
Ex ante coordination and collusion in zero-sum
multi-player extensive-form games

Gabriele Farina∗
Computer Science Department

Carnegie Mellon University
gfarina@cs.cmu.edu

Andrea Celli∗
DEIB

Politecnico di Milano
andrea.celli@polimi.it

Nicola Gatti
DEIB

Politecnico di Milano
nicola.gatti@polimi.it

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
sandholm@cs.cmu.edu

Abstract

Recent milestones in equilibrium computation, such as the success of Libratus,
show that it is possible to compute strong solutions to two-player zero-sum games
in theory and practice. This is not the case for games with more than two players,
which remain one of the main open challenges in computational game theory. This
paper focuses on zero-sum games where a team of players faces an opponent, as
is the case, for example, in Bridge, collusion in poker, and many non-recreational
applications such as war, where the colluders do not have time or means of com-
municating during battle, collusion in bidding, where communication during the
auction is illegal, and coordinated swindling in public. The possibility for the team
members to communicate before game play—that is, coordinate their strategies ex
ante—makes the use of behavioral strategies unsatisfactory. The reasons for this
are closely related to the fact that the team can be represented as a single player
with imperfect recall. We propose a new game representation, the realization
form, that generalizes the sequence form but can also be applied to imperfect-recall
games. Then, we use it to derive an auxiliary game that is equivalent to the original
one. It provides a sound way to map the problem of finding an optimal ex-ante-
coordinated strategy for the team to the well-understood Nash equilibrium-finding
problem in a (larger) two-player zero-sum perfect-recall game. By reasoning over
the auxiliary game, we devise an anytime algorithm, fictitious team-play, that is
guaranteed to converge to an optimal coordinated strategy for the team against
an optimal opponent, and that is dramatically faster than the prior state-of-the-art
algorithm for this problem.

1 Introduction

In recent years, computational studies on imperfect-information games have largely focused on two-
player zero-sum games. In that setting, AI techniques have achieved remarkable results, such as
defeating top human specialist professionals in heads-up no-limit Texas hold’em poker [4, 5].

Fewer results are known for settings with more than two players. Yet, many strategic interactions
provide players with incentives to team up. In some cases, players may have a similar goal and may
be willing to coordinate and share their final reward. Consider, as an illustration, the case of a poker
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game with three or more players, where all but one of them collude against an identified target player
and will share the winnings after the game. In other settings, players might be forced to cooperate by
the nature of the interaction itself. This is the case, for instance, in the card-playing phase of Bridge,
where a team of two players, called the “defenders”, plays against a third player, the “declarer”.
Situations of a team ganging up on a player are, of course, ubiquitous in many non-recreational
applications as well, such as war where the colluders do not have time or means of communicating
during battle, collusion in bidding where communication during the auction is illegal, coordinated
swindling in public, and so on.

The benefits from coordination/collusion depend on the communication possibilities among team
members. In this paper, we are interested in ex ante coordination, where the team members have an
opportunity to discuss and agree on tactics before the game starts, but will be unable to communicate
during the game, except through their publicly-observed actions.2 The team faces an opponent in a
zero-sum game (as in, for example, multi-player poker with collusion and Bridge).

Even without communication during the game, the planning phase gives the team members an ad-
vantage: for instance, the team members could skew their strategies to use certain actions to signal
about their state (for example, that they have particular cards). In other words, by having agreed on
each member’s planned reaction under any possible circumstance of the game, information can be
silently propagated in the clear, by simply observing public information.

Ex ante coordination can enable the team members to obtain significantly higher utility (up to a
factor linear in the number of the game-tree leaves) than the utility they would obtain by abstaining
from coordination [1, 6, 25]. Finding an equilibrium with ex ante coordination is NP-hard and
inapproximable [1, 6]. The only known algorithm is based on a hybrid representation of the game,
where team members play joint normal-form actions while the adversary employs sequence-form
strategies [6]. We will develop dramatically faster algorithms in this paper.

A team that ex ante coordinates can be modeled as a single meta-player. This meta-player typically
has imperfect recall, given that the team members observe difference aspects of the play (opponent’s
moves, each others’ moves, and chance’s moves) and cannot communicate during the game. Then,
solving the game amounts to computing a Nash equilibrium (NE) in normal-form strategies in a two-
player zero-sum imperfect-recall game. The focus on normal-form strategies is crucial. Indeed, it
is known that behavioral strategies, that provide a compact representation of the players’ strategies,
cannot be employed in imperfect-recall games without incurring a loss of expressiveness [18]. Some
imperfect-recall games do not even have any NE in behavioral strategies [27]. Even when a NE
in behavioral strategies exists, its value can be up to a linear factor (in the number of the game-
tree leaves) worse than that of a NE in normal-form strategies. For these reasons, recent efficient
techniques for approximating maxmin behavioral strategy profiles in imperfect-recall games [9, 7]
are not applicable to our domain.

Main contributions of this paper. Our first contribution is a new game representation, which we
call the realization form. In perfect-recall games it essentially coincides with the sequence form, but,
unlike the sequence form, it can also be used in imperfect-recall games. By exploiting the realization
form, we produce a two-player auxiliary game that has perfect recall, and is equivalent to the normal
form of the original game, but significantly more concise. Furthermore, we propose an anytime
algorithm, fictitious team-play, which is a variation of fictitious play [2]. It is guaranteed to converge
to an optimal solution in the setting where the team members coordinate ex ante. Experiments show
that it is dramatically faster than the prior state-of-the-art algorithm for this problem.

2 Preliminaries

In this section we provide a brief overview of extensive-form games (see also the textbook by
Shoham and Leyton-Brown [20]). An extensive-form game Γ has a finite set P of players and a
finite set of actions A. H is the set of all possible nodes, described as sequences of actions (histo-
ries). A(h) is the set of actions available at node h. If a ∈ A(h) leads to h′, we write ha = h′.

2This kind of coordination has sometimes been referred to as ex ante correlation among team members [6].
However, we will not use that term because this setting is quite different than the usual notion of correlation
in game theory. In the usual correlation setting, the individual players have to be incentivized to follow the
recommendations of the correlation device. In contrast, here there is no need for such incentives because the
members of the team can share the benefits from coordination.
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P (h) ∈ P ∪{c} is the player who acts at h, where c denotes chance. Hi is the set of decision nodes
where player i acts. Z is the set of terminal nodes. For each player i ∈ P , there is a payoff function
ui : Z → R. An extensive-form game with imperfect information has a set I of information sets.
Decision nodes within the same information set are not distinguishable for the player whose turn it
is to move. By definition, for any I ∈ I, A(I) = A(h), for all h ∈ I . Ii is the information partition
of Hi.

A pure normal-form plan for player i is a tuple σ ∈ Σi = ×I∈IiA(I) that specifies an action for
each information set of that player. σ(I) denotes the action selected in σ at information set I . A
normal-form strategy xi for player i is defined as xi : Σi → ∆|Σi|. We denote by Xi the normal-
form strategy space of player i. A behavioral strategy πi ∈ Πi associates each I ∈ Ii with a
probability vector over A(I). πi(I, a) denotes the probability with which i chooses action a at I .
πc is the strategy of a virtual player, “chance”, who plays non-strategically and is used to represent
exogenous stochasticity. The expected payoff of player i, when she plays xi and the opponents play
x−i, is denoted, with an overload of notation, by ui(xi, x−i).

Denote by ρxii (z) the probability with which player i plays to reach z when following strategy xi
(ρπii (z) is defined analogously). Then, ρx(z) =

∏
i∈P∪{c} ρ

xi
i (z) is the probability of reaching z

when players follow behavioral strategy profile x. We say that xi, x′i are realization equivalent if, for
any x−i and for any z ∈ Z, ρx(z) = ρx

′
(z), where x = (xi, x−i), x′ = (x′i, x−i). The same defini-

tion holds for strategies in different representations (e.g., behavioral and sequence form). Similarly,
two strategies xi, x′i are payoff equivalent if, ∀j ∈ P and ∀x−i, uj(xi, x−i) = uj(x

′
i, x−i).

A player has perfect recall if she has perfect memory of her past actions and observations. Formally,
∀xi, ∀I ∈ Ii, ∀h, h′ ∈ I , ρxii (h) = ρxii (h′). Γ has perfect recall if every player has perfect recall.

BR(x−i) denotes the best response of player i against a strategy profile x−i. A best response is a
strategy such that ui(BR(x−i), x−i) = maxxi∈Xi ui(xi, x−i). A NE [17] is a strategy profile in
which no player can improve her utility by unilaterally deviating from her strategy. Therefore, for
each player i, a NE x∗ = (x∗i , x

∗
−i) satisfies ui(x∗i , x

∗
−i) = ui(BR(x∗−i), x

∗
−i).

The sequence form [12, 23] of a game is a compact representation applicable only to games with
perfect recall. It decomposes strategies into sequences of actions and their realization probabilities.
A sequence qi ∈ Qi for player i, defined by a node h, is a tuple specifying player i’s actions on the
path from the root to h. A sequence is said terminal if, together with some sequences of the other
players, leads to a terminal node. q∅ denotes the fictitious sequence leading to the root node and qa
is the extended sequence obtained by appending action a to q. A sequence-form strategy for player
i is a function ri : Qi → [0, 1], s.t. ri(q∅) = 1 and, for each I ∈ Ii and sequence q leading to I ,
−ri(q) +

∑
a∈A(I) ri(qa) = 0.

3 Team-maxmin equilibrium with coordination device (TMECor)

In the setting of ex ante coordination, team members have the opportunity to discuss tactics before
the game begins, but are otherwise unable to communicate during the game, except via publicly-
observed actions. A powerful, game-theoretic way to think about ex ante coordination is through a
coordination device. In the planning phase before the game starts, the team members identify a set of
joint pure normal-form plans. Then, just before the play, the coordination device will randomly draw
one of the normal-form plans from a given probability distribution, and the team members will all
act as specified in the selected plan. A NE where team members play ex ante coordinated normal-
form strategies is called a team-maxmin equilibrium with coordination device (TMECor) [6].3 In
an approximate version, ε-TMECor, neither the team nor the opponent can gain more than ε by
deviating from their strategy, assuming that the other does not deviate.

By sampling a recommendation from a joint probability distribution over Σ1,Σ2, the coordination
device introduces a correlation between the strategies of the team members that is otherwise impos-
sible to capture using behavioral strategies. In other words, in general there exists no behavioral
strategy for the team player that is realization-equivalent to the normal-form strategy induced by the
coordination device, as the following example further illustrates.

3They actually called it correlation, not coordination. As explained in the introduction, we will use the term
coordination. However, we will keep their acronym TMECor instead of switching to the acronym TMECoor.
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Example 1. Consider the zero-sum game in Figure 1. Two team members (Players 1 and 2) play
against an adversaryA. The team obtains a cumulative payoff of 2 when the game ends at 1 or 8 ,
and a payoff of 0 otherwise. A valid ex ante coordination device is as follows: the team members
toss an unbiased coin; if heads comes up, Player 1 will play action A and Player 2 will play action
C; otherwise, Player 1 will play action B and Player 2 will play action D. The realization induced
on the leaves is such that ρ( 1 ) = ρ( 8 ) = 1/2 and ρ( i ) = 0 for i 6∈ {1, 8}. No behavioral
strategy for the team members is able to induce the same realization. This coordination device is
enough to overcome the imperfect information of Player 2 about Player 1’s move, as Player 2 knows
what action will be played by Player 1 even though Player 2 will not observe it during the game.
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Figure 1: Example of extensive-form game with a
team. The uppercase letters denote the action names.
The circled numbers uniquely identify the terminal
nodes.
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Figure 2: A game where coordinated strategies have
a weak signaling power. The uppercase letters de-
note the action names. The circled numbers uniquely
identify the terminal nodes.

One might wonder whether there is value in forcing the coordination device to only induce normal-
form strategies for which a realization-equivalent tuple of behavioral strategies (one for each team
member) exists. Indeed, under such a restriction, the problem of constructing an optimal coordina-
tion device would amount to finding the optimal tuple of behavioral strategies (one for each team
member) that maximizes the team’s utility. This solution concept is known as team-maxmin equilib-
rium (TME) [25]. TME offers conceptual simplicity that unfortunately comes at a high cost. First,
finding the best tuple of behavioral strategies is a non-linear, non-convex optimization problem.
Moreover, restricting to TMEs is also undesirable in terms of final utility for the team, since it may
incur in an arbitrarily large loss compared to a TMECor [6].

Interestingly, as we will prove in Section 4.2, there is a strong connection between TME and
TMECor. The latter solution concept can be seen as the natural “convexification” of the former,
in a sense that we will make precise in Theorem 2.

4 Realization form: a universal, low-dimensional game representation

In this section, we introduce the realization form of a game, which enables one to represent the
strategy space of a player by a number of variables that is linear in the game size (as opposed
to exponential as in the normal form), even in games with imperfect recall. For each player i, a
realization-form strategy is a vector that specifies the probability with which i plays to reach the
different terminal nodes.The mapping from normal-form strategies to realization-form strategies
allows us to compress the action space from Xi, which has as many coordinates as the number of
normal-form plans—usually exponential in the size of the tree—to a space that has one coordinate
for each terminal node. This mapping is many-to-one because of the redundancies in the normal-
form representation. Given a realization-form strategy, all the normal-form strategies that induce it
are payoff equivalent.

The construction of the realization form relies on the following observation.
Observation 1. Let Γ be a game and z ∈ Z be a terminal node. Given a normal-form strategy
profile x = (x1, . . . , xn) ∈ X1×· · ·×Xn, the probability of reaching z can be uniquely decomposed
as the product of the contributions of each individual player, plus chance’s contribution. Formally,
ρx(z) = ρxcc

∏
i∈P ρ

xi
i (z).

Definition 1 (Realization function). Let Γ be a game. The realization function of player i ∈ P is the
function fΓ

i : Xi → [0, 1]|Z| that maps every normal-form strategy for player i to the corresponding
vector of realizations for each terminal node: fΓ

i : Xi 3 x 7→ (ρxi (z1), . . . , ρxi (z|Z|)).

We are interested in the range of fΓ
i , called the realization polytope of player i.
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Definition 2 (Realization polytope and strategies). Player i’s realization polytope ΩΓ
i in game Γ is

the range of fΓ
i , that is the set of all possible realization vectors for player i: ΩΓ

i := fΓ
i (Xi). We

call an element ωi ∈ ΩΓ
i a realization-form strategy (or, simply, realization) of player i.

The function that maps a tuple of realization-form strategies, one for each player, to the payoff of
each player, is multilinear. This is by construction and follows from Observation 1. Moreover, the
realization function has the following strong property (all proofs are provided in Appendix B).
Lemma 1. fΓ

i is a linear function and ΩΓ
i is a convex polytope.

For players with perfect recall, the realization form is the projection of the sequence form, where
variables related to non-terminal sequences are dropped. In other words, when the perfect-recall
property is satisfied, it is possible to move between the sequence-form and the realization-form
representations by means of a simple linear transformation. Therefore, the realization polytope of
perfect-recall games can be described with a linear number (in the game size) of linear constraints.
Conversely, in games with imperfect recall the number of constraints required to describe the realiza-
tion polytope may be exponential4. A key feature of the realization form is that it can be applied to
both settings without any modification. For example, an optimal NE in a two-player zero-sum game,
with or without perfect recall and/or information, can be computed through the bilinear saddle-point
problem maxω1∈ΩΓ

1
minω2∈ΩΓ

1
ω>1 Uω2, where U is a (diagonal) |Z| × |Z| payoff matrix.

Finally, the realization form of a game is formally defined as follows.
Definition 3 (Realization form). Given an extensive-form game Γ, its realization form is a tuple
(P, Z, U,ΩΓ), where ΩΓ specifies a realization polytope for each i ∈ P .

4.1 Two examples of realization polytopes

To illustrate the realization-form construction, we consider two three-player zero-sum extensive-
form games with perfect recall, where a team composed of two players playing against the third
player. As already observed, since the team member have the same incentives, the team as a whole
behaves as a single meta-player with (potentially) imperfect recall. As we show in Example 2, ex-
ante coordination allows team members to behave as a single player with perfect recall. In contrast,
in Example 3, the signaling power of ex ante coordinated strategies is not enough to fully reveal
private team members’ information.
Example 2. Consider the game depicted in Figure 1. XT is the 4-dimensional simplex corre-
sponding to the space of probability distributions over the set of pure normal-form plans ΣT =
{AC,AD,BC,BD}. Given x ∈ XT , the probability with which T plays to reach a certain out-
come is the sum of every x(σ) such that plan σ ∈ ΣT is consistent with the outcome (i.e., the
outcome is reachable if T plays σ). In the example, we have:

fT (x) = (x(A,C), x(A,D), x(B,C), x(B,D), x(A,C), x(A,D), x(B,C), x(B,D)),

where outcomes are ordered from left to right in the tree. Then, the realization polytope is described
by Polytope 1. These constraints show that Player T has perfect recall when employing coordinated
strategies. Indeed, the constraints coincides with the sequence-form constraints obtained when
splitting Player 2’s information set into two information sets, one for each action {A,B}.
Example 3. In the game in Figure 2, the team Player T has imperfect recall even when coordination
is allowed. In this case, the signaling power of ex ante coordinated strategies is not enough for
Player 1 to propagate the information observed (that is,A’s move) to Player 2. It can be verified that
the realization polytope ΩΓ

T is characterized by the set of constraints in Polytope 2 (see Appendix A
for more details). As one might expect, this polytope contains Polytope 1.

4.2 Relationship with team max-min equilibrium

In this subsection we study the relationship with team max-min equilibrium, and prove a fact of
potential independent interest. This subsection is not needed for understanding the rest of the paper.

We prove that the realization polytope of a non-absent-minded player is the convex hull of the set of
realizations that are reachable starting from behavioral strategies. This gives a precise meaning to
our claim that the TMECor concept is the convexification of the TME concept.

4Understanding in which subclasses of imperfect-recall games the number of constraints remains polyno-
mial is an interesting open problem.
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
ω( 5 ) + ω( 6 ) + ω( 7 ) + ω( 8 ) = 1,

ω( 2 ) = ω( 6 ), ω( 4 ) = ω( 8 ),

ω( 1 ) = ω( 5 ), ω( 3 ) = ω( 7 ),

ω( i ) ≥ 0 i ∈ {1, 2, 3, 4, 5, 6, 7, 8}.
Polytope 1: Description of the realization polytope
for the game of Figure 1.


ω( 5 ) + ω( 6 ) + ω( 7 ) + ω( 8 ) = 1,

ω( 2 ) + ω( 4 ) = ω( 6 ) + ω( 8 ),

ω( 1 ) + ω( 3 ) = ω( 5 ) + ω( 7 ),

ω( i ) ≥ 0 i ∈ {1, 2, 3, 4, 5, 6, 7, 8}.
Polytope 2: Description of the realization polytope
for the game of Figure 2.

Definition 4. Let Γ be a game. The behavioral-realization function of player i is the function f̃Γ
i :

Πi 3 π 7→ (ρπi (z1), . . . , ρπi (z|Z|)) ∈ [0, 1]|Z|. Accordingly, the behavioral-realization set of player
i is the range of f̃Γ

i , that is Ω̃Γ
i := f̃Γ

i (Πi). This set is generally non-convex.

Denoting by co(·) the convex hull of a set, we have the following:

Theorem 2. Consider a game Γ. If player i is not absent-minded, then ΩΓ
i = co

(
Ω̃Γ
i

)
.

5 Auxiliary game: an equivalent game that enables the use of behavioral
strategies

In the rest of this paper, we focus on three-player zero-sum extensive-form games with perfect recall,
and we will model the interaction of a team composed of two players playing against the third player.
The theory developed also applies to settings with teams with an arbitrary number of players.

We prove that it is possible to construct an auxiliary game with the following properties:
• it is a two-player perfect-recall game between the adversary A and a team-player T ;
• for both players, the set of behavioral strategies is as “expressive” as the set of the normal-

form strategies in the original game (i.e., in the case of the team, the set of strategies that
team members can achieve through ex ante coordination).

To accomplish this, we introduce a root node φ, whose branches correspond to the normal-form
strategies of the first player of the team. This representation enables the team to express any prob-
ability distribution over the ensuing subtrees, and leads to an equivalence between the behavioral
strategies in this new perfect-recall game (the auxiliary game) and the normal-form strategies of the
original two-player imperfect-recall game between the team and the opponent. The auxiliary game
is a perfect-recall representation of the original imperfect-recall game such that the expressiveness of
behavioral (and sequence-form) strategies is increased to match the expressiveness of normal-form
strategies in the original game.

Consider a generic Γ with P = {1, 2,A}, where 1 and 2 are team members. We will refer to Player
1 as the pivot player. For any σ1 ∈ Σ1, we define Γσ1

as the two-player game with P = {2,A}
that we obtain from Γ by fixing the choices of Player 1 as follows: ∀I ∈ I1 and ∀a ∈ A(I), if
a = σ1(I), then π1,σ1(I, a) = 1; otherwise, π1,σ1(I, a) = 0. Once π1,σ1 has been fixed in Γσ1 ,
decision nodes belonging to Player 1 can be considered as if they were chance nodes. The auxiliary
game of Γ, denoted with Γ∗, is defined as follows.

Definition 5 (Auxiliary Game). The auxiliary game Γ∗ is
a two-player game obtained from Γ in the following way:

• P = {T ,A};
• the root φ is a decision node of Player T with
A(φ) = {aσ}σ∈Σ1

;
• each aσ is followed by a subtree Γσ;
• A does not observe the action chosen by T at φ.

φ

aσ
· · ·· · · · · ·

Γσ

Figure 3: Structure of the auxiliary game Γ∗.

By construction, all the decision nodes of any information set of team T are part of the same subtree
Γσ . Intuitively, this is because, in the original game, team members jointly pick an action from their
joint probability distribution and, therefore, every team member knows what the other member is
going to play. The opponent has the same number of information sets both in Γ and Γ∗. This is
because she does not observe the choice at φ and, therefore, her information sets span across all
subtrees Γσ . The basic structure of the auxiliary game tree is depicted in Figure 3 (information sets
of A are omitted for clarity). Games with more than two team members can be represented though
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a Γ∗ which has a number of subtrees equal to the Cartesian product of the normal-form plans of all
team members except one.

The next lemma is fundamental to understand the equivalence between behavioral strategies of Γ∗

and normal-form strategies of Γ. Intuitively, it justifies the introduction of the root node φ, whose
branches correspond to the normal-form strategies of the pivot player. This representation enables
the team T to express any convex combination of realizations in the Γσ subtrees.

Lemma 3. For any Γ, ΩΓ
T = co

(⋃
σ∈Σ1

ΩΓσ
T

)
.

The following theorem follows from Lemma 3 and characterizes the relationship between Γ and Γ∗.
It shows that there is a strong connection between the strategies of Player T in the auxiliary game
and the ex ante coordinated strategies for the team members in the original game Γ.

Theorem 4. Games Γ and Γ∗ are realization-form equivalent in the following sense:
(i) Team. Given any distribution over the actions at the game tree root φ (i.e., a choice Σ1 3

σ 7→ λσ ≥ 0 such that
∑
σ λσ = 1) and any choice of realizations {ωσ ∈ ΩΓσ

T }σ∈Σ1
, we

have that
∑
σ∈Σ1

λσωσ ∈ ΩΓ
T . The converse is also true: given any ω ∈ ΩΓ

T , there exists
a choice of {λσ}σ∈Σ1 and realizations {ωσ ∈ ΩΓσ

T }σ∈Σ1 such that ω =
∑
σ∈Σ1

λσωσ.

(ii) Adversary. The realization polytope of the adversary satisfies ΩΓ
A = ΩΓ∗

A .

The following is then a direct consequence of Theorem 4

Corollary 1. The set of payoffs reachable in Γ coincides with the set of payoffs reachable in Γ∗.
Specifically, any strategy {λσ}σ∈Σ1 , {ωσ}σ∈Σ1 over Γ∗ is payoff-equivalent to the realization-form
strategy ω =

∑
σ∈Σ1

λσωσ in Γ.

Remark 1. Since Γσ has perfect recall, every realization ωσ ∈ ΩΓσ can be induced by T via
behavioral strategies.

The above shows that for every ex ante coordinated strategy for the team in Γ, there exists a cor-
responding (payoff-equivalent) behavioral strategy for T in Γ∗, and vice versa. Hence, due to
realization-form equivalence between Γ and Γ∗, finding a TMECor in Γ (employing ex ante co-
ordinated normal-form strategies), is equivalent to finding a NE in Γ∗ (with behavioral strategies).

6 Fictitious team-play: an anytime algorithm for TMECor

This section introduces an anytime algorithm, fictitious team-play, for finding a TMECor. It follows
from the previous section that in order to find a TMECor in Γ, it suffices to find a two-player NE
in the auxiliary game Γ∗ (and vice versa, although we do not use this second direction). Further-
more, since Γ∗ is a two-player perfect-recall zero-sum game, the fictitious play (FP) algorithm can
be applied with its theoretical guarantee of converging to a NE. Fictitious play [2, 19] is an itera-
tive algorithm originally described for normal-form games. It keeps track of average normal-form
strategies x̄i, which are output in the end, and they converge to a NE. At iteration t, player i com-
putes the best response against the opponent’s empirical distribution of play up to time t− 1, that is,
xti = BR(x̄t−1

−i ). Then her average strategy is updated as x̄ti = t−1
t x̄

t−1
i + 1

tx
t
i. Conceptually, our

fictitious team-play algorithm coincides with FP applied to the auxiliary game Γ∗. However, in order
to avoid the exponential size of Γ∗, our fictitious team-play algorithm does not explicitly work on
the auxiliary game. Rather, it encodes the best-response problems by means of mixed integer linear
programs (MILPs) on the original game Γ.

The main algorithm. The pseudocode of the main algorithm is given as Algorithm 1, where BRA(·)
and BRT (·) are the subroutines for solving the best-response problems.

Our algorithm employs realization-form strategies. This allows for a significantly more intuitive way
of performing averaging (Steps 7, 8, 10) than what is done in full-width extensive-form fictitious
play [11], which employs behavioral strategies.

Our algorithm maintains an average realization ω̄A for the adversary. Moreover, the |Σ1|-
dimensional vector λ̄ keeps the empirical frequencies of actions at node φ in auxiliary game Γ∗ (see
Figure 3). Finally, ∀σ ∈ Σ1, ω̄T ,σ ∈ ΩΓσ

T is the average realization of the team in the subtree Γσ .
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Algorithm 1 Fictitious team-play
1: function FICTITIOUSTEAMPLAY(Γ)
2: Initialize ω̄A
3: λ̄← (0, . . . , 0), t← 1
4: ω̄T ,σ ← (0, . . . , 0) ∀σ ∈ Σ1

5: while within computational budget do
6: (σt, ωtT )← BRT (ω̄A)
7: λ̄← (1− 1

t
)λ̄+ 1

t
1σt

8: ω̄T ,σt ← (1− 1
t
)ω̄T ,σt + 1

t
ωtT

9: ωtA ← BRA(λ̄, {ω̄T ,σ}σ)
10: ω̄A ← (1− 1

t
)ω̄A + 1

t
ωtA

11: t← t+ 1
12: return (λ̄, (ω̄T ,σ)σ∈Σ1)

After t iterations of the algorithm, only t pairs of strategies
are generated. Hence, an optimized implementation of the
algorithm can employ a lazy data structure to keep track
of the changes to λ̄ and ω̄T ,σ .

Initially (Step 2), the average realization ω̄A of the adver-
sary is set to the realization-form strategy equivalent to a
uniform behavioral strategy profile. At each iteration the
algorithm first computes a team’s best-response against
ω̄A. We require that the chosen best response assign prob-
ability 1 to one of the available actions (say, aσt ) at node
φ. (A pure—that is, non-randomized—best response al-
ways exists and, therefore, in particular there always exists
at least one best response selecting a single action at the root with probability one.) Then, the aver-
age frequencies and team’s realizations are updated on the basis of the observed (σt, ωtT ). Finally,
the adversary’s best response ωtA against the updated average strategy of the team is computed, and
the empirical distribution of play of the adversary is updated.

The ex ante coordinated strategy profile for the team is implicitly represented by the pair (λ̄, ω̄T ,σ).
In particular, that pair encodes a coordination device that operates as follows:

• At the beginning of the game, a pure normal-form plan σ̃ ∈ Σ is sampled according to the
discrete probability distribution encoded by λ̄. Player 1 will play the game according to the
sampled plan.

• Player 2 will play according to any normal-form strategy in f−1
2 (ω̄T ,σ̃), that is, any normal-

form strategy whose realization is ω̄T ,σ̃ .

The correctness of the algorithm then is a direct consequence of realization-equivalence between Γ
and Γ∗, which was shown in Theorem 4. In particular, the strategy of the team converges to a profile
that is part of a normal-form NE in the original game Γ.

Best-response subroutines. The problem of finding the adversary’s best response to a pair of strate-
gies of the team, namely BRA(λ̄, {ω̄T ,σ}σ), can be efficiently tackled by working on Γ (second point
of Theorem 4). In contrast, the problem of computing BRT (ω̄A) is NP-hard [24], and inapprox-
imable [6]. Celli and Gatti [6] propose a MILP formulation to solve the team best-response problem.
In Appendix E we propose an alternative MILP formulation in which the number of binary variables
is polynomial in Γ and proportional to the number of sequences of the pivot player.

In our algorithm, we employ a meta-oracle that uses simultaneously, as parallel processes, both
subroutines, and stops them as soon as one of the two has found a solution or, in the case a time-
limit is reached, it stops both subroutines and it returns the best solution (in terms of team’s utility).
This circumvents the need to prove optimality in the MILP, which often takes most of the MILP-
solving time, and opens the doors to heuristic MILP-solving techniques. One of the key features of
the meta-oracle is that its performances are not impacted by the size of Γ∗, which is never explicitly
employed in the best-responses computation.

7 Experiments

We conducted experiments on three-player Kuhn poker games and three-player Leduc hold’em
poker games. These are standard games in the computational game theory literature, and description
of them can be found in Appendix F. Our instances are parametric in the number of ranks in the
deck. The instances adopted are listed in Tables 1 and 2, where Kr and Lr denote, respectively, a
Kuhn instance with r ranks and a Leduc instance with r ranks (i.e., 3r total cards). Table 1 also
displays the instances’ dimensions in terms of the number of information sets per player and the
number of sequences (i.e., number of information set–action pairs) per player, as well as the payoff
dispersion ∆u—that is, the difference between the maximum and minimum attainable team utility.

Fictitious team-play. We instantiated fictitious team-play with the meta-oracle previously dis-
cussed, which returns the best solution found by the MILP oracles within the time limit. We
let each best-response formulation run on the Gurobi 8.0 MILP solver, with a time limit of 15
seconds and 5000 maximum iterations. Our algorithm is an anytime algorithm, so it does not
require a target accuracy ε for ε-TMECor to be specified in advance. Table 1 shows the any-
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Game Tree size
∆u

Fictitious team-play HCGInf. Seq. 10% 5% 2% 1.5% 1% 0.5%

K3 25 13 6 0s 0s 0s 1s 1s 1s 0s
K4 33 17 6 1s 1s 4s 4s 30s 1m 12s 9s
K5 41 21 6 1s 2s 44s 1m 4m 15s 8m 57s 1m 58s
K6 49 25 6 1s 12s 43s 5m 15s 8m 30s 23m 32s 25m 26s
K7 57 29 6 4s 17s 2m 15s 5m 46s 6m 31s 23m 49s 2h 50m

L3 457 229 21 15s 1m 14m 05s 30m 40s 1h 34m 30s > 24h oom
L4 801 401 21 1s 1m 31s 11m 8s 51m 5s 6h 51m > 24h oom

Table 1: Comparison between the run times of fictitious team-play (for various
levels of accuracy) and the hybrid column generation (HCG) algorithm.
(oom: out of memory.)

Game Team Utility
Adv 1 Adv 2 Adv 3

K3 0.0000 0.0000 0.0003
K4 0.0405 0.0259 -0.0446
K5 0.0434 0.0156 -0.0282
K6 0.0514 0.0271 -0.0253
K7 0.0592 0.0285 -0.0259

L3 0.2332 0.2089 0.1475
L4 0.1991 0.1419 -0.0223

Table 2: Values of the aver-
age strategy profile for dif-
ferent choices of adversary.

time performance, that is, the time it took to reach an α∆u-TMECor for different accuracies
α ∈ {10%, 5%, 2%, 1.5%, 1%, 0.5%}. Results in Table 1 assume that the team consists of the
first and third mover in the game; the opponent is the second mover. Table 2 shows the value of the
average strategy computed by fictitious team-play for different choices of the opponent player. This
value corresponds to the expected utility of the team for the average strategy profile (λ̄, ω̄T ,σ) at it-
eration 1000. In Appendix F.3 we show the minimum cumulative utility that the team is guaranteed
to achieve, that is −BRA(λ̄, {ω̄T ,σ}σ).

Hybrid column generation benchmark. We compared against the hybrid column generation
(HCG) algorithm [6], which is the only prior algorithm for this problem. To make the compari-
son fair, we instantiate HCG with the same meta-oracle discussed in the previous section. We again
use Gurobi 8.0 MILP solver to solve the best response problem for the team. However, in the case of
HCG, no time limit can be set on Gurobi without invalidating the theoretical convergence guarantee
of the algorithm. This is a drawback, as it prevents HCG from running in an anytime fashion, de-
spite column generation otherwise being an anytime algorithm. In the Leduc poker instances, HCG
exceeded the memory budget (40 GB).

Our experiments show that fictitious team-play scales to significantly larger games than HCG. Inter-
estingly, in almost all the games, the value of the team was non-negative: by colluding, the team was
able to achieve victory. Moreover, in Appendix F.4, we show that a TMECor provides to the team a
substantial payoff increase over the setting where team members play in behavioral strategies.

8 Conclusions and future research

The study of algorithms for multi-player games is challenging. In this paper, we proposed an algo-
rithm for settings in which a team of players faces an adversary and the team members can exploit
only ex ante coordination, discussing and agreeing on tactics before the game starts. Our first con-
tribution was the realization form, a novel representation that allows us to represent the strategies of
the normal form more concisely. The realization form is also applicable to imperfect-recall games.
We used it to derive a two-player perfect-recall auxiliary game that is equivalent to the original
game, and provides a theoretically sound way to map the problem of finding an optimal ex-ante-
coordinated strategy for the team to a classical well-understood Nash equilibrium-finding problem
in a two-player zero-sum perfect-recall game. Our second contribution was the design of the fic-
titious team-play algorithm, which employs a novel best-response meta-oracle. The anytime algo-
rithm is guaranteed to converge to an equilibrium. Our experiments showed that fictitious team-play
is dramatically faster than the prior algorithms for this problem.

In the future, it would be interesting to adapt other popular equilibrium computation techniques from
the two-player setting (such as CFR) for our setting, by reasoning over the auxiliary game.

The study of algorithms for team games could shed further light on how to deal with imperfect-recall
games, that are receiving increasing attention in the community due to the application of imperfect-
recall abstractions to the computation of strategies for large extensive-form games [26, 14, 10, 3, 8,
13].

Acknowledgments. This material is based on work supported by the National Science Foundation
under grants IIS-1718457, IIS-1617590, and CCF-1733556, and the ARO under award W911NF-
17-1-0082.
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[9] J. Čermák, B. Bošanskỳ, and M. Pěchouček. Combining incremental strategy generation and
branch and bound search for computing maxmin strategies in imperfect recall games. In Inter-
national Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 902–
910, 2017.

[10] S. Ganzfried and T. Sandholm. Potential-aware imperfect-recall abstraction with earth mover’s
distance in imperfect-information games. In AAAI Conference on Artificial Intelligence
(AAAI), 2014.

[11] J. Heinrich, M. Lanctot, and D. Silver. Fictitious self-play in extensive-form games. In Inter-
national Conference on Machine Learning (ICML), pages 805–813, 2015.

[12] D. Koller, N. Megiddo, and B. Von Stengel. Efficient computation of equilibria for extensive
two-person games. Games and economic behavior, 14(2):247–259, 1996.

[13] C. Kroer and T. Sandholm. Imperfect-recall abstractions with bounds in games. In Proceedings
of the ACM Conference on Economics and Computation (EC), 2016.

[14] M. Lanctot, R. Gibson, N. Burch, M. Zinkevich, and M. Bowling. No-regret learning in
extensive-form games with imperfect recall. In International Conference on Machine Learning
(ICML), 2012.

[15] M. Maschler, S. Zamir, E. Solan, and M. Borns. Game Theory. Cambridge University Press,
2013.

[16] H. B. McMahan, G. J. Gordon, and A. Blum. Planning in the presence of cost functions
controlled by an adversary. In International Conference on Machine Learning (ICML), pages
536–543, 2003.

[17] J. Nash. Equilibrium points in n-person games. Proceedings of the National Academy of
Sciences, 36:48–49, 1950.

[18] M. Piccione and A. Rubinstein. On the interpretation of decision problems with imperfect
recall. Games and Economic Behavior, 20(1):3–24, 1997.

10



[19] J. Robinson. An iterative method of solving a game. Annals of mathematics, pages 296–301,
1951.

[20] Y. Shoham and K. Leyton-Brown. Multiagent systems: Algorithmic, game-theoretic, and log-
ical foundations. Cambridge University Press, 2008.

[21] F. Southey, M. Bowling, B. Larson, C. Piccione, N. Burch, D. Billings, and C. Rayner. Bayes’
bluff: Opponent modelling in poker. In Proceedings of the 21st Annual Conference on Uncer-
tainty in Artificial Intelligence (UAI), July 2005.

[22] M. Tawarmalani and N. V. Sahinidis. A polyhedral branch-and-cut approach to global opti-
mization. Mathematical Programming, 103:225–249, 2005.

[23] B. Von Stengel. Efficient computation of behavior strategies. Games and Economic Behavior,
14(2):220–246, 1996.

[24] B. von Stengel and F. Forges. Extensive-form correlated equilibrium: Definition and compu-
tational complexity. Mathematics of Operations Research, 33(4):1002–1022, 2008.

[25] B. von Stengel and D. Koller. Team-maxmin equilibria. Games and Economic Behavior,
21(1-2):309–321, 1997.

[26] K. Waugh, M. Zinkevich, M. Johanson, M. Kan, D. Schnizlein, and M. Bowling. A practi-
cal use of imperfect recall. In Symposium on Abstraction, Reformulation and Approximation
(SARA), 2009.

[27] P. C. Wichardt. Existence of Nash equilibria in finite extensive form games with imperfect
recall: A counterexample. Games and Economic Behavior, 63(1):366–369, 2008.

11



A Example 3 (continued)

Denote by Γ the game depicted in Figure 2. Table 3 shows the value of the realization function,
evaluated in each pure normal-form plans of Player T . Each row is a realization vector, and the
realization polytope ΩΓ

T is the convex hull of all these vectors.

1 2 3 4 5 6 7 8

ACE 1 0 0 0 1 0 0 0
ACF 0 1 0 0 0 1 0 0
ADE 1 0 0 0 0 0 1 0
ADF 0 1 0 0 0 0 0 1
BCE 0 0 1 0 1 0 0 0
BCF 0 0 0 1 0 1 0 0
BDE 0 0 1 0 0 0 1 0
BDF 0 0 0 1 0 0 0 1

Table 3: Mapping between pure normal-form plans and their images under the realization function.

B Proofs

Lemma 1. fΓ
i is a linear function and ΩΓ

i is a convex polytope.

Proof. We start by proving that fi is linear. Fix a terminal node z ∈ Z, and define Σ∗i (z) as
the subset of pure normal-form plans Σi of player i for which there exists at least a choice of pure
normal-form plans, one for each of the other players, such that under that choice the game terminates
in z. Given a normal-form strategy x ∈ Xi, the contribution of player i to the probability of the game
ending in z is computed as

ρxi (z) =
∑

σ∈Σ∗i (z)

xσ,

which is linear in x.

Now, we show that ΩΓ
i is a convex polytope. By definition, ΩΓ

i = fi(Xi) is the image of a convex
polytope under a linear function, and therefore it is a convex polytope itself.

Theorem 2. Consider a game Γ. If player i is not absent-minded, then ΩΓ
i = co

(
Ω̃Γ
i

)
.

Proof.

(⊆) We know as a direct consequence of Lemma 1 that ΩΓ
i = co{fi(σ) : σ ∈ Σi}. Since every

pure normal-form plan is also a behavioral strategy, fi(σ) ∈ Ω̃Γ
i for all σ ∈ Σi. Hence,

ΩΓ
i = co{fi(σ) : σ ∈ Σi} ⊆ co(Ω̃Γ

i ).

(⊇) Finally, we prove that that ΩΓ
i ⊇ co(Ω̃Γ

i ). Since ΩΓ
i is convex, it is enough to show that

ΩΓ
i ⊇ Γ̃Γ

i . In other words, it is enough to prove that every behavioral-realization is also a
realization in the sense of Definition 2, provided that player i is not absent-minded. This
is a well-known fact, and we refer the reader to Theorem 6.11 in the book by Maschler et
al. [15].

Lemma 3. For any Γ, ΩΓ
T = co

(⋃
σ∈Σ1

ΩΓσ
T

)
.

Proof.
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(⊇) We start by proving that, for all σ1 ∈ Σ1, Ω
Γσ1

T ⊆ ΩΓ
T . Indeed, as a direct consequence of

Lemma 1,

Ω
Γσ1

T = co
(
{fΓ
T (σ1, σ2) : σ2 ∈ Σ2}

)
⊆ co

(
{fΓ
T (σ′1, σ2) : σ′1 ∈ Σ1, σ2 ∈ Σ2}

)
= ΩΓ

T .

Thus, ⋃
σ1∈Σ1

Ω
Γσ1

T ⊆ ΩΓ
T

and therefore, using the monotonicity of the convex hull function,

co

( ⋃
σ1∈Σ1

Ω
Γσ1

T

)
⊆ co(ΩΓ

T ) = ΩΓ
T ,

where the last equality holds by convexity of ΩΓ
T (Lemma 1).

(⊆) Take ω ∈ ΩΓ
T ; we will show that ω ∈ co

(⋃
σ∈Σ1

ΩΓσ
T

)
by exhibiting a convex combina-

tion of points in the polytopes {ΩΓσ
T : σ ∈ Σ} that equals ω. By definition of realization

function (Definition 1), ω is the image of a normal-form strategy α ∈ ∆|Σ1×Σ2| for the
team. Hence, by linearity of the realization function fT (Lemma 1),

ω =
∑
σ1∈Σ1
σ2∈Σ2

ασ1,σ2 f
Γ
T (σ1, σ2). (1)

Now, define
νσ1

:=
∑
σ2∈Σ2

ασ1,σ2

for each σ1 ∈ Σ1. Clearly, each νσ1 is non-negative, and the sum of all νσ1 ’s is 1. Hence,
from (1) we find that

ω =
∑
σ1∈Σ1

νσ1>0

νσ1
ξσ1

, where ξσ1
:=

∑
σ2∈Σ2

ασ1,σ2

νσ1

fΓ
T (σ1, σ2).

Consequently, if we can show that ξσ1 ∈ Ω
Γσ1

T for all σ1 ∈ Σ1 : νσ1 > 0, the proof is
complete. Note that for all relevant σ1, ξσ1 is a convex combination of points in the set
{fΓ
T (σ1, σ2) : σ2 ∈ Σ2} ⊆ Ω

Γσ1

T . Finally, using the fact that Ω
Γσ1

T is convex (Lemma 1),
we find ξσ1

∈ Ω
Γσ1

T , concluding the proof.

Corollary 1. The set of payoffs reachable in Γ coincides with the set of payoffs reachable in Γ∗.
Specifically, any strategy {λσ}σ∈Σ1 , {ωσ}σ∈Σ1 over Γ∗ is payoff-equivalent to the realization-form
strategy ω =

∑
σ∈Σ1

λσωσ in Γ.

Proof. The payoff for the team in Γ is equal to 〈
∑
σ∈Σ1

λσωσ, y〉, where y ∈ R|·| is a generic loss
vector.

On the other hand, in Γ∗, A does not observe the initial move in Γ∗, and therefore the loss vector y
remains valid in each Γσ . Therefore, the team’s payoff in Γ∗ is

∑
σ∈Σ1

λσ〈ωσ, y〉. The two payoffs
clearly coincide.

C Action sampling from Γ∗

Given a strategy profile ({λσ1
}σ1∈Σ1

, {ωσ1
}σ1∈Σ1

) over Γ∗, the goal is to draw a joint normal-form
plan for the team (for the original game).
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Proposition 1. Letting ω =
∑
σ1∈Σ1

λσ1ωσ1 and ξωσ1
∈ f−1(ωσ1), then

ξω ,
∑
σ1∈Σ1

λσ1
ξωσ1

∈ f−1(ω).

Proof. f(ξω) =
∑
σ1∈Σ1

λσ1
f(ξωσ1

) by linearity. This is equal to
∑
σ1∈Σ1

λσ1
ωσ1

= ω.

The immediate way of sampling a joint normal-form action of Γ from a realization ω over Γ∗ is the
following. First, compute the set of joint actions required to form a normal-form strategy equivalent
to ω (it is enough to adopt a simple greedy algorithm). Then, recommend each plan (σ1, σ2) with
probability ξω(σ1, σ2) since ξω , f−1(ω) ∈ ∆|Σ1×Σ2|.

Alternative method. For Lemma 1, the normal-form plan (σ1, σ2) is played with probability
λσ1

ξωσ1
(σ2). Therefore, we can first sample an action for Player 1 according to λσ1

. Then, we
are left with the problem of finding ξωσ1

∈ f−1(ωσ1
). It is enough to sample an element from

1σ1
× ξ2,ωσ1

, where 1σ1
∈ ∆|Σ1| and ξ2,ωσ1

∈ ∆|Σ2|.

D TMECor as a hybrid linear programming formulation

This section reviews prior techniques to compute team-maxmin equilibria with coordination devices.
The leading paradigm to compute a TMECor is the Hybrid Column Generation algorithm introduced
by Celli and Gatti [6]. This technique makes use of hybrid linear programs, which are based on the
idea of letting team members play a joint normal-form strategy while the adversary still employs the
sequence form. The idea of the algorithm is to proceed in a classical column generation fashion (see,
e.g., [16]), generating progressively the set of joint normal-form plans of the team. The rationale is
that there exists at least one TMECor with at most |QA| joint normal-form plans played with strictly
positive probability by the team.

Consider P = {1, 2,A}, where A denotes the adversary (opponent) of the team. The algorithm
progressively adds joint normal-form plans from Σ1 × Σ2 to the set the set Σcur

1×2. A hybrid utility
matrix Uh is built along with Σcur

1×2. For each σ1×2 ∈ Σcur
1×2 a QA-dimensional column vector is

added toUh. At each iteration of the algorithm, a hybrid-maxmin and a hybrid-minmax are employed
to compute the equilibrium strategy profile for the current Uh. The hybrid-maxmin problem has
|QA|+ 1 constraints and |Σcur

1×2|+ |IA| variables, the hybrid-minmax is obtained by strong duality.
Then, a new joint normal-form plan of the team is selected trough a best response oracle. These
steps are iterated until the oracle returns a best response that is already contained in Σcur

1×2.

The problem of finding a joint normal-form plan of the team in best response to a given sequence-
form strategy of the opponent is shown to be APX-hard (i.e., it does not admit a PTAS). The oracle
of [6] employs a binary variable for each terminal node of the game. It produces two pure sequence-
form strategies for the team members by forcing, for each z ∈ Z, the corresponding binary variable
to be equal to 1 iff all team’s sequences on the path to z are selected with probability 1.

The main concern with this approach is that, with the growth of Σcur
1×2, LP’s computations easily

become an infeasible computational burden as the hybrid representation is exponential in the number
of information sets of team members (2|I1|+|I2|).

E Team best-response subroutine

Our subroutine looks for a pair (σt, ωtT ), with σ ∈ Σ1, and ωtT ∈ ΩΓσ
T , in best-response to a given

ω̄A. In order to compute (σt, ωtT ), we employ the sequence-form strategies of the team defined
over Γ. Specifically, the pure sequence-form strategy r1 corresponds to selecting a σ ∈ Σ1 at φ in
Γ∗. Determining the (potentially mixed) sequence-form strategy for the other team member (r2) is
equivalent to computing ωtT in the subtree selected by r1.

Without loss of generality, we assume that all payoffs of the team to be non-negative; indeed, payoffs
can always be shifted by a constant without affecting the BR problem. In the following, sequence
form constraints (see Section 2) are written, as customary, in matrix form as Firi = fi, where Fi is
an appropriate |Hi| × |Qi| matrix and f>i = (1, 0, . . . , 0) is a vector of dimension |Hi|.
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The BRT (ω̄A) subroutine consists of the following MILP:

arg max
w,r1,r2

∑
q1∈Q1

w(q1) (2)

s.t. w(q1) ≤
∑
q2∈Q2

uω̄Aq1,q2r2(q2) ∀q1 ∈ Q1 (3)

w(q1) ≤Mr1(q1) ∀q1 ∈ Q1 (4)
F1r1 = f1 (5)
F2r2 = f2 (6)
r2(q2) ≥ 0 ∀q2 ∈ Q2 (7)

r1 ∈ {0, 1}|Q1| (8)

where uω̄A is the |Q1| × |Q2| utility matrix of the team obtained by marginalizing with respect to
the given realization of the opponent ω̄A. r1 is a |Q1|-dimensional vector of binary variables. The
formulation can be derived starting from the problem of maximizing r>1 ur2 under constraints (5)–
(8). Let aq1 ,

∑
q2
uω̄Aq1,q2r2(q2), and w(q1) , r1(q1)aq1 . Then, the objective function becomes∑

q1∈Q1
w(q1). In order to ensure that, whenever r1(q1) = 0, w(q1) = 0, the following constraints

are necessary: w(q1) ≤ Mr1(q1) and w(q1) ≥ 0, where M is the maximum payoff of the team.
Moreover, in order to ensure that w(q1) = aq1 holds whenever r1(q1) = 1, we introduce w(q1) ≤
aq1 and w(q1) ≥ aq1 − M(1 − r1(q1)). It is enough to enforce upper bounds on w’s values
(Constraints (3) and (4)) because of the objective function that we are maximizing and since we
assume a positive utility for each terminal node.

In settings with more than two team members, our formulation enables one to pick any one team
player’s strategy and represent it using continuous variables instead of having binary variables for
her in the best-response oracle MILP.

F Experimental evaluation

F.1 Kuhn3-k

In Kuhn3-k there are three players and k possible cards. Each player initially pays one chip to the
pot, and is dealt a single private card. Then, players act in turns. The first player may check or
bet—put one additional chip in the pot. The second player either decides whether to check or bet
after first player’s check, or whether to fold/call the bet. If no bet was previously made, the third
player decides between checking or betting. Otherwise, she has to fold or call. If the second player
bet, the first player still has to decide between fold/call. If the third player bet, then both the first and
the second have to choose between folding or calling the bet. At the showdown, the player with the
highest card who has not folded wins all the chips in the pot.

F.2 Leduc3-k

Leduc hold’em poker [21] is a widely-used benchmark in the imperfect-information game-solving
community. In order to better evaluate the scalability of our technique, we employ a larger three-
player variant of the game. In our enlarged variant, the deck contains three suits and k ≥ 3 card
ranks, that is, it consists of triples of cards 1, . . . , k for a total of 3k cards.

Each player initially pays one chip to the pot, and is dealt a single private card. After a first round
of betting (with betting parameter p = 2, see below), a community card is dealt face up. Then, a
second round of betting is played (with betting parameter p = 4, see below). Finally, a showdown
occurs and players that did not fold reveal their private cards. If a player pairs her card with the
community card, she wins the pot. Otherwise, the player with the highest private card wins. In the
event that all players have the same private card, they draw and split the pot.

Each round of betting with betting parameter p goes as follows:

(1) Player 1 can check or bet p. If Player 1 checks, the betting round continues with Step (2);
otherwise, the betting round continues with Step (8).
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(2) Player 2 can check or bet p. If Player 2 checks, the betting round continues with Step (3);
otherwise, the betting round continues with Step (6).

(3) Player 3 can check or bet p. If Player 3 checks, the betting round ends; otherwise, the
betting round continues with Step (4).

(4) Player 1 can fold or call. If Player 1 folds, the betting round continues with Step (5);
otherwise, Player 1 adds p to the pot and the betting round continues with Step (5).

(5) Player 2 can fold or call. In either case the betting round ends. If Player 2 calls, she adds p
to the pot.

(6) Player 3 can fold or call. If Player 3 folds, the betting round continues with Step (7);
otherwise, Player 3 adds p to the pot and the betting round continues with Step (7).

(7) Player 1 can fold or call. If Player 1 calls, she adds p to the pot. After Player 1’s choice the
betting round ends.

(8) Player 2 can fold or call. If Player 2 folds, the betting round continues with Step (9);
otherwise, Player 2 adds p to the pot and the betting round continues with Step (9).

(9) Player 3 can fold or call. If Player 3 calls, she adds p to the pot. The betting round
terminates after her choice.

F.3 Worst case team utility

Table 4 shows the utility that the team is guaranteed to achieve in each game instance, with varying
position of the opponent. These values are the worst case utilities, obtained when the opponent is
best responding against the average team strategy. Specifically, let ω̄′T ∈ ΩΓ

T be the team realization
over Γ induced by the average team strategy (λ̄, (ω̄T ,σ)σ∈Σ1

) (computed through Algorithm 1), and
let ω∗A = BRA(λ̄, (ω̄T ,σ)σ∈Σ1

). Then, the values are computed as, ω̄′>T Uω
∗
A, where U is a suitably

defined (diagonal) |Z| × |Z| payoff matrix.

Game Team Utility
Adv 1 Adv 2 Adv 3

K3 -0.0002 -0.0002 -0.0001
K4 0.0369 0.0215 -0.0474
K5 0.0405 0.0137 -0.0274
K6 0.0499 0.0262 -0.0267
K7 0.0569 0.0271 -0.0254

L3 0.1533 0.0529 -0.0412
L4 0.0829 -0.029 -0.1901

Table 4: Worst case utilities for the team.

F.4 Comparison between ex ante coordinated strategies and behavioral strategies

The results obtained on parametric Kuhn game instances with fictitious team-play are compared
with the results obtained by computing the team-maxmin equilibrium [25], which is the best NE
attainable without ex ante coordination of team members.

We employ fictitious team-play with 5000 iterations and a time limit of 15 seconds on the oracles’
compute times (see also Table 2). A team-maxmin equilibrium is computed by solving a non-linear,
non-convex optimization problem [6]. We employ AMPL 20181005, with the global optimization
solver BARON 18.8.23 [22], and we set a time threshold of 15 hours.

Table 5 describes the results obtained in games where the opponent plays as the second player. Col-
umn team-maxmin displays the utility obtained when the opponent best-responds to the incumbent
team strategies computed by the solver (BARON never reaches an optimal solution within the time
limit).
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Game team-maxmin TMECor

K3 −6.03 · 10−8 0.0004
K4 0.0237 0.0335
K5 0.0116 0.0205
K6 0.0207 0.0329
K7 0.0198 0.0333

Table 5: Comparison between the utility of the team at the team-maxmin equilibrium and at the TMECor.

Ex ante coordination always makes team members better off with respect to playing behavioral
strategies.
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