Lecture 8

Predictive Blackwell approachability

Instructor: Gabriele Farina*

In Lecture 4 we constructed a regret minimizer, called Regret Matching, by solving a suitable Blackwell approachability game. In this lecture, we will do the opposite: we will investigate how regret minimization algorithm can give rise to Blackwell approachability algorithms. From there, we use *predictive* regret minimization algorithms to arrive at *predictive* Blackwell approachability algorithms.

1 Using regret minimization to solve Blackwell approachability games

Recall that a Blackwell approachability game is a tuple $(\mathcal{X}, \mathcal{Y}, u, S)$, where \mathcal{X}, \mathcal{Y} are closed convex sets, $u: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^d$ is a biaffine function, and $S \subseteq \mathbb{R}^d$ is a closed and convex *target set*. A Blackwell approachability game represents a vector-valued repeated game between two players. At each time t, the two payers interact in this order:

- first, Player 1 selects an action $x^t \in \mathcal{X}$;
- then, Player 2 selects an action $y^t \in \mathcal{Y}$, which can depend adversarially on all the x^t output so far;
- finally, Player 1 incurs the vector-valued payoff $u(x^t, y^t) \in \mathbb{R}^d$, where u is a biaffine function.

Player 1's objective is to guarantee that the average payoff converges to the target set S. Formally, given target set $S \subseteq \mathbb{R}^d$, Player 1's goal is to pick actions $\boldsymbol{x}^1, \boldsymbol{x}^2, \ldots \in \mathcal{X}$ such that no matter the actions $\boldsymbol{y}^1, \boldsymbol{y}^2, \ldots \in \mathcal{Y}$ played by Player 2,

$$\min_{\hat{\boldsymbol{s}} \in S} \left\| \hat{\boldsymbol{s}} - \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{u}(\boldsymbol{x}^t, \boldsymbol{y}^t) \right\|_2 \to 0 \quad \text{as} \quad T \to \infty.$$
 (1)

As we discussed in Lecture 4, Blackwell's theorem states that goal (1) can be attained if and only if any halfspace $\mathcal{H} \supseteq S$ is *forceable*, where forceability is recalled next.

Definition 1.1 (Forceable halfspace). Let $(\mathcal{X}, \mathcal{Y}, \boldsymbol{u}, S)$ be a Blackwell approachability game and let $\mathcal{H} \subseteq \mathbb{R}^d$ be a halfspace, that is, a set of the form $\mathcal{H} = \{\boldsymbol{x} \in \mathbb{R}^d : \boldsymbol{a}^\top \boldsymbol{x} \leq b\}$ for some $\boldsymbol{a} \in \mathbb{R}^d, b \in \mathbb{R}$. The halfspace \mathcal{H} is said to be *forceable* if there exists a strategy of Player 1 that guarantees that the payoff is in \mathcal{H} no matter the actions played by Player 2, that is, if there exists $\boldsymbol{x}^* \in \mathcal{X}$ such that

$$u(x^*, y) \in \mathcal{H} \quad \forall y \in \mathcal{Y}.$$

When that is the case, we call action x^* a forcing action for \mathcal{H} .

Abernethy et al. [2011] showed that it is always possible to convert a regret minimizer into an algorithm for a Blackwell approachability game (that is, an algorithm that chooses actions x^t at all times t in such a way that goal (1) holds no matter the actions y^1, y^2, \ldots played by the opponent). (Gordon's Lagrangian Hedging [Gordon, 2005, 2006] partially overlaps with the construction by Abernethy et al. [2011].)

^{*}Computer Science Department, Carnegie Mellon University. 🔀 gfarina@cs.cmu.edu.

1.1 A couple preliminaries on convex cones

For simplicity, we will only be interested in Blackwell games whose target sets are (nonempty) closed convex cones $S \subseteq \mathbb{R}^n$.

Definition 1.2. A cone is a set such that for any point $s \in S$, the rescaled point λs belongs to S for any $\lambda \in \mathbb{R}_{\geq 0}$. In particular, $\mathbf{0} \in S$ for any nonempty cone.

Cones have a very regular geometry that will make constructing approachability algorithms simpler. This simplicity actually doesn't come at a generality cost: one of the contributions of Abernethy et al. [2011] is to show that any Blackwell approachability game with non-conic target set can be studied and solved by first transforming the problem into a slightly larger Blackwell approachability game with conic target set.

A standard concept in conic geometry is that of the *polar cone*, which we now define.

Definition 1.3. The *polar* of cone S, denotes S° , is defined as the set of all vectors that form an obtuse angle with the cone S, that is,

$$S^{\circ} := \{ \boldsymbol{w} \in \mathbb{R}^n : \boldsymbol{w}^{\top} \boldsymbol{s} \le 0 \quad \forall \, \boldsymbol{s} \in S \}.$$

The polar S° is itself a closed and convex cone provided that S is a closed and convex cone.

The reason we care about the polar of S is that it gives a characterization of important halfspaces $\mathcal{H} \supseteq S$, which are so crucial to Blackwell's theorem.

Lemma 1.1. Let $\theta \in S^{\circ}$ and consider the halfspace $\mathcal{H}_{\theta} := \{x \in \mathbb{R}^n : \theta^{\top} x \leq 0\}$. Then, $\mathcal{H}_{\theta} \supseteq S$.

Proof. Take any $s' \in S$; we will show that $s' \in \mathcal{H}_{\theta}$. Since $\theta \in S^{\circ}$, by definition of polar cone we have that $\theta^{\top} s \leq 0$ for all $s \in S$, including in particular s = s'. So, $s' \in \mathcal{H}_{\theta}$ as we wanted to show.

1.2 Abernethy et al. [2011]'s idea

Blackwell's algorithm described in Lecture 4 worked by playing, at every time t, a forcing actions for the halfspace tangent to S at the projection point $\psi^t \in S$ of the current average payoff $\bar{\phi}^t := \frac{1}{T} \sum_{\tau=1}^{t-1} u(x^t, y^t)$. Abernethy et al. [2011]'s idea is to generalize this construction by letting a regret minimizer decide which halfspace to force.

Specifically, let \mathcal{R}_S be a regret minimizer that outputs strategies $\boldsymbol{\theta}^t \in S^{\circ}$ that observes as utilities the Blackwell payoffs $\boldsymbol{\ell}^t \coloneqq \boldsymbol{u}(\boldsymbol{x}^t, \boldsymbol{y}^t)$. At every time t, we will force the halfspace

$$\mathcal{H}_{\boldsymbol{\theta}^t} \coloneqq \{ \boldsymbol{x} \in \mathbb{R}^n : (\boldsymbol{\theta}^t)^\top \boldsymbol{x} \le 0 \},$$

which, as we discussed in Lemma 1.1, is a superset of the target set S (see also Figure 1).

The proof of correctness for Algorithm 1 relies on this lemma that shows that the problem of *minimizing* distance to a cone is equivalent to the problem of *maximizing* the inner product on the polar of the cone.

Lemma 1.2. Let $S \subseteq \mathbb{R}^n$ be a cone and z be a generic point in \mathbb{R}^n . Then,

$$\min_{\hat{\boldsymbol{s}} \in S} \|\hat{\boldsymbol{s}} - \boldsymbol{z}\|_2 = \max_{\hat{\boldsymbol{\theta}} \in S^{\circ} \cap \mathbb{B}_2^n} \boldsymbol{z}^{\top} \hat{\boldsymbol{\theta}},$$

where $\mathbb{B}_2^n := \{ x \in \mathbb{R}^n : ||x||_2 \le 1 \}$ denotes the unit ball in \mathbb{R}^n with respect to the Euclidean norm.

Algorithm 1: From regret minimization to Blackwell approachability

Data: \mathcal{R}_S regret minimizer for S°

- 1 function NEXTSTRATEGY()
- $\theta^t \leftarrow \mathcal{R}_S.\text{NEXTSTRATEGY}()$
- \mathbf{z} return \mathbf{x}^t forcing action for $\mathcal{H}_{\boldsymbol{\theta}^t} \coloneqq \{ \mathbf{x} : (\boldsymbol{\theta}^t)^\top \mathbf{x} \leq 0 \}$
- 4 function ReceivePayoff $(oldsymbol{u}(oldsymbol{x}^t,oldsymbol{y}^t))$
- 5 | \mathcal{R}_S .ObserveLoss $(\boldsymbol{\ell}^t \coloneqq \boldsymbol{u}(\boldsymbol{x}^t, \boldsymbol{y}^t))$

Figure 1: Pictorial depiction of Algorithm 1's inner working: at all times t, the algorithm plays a forcing action for the halfspace H^t induced by the last decision output by \mathcal{L} .

Proposition 1.1. Denote the regret of \mathcal{R}_S compared to any $\hat{\theta}$ as

$$R_S^T(\hat{\boldsymbol{\theta}}) \coloneqq \sum_{t=1}^T (\ell^t)^\top \hat{\boldsymbol{\theta}} - \sum_{t=1}^T (\ell^t)^\top \boldsymbol{\theta}^t.$$

Then, at all times T, the distance between the average payoff cumulated by Algorithm 1 and the target cone S is upper bounded as

$$\min_{\hat{\boldsymbol{s}} \in S} \left\| \hat{\boldsymbol{s}} - \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{u}(\boldsymbol{x}^t, \boldsymbol{y}^t) \right\|_2 \leq \frac{1}{T} \max_{\hat{\boldsymbol{\theta}} \in S^{\circ} \cap \mathbb{B}_2^n} R_S^T(\hat{\boldsymbol{\theta}}),$$

where \mathbb{B}_2^n denotes the unit ball in \mathbb{R}^n with respect to the Euclidean norm, just like in Lemma 1.2.

Proof. Using Lemma 1.2,

$$\min_{\hat{\boldsymbol{s}} \in S} \left\| \hat{\boldsymbol{s}} - \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{u}(\boldsymbol{x}^{t}, \boldsymbol{y}^{t}) \right\|_{2} = \max_{\hat{\boldsymbol{\theta}} \in S^{\circ} \cap \mathbb{B}_{2}^{n}} \left(\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{u}(\boldsymbol{x}^{t}, \boldsymbol{y}^{t}) \right)^{\mathsf{T}} \hat{\boldsymbol{\theta}} = \max_{\hat{\boldsymbol{\theta}} \in S^{\circ} \cap \mathbb{B}_{2}^{n}} \left(\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{\ell}^{t} \right)^{\mathsf{T}} \hat{\boldsymbol{\theta}}$$

$$= \frac{1}{T} \max_{\hat{\boldsymbol{\theta}} \in S^{\circ} \cap \mathbb{B}_{2}^{n}} \left\{ \sum_{t=1}^{T} (\boldsymbol{\ell}^{t})^{\mathsf{T}} \hat{\boldsymbol{\theta}} \right\} \tag{2}$$

where the second step uses $\ell^t := u(x^t, y^t)$. By substituting the definition $R_S^T(\hat{\theta})$ into (2), we then find

$$\min_{\hat{\boldsymbol{s}} \in S} \left\| \hat{\boldsymbol{s}} - \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{u}(\boldsymbol{x}^{t}, \boldsymbol{y}^{t}) \right\|_{2} = \frac{1}{T} \max_{\hat{\boldsymbol{\theta}} \in S^{\circ} \cap \mathbb{B}_{2}^{n}} \left\{ R_{S}^{T}(\hat{\boldsymbol{\theta}}) + \sum_{t=1}^{T} (\boldsymbol{\ell}^{t})^{\top} \boldsymbol{\theta}^{t} \right\}
= \frac{1}{T} \max_{\hat{\boldsymbol{\theta}} \in S^{\circ} \cap \mathbb{B}_{2}^{n}} \left\{ R_{S}^{T}(\hat{\boldsymbol{\theta}}) \right\} + \frac{1}{T} \sum_{t=1}^{T} (\boldsymbol{\ell}^{t})^{\top} \boldsymbol{\theta}^{t}.$$

Now, by construction \boldsymbol{x}^t is a forcing action for the halfspace $\mathcal{H}_{\boldsymbol{\theta}^t} = \{\boldsymbol{x} \in \mathbb{R}^n : (\boldsymbol{\theta}^t)^\top \boldsymbol{x} \leq 0\}$, and so $(\boldsymbol{\theta}^t)^\top \boldsymbol{u}(\boldsymbol{x}^t, \boldsymbol{y}^t) = (\boldsymbol{\ell}^t)^\top \boldsymbol{\theta}^t \leq 0$. Hence,

$$\frac{1}{T} \sum_{t=1}^{T} (\boldsymbol{\ell}^t)^{\top} \boldsymbol{\theta}^t \le 0.$$
 (3)

Plugging (3) into (2) yields the statement.

Proposition 1.1 immediately implies that if the regret minimizer \mathcal{R}_S is able to guarantee that the regret on the subset $S^{\circ} \cap \mathbb{B}_2^n$ of its domain S° grows sublinearly, then goal (1) can be attained.

Algorithms that are able to guarantee that $\max_{\hat{\boldsymbol{\theta}} \in S^{\circ} \cap \mathbb{B}_{2}^{n}} R_{S}^{T}(\hat{\boldsymbol{\theta}}) = o(T)$ exist. For example, if \mathcal{R}_{S} is set to OMD or FTRL with Euclidean regularization, then it can be shown that

$$\max_{\hat{\boldsymbol{\theta}} \in S^{\circ} \cap \mathbb{B}_{2}^{n}} R_{S}^{T}(\hat{\boldsymbol{\theta}}) \leq \sqrt{2 \left(\sum_{t=1}^{T} \|\boldsymbol{\ell}^{t}\|_{2}^{2} \right)},$$

which clearly grows at a sublinear rate of $O(\sqrt{T})$.

2 Predictive Blackwell Approachability

Predictive Blackwell approachability is a natural extension of Blackwell approachability [Farina et al., 2021]. Similarly to how we defined predictive regret minimization, in predictive Blackwell approachability the environment provides Player 1 with a prediction \mathbf{v}^t of the next utility $\mathbf{u}(\mathbf{x}^t, \mathbf{y}^t)$.

It is immediate to extend the construction of Abernethy et al. [2011] (Algorithm 1) to take into account predictions: since the utility observed by \mathcal{R}_S (Line 5) is exactly $\boldsymbol{u}^t(\boldsymbol{x}^t, \boldsymbol{y}^t)$, we can simply use a predictive regret minimization algorithm \mathcal{R}_S and provide \boldsymbol{v}^t as the prediction of the next utility. The predictive version of Algorithm 1 is given in Algorithm 2.

The analysis in Proposition 1.1 holds verbatim. In fact, it can be shown that when \mathcal{R}_S is set to predictive OMD or FTRL with Euclidean regularization, then

$$\max_{\hat{\boldsymbol{\theta}} \in S^{\circ} \cap \mathbb{B}_2^n} R_S^T(\hat{\boldsymbol{\theta}}) \leq \sqrt{2 \Biggl(\sum_{t=1}^T \|\boldsymbol{\ell}^t - \boldsymbol{v}^t\|_2^2 \Biggr)},$$

which clearly grows at a sublinear rate of $O(\sqrt{T})$ and can be very small if the predictions v^t are accurate.

```
Algorithm 2: Predictive Blackwell approachability algorithm
```

```
Data: \mathcal{R}_S predictive regret minimizer for S^\circ

1 function NextStrategy(\boldsymbol{v}^t)

| [ \triangleright \boldsymbol{v}^t \text{ is the prediction of the next Blackwell payoff } \boldsymbol{u}(\boldsymbol{x}^t, \boldsymbol{y}^t) \in \mathbb{R}^n ]

2 \boldsymbol{\theta}^t \leftarrow \mathcal{R}_S.\text{NextStrategy}(\boldsymbol{v}^t)

3 | \mathbf{return} \ \boldsymbol{x}^t \ forcing \ action \ for \ \mathcal{H}_{\boldsymbol{\theta}^t} \coloneqq \{ \boldsymbol{x} : (\boldsymbol{\theta}^t)^\top \boldsymbol{x} \leq 0 \}

4 function ReceivePayoff(\boldsymbol{u}(\boldsymbol{x}^t, \boldsymbol{y}^t))

5 | \mathcal{R}_S.\text{ObserveLoss}(\boldsymbol{\ell}^t \coloneqq \boldsymbol{u}(\boldsymbol{x}^t, \boldsymbol{y}^t))
```

References

Jacob Abernethy, Peter L Bartlett, and Elad Hazan. Blackwell approachability and no-regret learning are equivalent. In *Proceedings of the Conference on Learning Theory (COLT)*, pages 27–46, 2011.

Geoffrey J. Gordon. No-regret algorithms for structured prediction problems. Technical Report CMU-CALD-05-112, Carnegie Mellon University, 2005.

Geoffrey J Gordon. No-regret algorithms for online convex programs. Advances in Neural Information Processing Systems, 19:489, 2006.

Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Faster game solving via predictive Blackwell approachability: Connecting regret matching and mirror descent. Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2021.