problem in TFSDM
and show that it achieves O(

√
T) expected regret compared

to any fixed strategy even when playing against a reactive
environment, while at the same time only requiring a single
linear time tree traversal per iteration. To our knowledge,
there has been only one prior approach to bandit linear op-

Gradient estimator
(Section 6.2)

Full-information
regret minimizer R̃

(Section 5)

Strategy sampler
(Section 6.1)

Bandit regret
minimizer R

(`t)>yt ∈ R ˜̀t xt yt

Figure 1: Overview of the construction of our bandit regret minimizerR.

timization that offers both (i) iterations that are polynomial
in the number of sequences in the decision process and (ii)
Õ(
√
T) expected regret compared to any fixed strategy (Aber-

nethy, Hazan, and Rakhlin 2008). That work was for general
convex sets. By focusing on TFSDM, we achieve faster itera-
tions and convergence in fewer iterations. Our algorithm runs
in linear time per iteration unlike the prior algorithm which
requires that an eigendecomposition of a Hessian matrix
be computed at each iteration—a cubic-time operation. Our
expected regret is O(

√
T) instead of the prior algorithm’s

O(
√
T log T). One application of our algorithm and theory is

to find exploitative strategies for an agent in extensive-form
games against a non-adaptive opponent (that is, an opponent
that cannot learn from our prior play in previous iterations
of the extensive-form game) but one that can randomize and
condition its actions on its observations of our play within
any iteration of the extensive-form game. We provide ex-
periments in this setting. To our knowledge, this is the first
implementation of bandit optimization for TFSDM.

A known weakness of the approach of Abernethy, Hazan,
and Rakhlin (2008), which is also a weakness in our approach,
is that the bound on regret holds not with high probability
but only in expectation. This weakness can be eliminated in
theory if iterations are allowed to take exponential time in the
number of sequences in the decision process (Bartlett et al.
2008; Hazan and Li 2016) or a recent manuscript suggests
that it can be achieved by accepting slower O(T 2/3) conver-
gence (Braun and Pokutta 2016). Another approach achieves
Õ(n9.5

√
T) regret, where n is the size of the input TFSDM

problem, at the cost of having each iteration incur into a factor
that grows proportionally to the time horizon T (Bubeck, Lee,
and Eldan 2017). Due to this weakness, in our approach, the
one of Abernethy, Hazan, and Rakhlin (2008) and other meth-
ods that do not enjoy a high-probability regret bound, when
used in self play in two-player zero-sum games, the average
regrets of the players might not converge to zero—but if they
do, the average strategies converge to a Nash equilibrium.
It is an open problem (except for relatively simple settings
like simplex (Auer et al. 2002) and sphere (Abernethy and
Rakhlin 2009)) whether in-high-probability Õ(

√
T) regret

bounds can be obtained in the bandit setting in polynomial-
time iterations. Abernethy and Rakhlin (2009) presented a
template for deriving such bounds, but several pieces therein
need to be instantiated to complete the proof of bounds. The
theory of the present paper offers solutions for some of those
pieces for general TFSDM problems, as we will discuss, so
our paper may help pave the way to solving the open problem
for TFSDM.

1.1 Overview of Our Approach
In this subsection we give an overview of the key ideas be-
hind our method. We assume some basic familiarity with
the concept of full-information and bandit regret minimizers;
both concepts are recalled in Section 3.

The approach we follow in this paper combines several
tools and insights. We construct a bandit regret minimizerR
starting from a full-information regret minimizer R̃, that is,
one that has access to the full loss vector at each iteration.
Our bandit regret minimizerR works as follows:

(i) the next strategy yt forR is computed starting from the
strategy xt output by R̃. We employ a specific unbiased
sampling scheme to sample yt from xt. At all times t,
we guarantee that E[yt|y1, . . . ,yt−1] = xt;

(ii) each loss evaluation (that is, the negative of the reward of
the strategy that we played in the most recent iteration)
(`t)>yt ∈ R is used to constructs an artificial loss vector
˜̀t in a specific way that makes it an unbiased estimator
of `t. This artificial loss vector is then passed to R̃.

The construction ofR is summarized pictorially in Figure 1.
We implement R̃ using the online mirror descent algorithm
paired with a type of regularizer called the dilated entropy
distance-generating function (DGF). The reasons behind this
choice are twofold. First, it enables an efficient implementa-
tion of R̃, since projections onto sequential strategy spaces
based on the dilated entropy DGF amount to a (linear-time)
traversal of the decision process. Second, it serves as the
basis for defining a local, time-dependent norm ‖ · ‖t that
combines well with the regret bound of online mirror descent.
Two steps are critical in the proof of the regret bound for the
overall regret minimizerR. First, we show that, in expecta-
tion, ‖ ˜̀‖∗,t is upper bounded by a small (time-independent)
constant c (the same property would not hold for a generic
time-independent norm). This, combined with the local-norm
regret bound mentioned above, can be used to show that the
regret cumulated by R̃ is O(

√
T) in expectation. Second,

we use the unbiasedness of yt and ˜̀t to conclude that the
expected regret accumulated byR matches that of R̃.

1.2 Relationships to Related Research
The idea of constructing a bandit regret minimizer starting
from a full-information regret minimizer was used in Aber-
nethy and Rakhlin (2009). A general construction of an un-
biased estimator ˜̀t of `t starting from the loss evaluation
(`t)>yt appears in Bartlett et al. (2008). We generalize their
argument to handle strategy domains where the vector space

spanned by all decision vectors is rank deficient (this is the
case for sequential strategy spaces), and give several new,
fundamental properties about the autocorrelation matrix of
the standard sampling scheme for sequence-form strategies.
The idea of using time-dependent norms to obtain a tighter
regret analysis than time-independent norms appeared in, for
example, Abernethy, Hazan, and Rakhlin (2008); Abernethy
and Rakhlin (2009); Shalev-Shwartz (2012), while the use of
the dilated entropy regularizer in the context of sequential de-
cision making and extensive-form games for other purposes
goes back to the original work by Hoda et al. (2010), with
important newer practical observations by Kroer et al. (2020).

EXP3 (Auer et al. 2002) is credited to be the first
bandit regret minimizer for simplex domains. GEOMET-
RICHEDGE (Dani, Kakade, and Hayes 2008) is a general-
purpose bandit regret minimizer that can be applied to any set
of decisions. However, it requires one to compute a barycen-
tric spanner (Awerbuch and Kleinberg 2004), which in our
setting would have prohibitive pre-processing cost. Further-
more, it runs in exponential time per iteration in the general
case, and it is not known whether that can be avoided in our
setting.

Lanctot et al. (2009) suggested as a side note that a specific
online variant of their Monte Carlo CFR (MCCFR) algorithm
(as opposed to the usual self-play MCCFR algorithm) could
be used for online decision making without counterfactuals.
Their paper did not provide theoretical guarantees for that on-
line variant. The well-established bandit linear optimization
setting considered in this paper is quite different from the one
that online MCCFR implicitly operates on. First, in bandit
optimization (our setting), each strategy is output before the
environment reveals feedback, and the only feedback that
the environment gives is a single real-valued reward (`t)>xt.
In contrast, in online MCCFR the feedback is not just the
final payoff, as online MCCFR needs to know which path
was followed in the game tree and the terminal leaf, so that
regrets can be updated for all decision nodes of the player
on the path from the root to the leaf. So, even if a version of
online MCCFR with theoretical guarantees were developed,
it would not be an algorithm for bandit linear optimization,
but rather an algorithm for a different (and easier, since more
feedback is given to the decision maker) online learning set-
ting. Depending on the applications, that setting—which,
to our knowledge, has never been investigated nor formally
proposed—might be more or less natural than bandit lin-
ear optimization. Since the bandit linear optimization model
does not require that the decision maker observe the path
of play, it can be used to model settings in which (i) there
is no path in the game tree, because the loss given by the
environment does not represent playing against an opponent;
(ii) the decision maker does not interact immediately with
the environment: the output strategy is evaluated at a later
time by the environment and feedback is given only then;
(iii) the environment does not inform the decision maker of
the specific trajectory taken in the interaction out of privacy
concerns; or any combination of the above.

2 Review of Sequential Decision Making
The decision process of an TFSDM problem is structured
as a tree of decision points—in which an action must be
selected by the agent—and observation points—in which the
environment reveals a signal to the agent. We denote the set
of decision points in the TFSDM problem as J , and the set
of observation points as K. At each decision point j ∈ J , the
agent selects an action from the set Aj of available actions.
At each observation point k ∈ K, the agent observes a signal
sk from the environment out of a set of possible signals Sk.
We denote by ρ the transition function of the process. Picking
action a ∈ Aj at decision point j ∈ J results in the process
transitioning to ρ(j, a) ∈ J ∪ K ∪ {�}, where � denotes the
end of the decision process. Similarly, the process transitions
to ρ(k, s) ∈ J ∪ K ∪ {�} after the agent observes signal
s ∈ Sk at observation point k ∈ K. In line with the game
theory literature, we call a pair (j, a) where j ∈ J and
a ∈ Aj a sequence. The set of all sequences is denoted as
Σ := {(j, a) : j ∈ J , a ∈ Aj}. For notational convenience,
we will often denote an element (j, a) in Σ as ja without
using parentheses. Given a sequence ja ∈ Σ, we denote
by uja the vector such that (uja)j′a′ = 1 if the (unique)
path from the root node to action a′ at decision point j′
passes through action a at decision point j, and (uja)j′a′ = 0
otherwise. Finally, given a node v ∈ J ∪ K, we denote by
pv its parent sequence, defined as the last sequence (that is,
decision point-action pair) encountered on the path from the
root to v. If the agent does not act before v (that is, v is the
root of the process or only observation points are encountered
on the path from the root to v), we let pv = ∅. We use the
symbol Nv to denote the number of decision points in the
subtree rooted at v. If v itself is a decision point, v is included
in the count.

Strategies in TFSDM problems A strategy for an agent
in an TFSDM problem specifies a distribution over the set
of actions Aj at each decision point j ∈ J . We represent
a strategy using the sequence-form representation, that is,
as a vector x ∈ R|Σ|≥0 whose entries are indexed by Σ. The
entry xja contains the product of the probabilities of all
actions at all decision points on the path from the root of the
process to action a at decision point j ∈ J . In order to be
a valid sequence-form strategy, the entries in x must satisfy
the following consistency constraints (Romanovskii 1962;
Koller, Megiddo, and von Stengel 1994; von Stengel 1996):∑

a∈Aj
xja = xpj ∀j ∈ J s.t. pj 6= ∅,

∑
a∈Aj

xja = 1 ∀j ∈ J s.t. pj = ∅.
(1)

Since ∅ is not an element in Σ, there is no entry in x that
corresponds to ∅, and the notation x∅ is invalid. We will
slightly abuse notation and refer to x∅ to mean the constant
value 1. Finally, we let Π ⊆ R|Σ|≥0 be the finite set of all pure
(also known as deterministic) sequence-form strategies, that
is, strategies that assign probability 1 to exactly one action at
each decision point. The set of all sequence-form strategies,

denoted Q, is the convex hull Q := co Π of the set of pure
strategies Π.

3 Regret Minimization
A regret minimizer is an abstraction for a repeated decision
maker. The decision maker repeatedly interacts with an un-
known (possibly adversarial) environment by choosing points
x1, . . . ,xT from a set X ⊆ Rn of feasible decisions and
incurring a linear loss (`1)>x1, . . . , (`T)>xT after each iter-
ation. For the purposes of this paper, the points are strategies
(policies) for the agent, so we will use the terms point and
strategies interchangeably in this section.

The quality metric for a regret minimizer is its regret,
which measures the difference in loss against the best fixed
(that is, time-independent) decision in hindsight. Formally,
given a decision z ∈ X , the regret cumulated against z up to
time T is defined as

RT (z) :=

T∑
t=1

(`t)>(xt − z).

A “good” (aka. Hannan consistent) minimizer is such that
the regret compared to any z ∈ X grows sublinearly in T .
This paper is interested in two types of regret minimizers,
which differ in the feedback that the algorithm receives.

Full-Information Setting. In the full-information setting,
at all time steps t = 1, . . . , T , the regret minimizer interacts
with the environment as follows:

• NEXTSTRATEGY(): the agent outputs the next point
xt ∈ X ⊆ Rn. The next decision can depend on the
past decisions x1, . . . ,xt−1 as well as the corresponding
feedback `1, . . . , `t−1, which we define next;

• OBSERVELOSS(`t): the environment selects a loss vector
`t ∈ Rn and the agent observes `t. The loss vector can
depend on the decisions x1, . . . ,xt that were output by
the regret minimizer so far.

Our construction of R̃ (Section 4) provides a full-information
regret minimizer for the set X = Q. So, R̃’s decisions are
(potentially randomized) sequence-form strategies.

Bandit Setting. In the bandit setting the environment does
not reveal the selected loss vector `t at each iteration, but
only the evaluation (`t)>xt of the loss function for the latest
decision xt. Formally, at all time steps t = 1, . . . , T , the
regret minimizer interacts with the environment as follows:

• NEXTSTRATEGY(): the agent outputs the next point
xt ∈ X ⊆ Rn. As in the full-information setting, the
next strategy can depend on the past strategies and corre-
sponding feedbacks, which we define next;

• OBSERVELOSSEVALUATION((`t)>xt): the environ-
ment selects a loss vector `t ∈ Rn and the agent observes
(`t)>xt. We assume without loss of generality that
(`t)>xt ∈ [0, 1] at all t. The loss vector can depend on
the decisions x1, . . . ,xt−1 that were output by the regret
minimizer before time t, but not on xt.

Since the regret minimizer only observes (`t)>xt, it cannot
compute any counterfactual information (that is, compute
the value of the loss at a decision other than the one that was
output). Currently, the bandit setting represents the hardest
setting in which the information-theoretic upper bound of
Õ(
√
T) regret is known to be attainable, but very little is

known about sequential decision making under that setting,
and existing algorithms are not computationally practical.1

4 Dilated Entropy and Local Norms
The dilated entropy distance-generating function (DGF) is a
regularizer that induces a notion of distance that is suitable
for the sequence-form strategies spaces. This regularizer was
first introduced in the context of extensive-form games (Hoda
et al. 2010). Kroer et al. (2020)—with earlier results by Kroer
et al. (2015)—analyzed several properties of this function,
including its 1-strong convexity with respect to the `1 and
`2 norms. They also showed that the dilated entropy DGF
leads to state-of-the-art convergence guarantees in iterative
methods for computing Nash equilibrium in two-player zero-
sum extensive-form games of perfect recall. We define this
kind of DGF as follows.
Definition 1. Let co Π be the set of sequence-form strate-
gies for the TFSDM problem. The dilated entropy distance-
generating function for co Π is the function ϕ : R|Σ|>0 → R≥0

defined as

ϕ : x 7→
∑
j∈J

wj

xpj log |Aj |+
∑
a∈Aj

xja log
xja
xpj

,
where the weights wj are defined recursively according to:

wj = 2 + 2 max
a∈Aj
{wρ(j,a)}, wk =

∑
s∈Sk

wρ(j,s), w� = 0.

The range of ϕ is a game-dependent constant, and usu-
ally polynomial in the size of the TFSDM problem (Kroer
et al. 2017). The (unique) minimum of ϕ is attained by
the sequence-form strategy that at each decision point uni-
formly randomizes among all available actions (that is,
xja = xpj/|Aj | for all j ∈ J , a ∈ Aj).

The dilated entropy DGF has the benefit that its gradient
and its Fenchel conjugate function can be evaluated effi-
ciently via a linear-time pass of the decision process (Hoda
et al. 2010). In particular, for all z ∈ R|Σ|>0, there ex-
ists an exact algorithm, denoted GRADIENT, to compute
∇ϕ(z) in linear time in |Σ|. Also, there exists an exact algo-
rithm, denoted ARGCONJUGATE, to compute ∇ϕ∗(z) =
arg maxx̂∈co Π{z>x̂ − ϕ(x̂)} in linear time in |Σ|. This
makes ϕ an appealing candidate regularizer in many TFSDM

1A third online learning setting—called the semi-bandit opti-
mization setting—has been proposed in the literature (György et al.
2007; Kale, Reyzin, and Schapire 2010; Audibert, Bubeck, and
Lugosi 2014; Neu and Bartók 2013). The feedback that the decision
maker receives at all times t in that setting is the component-wise
product `t ◦ xt. The semi-bandit feedback provides counterfactual
information. Instead, in this paper we are interested in the bandit
setting, where no counterfactual information is available.

optimization algorithms, including the full-information regret
minimizer R̃ that we use in this paper. In Appendix B in the
full version of this paper2 we give pseudocode for GRADIENT
and ARGCONJUGATE.

As mentioned in the introduction, the analysis of our bandit
regret minimizer needs to take into consideration the partic-
ular geometry of the dilated entropy DGF. Specifically, at
each point x ∈ Q in the sequence-form strategy space, the di-
lated entropy DGF induces a pair of primal-dual local norms
(‖ · ‖x, ‖ · ‖∗,x) defined for all z ∈ R|Σ| as

‖z‖x :=
√
z>∇2ϕ(x) z; ‖z‖∗,x :=

√
z>(∇2ϕ(x))−1z,

where ∇2ϕ(x) denotes the Hessian matrix of ϕ at x. Since
∇2ϕ(x) is positive-definite, it is known that ‖ · ‖∗,x is well-
defined and that it is indeed dual to ‖ · ‖x, in the sense that
‖z‖∗,x = max{z>w : ‖w‖x ≤ 1} for all z ∈ R|Σ|.

To our knowledge, we are the first to explore the local
norms induced by the dilated entropy DGF. These norms
are a fundamental ingredient in our construction, and here
we give several properties that we will use in later sections.
In Appendix B.2 in the full version of this paper we give
several results regarding analytical properties of these norms,
including a useful characterization of the inverse Hessian
matrix of the DGF ϕ at a generic strategy x ∈ Q in terms of
sum of dyadics.

5 Construction of R̃
Our full-information regret minimizer R̃ is constructed us-
ing online mirror descent—one of the most well-studied
full-information regret minimization algorithms in online
learning—instantiated with the dilated entropy DGF ϕ (Defi-
nition 1) as the regularizer and the set Q ⊆ R|Σ| of sequence-
form strategies in the game as the domain of feasible iterates.
Pseudocode for R̃ is given in Algorithm 1, where η > 0 is a
stepsize parameter that can be tuned at will.

Those properties are key to the analysis of the regret cu-
mulated by Algorithm 1 as a function of the local dual norms
of the loss vectors ˜̀t; that analysis is rather lengthy and we
defer it to Appendix C in the full version of this paper. Here,
we only state a key result.
Theorem 1. Let D be the maximum depth of any node in
the decision process, and let z ∈ Q. If ˜̀t ∈ R|Σ|≥0 at all
times t, then at all times T the regret R̃T (z) cumulated by R̃
satisfies:

R̃T (z) ≤ ϕ(z)

η
+ η
√

3D ·
T∑
t=1

‖ ˜̀t‖2∗,xt . (2)

Incidentally, since the range of ϕ over Q only depends
on the TFSDM problem structure and not on the time T , by
setting η = Θ(1/

√
T), we obtain a regret bound of the form

E
[
R̃T (z)

]
= O

(
1√
T

E

[
T∑
t=1

‖ ˜̀t‖2∗,xt
])

.

2The full version of this paper, including appendix, is available
on arXiv.

In the next section, we show how to construct ˜̀ in the right
hand side and we prove that the right hand side is small in
expectation. Then in Section 7 we prove that the expectation
of the regret on the left hand side equals the expectation of
the regret of the bandit regret minimizerR.

6 Unbiased Loss Estimate and Construction
ofR

As mentioned in Section 1.1, two different components are
crucial for our bandit regret minimizer R: the sampling
scheme and the construction of the unbiased loss estimates.

6.1 Sampling Scheme for TFSDM
At each time step t, the bandit regret minimizer R inter-
nally calls R̃.NEXTSTRATEGY() and receives a sequence-
form strategy xt ∈ Q. Then, R samples and returns a pure
sequence-form strategy yt ∈ Π such that Et[yt] = xt. We
use the natural sampling scheme for sequence-form strategies:
at each decision point j, we pick an action a ∈ Aj according
to the distribution xtja/x

t
pj induced by the sequence-form

strategy xt. It is well known (and straightforward to verify—
see Appendix D.2 in the full version of this paper) that this
sampling scheme is unbiased.

As we will show, in order to balance exploration and ex-
ploitation along the structure of the TFSDM problem and
construct unbiased loss estimates, an analysis of the auto-
correlation matrix Ct := E[yt(yt)> |y1, . . . ,yt−1] of the
sampling scheme, as well as its inverse, can be used. To our
knowledge, we are the first to study the autocorrelation matrix
of the natural sampling scheme for sequence-form strategies.
We do so in Appendix D.3.

6.2 Computation of the Loss Estimate ˜̀t

Our construction of the unbiased loss estimate extends and
generalizes that of Dani, Kakade, and Hayes (2008), in that it
can be applied even when the set of strategies is rank deficient,
for example here where the pure strategies Π of the sequence
form strategy space only span a strict subspace of the natural
Euclidean space R|Σ| to which the sequence-form strategies
belong. In particular, we relax the notion of unbiasedness
to mean the weaker condition that the projection ˜̀t onto
the direction3 dir Π of Π be an unbiased estimator of the
projection of the original (and unknown) `t onto dir Π:

Et[˜̀t]>w = (`t)>w ∀w ∈ dir Π, (?)

where Et[·] is an abbreviation for Et[· |y1, . . . ,yt−1], that
is, the expectation conditional on the previous decisions of
R. The main technical tool in our construction is the use of
a generalized inverse of the autocorrelation matrix of yt, as
shown by the next proposition (the proof is in Appendix D in
the full version of this paper).

Proposition 1. Let πt be a conditional distribution over
Π, given the previous decisions y1, . . . ,yt−1, and suppose
that the support of πt has full rank (that is, span suppπt=

3The direction dirX of a set X is the subspace defined as
dirX := span{u− v : u,v ∈ X}.

Algorithm 1: Full-information regret minimizer R̃
Data: η is a step-size parameter.

1 function SETUP()
2 for j ∈ J in top-down order do
3 for a ∈ Aj do x1

ja ←
xpj
|Aj |

4 function NEXTSTRATEGY(): return xt

5 function OBSERVELOSS(˜̀t)
6 g ← η ˜̀t − GRADIENT(xt) [. Section 4]
7 xt+1 ← ARGCONJUGATE(−g) [. Section 4]

Algorithm 2: Bandit regret minimizerR
1 function SETUP()
2 R̃.SETUP() [. Algorithm 1]

3 function NEXTSTRATEGY()
4 xt ← R̃.NEXTSTRATEGY() [. Algorithm 1]
5 yt ← SAMPLE(xt) [. Section 6.1]
6 return yt

7 function OBSERVELOSSEVALUATION(l := (`t)>yt)
8 ˜̀t ← LOSSESTIMATE(l,xt,yt) [. Algorithm 3]
9 R̃.OBSERVELOSS(˜̀t) [. Algorithm 1]

span Π). Let Ct := Et[yt(yt)>] be the autocorrelation ma-
trix of yt, and letCt− be any generalized inverse ofCt, that
is, any matrix such that CtCt−Ct = Ct. Furthermore, let
bt be such that Et[bt] ⊥ dir Π. Then, the random variable

˜̀t := [(`t)>yt] ·Ct− yt + bt (3)

satisfies (?).

Crucially, the loss estimate ˜̀t in Proposition 1 can be
constructed using only the bandit feedback (loss evaluation)
(`t)>yt that was received at time t after the regret minimizer
output yt as its decision. At each time t, we use Proposition 1
to construct the loss estimate ˜̀t. The main conceptual leap is
to identify

(i) a choice of generalized inverse Ct−
∗ for the autocorrela-

tion matrix Ct of yt returned by Algorithm 6; and
(ii) a particular choice for the (random) vector bt∗ such

that Et[bt∗] ⊥ dir Π so that (a) the expression
[(`t)>yt]Ct−

∗ y
t + bt∗ can be evaluated in O(|Σ|) time

and (b) the resulting loss function ˜̀t is nonnegative, as
required by R̃ (Theorem 1).

At a high level, the particular construction that we use gen-
erates Ct−

∗ and bt∗ inductively in a bottom-up fashion by
traversing the decision process, and heavily relies on the
combinatorial structure of the autocorrelation matrix Ct. All
details and proofs are in Appendix D.4 in the full version of
this paper.

The resulting algorithm is Algorithm 3, where we let
l := (`t)>yt denote the bandit feedback at iteration t in
accordance to Algorithm 2.

Proposition 2. At all times t, the vector ˜̀t returned by
LOSSESTIMATE(l,xt,yt) satisfies (?). Furthermore, Algo-
rithm 3 amounts to a single traversal of the tree structure of
the TFSDM problem and runs in linear time in the number of
sequences |Σ|.

In the special case where the decision process only has
one decision point (i.e., the strategy space is a simplex), the
loss estimate constructed by Algorithm 3 coincides with that
of the EXP3 algorithm of Auer et al. (2002). However, for
general sequential decision processes, the loss estimate is sig-
nificantly more complicated and not based on an importance-
sampling-based argument anymore.

Algorithm 3: LOSSESTIMATE(l,xt,yt)

1 ˜̀t ← 0 ∈ R|Σ|
>0

2 subroutine TRAVERSE(v, αv)
3 if v ∈ K then
4 for s ∈ Sv do

5 TRAVERSE

(
ρ(v, s),

αv
|Sv|

+
|Sv| − 1

|Sv|
(1− l)ytpv

)
6 else [. that is, v ∈ J]
7 for a ∈ Av do
8 if ρ(v, a) 6= � then

9 `tja ←
ytva
xtva

(Nv −Nρ(v,a))

10 TRAVERSE

(
ρ(v, a),

xpv
xva

αv

)
11 else if ρ(v, a) = � then

12 `tja ←
αv
xtpv

+
ytva
xtva

(l +Nv − 1)

13 TRAVERSE(r, 0) [. r: root of the decision process]
14 return ˜̀t

Finally, because of the assumption that l = (`t)>yt ∈
[0, 1], which can be assumed without loss of generality, the
loss estimate constructed as just described is non-negative:
˜̀t ∈ R|Σ|≥0. So, Theorem 1 applies.

6.3 Norm of the Loss Estimate
In theory, each entry of ˜̀t can be arbitrarily large since xtja
can be arbitrarily small. As a consequence, the Euclidean
norm ‖ ˜̀t‖2 of the loss estimate can be arbitrarily large, even
in expectation. This shows the importance of having Equa-
tion (2) expressed in terms of the local norms ‖ ·‖∗,xt instead
of a generic time-invariant norm. Indeed, it is possible to give
guarantees on the expectation of the local dual norm of ˜̀t, as
we do in the next theorem.
Theorem 2. At all times t, the loss estimate ˜̀t ∈ R|Σ|≥0 re-
turned by LOSSESTIMATE(l,xt,yt), where r is the root of
the sequential decision process, satisfies

Et
[
‖ ˜̀t‖2∗,xt

]
≤ 4 · |Σ|3.

The proof is in Appendix E.3 in the full version of this
paper. Theorem 2 is one of the deepest results in this paper. It

ties together the sampling scheme (Section 6.1), the construc-
tion of the loss estimates (Section 6.2), and the geometry of
the local norms (Section 4) induced by the dilated entropy
DGF. It combines properties of the particular choice of gen-
eralized inverse Ct−

∗ and orthogonal vector bt∗ ⊥ dir Π with
an inductive argument on the TFSDM problem structure.

7 The Full Algorithm
We construct our bandit regret minimizer R (Algorithm 2)
starting from the full-information regret minimizer R̃ of Al-
gorithm 1. The resulting algorithm is surprisingly easy to
implement, and requires only two linear traversals of the de-
cision process per iteration. The regret RT (z) ofR is linked
to the regret R̃T (z) of R̃: using the definition of regret and
the law of total expectation together with the standard bandit
optimization assumption that `t is conditionally independent
from yt, as well as Lemma 12 and (?), we immediately find
that E[RT (z)] = E[R̃T (z)] Theorem 1 gives an upper bound
for the regret R̃T (z) of R̃ as a function of the sequence of
the loss estimates ˜̀1, . . . , ˜̀T . Taking expectations in Equa-
tion (2) and using Theorem 2,

E[R̃T (z)] ≤ ϕ(z)

η
+ η
√

3D · E
[
T∑
t=1

Et
[
‖ ˜̀t‖2∗,xt

]]

≤ ϕ(z)

η
+ 4η |Σ|3

√
3D · T.

Setting η = 1/(2|Σ|3/2
√
T), we obtain the following theo-

rem, which is the bottom-line result of this paper.
Theorem 3. Let D be the maximum depth of any node in the
decision process. Then, assuming (`t)>yt ∈ [0, 1] at all times
t = 1, . . . , T , the regret RT (z) cumulated by Algorithm 2
satisfies

E[RT (z)] ≤ 2(ϕ(z) +
√

3D) |Σ|3/2 ·
√
T ∀ z ∈ co Π.

Theorem 3 shows that the expected regret cumulated by
our algorithm is O(

√
T). This improves on the algorithm

of Abernethy, Hazan, and Rakhlin (2008), whose regret is
O(
√
T log T) and that assumes that T ≥ |Σ|. We conclude

this section with a word of caution. Our algorithm, like the
one of Abernethy, Hazan, and Rakhlin (2008), guarantees that
maxz∈Q E[RT (z)] is small, but not that E[maxz∈QRT (z)]
is small. Depending on the application, this may or may not
be sufficient. This limitation is well known (e.g., (Abernethy
and Rakhlin 2009)) and is one of the main drivers behind
regret minimizers that provide high-probability regret bounds.
In the conclusions we will discuss how the techniques of the
present paper are relevant toward that effort.

8 Experimental Evaluation
We implemented our bandit regret minimizer (Algorithm 2)
and the algorithm of Abernethy, Hazan, and Rakhlin (2008)
(using a logarithmic barrier) (from now on, denoted AHR),
which is, to our knowledge, the only prior algorithm that is
known to guarantee Õ(

√
T) regret and polynomial-time iter-

ations in the bandit optimization setting. We compared them

on four domains: a simple 2× 3 matrix game (which is an in-
stance of an TFSDM problem with no observation points and
only one decision node), and three standard extensive-form
games in the computational game theory literature, namely
Kuhn poker (Kuhn 1950), 3-rank Goofspiel(Ross 1971), and
Leduc poker (Southey et al. 2005). The sequential decision
making problem faced by the first player has 13 sequences in
Kuhn poker, 262 sequences in Goofspiel, and 337 sequences
in Leduc poker. A complete description of those games is
available in Appendix F in the full version of this paper. The
two algorithms face the same strong opponent that at each
iteration plays according to a fixed strategy s̄ that is part of a
Nash equilibrium of the game. For our method, we use the
theoretical step size multiplied by 5, while for the method
of Abernethy, Hazan, and Rakhlin (2008) we multiply their
step size parameter by 2; these changes do not affect the the-
oretical guarantees but improved the practical performances
of both algorithms. Figure 2 shows the regret of the algo-
rithms compared to always playing the best-response strategy
against s̄.

We also report the empirical performance of online MC-
CFR (as proposed in a side note by Lanctot et al. (2009))
although, as we discussed at length in the introduction, on-
line MCCFR—unlike the other two algorithms— 1) is not an
algorithm for the bandit optimization setting (as discussed
in the introduction, it also needs to observe the actions of
the opponent, while our algorithm and AHR do not; in the
experiment we give online MCCFR that additional benefit),
and 2) does not have a known guarantee of sublinear regret in
this setting. We ran each algorithm 100 times. Figure 2 shows
these runs with thin light-colored lines. For the non-anytime
algorithms (ours and AHR), we divided the desired runtime
(e.g., 3 hours in Leduc poker) by the average time per itera-
tion of each algorithm. We also plot the average regret across
the 100 runs of each algorithm with a thick line.

In all games, our method yielded lower regret than AHR at
all times. In the matrix game and Kuhn poker, our algorithm
converges to a smaller regret than online MCCFR, despite
the fact that we do not get to observe the path of play and
online MCCFR does. In the larger and deeper games (Goof-
spiel and Leduc poker), our algorithm still clearly exhibits the
guaranteed O(

√
T) cumulative regret, but has higher regret

than online MCCFR. Empirically, the regret cumulated by
AHR seems to match the theoretical Õ(

√
T) guarantee well

in the small games, but not in Goofspiel and Leduc poker.
The reason for this is twofold. First, the runtime cost of each
iteration of AHR in those latter games is roughly three orders
of magnitude higher than either our method or online MC-
CFR. A significant fraction (roughly 20%) of that runtime is
due to the fact that AHR needs to compute an eigendecom-
position of a Hessian matrix of the log-barrier at the current
point, an expensive operation whose overhead grows roughly
cubically with the number of sequences in the game. We use
the Eigen 3.3.3 library to compute the eigendecomposition at
each time t. Due to this reason, AHR performs significantly
fewer iterations in the allotted time (three hours). The second
issue that we identified with AHR is that it tends to suffer
from serious numerical difficulties as the size of the TFSDM

0 2 4

Time [min]

10−3

10−1

Matrix game

0 10 20

Time [min]

10−3

10−2

10−1

Kuhn poker

0 50 100 150

Time [min]

10−2

10−1

Goofspiel

0 50 100 150

Time [min]

10−2

10−1

Leduc poker

A
ve

ra
ge

re
gr

et
A

ve
ra

ge
re

gr
et

AHR (Abernethy, Hazan, and Rakhlin 2008)
Our method Online MCCFR

Figure 2: Evolution of the average regret in different bandit
linear optimization algorithms (AHR and ours), as well as
the online MCCFR algorithm (not an algorithm for bandit
linear optimization).

problem grows.

9 Conclusions and Future Research
In this paper, we developed an algorithm for the bandit lin-
ear optimization on tree-form sequential decision making
(TFSDM) problems. Our bandit regret minimizer is superior
to that of Abernethy, Hazan, and Rakhlin (2008) both compu-
tationally (each iteration runs in linear time in the number of
sequences in the problem) and in terms of cumulated regret
(the regret is O(

√
T) instead of O(

√
T log T). We also pre-

sented the first implementations of bandit optimization for
TFSDM. Our method combines and contributes a number of
ideas and tools. First, we gave several new results concerning
the local analytic properties of the dilated entropy regularizer
(the leading regularizer for TFSDM). We use those analytic
properties to obtain a stronger regret bound for the online
mirror descent algorithm instantiated with the dilated entropy
regularizer. Second, we study several properties of the natural
sampling scheme for sequence-form strategies. Those proper-
ties are key to efficiently constructing an unbiased estimator
of the loss vector `t starting from the loss evaluation (`t)>yt

at a pure strategy yt. In order to construct the unbiased esti-
mator, we extended and generalized an argument by Bartlett
et al. (2008) to our context. Finally, we combined the stronger
regret bound for mirror descent together with the unbiased
loss estimator to construct our bandit regret minimizer, by
showing that the unbiased loss estimator has a dual norm that
is bounded by a small time-independent constant.

A known weakness in Abernethy, Hazan, and Rakhlin

(2008), which is also a weakness in our approach, is that
the bound on regret (i) only holds in expectation as op-
posed to high probability, and (ii) provides a guarantee on
maxz∈Q E[RT (z)] but not on E[maxz∈QRT (z)]. As dis-
cussed in the introduction, this weakness can be eliminated
in theory if iterations are allowed to take exponential time
in the number of sequences or by accepting a slower con-
vergence rate. Due to this weakness, our approach and that
of Abernethy, Hazan, and Rakhlin (2008) sometimes does
not work for equilibrium finding in games through self play.

We leave the problem of designing an algorithm for the
bandit linear optimization problem for TFSDM that guaran-
tees both O(

√
T) regret with high probability and linear-time

iterations as an open future direction. This would solve (i)
and thereby also (ii). Abernethy and Rakhlin (2009) pre-
sented a template for deriving such algorithms, but several
pieces therein need to be instantiated to complete the proof of
bounds. The theory in this paper offers solutions for some of
those pieces for general TFSDM problems. Our regularizer,
the sampling scheme, the construction of the loss estimates,
and the use of local norms can be used within that general
framework to provide high-probability results. So, our results
may help solve the open problem for TFSDM in the future.

Acknowledgments
This material is based on work supported by the National Sci-
ence Foundation under grants IIS-1718457, IIS-1901403, and
CCF-1733556, and the ARO under award W911NF2010081.
Gabriele Farina is supported by a Facebook fellowship.

References
Abernethy, J.; Hazan, E.; and Rakhlin, A. 2008. Competing in
the dark: An efficient algorithm for bandit linear optimization.
In In Proceedings of the 21st Annual Conference on Learning
Theory (COLT).

Abernethy, J. D.; and Rakhlin, A. 2009. Beating the adaptive
bandit with high probability. 2009 Information Theory and
Applications Workshop .

Audibert, J.-Y.; Bubeck, S.; and Lugosi, G. 2014. Regret in
online combinatorial optimization. Mathematics of Opera-
tions Research 39(1): 31–45.

Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire, R. E.
2002. The Nonstochastic Multiarmed Bandit Problem. SIAM
Journal of Computing 32: 48–77.

Awerbuch, B.; and Kleinberg, R. D. 2004. Adaptive routing
with end-to-end feedback: distributed learning and g eometric
approaches. In Proceedings of the Annual Symposium on
Theory of Computing (STOC). ACM.

Bartlett, P. L.; Dani, V.; Hayes, T.; Kakade, S.; Rakhlin, A.;
and Tewari, A. 2008. High-probability regret bounds for
bandit online linear optimization. In Conference on Learning
Theory (COLT).

Borwein, J.; and Lewis, A. S. 2010. Convex analysis and non-
linear optimization: theory and examples. Springer Science
& Business Media.

Bowling, M.; Burch, N.; Johanson, M.; and Tammelin, O.
2015. Heads-up Limit Hold’em Poker is Solved. Science
347(6218).

Braun, G.; and Pokutta, S. 2016. An efficient high-probability
algorithm for Linear Bandits. ArXiv e-print cs/1610.02072.

Brown, N.; Kroer, C.; and Sandholm, T. 2017. Dynamic
Thresholding and Pruning for Regret Minimization. In AAAI
Conference on Artificial Intelligence (AAAI).

Brown, N.; and Sandholm, T. 2015. Regret-Based Pruning in
Extensive-Form Games. In Proceedings of the Annual Con-
ference on Neural Information Processing Systems (NIPS).

Brown, N.; and Sandholm, T. 2017a. Reduced Space and
Faster Convergence in Imperfect-Information Games via
Pruning. In International Conference on Machine Learn-
ing (ICML).

Brown, N.; and Sandholm, T. 2017b. Safe and nested sub-
game solving for imperfect-information games. In Proceed-
ings of the Annual Conference on Neural Information Pro-
cessing Systems (NIPS).

Brown, N.; and Sandholm, T. 2017c. Superhuman AI for
heads-up no-limit poker: Libratus beats top professionals.
Science 359: 418–424.

Brown, N.; and Sandholm, T. 2019a. Solving imperfect-
information games via discounted regret minimization. In
AAAI Conference on Artificial Intelligence (AAAI).

Brown, N.; and Sandholm, T. 2019b. Superhuman AI for
multiplayer poker. Science 365: 885–890.

Bubeck, S.; Lee, Y. T.; and Eldan, R. 2017. Kernel-based
methods for bandit convex optimization. In Proceedings
of the Annual Symposium on Theory of Computing (STOC),
72–85.

Cesa-Bianchi, N.; and Lugosi, G. 2006. Prediction, learning,
and games. Cambridge University Press.

Dani, V.; Kakade, S. M.; and Hayes, T. P. 2008. The Price of
Bandit Information for Online Optimization. In Proceedings
of the Annual Conference on Neural Information Processing
Systems (NIPS).

Farina, G.; Kroer, C.; and Sandholm, T. 2019. Online Con-
vex Optimization for Sequential Decision Processes and
Extensive-Form Games. In AAAI Conference on Artificial
Intelligence (AAAI).

György, A.; Linder, T.; Lugosi, G.; and Ottucsák, G. 2007.
The on-line shortest path problem under partial monitoring.
Journal of Machine Learning Research 8(Oct): 2369–2403.

Hazan, E.; and Li, Y. 2016. An optimal regret algorithm for
bandit convex optimization. ArXiv e-print cs/1603.04350.

Hoda, S.; Gilpin, A.; Peña, J.; and Sandholm, T. 2010.
Smoothing Techniques for Computing Nash Equilibria of
Sequential Games. Mathematics of Operations Research
35(2).

Kale, S.; Reyzin, L.; and Schapire, R. E. 2010. Non-
stochastic bandit slate problems. In Advances in Neural
Information Processing Systems, 1054–1062.

Koller, D.; Megiddo, N.; and von Stengel, B. 1994. Fast
algorithms for finding randomized strategies in game trees.
In Proceedings of the 26th ACM Symposium on Theory of
Computing (STOC).
Kroer, C.; Waugh, K.; Kılınç-Karzan, F.; and Sandholm, T.
2020. Faster algorithms for extensive-form game solving via
improved smoothing functions. Mathematical Programming .
Kroer, C.; Waugh, K.; Kılınç-Karzan, F.; and Sandholm, T.
2015. Faster First-Order Methods for Extensive-Form Game
Solving. In Proceedings of the ACM Conference on Eco-
nomics and Computation (EC).
Kroer, C.; Waugh, K.; Kılınç-Karzan, F.; and Sandholm, T.
2017. Theoretical and Practical Advances on Smoothing
for Extensive-Form Games. In Proceedings of the ACM
Conference on Economics and Computation (EC).
Kuhn, H. W. 1950. A Simplified Two-Person Poker. In Kuhn,
H. W.; and Tucker, A. W., eds., Contributions to the Theory
of Games, volume 1 of Annals of Mathematics Studies, 24,
97–103. Princeton, New Jersey: Princeton University Press.
Lanctot, M.; Waugh, K.; Zinkevich, M.; and Bowling, M.
2009. Monte Carlo Sampling for Regret Minimization in
Extensive Games. In Proceedings of the Annual Conference
on Neural Information Processing Systems (NIPS).
Ling, C. K.; Fang, F.; and Kolter, J. Z. 2019. Large Scale
Learning of Agent Rationality in Two-Player Zero-Sum
Games. In AAAI Conference on Artificial Intelligence (AAAI).
Neu, G.; and Bartók, G. 2013. An efficient algorithm for
learning with semi-bandit feedback. In International Confer-
ence on Algorithmic Learning Theory, 234–248. Springer.
Rakhlin, A. 2009. Lecture Notes on Online Learning. Un-
published lecture notes, http://www-stat.wharton.upenn.edu/
~rakhlin/courses/stat991/papers/lecture_notes.pdf.
Romanovskii, I. 1962. Reduction of a Game with Complete
Memory to a Matrix Game. Soviet Mathematics 3.
Ross, S. M. 1971. Goofspiel—the game of pure strategy.
Journal of Applied Probability 8(3): 621–625.
Shalev-Shwartz, S. 2012. Online Learning and Online Con-
vex Optimization. Foundations and Trends® in Machine
Learning 4(2). ISSN 1935-8237. doi:10.1561/2200000018.
Southey, F.; Bowling, M.; Larson, B.; Piccione, C.; Burch,
N.; Billings, D.; and Rayner, C. 2005. Bayes’ Bluff: Oppo-
nent Modelling in Poker. In Proceedings of the 21st Annual
Conference on Uncertainty in Artificial Intelligence (UAI).
Tammelin, O.; Burch, N.; Johanson, M.; and Bowling, M.
2015. Solving Heads-up Limit Texas Hold’em. In Proceed-
ings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI).
von Stengel, B. 1996. Efficient Computation of Behavior
Strategies. Games and Economic Behavior 14(2): 220–246.
Zinkevich, M.; Bowling, M.; Johanson, M.; and Piccione,
C. 2007. Regret Minimization in Games with Incomplete
Information. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS).

Appendix

In order to simplify the proofs, we will assume that no two nodes of the same type immediately follow
each other. This assumption does not come at the cost of generality, since two consecutive decision points
can always be consolidated into an equivalent one by combining their actions. Similarly, two consecutive
observation points can be consolidated into an equivalent one by combining the available signals. Because of
this assumption, we denote the set of all observation points that are immediately reachable after decision point
j as Cj := {ρ(j, a) : a ∈ Aj} \ {�}. Similarly, the set of all decision points that are immediately reachable
after observation point k is Ck := {ρ(k, s) : s ∈ Sk}. We also assume without loss of generality that no signal
is terminal, that is ρ(k, s) 6= �. This assumption also does not come at the cost of generality, since it is always
possible to attach a decision node with a single terminal action to simulate a terminal signal.

A Additional Notation for Sequential Decision Processes
We now introduce additional notation:

Number of decision nodes in a subtree (Nv). The symbol Nv denotes the number of decision points in the
subtree rooted at v. If v itself is a decision point, v is included in the count.

Descendants (�). A partial order � can be established on Σ as follows: given two sequences ja and j′a′ in
Σ, j′a′ � ja if and only if the (unique) path from the root node of the decision process to action a′ at decision
point j′ passes through action a at decision point j. Whenever j′a′ � ja, we say that j′a′ is a descendant of
ja.

Subtree indicator (uja). Given a sequence ja ∈ Σ, we denote with uja the vector such that (uja)j′a′ = 1
if j′a′ � ja, and (uja)j′a′ = 0 otherwise.

Parent sequence (pj). Given a decision point j ∈ J , we denote with pj its parent sequence, defined as the
last sequence (that is, decision point-action pair) encountered on the path from the root of the tree to decision
point j. If the agent does not act before j (i.e., j is the root of the decision process or only observation points
are encountered on the path from the root to j), we let pj = ∅.

A.1 Inductive Definition of Π

The set Π can be constructed recursively in a bottom-up fashion, as follows:
• At each terminal decision point j ∈ J , where actions {a1, . . . , am} are terminal (that is, ρ(j, a) = �)

and actions {am+1, . . . , an} are not, the set of pure strategies is the set

Πj :=

ei
0
...
0

 : i = 1, . . . , n

 ∪

em+1

xkm+1

...
0

 : xkm+1
∈ Πkm+1

 ∪ · · · ∪

en
0
...
xkn

 : xkn ∈ Πkn

,
(4)

where ei the i-th canonical basis vector. So, in particular, if all actions at j are terminal,

Πj = {e1, . . . , en}.

• At each observation point k ∈ K, the set of pure strategies is simply the Cartesian product of strategies
for each of the child subtrees:

Πk := Πj1 × · · · ×Πjn , (5)

where {j1, . . . , jn} = Ck are the decision points immediately reachable after k.

A.2 Inductive Definition of Q
The set of mixed sequence-form strategies can also equivalently constructed inductively along the tree structure:

• At each terminal decision point j ∈ J , where actions {a1, . . . , am} are terminal (that is, ρ(j, a) = �)
and actions {am+1, . . . , an} are not, we first fix a distributions over the actions in Aj and then recurse:

Qj :=

λ1

. . .
λn

λm+1xkm+1

...
λnxkn

 : (λ1, . . . , λn) ∈ ∆n,xi ∈ Qki ∀i = m+ 1, . . . , n

, (6)

where {km+1, . . . , kn} = Cj are the observation points immediately reachable after j. So, in particular,
if all actions at j are terminal, we have

Qj := ∆|Aj |. (7)
• At each observation point k ∈ K, the set of mixed strategies is the Cartesian product of mixed strategies

for each of the child subtrees:
Qk := Qj1 × · · · ×Qjn , (8)

where {j1, . . . , jn} = Ck are the decision points immediately reachable after k.

B Properties of the Dilated Entropy Distance-Generating Function

B.1 Preliminaries

Gradient Computation We look at the computation of the gradient of ϕ at a generic point z ∈ R|Σ|>0. Some
elementary algebra reveals that

∂ϕ

∂zja
(z) = wj

(
1 + log

zja
zpj

)
+

∑
j′∈Cρ(j,a)

wj′

log |Aj′ | −
∑
a′∈Aj′

zj′a′

zja

 (9)

for every decision point-action pair ja ∈ Σ. Hence, we can compute∇ϕ(z) at any z ∈ R|Σ|>0 in one linear-time
traversal of the sequential decision tree as in Algorithm 4.

Fenchel Arg-Conjugate The Fenchel conjugate of ϕ on co Π is defined as

ϕ∗ : z 7→ max
x̂∈co Π∩R|Σ|>0

{z>x̂− ϕ(x̂)}

for any z ∈ R|Σ|. Since the domain of the maximization is not compact, it is not a priori obvious that ϕ∗ is
well defined for all z. Existence of the solution to the maximization problem can be easily proved by exhibiting
a point in the domain with zero gradient. Uniqueness follows from the strict convexity of ϕ on Rn>0. A proof
of that fact can be found in the original work by Hoda et al. (2010).

It is well-known (and easy to check via a straightforward application of Danskin’s theorem) that

∇ϕ∗ : z 7→ arg max
x̂∈co Π∩R|Σ|>0

{z>x̂− ϕ(x̂)}. (10)

For this reason, we call ∇ϕ∗ the Fenchel arg-conjugate function of ϕ on co Π. Of course, for any z ∈ R|Σ|

one can efficiently compute the value of ϕ∗(z) given x∗ := ∇ϕ∗(z) (which is guaranteed to be in ∈ R|Σ|>0) by
direct substitution as z>x∗ − ϕ(x∗). In Algorithm 5 we give a linear-time algorithm for computing ∇ϕ∗(z).
We refer the reader to the original work by Hoda et al. (2010) for a proof of correctness.

Algorithm 4: GRADIENT(z)

Input: z ∈ R|Σ|
Output: The value of ∇ϕ(z)

1 g ← 0 ∈ R|Σ|
2 for j ∈ J in bottom-up order do
3 for a ∈ Aj do
4 gja ← gja + wj

(
1 + log

zja
zpj

)
5 if pj 6= ∅ then gpj ← gpj − wj

zj′a′

zja

6 if pj 6= ∅ then gpj ← gpj + wj log |Aj |
7 return g

Algorithm 5: ARGCONJUGATE(z)

Input: z ∈ R|Σ|
Output: The value of∇ϕ∗(z)

1 x∗ ← 0 ∈ R|Σ|
2 for j ∈ J in bottom-up order do
3 s← 0
4 for a ∈ Aj do
5 x∗ja ← exp{ zjawj }
6 s← s+ x∗ja
7 v ← wj log |Aj |
8 for a ∈ Aj do
9 x∗ja ←

x∗ja
s [. Normalization step]

10 v ← v + zjax
∗
ja − x∗ja log x∗ja

11 zja ← zja + v
12 for j ∈ J in top-down order do
13 for a ∈ Aj do
14 x∗ja ← x∗ja · x∗pj
15 return x∗

Observation 1. At all times t, the decision produced by Algorithm 1 satisfies xt ∈ R|Σ|>0.

B.2 Local Primal Norm
Lemma 1 (Ling, Fang, and Kolter (2019)). The Hessian ∇2ϕ(z) of the dilated entropy DGF at z ∈ Q is
given by:

∂2

∂zja∂zj′a′
ϕ(z) =

wj + wρ(j,a)

zja
if ja = j′a′

−wj′
zja

if ja = pj′ and pj′ 6= ∅

−wj
zpj

if j′a′ = pj and pj 6= ∅

0 otherwise.

Lemma 2. Let x ∈ co Π and z ∈ R|Σ|≥0. Then, ‖z‖2x ≤
3

2

∑
j∈J

∑
a∈Aj

wj
xja

z2
ja.

Proof. Using the explicit expression of the Hessian of the dilated entropy regularizer (Lemma 1) we can write

‖z‖2x =
∑
j∈J

∑
a∈Aj

wj + wρ(j,a)

xja
z2
ja − 2

∑
j∈J

∑
a∈Aj

∑
j′∈Cρ(j,a)

∑
a′∈Aj′

wj′

xja
zj′a′zja

≤
∑
j∈J

∑
a∈Aj

wj + wρ(j,a)

xja
z2
ja, (11)

where the inequality holds since z ∈ R|Σ|≥0. By definition of wj (Definition 1), we have for all ja ∈ Σ

wj + wρ(j,a) ≤ wj + max
a′∈Aj

wρ(j,a′)

= 2 + 3 max
a′∈Aj

wρ(j,a′)

≤ 3 + 3 max
a′∈Aj

wρ(j,a′) =
3

2
wj . (12)

Plugging (12) into (11) yields the statement.

B.3 Local Dual Norm
Lemma 3. Let x ∈ co Π be a sequence-form strategy. The inverse Hessian (∇2ϕ)−1(x) at x can be expressed
as:

(∇2ϕ)−1(x) =
∑
j∈J

∑
a∈Aj

(x ◦ uja)(x ◦ uja)>

wjxja
, (13)

where ◦ denotes componentwise product of vectors.

Proof. Let

H :=
∑
j∈J

∑
a∈Aj

(x ◦ uja)(x ◦ uja)>

wjxja

be the proposed inverse Hessian matrix. We will prove thatH = (∇2ϕ)−1(x) by showing that∇2ϕ(x) ·H =
I is the identity matrix. We break the proof into two steps:

• Step one. First, we show that for all sequences ja ∈ Σ and j′a′ ∈ Σ,

A :=
[
∇2ϕ(x) · (x ◦ uja)

]
j′a′

=

wj if j′a′ = ja

−wj
xja
xpj

if pj = j′a′

0 otherwise.

(14)

In order to prove (14), we start from Lemma 1:

A =
∑
j′′∈J

∑
a′′∈Aj′′

∂2ϕ(x)

∂xj′a′∂xj′′a′′
· (x ◦ uja)j′′a′′

= (wj′ + wρ(j′,a′))·(uja)j′a′ − wj′ ·(uja)pj′ −
∑

j′′∈Cρ(j′,a′)

∑
a′′∈Aj′′

wj′′

xj′a′
xj′′a′′ ·(uja)j′′a′′ .

We now distinguish four cases, based on how ja relates to pj′ , j′a′, and j′′a′′:
– First case: pj′ � ja, that is pj′ , j′a′ and j′′a′′ are all descendants of ja. Consequently,

(uja)pj′ = (uja)j′a′ = (uja)j′′a′′ = 1

for all j′′ ∈ Cρ(j′,a′) and a′′ ∈ Aj′′ . Hence,

A = wj′ + wρ(j′,a′) − wj′′ −
∑

j′′∈Cρ(j′,a′)

∑
a′′∈Aj′′

wj′′

xj′a′
xj′′a′′

= wρ(j′,a′) −
∑

j′′∈Cρ(j′,a′)

wj′′ ∑
a′′∈Aj′′

xj′′a′′

xj′a′

= wρ(j′,a′) −

∑
j′′∈Cρ(j′,a′)

wj′′ = 0.

– Second case: ja = j′a′. In this case, (uja)pj′ = 0, while (uja)j′a′ = (uja)j′′a′′ = 1 for all j′′ ∈ Cρ(j′,a′)
and a′′ ∈ Aj′′ . Hence,

A = wj′ + wρ(j′,a′) −
∑

j′′∈Cρ(j′,a′)

∑
a′′∈Aj′′

wj′′

xj′a′
xj′′a′′

= wj′ + wρ(j′,a′) −
∑

j′′∈Cρ(j′,a′)

wj′′ ∑
a′′∈Aj′′

xj′′a′′

xj′a′

= wj′ + wρ(j′,a′) −

∑
j′′∈Cρ(j′,a′)

wj′′ = wj′ = wj .

– Third case: pj = j′a′ (that is, ja immediately follows j′a′). Then, A = −wj xjaxpj

– Otherwise, j′′a′′ 6� ja for all j′′ ∈ Cρ(j′,a′) and a′′ ∈ Aj′′ , and therefore A = 0.

• Step two. Given σ ∈ Σ ∪ {∅}, let 1σ ∈ R|Σ| denote the vector that has a 1 in the entry corresponding to
sequence σ, and 0 everywhere else (in particular, 1∅ = 0). Then, (14) can be rewritten as

∇2ϕ(x) · (x ◦ uja)

wjxja
=

1

xja
1ja −

1

xpj
1pj .

Therefore,

∇2ϕ(x) ·H =
∑
j∈J

∑
a∈Aj

∇2ϕ(x) · (x ◦ uja)

wjxja
· (x ◦ uja)> =

∑
j∈J

∑
a∈Aj

(
1

xja
1ja −

1

xpj
1pj

)
· (x ◦ uja)>.

=
∑
j∈J

∑
a∈Aj

1

xja
1ja ·

x ◦ uja − ∑
j′∈Cρ(j,a)

∑
a′∈Aj′

x ◦ uj′a′

>

=
∑
j∈J

∑
a∈Aj

1

xja
1ja ·

x ◦
uja − ∑

j′∈Cρ(j,a)

∑
a′∈Aj′

uj′a′

>.

Using the definition of uja, we obtain

∇2ϕ(x) ·H =
∑
j∈J

∑
a∈Aj

1

xja
1ja · (x ◦ 1ja)>

=
∑
j∈J

∑
a∈Aj

1ja1
>
ja

= I,

as we wanted to show.

Corollary 1. Let x ∈ co Π be a sequence-form strategy, and let z ∈ R|Σ|. The local dual norm of z satisfies

‖z‖2∗,x =
∑
j∈J

∑
a∈Aj

(u>ja(z ◦ x))2

wjxja
.

Proof. By definition of local dual norm, using Lemma 3), and applying simple algebraic manipulations:

‖z‖2∗,x = z>

∑
j∈J

∑
a∈Aj

(x ◦ uja)(x ◦ uja)>

wjxja

z
=
∑
j∈J

∑
a∈Aj

(z>(x ◦ uja))2

wjxja

=
∑
j∈J

∑
a∈Aj

(u>ja(z ◦ x))2

wjxja
.

C Analysis of Mirror Descent using Dilated Entropy DGF
We study some properties of Algorithm 1. The central result, Theorem 1, gives a bound on the cumulative
regret expressed in term of (dual) local norms centered at the iterates produced by online mirror descent. Our
first step is to introduce the “intermediate” iterate

x̃1 := arg min
x̂∈R|Σ|>0

ϕ(x̂), (15)

x̃t+1 := arg min
x̂∈R|Σ|>0

{
(η ˜̀t −∇ϕ(xt))>x̂+ ϕ(x̂)

}
, t ≥ 1 (16)

which differs from an arg-conjugate (Equation (10)) in that the minimization problem is unconstrained. In
Appendix C.1 we prove that x̃t+1 is well-defined, in the sense that it always exists unique. In Appendix C.2
we show that it is convenient for analyzing the regret accumulated by online mirror descent (Abernethy and
Rakhlin 2009).

C.1 Existence and Uniqueness of the Intermediate Iterate
Using the structure of the dilated entropy DGF together with that of the game tree, we prove the following
properties, which will be fundamental in the analysis of online mirror descent based on local norms.
Lemma 4. At all times t ≥ 1, each intermediate iterate x̃t+1 exists, is unique, and satisfies, for all ja ∈ Σ:

x̃t+1
ja

x̃t+1
pj

=
xtja
xtpj

exp

{
−η

`tja
wj
− wρ(j,a)

wj
+
ξt+1
ja

wj

}
, (17)

where

ξt+1
ja :=

∑
j′∈Cρ(j,a)

wj′
∑
a′∈Aj′

x̃t+1
j′a′

x̃t+1
ja

.

Proof. The domain R|Σ|>0 of the optimization problem (16) is an open set, and the objective function is a
differentiable convex function. Hence, a generic point x̃t+1 ∈ R|Σ|>0 is a (global) minimizer if and only if the
gradient of the objective function at x̃t+1 is 0. For this, we start by setting the gradient of the objective function
to 0:

η`t −∇ϕ(xt) +∇ϕ(x̃t+1) = 0.

Substituting the expression for∇ϕ (Equation 9) into the optimality condition yields

η`ja − wj log
xtja
xtpj

+
∑

j′∈Cρ(j,a)

wj′
∑
a′∈Aj′

xtj′a′

xtja
+ wj log

x̃t+1
ja

x̃t+1
pj

−
∑

j′∈Cρ(j,a)

wj′
∑
a′∈Aj′

x̃t+1
j′a′

x̃t+1
ja

= 0

for all ja ∈ Σ. Using the fact that xt ∈ Q, we can write
∑
a′∈Aj′

xt
j′a′

xtja
= 1 and simplify the above condition

into

η`ja − wj log
xtja
xtpj

+ wj log
x̃t+1
ja

x̃t+1
pj

+ wρ(j,a) −
∑

j′∈Cρ(j,a)

wj′
∑
a′∈Aj′

x̃t+1
j′a′

x̃t+1
ja

= 0,

where we used the equality wρ(j,a) =
∑
j′∈Cρ(j,a)

wj′ (Equation 1). Rearranging the terms we conclude that
the gradient of the objective function of (16) is 0 if and only if, for all ja ∈ Σ,

x̃t+1
ja

x̃t+1
pj

=
xtja
xtpj

exp

{
−η

`tja
wj
− wρ(j,a)

wj
+
ξt+1
ja

wj

}
, ξt+1

ja :=
∑

j′∈Cρ(j,a)

wj′
∑
a′∈Aj′

x̃t+1
j′a′

x̃t+1
ja

,

which is (17). Crucially, the previous equation uniquely defines a point x̃t+1. Indeed, by applying (17) at any
root decision points j (that is, decision points where pj = ∅), using the fact that by definition x̃t+1

∅ = xt+1
∅ = 1,

we can compute all sequences ja (a ∈ Aj) uniquely as

x̃t+1
ja = xtja exp

{
−η

`tja
wj
− wρ(j,a)

wj
+
ξt+1
ja

wj

}
> 0.

Now that all x̃t+1
ja have been computed for root decision points j, we can inductively compute them for

the decision points at depth 2, then those at depth 3, and so on. Since all entries in xt are strictly positive
(Observation 1), it is immediate to see inductively that all entries of x̃t+1 are strictly positive. Hence, the
unique vector x̃t+1 that makes the gradient of the objective function 0 belongs to the open domain of the
optimization, R|Σ|>0. Hence, it is the unique minimizer of (16), as we wanted to show.

C.2 Relationships with Regret Bound of Mirror Descent
It is known that at all t, xt = arg min

x̂∈R|Σ|>0
Dϕ(x̂ ‖ x̃t), where Dϕ(· ‖ ·) denotes the Bregman divergence

induced by ϕ, that is,

Dϕ(x ‖ c) := ϕ(x)− ϕ(c)−∇ϕ(c)>(x− c), x, c ∈ Rn>0.

We prove that result here for completeness.

Lemma 5. At all times t, the iterate xt produced by Algorithm 1 satisfies

xt = arg min
x̂∈R|Σ|>0

Dϕ(x̂ ‖ x̃t). (18)

Proof. By induction:

• Base case (t = 1). Since Rn>0 is an open set, (15) implies that

∇ϕ(x̃1) = 0.

Hence,
x̄1 = arg min

x̂∈Q∩R|Σ|>0

Dϕ(x̂ ‖ x̃1) = arg min
x̂∈Q∩R|Σ|>0

{ϕ(x̂)− ϕ(x̃1)} = arg min
x̂∈Q∩R|Σ|>0

ϕ(x̂),

which is exactly the first iterate returned by Algorithm 1.
• Inductive step. We assume that the iterates produced up to time t by Algorithm 1 coincide with those

produced up to time t by (18). We will prove that the iterates coincide at time t+ 1 as well. Since Rn>0 is an
open set, from (16), x̃t+1 must be a critical point of the objective function, that is

0 = ∇x̂

[
η(˜̀t)>x̂+Dϕ(x̂ ‖ x̄t)

]
(x̃t+1) = η ˜̀t +∇ϕ(x̃t+1)−∇ϕ(x̄t),

from which we find that
∇ϕ(x̃t+1) = ∇ϕ(x̄t)− η ˜̀t.

Hence, expanding (18), we find

x̄t+1 = arg min
x̂∈Q∩R|Σ|>0

Dϕ(x̂ ‖ x̃t+1)

= arg min
x̂∈Q∩R|Σ|>0

{
ϕ(x̂)− ϕ(x̃t+1)−∇ϕ(x̃t+1)>(x̂− x̃t+1)

}
= arg min

x̂∈Q∩R|Σ|>0

{
ϕ(x̂)− ϕ(x̃t+1)− (∇ϕ(x̄t)− η ˜̀t)>(x̂− x̃t+1)

}
= arg min

x̂∈Q∩R|Σ|>0

{
ϕ(x̂)− (∇ϕ(x̄t)− η ˜̀t)>x̂

}
= ARGCONJUGATE(∇ϕ(x̄t)− η ˜̀t),

which completes the inductive step.

The following known result will be central in the proof of Theorem 1.

Lemma 6 (Rakhlin (2009), Lemma 13). Online mirror descent satisfies, at all times T and for all mixed
strategies z ∈ Q, the regret bound

RT (z) ≤ ϕ(z)

η
+

T∑
t=1

(˜̀t)>(xt − x̃t+1).

Lemma 6 is usually proved by leveraging the Legendreness of the regularizer. Since we have not shown that
ϕ is Legendre, we provide an alternative, standalone proof of Lemma 6. We start by stating the generalized
Pythagorean inequality for Bregman divergences. Our statement is equivalent to Lemma 11.3 in the book by
Cesa-Bianchi and Lugosi (2006) but, unlike theirs, our proof does not depend on ϕ being Legendre. Note that a
close inspection of the proof by Cesa-Bianchi and Lugosi already reveals that the gradient condition mentioned
by the reviewer is only tangentially used to prove the existence of the Bregman projection xt.

Lemma 7 (Generalized Pythagorean inequality). Let u ∈ Q∩R|Σ|>0 and let c ∈ Rn>0. Finally, let p ∈ Q∩R|Σ|>0

be the Bregman projection of c onto Q ∩ R|Σ|>0:

p = arg min
p∈Q∩R|Σ|>0

Dϕ(p ‖ c) (19)

Then,
Dϕ(u ‖ c) ≥ Dϕ(u ‖p) +Dϕ(p ‖ c).

Proof. The necessary first-order optimality condition (e.g., Proposition 2.1.1 in the book by Borwein and
Lewis (2010)) for the optimization problem (19) is

(∇pDϕ(p ‖ c))>(x− p) ≥ 0 ∀x ∈ Q ∩ R|Σ|>0.

(The above condition is necessary under significantly weaker conditions than ϕ being Legendre. It is enough for
the objective of the minimization to be Gâteaux differentiable at p and the domainQ∩R|Σ|>0 to be convex—both
of which are verified in this case.) Expanding the gradient of the Bregman divergence and setting in particular
x = u, it must be

(∇ϕ(p)−∇ϕ(c))>(u− p) ≥ 0. (20)

Now,

(∇ϕ(p)−∇ϕ(c))>(u− p) = ∇ϕ(p)>(u− p)−∇ϕ(c)>(u− p)

= ∇ϕ(p)>(u− p)−∇ϕ(c)>(u− c) +∇ϕ(c)>(p− c)
= −Dϕ(u ‖p) +Dϕ(u ‖ c)−Dϕ(p ‖ c) (21)

Plugging (21) into (20) yields the statement.

Proof of Lemma 6. Since x̃t+1 exists (Lemma 4) and Rn>0 is an open set, x̃t+1 must be a critical point of the
objective η(˜̀t)>x̂+Dϕ(x̂ ‖ x̄t), that is

0 = ∇x̂

[
η(˜̀t)>x̂+Dϕ(x̂ ‖ x̄t)

]
(x̃t+1)

= η ˜̀t +∇ϕ(x̃t+1)−∇ϕ(x̄t),

from which we conclude that
η ˜̀t = ∇ϕ(x̄t)−∇ϕ(x̃t+1). (22)

Hence, for all u ∈ Q ∩ R|Σ|>0,

η(˜̀t)>(x̄t − u) =
(
∇ϕ(x̄t)−∇ϕ(x̃t+1)

)>
(x̄t − u)

= −∇ϕ(x̄t)>(u− x̄t)−∇ϕ(x̃t+1)>(x̄t − u)

= −∇ϕ(x̄t)>(u− x̄t) +∇ϕ(x̃t+1)>(u− x̃t+1)−∇ϕ(x̃t+1)>(x̄t − x̃t+1)

= Dϕ(u ‖ x̄t)︸ ︷︷ ︸
A

−Dϕ(u ‖ x̃t+1) +Dϕ(x̄t ‖ x̃t+1)︸ ︷︷ ︸
B

. (23)

We now bound terms A and B on the right-hand side.

A Since x̄t is the Bregman projection of x̃t onto Q∩R|Σ|>0 and u ∈ Q∩R|Σ|>0, using Lemma 7 with c = x̃t we
can write

Dϕ(u ‖ x̃t) ≥ Dϕ(u ‖ x̄t) +Dϕ(x̄t ‖ x̃t) =⇒ Dϕ(u ‖ x̄t) ≤ Dϕ(u ‖ x̃t), (24)

where we used the fact that Bregman divergences are always non-negative, as ϕ is convex.

B Using the fact that Bregman divergences are always non-negative, we have

Dϕ(x̄t ‖ x̃t+1) ≤ Dϕ(x̄t ‖ x̃t+1) +Dϕ(x̃t+1 ‖ x̄t)
= −∇ϕ(x̃t+1)>(x̄t − x̃t+1)−∇ϕ(x̄t)>(x̃t+1 − x̄t)

=
(
∇ϕ(x̄t)−∇ϕ(x̃t+1)

)>
(x̄t − x̃t+1).

So, substituting (22),

Dϕ(x̄t ‖ x̃t+1) ≤ η(˜̀t)>(x̄t − x̃t+1). (25)

Substituting (24) and (25) into (23), we obtain

η(˜̀t)>(x̄t − u) ≤ Dϕ(u ‖ x̃t)−Dϕ(u ‖ x̃t+1) + η(˜̀t)>(x̄t − x̃t+1).

Finally, summing over t = 1, . . . , T we have

η

T∑
t=1

η(˜̀t)>(x̄t − x̃t+1) ≤
T∑
t=1

(
Dϕ(u ‖ x̃t)−Dϕ(u ‖ x̃t+1)

)
+ η

T∑
t=1

(˜̀t)>(x̄t − x̃t+1)

= Dϕ(u ‖ x̃1)−Dϕ(u ‖ x̃T+1) + η

T∑
t=1

(˜̀t)>(x̄t − x̃t+1)

≤ Dϕ(u ‖ x̃1) + η

T∑
t=1

(˜̀t)>(x̄t − x̃t+1).

Finally, since Rn>0 is an open set, and x̃1 = arg min
x̂∈R|Σ|>0

ϕ(x̂) (Equation (15)), it must be that

∇ϕ(x̃1) = 0 =⇒ Dϕ(u ‖ x̃1) = ϕ(u)− ϕ(x̃1) ≤ ϕ(u),

where the last inequality holds since the range of ϕ is non-negative. This concludes the proof.

C.3 Analysis of Mirror Descent using the Local Norms of the Entropy DGF
Proposition 3. Let the quantity ψtja be defined for all sequences ja ∈ Σ as

ψtja := u>ja(˜̀t ◦ xt) =
∑

j′a′ � ja

˜̀t
j′a′ · xtj′a′ .

If ˜̀t ∈ R|Σ|≥0, the intermediate iterate x̃t+1 satisfies

xtja
xtpj

exp

{
− η

wjxtja
ψtja

}
≤
x̃t+1
ja

x̃t+1
pj

≤
xtja
xtpj

.

Proof. For ease of notation, in this proof we will make use of the symbol Cja to mean Cρ(j,a). We prove the
proposition by induction:

• Base case. For any ja with Cja = ∅ (and thus ψtja = ˜̀t
jax

t
ja) we have by Lemma 4

x̃t+1
ja

x̃t+1
pj

=
xtja
xtpj

exp

{
−η

˜̀t
ja

wj

}
=
xtja
xtpj

exp

{
− η

wjxtja
ψtja

}
,

which proves the lower bound. In order to prove the upper bound, it is enough to note that the argument of
the exp is non-positive. Hence,

x̃t+1
ja

x̃t+1
pj

=
xtja
xtpj

exp

{
− η

wjxtja
ψtja

}
≤
xtja
xtpj

.

• Inductive step. Suppose that the inductive hypothesis holds for all sequences j′a′ � ja. Then, we have

ξt+1
ja =

∑
j′∈Cja

wj′ ∑
a′∈Aj′

x̃t+1
j′a′

x̃t+1
ja

 ≥ ∑
j′∈Cja

wj′ ∑
a′∈Aj′

xtj′a′

xtja
exp

{
− η

wj′xtj′a′
ψtj′a′

}. (26)

Furthermore, for all ja ∈ Σ, using Definition 1 we have

wρ(j,a) =
∑
j′∈Cja

w′j =
∑
j′∈Cja

wj′
∑
a′∈Aj′

xtj′a′

xtja
,

where the last equality follows from the fact that xt is a valid sequence-form strategy. Hence, we can
rewrite (17) as

x̃t+1
ja

x̃t+1
pj

=
xtja
xtpj

exp

−η ˜̀t
ja

wj
− 1

wj

∑
j′∈Cja

wj′
∑
a′∈Aj′

xtj′a′

xtja
+
ξt+1
ja

wj

. (27)

Plugging in the inductive hypothesis (26) into (27) and using the monotonicity of exp, we obtain

x̃t+1
ja

x̃t+1
pj

≥
xtja
xtpj

exp

−η ˜̀t
ja

wj
− 1

wj

 ∑
j′∈Cja

wj′
∑
a′∈Aj′

xtj′a′

xtja

(
1− exp

{
− η

wj′xtj′a′
ψtj′a′

})
≥
xtja
xtpj

exp

−η ˜̀t
ja

wj
− η

wj

 ∑
j′∈Cja

∑
a′∈Aj′

1

xtja
ψtj′a′

, (28)

where the second inequality follows from the fact that 1−e−x ≤ x for all x ∈ R. Finally, using the definition
of ψtja we find ∑

j′∈Cja

∑
a′∈Aj′

ψtj′a′ = ψtja − ˜̀t
jax

t
ja. (29)

Plugging (29) into (28) we obtain

x̃t+1
ja

x̃t+1
pj

≥
xtja
xtpj

exp

{
− η

wjxtja
ψtja

}
.

This completes the proof for the lower bound.
In order to prove the upper bound, we start from (17).

x̃t+1
ja

x̃t+1
pj

=
xtja
xtpj

exp

−η ˜̀t
ja

wj
− 1

wj

 ∑
j′∈Cja

wj′
∑
a′∈Aj′

(
xtj′a′

xtja
−
x̃t+1
j′a′

x̃t+1
ja

) ≤ xtja
xtpj

.

Using the inductive hypothesis x̃t+1
ja /x̃t+1

pj ≤ xtja/xtpj , we obtain

x̃t+1
ja

x̃t+1
pj

≤
xtja
xtpj

exp

−η ˜̀t
ja

wj
− 1

wj

 ∑
j′∈Cja

wj′
∑
a′∈Aj′

(
xtj′a′

xtja
−
xtj′a′

xtja

) ≤ xtja
xtpj

≤
xtja
xtpj

exp

{
−η

˜̀t
ja

wj

}
≤
xtja
xtpj

.

An immediate corollary of Proposition 3 is the following.
Corollary 2. For all ja ∈ Σ,

0 < exp

− ∑
j′a′� ja

η

wjxtj′a′
ψtj′a′

 ≤ x̃t+1
ja

xtja
≤
x̃t+1
pj

xtpj
≤ 1.

In particular,

0 ≤ 1−
x̃t+1
ja

xtja
≤

∑
j′a′� ja

η

wjxtj′a′
ψtj′a′ . (30)

Proof. The first statement follows from applying Proposition 3 repeatedly on the path from the root of the
decision tree to decision point j. The second statement holds from the first statement by noting that

1−
x̃t+1
ja

xtja
≤ 1− exp

− ∑
j′a′� ja

η

wjxtj′a′
ψtj′a′

 ≤ ∑
j′a′� ja

η

wjxtj′a′
ψtj′a′ ,

where we used the fact that 1− e−x ≤ x for all x ∈ R.

Furthermore, the following lemma will be important in the proof of Proposition 4.
Lemma 8. For all sequences ja, ∑

j′a′ � ja

wj′yj′a′

wjyja
≤ 2.

Proof. By induction.

• Base case. For any terminal decision ja ∈ Σ (that is, Cρ(j,a) = ∅), we have∑
j′a′ � ja

wj′yj′a′

wjyja
=
wjxja
wjxja

= 1 ≤ 2.

• Inductive step. Suppose that the inductive hypothesis holds for all sequences j′a′ � ja. Then,

∑
j′a′ � ja

wj′yj′a′

wjyja
= 1 +

∑
j′∈Cρ(j,a)

∑
a′∈Aj′

wj′yj′a′
wjyja

∑
j′′a′′ � j′a′

wj′′yj′′a′′

wj′yj′a′

≤ 1 + 2

∑
j′∈Cρ(j,a)

∑
a′∈Aj′

wj′yj′a′

wjyja

= 1 + 2
∑

j′∈Cρ(j,a)

wj′

wj
= 1 +

2wρ(j,a)

wj
≤ 2,

where the first inequality follows by the inductive hypothesis, and the second inequality holds by definition
of the weights in the dilated DGF (Equation 1).

Proposition 3 is also a fundamental step for the following proposition, which bounds the length of the step
(as measured according to the local norm ‖ · ‖xt) between the last decision xt and the next intermediate iterate
x̃t+1 as a function of the stepsize parameter η and the dual local norm of the loss ˜̀t that was last observed:

Proposition 4. Let D be the maximum depth of any node in the decision process. If ˜̀t ∈ R|Σ|≥0, then

‖xt − x̃t+1‖xt ≤ η
√

3D · ‖ ˜̀t‖∗,xt . (31)

Proof. By Corollary 2, xt − x̃t+1 ∈ R|Σ|≥0. Hence, we can apply Lemma 2:

‖xt − x̃t+1‖2xt ≤
3

2

∑
j∈J

∑
a∈Aj

wj
xtja

(xtja − x̃t+1
ja)2 =

3

2

∑
j∈J

∑
a∈Aj

wjx
t
ja

(
1−

x̃t+1
ja

xtja

)2

.

Using Inequality (30),

‖xt − x̃t+1‖2xt ≤
3η2

2

∑
j∈J

∑
a∈Aj

wjx
t
ja

 ∑
j′a′ � ja

ψtj′a′

wj′xtj′a′

2

≤ 3Dη2

2

∑
j∈J

∑
a∈Aj

∑
j′a′ � ja

wjx
t
ja

w2
j′(x

t
j′a′)

2
(ψtj′a′)

2

=
3Dη2

2

∑
j∈J

∑
a∈Aj

∑
j′a′ � ja

wjx
t
ja

wj′xtj′a′

(ψtj′a′)
2

wj′xtj′a′
,

where the second inequality follows from applying Cauchy-Schwarz. Now using double counting we derive

3Dη2

2

∑
j∈J

∑
a∈Aj

∑
j′a′ � ja

wjx
t
ja

wj′xtj′a′

(ψtj′a′)
2

wj′xtj′a′
=

3Dη2

2

∑
j∈J

∑
a∈Aj

 (ψtja)2

wjxtja

∑
j′a′ � ja

wj′x
t
j′a′

wjxtja

≤ 3Dη2

∑
j∈J

∑
a∈Aj

(ψtja)2

wjxtja
.

where the second inequality follows from Lemma 8. Finally, plugging in definition of ψtja and using Corollary 1,
we have

‖xt − x̃t+1‖2xt ≤ 3Dη2
∑
j∈J

∑
a∈Aj

(u>ja(˜̀t ◦ xt))2

wjxtja
= 3Dη2‖ ˜̀t‖2∗,xt .

Taking the square root of both sides yields the statement.

Finally, Lemma 6 can be used to derive a regret bound for R̃ expressed in term of local norms. In particular,
using the generalized Cauchy-Schwarz inequality together with Proposition 4, we obtain

(˜̀t)>(xt − x̃t+1) ≤ ‖ ˜̀t‖∗,xt · ‖xt − x̃t+1‖xt
≤ η
√

3D · ‖ ˜̀t‖2∗,xt .
Substituting the last inequality into the bound of Lemma 6, we obtain Theorem 1.

D Sampling Scheme and Its Autocorrelation Matrix

D.1 General Observations

Lemma 9. Let π be a distribution with finite support, and let y ∼ π. Then ImE
[
yy>

]
= span suppπ.

Proof. We prove the statement by showing that the nullspace of E[yy>] is equal to the orthogonal complement
of span suppπ, in symbols:

kerE[yy>] = (span suppπ)⊥.

This will immediately imply the statement using the well-known relationship ImE[yy>] = (kerE[yy>])⊥.
We start by showing kerE[yy>] ⊆ (span suppπ)⊥. Take z ∈ kerE[yy>]. Then,

E[yy>]z = 0 =⇒ z>E[yy>]z = 0

=⇒ E[(z>y)2] = 0

=⇒ z>y = 0 ∀y ∈ suppπ

=⇒ z>y = 0 ∀y ∈ span suppπ.

We now look at the other direction, that is (span suppπ)⊥ ⊆ kerE[yy>]. Take z ∈ (span suppπ)⊥. Then,

E[yy>]z = E[y(y>z)] = E[y · 0] = 0.

This implies z ∈ kerE[yy>], and concludes the proof.

Lemma 10. Suppose that a distribution π over Π is known, such that the support of π is full-rank (that is,
span suppπ = span Π), and let y ∼ π. Furthermore, letC− be any generalized inverse of the autocorrelation
matrix C. Then, for all z ∈ span Π,

CC−z = z, and z>C−C = z>.

Proof. Since ImC = span suppπ (see Lemma 9) and span suppπ = span Π by hypothesis, it must be
z ∈ ImC. Hence, there exists v ∈ R|Σ| such that z = C v, and therefore

CC−z = CC−Cv = Cv = z,

where the second equality follows by definition of generalized inverse. The proof of the second equality in the
statement is analogous.

Lemma 11. Suppose that a distribution π over Π is known, such that the support of π is full-rank (that is,
span suppπ = span Π), and let y ∼ π and ȳ = E[y]. Furthermore, let C− be any generalized inverse of the
autocorrelation matrix C. Then, for all z ∈ span Π,

z>C−ȳ = ȳ>C−z = 1.

Proof. Since ImC = span suppπ (see Lemma 9) and span suppπ = span Π by hypothesis, there exists
v ∈ R|Σ| such that z = Cv. Furthermore, ȳ = C τ where τ is any vector such that z>τ = 1 for all z ∈ Q
(such vector must exist because 0 is not in the affine hull of Π). Hence,

z>C−ȳ = v>CC−Cτ = v>Cτ = z>τ = 1.

The proof that ȳ>C−z = 1 is analogous.

Since Et[yt] = x̄t, Lemma 10 and 11 imply that CtCt−z = z for all z ∈ Π, and that z>Ct−x̄t = 1 for
all z ∈ Π.

D.2 Unbiasedness of the Sampling Scheme
In Algorithm 6 we give pseudocode for the sampling scheme described in Section 6.1.

Algorithm 6: SAMPLE(xt)
Input: xt ∈ Q sequence-form strategy
Output: yt ∈ Π such that E[yt] = xt

1 yt ← 0
2 subroutine RECURSIVESAMPLE(v)
3 if v ∈ J then
4 Sample an action a ∼ (xtva/xpv)a∈Av
5 ytva ← 1
6 RECURSIVESAMPLE(ρ(v, a))
7 else if v ∈ K then
8 for s ∈ Sk do RECURSIVESAMPLE(ρ(v, s))

9 RECURSIVESAMPLE(r) [. r: root of the decision process]
10 return yt

Lemma 12. The sampling scheme given by Algorithm 6 is unbiased, that is, Et[yt] = xt.

Proof. We prove by induction over the structure of the sequential decision process that for all v ∈ J ∪ K,

Et[ytv] = xtv

• First case: v ∈ J is a terminal decision point. This serves as the base case for the induction.
Let Av = {a1, . . . , an}. Then, xtv = (xtva1

, . . . , xtvan) ∈ ∆n and

Et[ytv] =

n∑
i=1

xtvaiei = xtv.

• Third case: v ∈ J is a (generic) decision point. Let {a1, . . . , am} the terminal actions at v, and
{am+1, . . . , an} the remaining, non-terminal actions. Furthermore, let Cj = {km+1, . . . , kn} be the set
of observation points that are immediately reachable after v. From Equation (6), xtj must be in the form
xtj = (λt1, . . . , λ

t
n, λ

t
m+1x

t
km+1

, . . . , λtnx
t
kn

), where λt = (λt1, . . . , λ
t
n) ∈ ∆n. It follows that

Et[ytv] =

m∑
i=1

λti

ei
0
...
0

+

n∑
i=m+1

λti

ei
...

Et[ytki]
...

 = xtv.

• Third case: v ∈ K is an observation point. Let Cv = {j1, . . . , jn} be the set of decision points that are
immediately reachable after v. From (8), xtv is in the form xtv = (xtj1 , . . . ,x

t
jn

) ∈∏n
i=1Qji . It follows that

Et[ytv] = Et

y

t
j1
...
ytjn

 =

Et[ytj1]
...

Et[ytjn]

 =

x
t
j1
...
xtjn

 = xtv,

where the second equality follows from the independence of the sampling scheme and the third equality
follows from the inductive hypothesis.

D.3 Autocorrelation Matrix of the Sampling Scheme
Decision Points Let v ∈ J be a decision point, where actions a1, . . . , am are terminal, while am+1, . . . , an
are not. In order to sample a pure sequence-form strategy we first sample a ∈ {a1, . . . , an} according to the
distribution specified by {xva}a∈Av ∈ ∆|Av|. Then, we set ytva = 1. Finally, if the sampled action is not
terminal, we recursively sample ytρ(v,a) by calling into the sampling scheme for ρ(v, a).

Lemma 13. Let Π be a decision process rooted in decision point j. Let {a1, . . . , am} be the terminal actions
at j, and let {am+1, . . . , an} be the remaining, non-terminal actions. Furthermore, let

xtj = (λt1, . . . , λ
t
m, λ

t
m+1, . . . , λ

t
n, λ

t
m+1x

t
km+1

, . . . , λtnx
t
kn),

where (λt1, . . . , λ
t
n) ∈ ∆n, in accordance with (6). Let Ct

ki
for i ∈ 1, . . . , n be the autocorrelation matrix of

the unbiased sampling scheme picking ytki ∈ Πki using xki/λi for all i ∈ {m+1, . . . , n}. The autocorrelation
matrix of the sampling scheme picking ytj is

Ct
j =

λt1
. . .

λtm

λtm+1 λtm+1(xtkm+1
)>

. . .
. . .

λtn λtn(xtkn)>

λtm+1x
t
km+1

λtm+1C
t
km+1

. . .
. . .

λtnx
t
kn

λtnC
t
kn

.

Proof. It follows from the definition of the sampling scheme that

Ct
j = Et[ytj(ytj)>]

=

m∑
i=1

λtiEt
[
(e>i ,0, . . . ,0)>(e>i ,0, . . . ,0)

]
+

n∑
i=m+1

λtiEt
[
(e>i ,0, . . . ,0, (y

t
ki)
>,0, . . . ,0)>(e>i ,0, . . . ,0, (y

t
ki)
>,0, . . . ,0)

]
.

Expanding the outer products and summing yields the statement.

Observation Points Let v ∈ K be an observation point. In order to sample ytv given a xtv = (xtj1 , . . . ,x
t
jn

),
we call into the sampling schemes for nodes j1, . . . , jn by making n independent calls to SAMPLE(ji,x

t
ji

) for
i = 1, . . . , n.

Lemma 14. Let Π be a decision process rooted in observation point k. Let Ck = {j1, . . . , jn} be the
set of decision points that are immediately reachable after k. In accordance with (8), xtk is in the form
xtk = (xtj1 , . . . ,x

t
jn

). Let Ct
ji

for i ∈ 1, . . . , n be the autocorrelation matrix of the unbiased sampling scheme
picking ytji ∈ Πji using xji . The autocorrelation matrix of the sampling scheme picking ytk ∈ Π is

Ct
k =

Ct
j1

xtj1(xtj2)> · · · xtj1(xtjn)>

xtj2(xtj1)> Ct
j2

· · · xtj2(xtjn)>

...
...

. . .
...

xtjn(xtj1)> xtjn(xtj2)> · · · Ct
jn

 .

Proof. It follows from the definition of the sampling scheme that

Ct,k = Et[ytk(ytk)>]

= Et

yj1
yj2

...
yjn

yj1
yj2

...
yjn

> =

Et[ytj1(ytj1)>] Et[ytj1]Et[ytj2]> · · · Et[ytj1]Et[ytjn]>

Et[ytj2]Et[ytj1]> Et[ytj2(ytj2)>] · · · Et[ytj2]Et[ytjn]>

...
...

. . .
...

Et[ytjn]Et[ytj1]> Et[ytjn]Et[ytj2]> · · · Et[ytjn(ytjn)>]

=

Ct
j1

xtj1(xtj2)> · · · xtj1(xtjn)>

xtj2(xtj1)> Ct
j2

· · · xtj2(xtjn)>

...
...

. . .
...

xtjn(xtj1)> xtjn(xtj2)> · · · Ct
jn

 .

D.4 Generalized Inverse of the Autocorrelation Matrix
Proposition 5. Let j ∈ J be a decision point. Let {a1, . . . , am} be the terminal actions at j, and let
{am+1, . . . , an} be the remaining, non-terminal actions. Then,

Ct−
j,∗ :=

1
λt1

. . .
1
λtm

0
. . .

0

1
λtm+1

Ct−
km+1

. . .
1
λtn
Ct−
kn

is a generalized inverse for the autocorrelation matrix Ct

j defined in Lemma 13. The matrix is well defined in
virtue of Observation 1.

Proof. Let Ct−
j be the matrix proposed by the statement. Using Lemma 13,

C
t
j C

t−
j C

t
j

= C
t
j

1
λt1

. . .
1
λtm

0
. . .

0

1
λt1

Ct−
km+1

. . .
1
λtn

Ct−
kn

λt1
. . .

λtm

λtm+1 λtm+1(xtkm+1
)>

. . .
. . .

λtn λtn(xtkn)>

λtm+1x
t
km+1

λtm+1C
t
km+1

. . .
. . .

λtnx
t
kn

λtnC
t
kn

=

λt1
. . .

λtm

λtm+1 λtm+1(xtkm+1
)>

. . .
. . .

λtn λtn(xtkn)>

λtm+1x
t
km+1

λtm+1C
t
km+1

. . .
. . .

λtnx
t
kn

λtnC
t
kn

1

. . .

1

0

. . .

0

Ct−
km+1

xtkm+1
Ct−
km+1

Ct
km+1

. . .
. . .

Ct−
kn

xtkn Ct−
kn

Ct
kn

=

λt1
. . .

λtm

λtm+1 λtm+1(xtkm+1
)>

. . .
. . .

λtn λtn(xtkn)>

λtm+1x
t
km+1

λtm+1C
t
km+1

. . .
. . .

λtnx
t
kn

λtnC
t
kn

= C
t
j ,

where we used Lemmas 10 and 11 in the third equality. This concludes the proof.

Proposition 6. Let k ∈ K be an observation point, and let Ck = {j1, . . . , jn} be the decision points
immediately reachable after k. Finally, for all i = 1, . . . , n, let Ct−

ji
be any generalized invers for Ct

ji
, and let

µtk :=

C
t−
j1
xtj1

...
Ct−
jn
xtjn

 .

The matrix

Ct−
k,∗ :=

C
t−
j1

. . .
Ct−
jn

− n− 1

n2
· µtk(µtk)>.

is a generalized inverse for the autocorrelation matrix Ct
k defined in Lemma 14.

Proof. In order to reduce the notational burden, let

Ct∼
k :=

C
t−
j1

. . .
Ct−
jn

 .

With that, we have

Ct
kC

t∼
k Ct

k =

 Ct
j1

· · · xtj1(xtjn)>

...
. . .

...
xtjn(xtj1)> · · · Ct

jn

C

t−
j1

. . .
Ct−
jn

 Ct

j1
· · · xtj1(xtjn)>

...
. . .

...
xtjn(xtj1)> · · · Ct

jn

=

 Ct
j1

· · · xtj1(xtjn)>

...
. . .

...
xtjn(xtj1)> · · · Ct

jn

Ct−
j1
Ct
j1

· · · Ct−
j1
xtj1(xtjn)>

...
. . .

...
Ct−
jn
xtjn(xtj1)> · · · Ct−

jn
Ct
jn

=

Ct
j1

+ (n− 1)xtj1(xtj1)> nxtj1(xtj2)> · · · nxtj1(xtjn)>

nxtj2(xtj1)> Ct
j2

+ (n− 1)xtj2(xtj2)> · · · nxtj2(xtjn)>

...
...

. . .
...

nxtjn(xtj1)> nxtjn(xtj2)> · · · Ct
jn

+ (n− 1)xtjn(xtjn)>

= Ct

k + (n− 1)xtk(xtk)>, (32)

where we repeatedly used Lemmas 10 and 11. At the same time, we have

Ct
k µ

t
k =

 Ct
j1

· · · xtj1(xtjn)>

...
. . .

...
xtjn(xtj1)> · · · Ct

jn

C

t−
j1
xtj1

...
Ct−
jn
xtjn

 =

nx
t
j1

...
nxtjn

 = nxtk, (33)

where again we used Lemmas 10 and 11. Putting (32) and (33) together, we obtain

Ct
k

(
Ct∼
k − n− 1

n2
· µtk(µtk)>

)
Ct
k = Ct

k + (n− 1)xtk(xtk)> − (n− 1)xtk(xtk)> = Ct
k,

as we wanted to show.

E Loss Estimate
Proposition 1. Let πt be a conditional distribution over Π, given the previous decisions y1, . . . ,yt−1, and
suppose that the support of πt has full rank (that is, span suppπt= span Π). Let Ct := Et[yt(yt)>] be the
autocorrelation matrix of yt, and let Ct− be any generalized inverse of Ct, that is, any matrix such that
CtCt−Ct = Ct. Furthermore, let bt be such that Et[bt] ⊥ dir Π. Then, the random variable

˜̀t := [(`t)>yt] ·Ct− yt + bt (3)

satisfies (?).

Proof. For all z ∈ dir Π,

z>Et[˜̀t] = z>Et
[
((yt)>̀ t)Ct− yt

]
+ z>Et[bt]

= z>Et
[
Ct− yt(yt)> `t

]
= z>Ct−Ct`t.

Using the inclusion dir Π ⊆ span Π together with Lemma 10 gives the statement.

Propositions 5 and 6 give explicit formulas for inductively constructing a generalized inverse Ct−
∗ of

the autocorrelation matrix Ct of the natural sampling scheme for sequential decision processes needed in
Proposition 1.

In the next subsection we focus on studying the particular orthogonal vector bt∗ that we use in our algorithm.

E.1 Orthogonal Vector
The primary role of the orthogonal vector bt is to prevent the subtraction −(n− 1)/nµtk in Proposition 6 from
creating negative entries in the loss estimate. It is important to prevent negative entries in the loss estimate
because our refined local-norm-based bound for the online mirror descent algorithm paired with the dilated
entropy DGF (Theorem 1) is contingent on it.

The insight that we use in the construction of bt∗ is that the vector µtk in Proposition 6 is orthogonal to
dir Πk for all k ∈ K because of Lemma 11. So, we construct the vector bt ⊥ dir Π inductively to cancel the
effect of all µtk, as follows:

• Consider a decision point j ∈ J . Let {a1, . . . , am} at j be the terminal actions, and let the remaining
actions {am+1, . . . , an} be non-terminal, leading to observation nodes km+1, . . . , kn respectively. Fur-
thermore, let the a be the action that was selected at j by the pure sequence-form strategy yt. If a ≤ m,
we let

btj,∗ =

(
1

λta
(Nj − 1)ea,0, . . . ,0

)
. (34)

Otherwise, a ∈ {m+ 1, . . . , n} is a non-terminal action, and we recursively let

btj,∗ =

(
1

λta
(Nj −Nka)ea,0, . . . ,

1

λta
btka,∗,0

)
. (35)

So, in particular, at all terminal decision points j ∈ J we have btj = 0 since Nj = 1.
• At all observation points k ∈ K, we let

btk,∗ = (btj1,∗, . . . , b
t
jn,∗) +

n− 1

n
µtk, (36)

where {j1, . . . , jn} = Sk.
The vector bt∗ we just defined satisfies the following property.

Lemma 15. At all times t and for all nodes v ∈ J ∪ K,

Et[btv,∗]>zv = Nv − 1 ∀ zv ∈ Qv.
Proof. We prove the lemma by induction on the structure of the decision process:

• First case: v ∈ J is a terminal decision point. In this case Nv = 1. Furthermore, by construction btv,∗ = 0,
so Et[btv,∗]>zv = 0 = Nv − 1.

• Second case: v ∈ J is a (generic) decision point. In this case, taking the expectation of btv (Equations (34)
and (35)) over all possible choices of action a at v (action a is chosen with probability λta, yields

E[btv,∗] =
(
Nv − 1, . . . , Nv − 1, Nv −Nkm+1

, . . . , Nv −Nkn ,Et[btkm+1,∗], . . . ,Et[b
t
kn,∗]

)
.

From (6), any zv ∈ Qv can be written in the from (λ′1, . . . , λ
′
n, λ
′
m+1zkm+1 , . . . , λ

′
nzkn) for appropriate

(λ′1, . . . , λ
′
n) ∈ ∆n and zki ∈ Qki for i ∈ {m+ 1, . . . , n}. So,

E[btv,∗]
>zv =

m∑
i=1

(Nv − 1)λ′i +

n∑
i=m+1

(
λ′i(Nv −Nki) + λ′iE[btki,∗]

>zki
)
.

Finally, using the inductive hypothesis E[btki,∗]
>zki = Nki − 1 for all i ∈ {m+ 1, . . . , n},

E[btv,∗]
>zv =

m∑
i=1

(Nv − 1)λ′i +

n∑
i=m+1

(Nv −Nki) + (Nki − 1)

=

m∑
i=1

(Nv − 1)λ′i +

n∑
i=m+1

λ′i(Nv − 1) = Nv − 1,

where we used the fact that (λ′1, . . . , λ
′
n) ∈ ∆n in the last equality.

• Third case: v ∈ K is an observation point. In this case, the expectation of btv (Equation (36)) is

E[btv,∗] = (E[btj1,∗], . . .E[btjn,∗]) +
n− 1

n
µtk.

So, using the inductive hypothesis and Lemma 11, we find that

E[btv,∗]
>zv =

n∑
i=1

(Nji − 1) +
n− 1

n
· n = −1 +

n∑
i=1

Nji .

Using the fact that Nv =
∑n
i=1Nji yields the statement.

Since any point in dir Π is the difference of two points in Q, Lemma 15 immediately implies the following.
Corollary 3. At all times t, Et[btv,∗] ⊥ zv ∀zv ∈ dir Π.

So, our (inductive) construction of bt satisfies the requirements of Proposition 1. Below we will show that it
always leads to non-negative loss estimates.

E.2 Algorithm for Constructing the Loss Estimate in Linear Time
Let lt := (`t)>yt denote the bandit feedback (loss evaluation) received at time t by the decision maker. In this
section, we will show that the unbiased loss estimate ˜̀t = lt ·Ct−yt + bt, as defined in Proposition 1, can be
inductively computed in linear time in the size of the decision process as in Algorithm 3 (which is a copy of
the algorithm in the body of the paper).

Algorithm 7: LOSSESTIMATE(l,xt,yt)

1 ˜̀t ← 0 ∈ R|Σ|
>0

2 subroutine TRAVERSE(v, αv)
3 if v ∈ K then
4 for s ∈ Sv do

5 TRAVERSE

(
ρ(v, s),

αv
|Sv|

+
|Sv| − 1

|Sv|
(1− l)ytpv

)
6 else [. that is, v ∈ J]
7 for a ∈ Av do
8 if ρ(v, a) 6= � then

9 `tja ←
ytva
xtva

(Nv −Nρ(v,a))

10 TRAVERSE

(
ρ(v, a),

xpv
xva

αv

)
11 else if ρ(v, a) = � then

12 `tja ←
αv
xtpv

+
ytva
xtva

(l +Nv − 1)

13 TRAVERSE(r, 0) [. r: root of the decision process]
14 return ˜̀t

Proposition 2. At all times t, the vector ˜̀t returned by LOSSESTIMATE(l,xt,yt) satisfies (?). Furthermore,
Algorithm 3 amounts to a single traversal of the tree structure of the TFSDM problem and runs in linear time
in the number of sequences |Σ|.

Proof. Our construction revolves around the following quantity, indexed over nodes v ∈ J ∪ K:

htv(α) :=
ytpv
xtpv

˜̀t
v +

α

xtpv
Ct−
v,∗x

t
v = lt · y

t
pv

xtpv
Ct−
v,∗ y

t
v + β btv,∗ +

α

xtpv
Ct−
v,∗x

t
v.

The loss estimate ˜̀t coincides with htr(0) where r is the root of the sequential decision problem. We now
show that htv(α, β) can be constructed inductively over the structure of the sequential decision process:

• If v ∈ J is a decision node, let {a1, . . . , am} be the terminal actions at v, and let {am+1, . . . , an}
be the non-terminal actions at v (if any). Finally, let ki = ρ(v, ai) for i = m + 1, . . . , n. In
accordance with Equation (6), xtv = (λt1, . . . , λ

t
n, λ

t
km+1

xtki , . . . , λ
t
kn
xtkn). Similarly, we let ytv =

(νt1, . . . , ν
t
n, ν

t
km+1

ytki , . . . , ν
t
kn
ytkn).

Using Proposition 5 and Equations (34) and (35), we can write

htv(α) = lt
ytpv
xtpv

νt1
λt1
...
νtm
λtm
0
...
0

νtm+1

λtm+1
Ct−
km+1,∗y

t
km+1

...
νtn
λtn
Ct−
kn,∗y

t
kn

+
ytpv
xtpv

νt1
λt1

(Nv − 1)

...
νtm
λtm

(Nv − 1)
νtm+1

λtm
(Nv −Nkm)

...
νtn
λtn

(Nv −Nkn)
νtm+1

λtm+1
btkm+1,∗
...

νtn
λtn
btkn,∗

+
α

xtpv

1
...
1
0
...
0

Ct−
km+1,∗x

t
km+1

...
Ct−
kn,∗x

t
kn

=

α
xtpv

+
ytpvν

t
1

xtpvλ
t
1
(lt +Nv − 1)

...
α
xtpv

+
ytpvν

t
m

xtpvλ
t
m

(lt +Nv − 1)

ytpvν
t
m+1

xtpvλ
t
m+1

(Nv −Nkm+1
)

...
ytpvν

t
n

xtpvλ
t
n

(Nv −Nkn)

ytpvν
t
m+1

xtpvλ
t
m+1

(lt ·Ct−
km+1,∗y

t
km+1

+ btkm+1,∗) +
αλtm+1

xtpvλ
t
m+1

Ct−
km+1,∗y

t
km+1

...
ytpvν

t
n

xtpvλ
t
n

(lt ·Ct−
kn,∗y

t
kn

+ btkn,∗) +
αλtn
xtpvλ

t
n
Ct−
kn,∗y

t
kn

=

α
xtpv

+
ytva1

xtva1

(lt +Nv − 1)

...
α
xtpv

+
ytvam
xtvam

(lt +Nv − 1)

ytvam+1

xtvam+1

(Nv −Nkm+1
)

...
ytvan
xtvan

(Nv −Nkn)

htkm+1

(
αλtm+1

)
...

htkn(αλtn)

(37)

• If v ∈ K is an observation point, let {j1, . . . , jn} = Cv be the decision points that are immediately reachable
from v. From Equation (8) and Equation (5) we can write xtv = (xtj1 , . . . ,x

t
jn

) and ytv = (ytj1 , . . . ,y
t
jn

).
Using Proposition 6 and Equation (36), we can recursively expand Ct−

v,∗ and btv,∗ and write

htv(α) = lt
ytpv
xtpv

C
t−
j1,∗

. . .
Ct−
jn,∗

y

t
j1
...
ytjn

+
ytpv
xtpv

(1− lt)n− 1

n

C
t−
j1,∗x

t
j1

...
Ct−
jn,∗x

t
jn

+
ytpv
xtpv

b
t
j1,∗
...

btjn,∗

+
α

nxtpv

C
t−
j1,∗x

t
j1

...
Ct−
jn,∗x

t
jn

=

h
t
j1

(
α
n + (1− lt)n−1

n ytpv
)

...
htjn
(
α
n + (1− lt)n−1

n ytpv
)
 . (38)

Equations (37) and (38) together show that htv(α) can be computed inductively along the structure of the
decision problem.

Routine TRAVERSE(v, αv) in Algorithm 3 implementes the recursive construction ht(α) by operationalizing
Equations (37) and (38) into code. Specifically, for all v ∈ J ∪K and αv , TRAVERSE(v, αv) computes htv(αv).
Lines 7-12 of Algorithm 7 correspond to Equation (37), while Line 5 corresponds to Equation (38).

Since the algorithm performs constant work per each sequence, the algorithm runs in linear time in the
number of sequences |Σ| of the sequential decision process.

E.3 Expected Local Dual Norm of Loss Estimate
We start from a technical lemma.
Lemma 16. For all nodes v ∈ J ∪ K,

‖Ct−
v,∗ xv‖2∗,xv ≤ 2.

Proof. We prove the slightly stronger bound

‖Ct−
v,∗ xv‖2∗,xv ≤ 2− 1

wv
.

by induction on the structure of the decision process:

• First case: v ∈ J is a terminal decision point. This is the base case. In this case, xt = (1
λt1
, . . . , 1

λtn
) ∈ ∆n,

and from Proposition 5 we have

Ct−
v,∗ =

1
λt1

. . .
λtn

 .

So, using Proposition 5 and Corollary 1,

Ct−
v,∗ xv = (1, . . . , 1) =⇒ ‖Ct−

v,∗ xv‖2∗,xv =

n∑
i=1

λti
wv

=
1

wv
=

1

2
≤ 2− 1

2
= 2− 1

wv
.

• Second case: v ∈ J is a (generic) decision point. In this case,

xt = (λt1, . . . , λ
t
n, λ

t
m+1x

t
km+1

, . . . , λtnx
t
kn)

for appropriate (λt1, . . . , λ
t
n) ∈ ∆n (Equation (6)). So, using Proposition 5,

Ct−
v,∗ xv = (1, . . . , 1, 0, . . . , 0,Ct−

m+1x
t
km+1

, . . . ,Ct−
n x

t
kn).

Using Corollary 1, we have

‖Ct−
v,∗‖2∗,xv =

n∑
i=1

λti
wv

+

n∑
i=m+1

λti
wv

(
(xtki)

>Ct−
ki,∗x

t
ki

)2

+

n∑
i=m+1

λti‖Ct−
ki
xtki‖2∗,xtki

=

n∑
i=1

λti
wv

+

n∑
i=m+1

λti‖Ct−
ki
xtki‖2∗,xtki

=
1

wv
+

n∑
i=m+1

λti‖Ct−
ki
xtki‖2∗,xtki

≤ 1

wv
+

n
max
i=m+1

‖Ct−
ki
xtki‖2∗,xtki

≤ 1

wv
+

n
max
i=m+1

{
2− 1

wki

}
where the second equality holds from Lemma 11, the first inequality follows from using the fact that
(λt1, . . . , λ

t
n) ∈ ∆n, and the second inequality follows from the inductive hypothesis. Using the fact that

wv ≥ 2wki for all i = m+ 1, . . . , n (Definition 1), we obtain

‖Ct−
v,∗‖2∗,xv ≤

1

wv
+ 2− 2

wv
= 2− 1

wv
,

completing the inductive step.
• Third case: v ∈ K is an observation point. Let {j1, . . . , jn} = Cv . Proposition 6 yields

Ct−
v,∗x

t
v =

1

n

(
Ct−
j1,∗x

t
ji , . . . ,C

t−
jn,∗x

t
jn

)
.

So,

Ct−
v,∗x

t
v =

1

n2

n∑
i=1

‖Ct−
ji,∗‖

2
∗,xtji

≤ 1

n2

n∑
i=1

(
2− 1

wji

)

≤ 1

n

n∑
i=1

(
2− 1

wji

)
≤ n

max
i=1

{
2− 1

wji

}
≤ 2− 1

wv
,

where the last inequality follows from the observation that wji ≤ wv for all i = 1, . . . , n.

Theorem 2. At all times t, the loss estimate ˜̀t ∈ R|Σ|≥0 returned by LOSSESTIMATE(l,xt,yt), where r is the
root of the sequential decision process, satisfies

Et
[
‖ ˜̀t‖2∗,xt

]
≤ 4 · |Σ|3.

Proof. In order to prove the statement, we will prove the slightly stronger statement that for all v ∈ J ∪ K
and α ∈ [0, 1],

Et
[
‖ ˜̀+ αCt−

v,∗x
t
v‖2∗,xtv

]
≤ 2N2

v + |Σ|2
(

2− 1

wv

)
Nv.

Our proof is by induction over the sequential decision process structure:

• First case: v ∈ J is a terminal decision node. Let xtv = (λt1, . . . , λ
t
n) ∈ ∆n, in accordance with

Equation (7). By the sampling scheme, ytv = ea with probability λta. Furthermore,

˜̀t
v = ltCt−

v,∗y
t
v + btv,∗ + αCt−

v,∗x
t
v =

α...
α

+
lt

λta
ea.

So,

Et
[
‖ ˜̀+ αCt−

v,∗x
t
v‖2∗,xtv

]
=

n∑
i=1

λti

∥∥∥∥∥∥∥
α...
α

+
lt

λti
ei

∥∥∥∥∥∥∥
2

∗,xtv

=
1

wv

n∑
i=1

λti

λi(α+
lt

λti

)2

+
∑
j 6=i

λtjα
2

=

1

2

n∑
i=1

λti

(
α2 + 2α lt +

(lt)2

λti

)
=

1

2

(
α2 + 2αlt + n(lt)2

)
,

where the second equality follows from expanding the definition of local dual norm. Using the hypothesis
that lt ∈ [0, 1], for all α ∈ [0, 1] we find

Et
[
‖ ˜̀+ αCt−

v,∗x
t
v‖2∗,xtv

]
≤ 3 + n

2
≤ 2 + n2 ≤ 2N2

v + |Σ|2
(

2− 1

wv

)
Nv.

• Second case: v ∈ K. Let {j1, . . . , jn} = Cv. Furthermore, let xtv = (xtj1 , . . . ,x
t
jn

) and ytv =

(ytj1 , . . . ,y
t
jn

) in accordance with (8) and (5), respectively. Using Proposition 6, we have

˜̀+ αCt−
v,∗x

t
v = ltCt−

v,∗y
t
v + btv + αCt−

v,∗x
t
v

= lt

C
t−
j1,∗

. . .
Ct−
jn,∗

y

t
j1
...
ytjn

+

b
t
j1,∗
...

btjn,∗

+
α+ (n− 1)(1− lt)

n

C
t−
j1,∗x

t
j1

...
Ct−
jn,∗x

t
jn

=

˜̀t
j1
...

˜̀t
jn

+
α+ (n− 1)(1− lt)

n

C
t−
j1,∗x

t
j1

...
Ct−
jn,∗x

t
jn

=

˜̀t
j1

+ α′ ·Ct−
j1,∗x

t
j1

...
˜̀t
jn

+ α′ ·Ct−
jn,∗x

t
jn

 , where α′ :=
α+ (n− 1)(1− lt)

n
.

Using the assumption that lt ∈ [0, 1], for all α ∈ [0, 1] we have α′ ∈ [0, 1]. Hence, using Corollary 1 we
obtain that for all α ∈ [0, 1],

‖ ˜̀+ αCt−
v,∗x

t
v‖2∗,xtv =

n∑
i=1

‖ ˜̀t
ji + α′ ·Ct−

ji,∗x
t
ji‖2∗,xtji

Taking expectations and using the inductive hypothesis, we have

Et
[
‖ ˜̀+ αCt−

v,∗x
t
v‖2∗,xtv

]
=

n∑
i=1

Et
[
‖ ˜̀t
ji + α′ ·Ct−

ji,∗x
t
ji‖2∗,xtji

]
≤

n∑
i=1

(
2N2

ji + |Σ|2
(

2− 1

wv

)
Nji

)

≤ 2

(
n∑
i=1

Nji

)2

+ |Σ|2
(

2− 1

wv

) n∑
i=1

Nji

= 2N2
v + |Σ|2

(
2− 1

wv

)
Nv.

• Third case: v ∈ J is a generic decision node. Let {1, . . . ,m} be the terminal decision actions at v, and
{m+1, . . . , n} be the remaining, non-terminal decision actions, leading to observation points km+1, . . . , kn,
respectively. Furthermore, let xtv = (λ1, . . . , λn, λm+1x

t
km+1

, . . . , λnx
t
kn

) in accordance with Equation (6).
Action a ∈ {1, . . . , n} is selected with probability λi.
We break the analysis according to whether the sampled action a is terminal or not.
– If a is terminal, from the definition of Ct−

v,∗ (Proposition 5), btv,∗ (Equation (34)) and Corollary 1 we have

‖ ˜̀+ αCt−
v,∗x

t
v‖2∗,xtv =

1

wv

m∑
i=1

λti

(
α+

1[i = a]

λta
Nv

)2

+

n∑
i=m+1

(
λti
wv

(α(xtki)
>Ct−

ki
xtki)

2 + λti‖αCt−
ki
xtki‖2∗,xtki

)

=
α2

wv
+

2α

wv
Nv +

N2
v

wvλta
+ α2

n∑
i=m+1

λti‖Ct−
ki
xtki‖2∗,xki ,

where we used Lemma 11 and the fact that (λt1, . . . , λ
t
n) ∈ ∆n in the second equality. Using Lemma 16,

the fact that wv ≥ 2 for all v, and the hypothesis α ∈ [0, 1], we can bound the squared dual norm as

‖ ˜̀+ αCt−
v,∗x

t
v‖2∗,xtv ≤ 4Nv +

N2
v

wvλta
.

– If a is terminal, from the definition of Ct−
v,∗ (Proposition 5), btv,∗ (Equation (35)) and Corollary 1 we have

‖ ˜̀+ αCt−
v,∗x

t
v‖2∗,xtv =

1

wv

(
m∑
i=1

λtiα
2

)
+
λta
wv

(
1

λta
(Nv −Nρ(v,a)) +

1

λta
(xtki)

>
(

˜̀t
ka + (αλta)Ct−

ka
xtki

))2

+
1

λta

∥∥∥ ˜̀t
ka + (αλta)Ct−

ka
xtka

∥∥∥2

∗,xtka

+
∑

i∈{m+1,...,n}
i 6=a

(
λti
wv

(α(xtki)
>Ct−

ki
xtki)

2 + λti‖Ct−
ki
xtki‖2∗,xtki

)
(39)

Now,
(˜̀t
ka)>xtka = lt · ytkaCt−

ka
xtka + (btka)>xtka = lt +Nka − 1 ≤ Nka ,

where we used Lemma 15 together with the hypothesis that lt ∈ [0, 1]. So, using the hypothesis α ∈ [0, 1],

λta
wv

(
1

λta
(Nv −Nρ(v,a)) +

1

λta
(xtki)

>
(

˜̀t
ka + (αλta)Ct−

ka
xtki

))2

≤ 1

λtawv
(Nv + αλta)2

≤ N2
v

wvλta
+ 2Nv.

Substituting that bound into (39), and bounding the remaining terms as in the previous case (that is,
terminal sampled action a), we have

‖ ˜̀+ αCt−
v,∗x

t
v‖2∗,xtv ≤ 4Nv +

N2
v

wvλta
+

1

λta

∥∥∥ ˜̀t
ka + (αλta)Ct−

ka
xtka

∥∥∥2

∗,xtka

We now take expectations:

Et
[
‖ ˜̀+ αCt−

v,∗x
t
v‖2∗,xtv

]
≤

m∑
a=1

λta

(
4Nv +

N2
v

wvλta

)

+

n∑
a=m+1

λta

(
4Nv +

N2
v

wvλta
+

1

λta
Et
[∥∥∥ ˜̀t

ka + (αλta)Ct−
ka
xtka

∥∥∥2

∗,xtka

])

≤ 4Nv +
N3
v

wv
+

n∑
i=m+1

Et
[∥∥∥ ˜̀t

ka + (αλta)Ct−
ka
xtka

∥∥∥2

∗,xtka

]

≤ 4Nv + |Σ|2Nv
wv

+

n∑
i=m+1

Et
[∥∥∥ ˜̀t

ka + (αλta)Ct−
ka
xtka

∥∥∥2

∗,xtka

]
.

Since αλta ∈ [0, 1], we can use the inductive hypothesis and write

Et
[
‖ ˜̀+ αCt−

v,∗x
t
v‖2∗,xtv

]
≤ 4Nv + |Σ|2Nv

wv
+

n∑
i=m+1

(
2− 1

wki

)
|Σ|2Nki

wki
+ 2N2

ki

≤ 2

(
N2
ki + 2

n∑
i=m+1

Nki

)
+
|Σ|2
wv

+ |Σ|2
(

n∑
i=m+1

(
2− 1

wki
+

1

wv

)
Nki

)
,

where the second inequality follows from using Nv = 1 +
∑n
i=m+1Nki . Using the fact that 1/wi ≥ 2/wv ,

we further obtain

Et
[
‖ ˜̀+ αCt−

v,∗x
t
v‖2∗,xtv

]
≤ 2

(
N2
ki + 2

n∑
i=m+1

Nki

)
+ |Σ|2

(
n∑

i=m+1

(
2− 1

wv

)
Nki

)

= 2

(
N2
ki + 2

n∑
i=1

Nki

)
+ |Σ|2

(
2− 1

wv

)
(Nv − 1) +

|Σ|2
wv

.

Since 1
wv
≤ 1 ≤ 2− 1

wv
, we can further bound the right hand side as

Et
[
‖ ˜̀+ αCt−

v,∗x
t
v‖2∗,xtv

]
≤ 2

(
N2
ki + 2

n∑
i=m+1

Nki

)
+ |Σ|2

(
2− 1

wv

)
Nv

≤ 2

(∑
i=m+1

Nki

)2

+ |Σ|2
(

2− 1

wv

)
Nv

≤ 2N2
v + |Σ|2

(
2− 1

wv

)
Nv

thus completing the inductive step.

Finally, noting that Nv ≤ |Σ| at all v yields the statement.

F Game Instances Used in our Experimental Evaluation
Matrix game is a small matrix game, where the payoff matrix for Player 1 is(−1 1

1 −0.5
0.9 −1

)
.

The first and third action of Player 1 have almost opposite payoffs, which empirically complicates the loss
estimate and convergence to the best response with bandit feedback.

Kuhn poker is a standard benchmark game in the equilibrium-solving community (Kuhn 1950). In Kuhn
poker, the two players put an ante worth 1 into the pot at the beginning of the game. Then, each player is
privately dealt one card from a deck that contains only three cards—specifically, jack, queen, and king. A
single round of betting then occurs, with the following rule: first, Player 1 decides to either check or bet 1; then,

• If Player 1 checks, Player 2 may check or raise 1.
– If Player 2 checks, a showdown occurs; otherwise (that is, Player 2 raises), Player 1 can fold or call.

* If Player 1 folds the game ends and Player 2 takes the pot; if Player 1 calls a showdown occurs.
• If Player 1 raises Player 2 may fold or call.

– If Player 2 folds the game ends and Player 1 takes the pot; if Player 2 calls, a showdown occurs.

If a showdown occurs, the player with the higher card wins the pot and the game ends.

Leduc poker is another common benchmark game in the equilibrium-finding community (Southey et al.
2005). It is played with a deck of 3 unique ranks, each of which appears exactly twice in the deck. There are
two rounds in the game. In the first round, all players put an ante of 1 in the pot and are privately dealt a single
card. A round of betting then starts. Player 1 acts first, and at most two bets are allowed per player. Then, a card
is publicly revealed, and another round of betting takes place, with the same dynamics described above. After
the two betting round, if one of the players has a pair with the public card, that player wins the pot. Otherwise,
the player with the higher card wins the pot. All bets in the first round are worth 2, while all bets in the second
round are 4.

Goofspiel is another popular parametric benchmark game, originally proposed by Ross (1971). It is a
two-player card game, played with three identical decks of k cards each, whose values range from 1 to k. In
our experiment, we used k = 4. At the beginning of the game, each player gets dealt a full deck as their hand,
and the third deck (the “prize” deck) is shuffled and put face down on the board. In each turn, the topmost card
from the prize deck is revealed. Then, each player privately picks a card from their hand. This card acts as a bid
to win the card that was just revealed from the prize deck. The selected cards are simultaneously revealed, and
the highest one wins the prize card. If the players’ played cards are equal, the prize card is split. The players’
score are computed as the sum of the values of the prize cards they have won.

G Hyperparameter Selection for Experimental Evaluation

The AHR algorithm as well as our proposed bandit regret minimizer require us to choose one step-size
parameter. While we could have simply used the theoretically correct step-size which ensures Õ(

√
T) expected

regret we experimented by multiplying the step size with a constant α. Multiplying the theoretically correct
step-size with a constant does not effect the asymptotic regret bound. We considered α ∈ {0.5, 1, 2, 5, 10}. For
each choice of α we ran both algorithm 10 times on each of the two larger games (Goofspiel and Leduc poker).
Figures 3 and 4 show the performance of the algorithm by Abernethy, Hazan, and Rakhlin (2008) (AHR) and
our algorithm for every choice of α.

20 40 60 80 100 120 140 160 180

Time [min]

10−1

2× 10−1

3× 10−1

4× 10−1
Goofspiel : AHR

α = 0.5
α = 1
α = 2
α = 5
α = 10

20 40 60 80 100 120 140 160 180

Time [min]

10−1

3× 10−2

4× 10−2

6× 10−2

Leduc poker : AHR

α = 0.5
α = 1
α = 2
α = 5
α = 10

Figure 3: Average regret over 10 runs of the AHR algorithm using different step-size multipliers α.

20 40 60 80 100 120 140 160 180

Time [min]

10−1

Goofspiel : Our method

α = 0.5
α = 1
α = 2
α = 5
α = 10

20 40 60 80 100 120 140 160 180

Time [min]

10−2

10−1

Leduc poker : Our method

α = 0.5
α = 1
α = 2
α = 5
α = 10

Figure 4: Average regret over 10 runs of our algorithm using different step-size multipliers α.

In AHR, for all choices of α we achieve very similar performances. For our method, the best choices of α
seem to be 2 and 5.

