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Abstract—We present the design, implementation, and evalu-
ation of MiFly, a self-localization system for autonomous drones
that works across indoor and outdoor environments, including
low-visibility, dark, and GPS-denied settings.

MiFly performs 6DoF self-localization by leveraging a single
millimeter-wave (mmWave) anchor in its vicinity - even if that an-
chor is visually occluded. MiFly’s core contribution is in its joint
design of a mmWave anchor and localization algorithm. The low-
power anchor features a novel dual-polarization dual-modulation
architecture, which enables single-shot 3D localization. MmWave
radars mounted on the drone perform 3D localization relative to
the anchor and fuse this data with the drone’s internal inertial
measurement unit (IMU) to estimate its 6DoF trajectory.

We implemented and evaluated MiFly on a DJI drone. We
collected over 6,600 localization estimates across different tra-
jectory patterns and demonstrate a median localization error of
7 cm and a 90th percentile less than 15 cm, even in low-light
conditions and when the anchor is fully occluded (visually) from
the drone. Demo video: youtu.be/LfXfZ26tEok

Index Terms—millimeter-wave, localization, drone

I. INTRODUCTION

Recent years have seen growing interest in commercial
drones for applications in indoor mapping [44], urban com-
munications [8], autonomous delivery [4], entertainment [26],
and search-and-rescue [45]. To enable such applications, these
drones must localize themselves in their operational environ-
ments. In outdoor environments, drones typically rely on GPS
to self-localize. However, GPS fails in indoor environments
and urban canyons where satellites are obstructed by buildings.
This has prompted researchers to explore other modalities
for self-localization including vision/LiDAR, such as visual-
inertial odometry (VIO) [41], [48]. These approaches have
advanced the field of GPS-less localization, but often still
struggle in dark and/or featureless environments (e.g., room
with plain walls) [9]. Moreover, many of these vision-based
approaches are more suitable for tracking changes in location
rather than estimating the absolute location, which is critical
for tasks like docking and delivery [4], [20].1

To address these challenges, past research in the wireless
community has explored the use of Radio Frequency (RF)
signals for indoor drone localization [27], [30], [40]. RF
signals work in the dark and through fog, snow, and various
materials (walls, cardboard, plastic, fabric, etc.) [17], which
enables using them to localize in environments where visible
light cannot work. In typical RF-based localization systems,
multiple wireless anchors (e.g., UWB beacons) are placed
in the environment, and a wireless transceiver on the drone
localizes itself using the anchors. A key drawback of these

1One way to overcome this is to pre-map these environments, which
introduces additional overhead and new challenges.
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Fig. 1: Dual-Polarization Dual-Modulation. MiFly leverages dual-
polarization dual-modulation to enable 3D localization.

approaches is the need for deploying numerous anchors in
the environment for trilateration. This introduces significant
overhead in cost and time to set up and maintain these
anchors. Moreover, most existing systems require active and
power-hungry anchors, which require tethering to a power
source, further increasing the deployment requirements [2].
Thus, while state-of-the-art wireless localization systems for
drones have demonstrated impressive accuracy (10-20 cm),
they still suffer from significant infrastructure and maintenance
requirements.

This paper asks the following question: Can we enable
accurate 6DoF drone self-localization using only a single
low-power wireless anchor that can be attached to a wall
(similar to a sticker)? Doing so would significantly reduce
the infrastructure overhead of wireless localization because it
would require a significantly smaller number of anchors, each
of which is very easy to deploy. Moreover, low-power anchors
can last for a long time on a small (coin-cell) battery.

In this paper we present MiFly, the first drone self-
localization system capable of accurate (sub-decimeter) lo-
calization in dark, non-line-of-sight, and GPS-denied environ-
ments using only a single anchor. MiFly leverages millimeter-
wave (mmWave) signals, which are used in modern radars and
certain 5G systems. Specifically, the drone self-localizes by
relying on 24 GHz radars mounted on the drone and a single
custom-designed mmwave backscatter anchor placed in its
vicinity.2 By fusing the radar measurements with the drone’s
internal inertial measurement unit (IMU), MiFly estimates its
6DoF trajectory.

As shown in Fig. 1, MiFly operates by sending 24 GHz
signals from an onboard radar to a planar anchor placed in the
environment. MiFly uses 24 GHz mmWave radars because of
their operational range and performance through occlusions
as well as their compact form factor. 3 To operate at low-
power, MiFly’s anchor does not generate its own signal but

2Additional anchors can increase coverage area but are not required for
localization.

https://youtu.be/LfXfZ26tEok


rather modulates the reflections of the radar’s signal back to
the drone; i.e., it backscatters the mmWave radar signals. The
signal reflected back from the anchor and received by the radar
allows the drone to compute its location relative to the anchor.

Enabling fast and accurate localization using this approach
is challenging for multiple reasons. The first challenge stems
from estimating 3D location using commercial off-the-shelf 24
GHz mmWave radars. Specifically, existing 24GHz radars only
provide antenna diversity in one dimension, limiting them to
only estimate azimuth and range (i.e., 2D location). However,
to support drone flight, localization must be three-dimensional.
In principle, one could leverage two orthogonal mounted
radars on the drone. This would allow us to measure both
azimuth and elevation to the backscatter tag, and derive a 3D
estimate. However, this design would suffer from interference
between the radars. Furthermore, while radar measurements
could be performed in series (e.g., measuring azimuth and
elevation sequentially), this would introduce both latency and
errors and prevent instantaneous 3D self-localization.

To enable high-speed localization, MiFly introduces a new
method that synthesizes two techniques to decouple the
interference between the two radars: polarization diversity
and frequency diversity. Specifically, we co-design a dual-
polarization and dual-modulation architecture in both our tag
hardware and localization algorithm, as shown in Fig. 1. Here,
the vertically polarized component of the tag backscatters the
vertically polarized signal, while the horizontally polarized
portion backscatters the horizontally polarized radar signal.
Doing so simultaneously enables single-shot 3D localization.
Moreover, the two orthogonally polarized components are
designed to operate with different modulation frequencies,
which enables the radars to isolate their reflections in the
frequency domain. Not only does this minimize interference,
but it also enables dealing with tilts that naturally occur during
flight, which may otherwise cause shifts in polarization. We
describe this method in detail in §III-A and how MiFly’s joint
algorithm-anchor design enables fast and efficient localization
of the drone with respect to the anchor.

The second challenge is in converting the 3D anchor lo-
calization to drone self-localization (in the 3D world-frame).
While the anchor measurements provide 3D estimates of the
anchor relative to the radars, these estimates cannot be directly
converted to the drone’s position due to ambiguity caused
by the drone’s 6DoF (degrees of freedom) motion during
flight. For example, if the drone rotates within the plane of
an angular measurement, even without changing its location,
the angle-of-arrival measurements of the tag will change and
produce an incorrect position estimate (see §III-B for more
details). In principle, to overcome this location ambiguity one
could add more anchors to the environment and/or radars to
the drone; however, such an approach is sub-optimal since it
would increase deployment cost/overhead and drone payload.

3By comparison higher frequency radars (e.g., 60/77 GHz) suffer from
shorter range, higher power consumption, higher cost, and more complex tag
designs, while lower frequencies (e.g., RFIDs at 900 MHz) suffer from large
antennas and low bandwidth.

To overcome the challenge, MiFly leverages the drone’s
IMU. While leveraging the IMU alone for localization would
incur significant drift over time [49], MiFly only relies on
the gyroscope to estimate the drone’s rotation.4 Not only
does this approach disambiguate the 3D location, but it also
enables 6DoF drone localization. We describe this ambiguity
problem, and our method for mmWave-IMU fusion in more
detail in §III-B.

We implemented MiFly on a DJI Mavic 3 Classic drone
[14] using two Infineon Position2Go radars [22]. We custom-
designed and fabricated 24 GHz backscatter anchors with or-
thogonally polarized patch antenna arrays on Rogers RO4350
substrate. Our evaluation was performed in multiple indoor
environments, where we collected over 6,600 self-localization
measurements during flight. Our evaluation demonstrates:
• MiFly achieves median errors of 4.8 cm, 1.0 cm, and 3.0 cm
in the x, y, and z dimensions, respectively.
• MiFly performs almost equally well in line-of-sight (LOS)
and non-line-of-sight (NLOS) scenarios, with a marginal drop
in NLOS (∼1 cm primarily due to SNR attenuation).
• MiFly’s dual-polarization, dual-modulation design achieves
>15 dB of isolation, allowing it to run radars simultaneously
without interference and achieve low-latency 3D localization.
Contributions: We present MiFly, the first drone self-
localization system capable of accurate (sub-decimeter) indoor
3D positioning using a single mmwave anchor. We introduce
multiple contributions. First, we jointly design a mmWave
backscatter anchor and localization scheme that leverage a
dual-polarization and dual-modulation architecture to enable
single-shot 3D localization. Second, we introduce a framework
to combine mmWave and IMU data to achieve accurate 6DoF
in-flight localization. This paper also contributes a end-to-
end prototype implementation and real-world evaluation of the
MiFly, demonstrating its accuracy in self-localizing in GPS-
denied, indoor, dark and NLOS settings.

II. RELATED WORK

Past work has explored different methods for GPS-less
drone self-localization including vision, LiDAR, IMUs, wire-
less, and sensor fusion [23], [25], [35], [39]. Among these, the
most ubiquitous are vision and lidar based systems; however,
these struggle in dark, featureless environments. The most
relevant to MiFly is past work that leverages Radio Frequency
(RF) signals for drone localization, since these can operate in
dark, GPS-denied, and low-feature environments.

The vast majority of past work on RF localization that
is relevant to drones relies on placing wireless anchors in
the environment and localizing with respect to these anchors.
Researchers have investigated different wireless technologies
for these anchors including WiFi [30] and Ultra-wideband
[13], [37], [38], [40], [51]. Most of these works require
deploying a dense network of anchors in the environment
(e.g., dozens) to ensure that enough (at least 3) anchors remain
within radio range for localization [30].

To reduce the infrastructure overhead, more recent work has
4Gyroscopes have demonstrated minimal (<1°/hr) drift for high perfor-

mance grades [36].
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Fig. 2: Dual-Polarization Design. a) Current commercial 24 GHz radars can only measure 2D localization. b) If one were to leverage two perpendicularly
mounted radars with a vertically polarized anchor, one radar would experience high polarization loss. c) Instead, if one were to leverage a 45° anchor, there
would be radar interference. d) Finally, we introduce a new dual-polarization anchor design which can reflect both polarizations without interference.

investigated the potential to localize using a single anchor [10],
[50], [52]. However, these systems still suffer from relatively
large errors of 30-90 cm in 3D location estimation when
leveraging a single anchor (WiFi AP); thus, they can be
used for coarsely localizing a drone from an access point
but cannot achieve higher level of accuracy typically required
for drone self-localization and navigation. MiFly shares the
goal of these systems but is the first to achieve sub-decimeter
self-localization accuracy (5 − 9× higher accuracy than past
systems that use a single anchor), which is important for ap-
plications that require higher resolution localization accuracy
to support precise drone flight.

Research has also explored other mechanisms for RF lo-
calization that does not rely on anchors. Past work in this
space falls in two main categories. The first leverages radars
that track the drone from a distance, either from the vantage
point of a base station [24], [34], [42], [46], [53] or from
another tracker drone [16], [31]. These works that track from
a distance struggle to uniquely identify drones and thus scale
to multi-drone scenarios. This is due to the fact that they rely
on Doppler and the motions of the drone body or propellers to
separate the drone from the static background. Furthermore,
they require sending data to the drone for localization, making
them less reactive and introducing higher latency.

The second category has explored RF-based odometry to
estimate change in position over time. Past work has included
learning based approaches to fuse radar point clouds with IMU
data [28], as well as doppler-based radar velocity estimation
[28], [43] These approaches track the relative motion of
the drone rather than absolute localization and have similar
problems to VIO in that they may drift over time.

Finally, MiFly is related to past work on mmWave backscat-
ter technology [5]–[7], [29], [47]. Recent proposals have
investigated modulated mmWave backscatter for localization
and have achieved accurate 2D localization leveraging a single
anchor, but suffer from the same challenges of WiFi/UWB
localization in terms of infrastructure overhead (number of
anchors) to enable 3D localization [5], [7], [29], [47]. Other
work for 6DoF localization [6], however, requires an array
of multiple tags, and relies on heavy, power-hungry, and
expensive ($3.5K) 77 GHz radars that would be difficult to
mount on a drone. Finally, prior work using passive reflectors
(e.g., without modulation) [21] have been shown, but require
a large tag to produce necessary radar cross section and is
susceptible to strong multi-path reflectors. MiFly builds on this
nascent body of literature and is the first to enable not only
3D drone self-localization, but also 6DoF localization, using

a single mmWave backscatter anchor. Moreover, it does so
by leveraging commercially available off-the-shelf mmWave
radars, designing a new anchor that addresses practical chal-
lenges with these radars, and fusing mmWave and IMU data
to recover 6DoF poses.

III. APPROACH

A. Dual-Polarization Dual-Modulation 3D Localization

In this section, we first describe the challenges with 3D lo-
calization using commodity 24 GHz radars. Then, we describe
MiFly’s techniques to overcome them.
The Interference Problem: MiFly uses commodity 24 GHz
radars to perform localization, as shown in Fig. 2a. The radar
transmits a signal, which is modulated by the backscatter
anchor, and received back at the radar. This signal can then
be used to estimate the range (r), shown in purple, and the
angle-of-arrival (φ), shown in blue. By combining the range
and angle, the radar can be used to estimate the drone’s
2D location. However, numerous indoor self-localization and
navigation tasks require the drone to estimate its 3D location,
which cannot be directly obtained from commercial off-the-
shelf (COTS) 24 GHz radars.5

To overcome this challenge and obtain a 3D location,
MiFly leverages two orthogonally mounted radars as shown
in Fig. 1. In principle, the vertically mounted radar can
estimate azimuth, the horizontally mounted radar can estimate
elevation, and both can estimate the range. However, simply
adding an additional orthogonal radar is insufficient to solve
the 3D location estimation problem. This challenge in doing
so is demonstrated in Fig. 2b. When mounting the radars
orthogonally, the vertically mounted radar will have a vertical
polarization (VP), shown by the teal sine wave, and the
horizontally mounted radar will have a horizontal polarization
(HP), shown by the purple sine wave. The anchor, which is
vertically polarized, will only reflect the signal transmitted by
the vertically polarized radar. The signal from the HP radar
will be significantly attenuated, due to the high polarization
mismatch between the HP radar and the VP anchor

Next, let us mathematically formalize this concept. One can
define the polarization using a 2D complex vector [Eh, Ev],
where Eh and Ev are the complex-valued horizontal and
vertical numbers applied to the transmitted signal [15]. A
linearly polarized signal at angle θ would be defined as
[cos(θ), sin(θ)]. Using this definition, we can find the signal
received at any antenna by projecting the receiver polarization
onto the transmitter polarization. Thus, the signal transmitted

5Recall COTS 24 GHz radars have antenna diversity in only one dimension.



by the HP radar and received by a VP anchor is:
⟨EH , E∗
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where EH is the polarization of the HP radar, and Eanchor

is the polarization of a anchor. This demonstrates polarization
loss due to mismatch between the HP radar and VP anchor.

To address this loss, one approach might be to place the
anchor at a 45° angle or leverage an anchor polarization that
can receive and backscatter both radar signals (i.e., circular
polarization). This approach can be seen in Fig. 2c. While
this allows for both radars to receive reflections from the
anchor, this approach leads to interference between the two
reflected signals. This is because the anchor will backscatter
both transmissions with a linear polarization at 45°, causing
the backscattered signals to interfere with each other and
making it difficult to separate them for localization.

Next, we formulate this interference problem. Without loss
of generality, let us quantify the interference at the HP radar,
or the signal transmitted from the VP radar, backscattered by
a 45° anchor, and received at the HP radar. First, the signal
transmitted by the VP radar and received by the anchor is:〈
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where EV is the polarization of the VP radar and Eanchor,45

is the polarization of a 45° anchor Next, the signal re-emitted
from the anchor and received back at the horizontal radar is:
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We can now quantify the interference signal at the HP radar:〈
EV , E∗

anchor,45

〉
⟨Eanchor,45, E

∗
H⟩ = sin

(π
4

)
cos

(π
4

)
= 0.5.

Thus, the strength of the leakage is equal to 0.5. Next, we
compare this to the strength of the received signal needed for
localization. Following a similar derivation to above, the signal
from HP radar to the anchor and back can be expressed as:〈

EH , E∗
anchor,45

〉
⟨Eanchor,45, E

∗
H⟩ = cos2

(π
4

)
= 0.5. (4)

Here, we see that the strength of the leakage is actually
equal to the strength of the localization signal (0.5). This
demonstrates that using a 45° backscatter anchor would lead to
significant interference when the radars are run in parallel. A
similar derivation for an alternative circularly polarized anchor
design (or designs that can reflect both HP and VP) would
demonstrate that they incur the same interference problem.

While in principle, one could instead operate the two radars
in series, this would incur additional localization latency,
especially if the radar leverages multiple chirps for each
location estimate. Similarly, adding coding on top of the chirps
to disentangle them would also introduce additional latency,
and make real-time localization more challenging.

This above derivation demonstrates that simply using two
orthogonal radars is not sufficient to enable 3D localization.
Dual-Polarization Design: To overcome this challenge, MiFly
introduces dual-polarization into the anchor design and lo-
calization algorithm. Our anchor design enables isolating the
signals received by and reflected back to the HP and VP radars.

To do this, we design our anchor with distinct sets of antennas,
shown in Fig. 2d. The first set of antennas is horizontally
polarized, and reflects only the chirps from the HP radar. The
second set of antennas is VP and only reflects chirps from the
VP radar. With this design, we are able to transmit from both
radars simultaneously and minimize interference.

We can evaluate this design mathematically. The signals
arriving at each anchor antenna from the HP radar are:〈
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anchor,H

〉
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]
∗
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]
= 1,

〈
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where Eanchor,H and Eanchor,V are the polarization of the
horizontally and vertically polarized antennas on the anchor,
respectively. In this design, the anchor’s horizontal antennas
will receive (and reflect) all of the HP radar signal, while the
anchor’s vertical antenna will receive none of it. Therefore,
the signal received back at the HP radar will be:〈

EH , E∗
anchor,H

〉
⟨Eanchor,H , E∗

H⟩ = 1

This shows that the HP radar receives back all of the power
which it transmitted (without accounting for path loss, antenna
gains, etc). Again, we can compare this to the interference
received at the HP radar from the VP radar. In this case, the
the signal transmitted by the VP radar, re-emitted by the VP
anchor and received at the HP radar is:〈
EV , E∗

anchor,V

〉
⟨Eanchor,V , E∗

H⟩ =
([

0, 1
]
∗
[
0
1

])([
0, 1

]
∗
[
1
0

])
= 0.

Therefore, the strength of the interference signal is 0, while
the strength of the desired signal for localization is 1. A similar
derivation holds for the alternate case (i.e., from HP to VP).

This demonstrates the effectiveness of our dual-polarization
design in reducing interference between the reflected signals.
Dual-Frequency Modulation: While in principle, polariza-
tion diversity provides perfect isolation between the two radar
signals, this does not hold in practice. The backscattered sig-
nals will suffer from leakage, whereby the signal transmitted
from the HP radar and reflected by the VP antennas on the
dual-polarized anchor will be detected by the HP radar. This
phenomenon is exacerbated in the case of a drone. The drone’s
rotations during flight may cause misalignment between the
radars and the anchor, causing each radar to receive even more
interference signal from the cross-polarized anchor antenna.

To understand this further, we conducted a real-world exper-
iment to measure the leakage. Without loss of generality, we
focused on measuring the leakage between the HP radar and
the VP anchor antennas. Specifically, we transmit and receive
on the HP radar, and only activate the VP anchor antennas to
measure how much of the HP signals they would reflect.

In this experiment, the radars are placed approximately 1 m
from the anchor, which is programmed to modulate signals at
350 kHz (only the VP antennas are programmed to modulate).
We also apply 4° degree tilt (in roll) to the drone to simulate
minor rotations during flight that can intensify leakage.
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Fig. 3: Dual-Frequency Modulation. a) When transmitting a single fre-
quency, there is 17 dB of interference. b) Our dual-frequency modulation shifts
the leakage signal away from the desired signal in the frequency domain.

Fig. 3a. plots the magnitude of the signal received by the
HP radar versus frequency. If the isolation were perfect, one
would expect to see no peak in the received signal. However,
as seen in the figure, there is a peak around 350 kHz, which
is approximately 17 dB higher than the signal (or noise)
baseline. This demonstrates the leakage present, despite the
dual-polarization design.

In MiFly, we overcome this challenge through an additional
technique: dual-frequency modulation. In this technique, we
leverage different frequencies to modulate the vertical and
horizontal antennas on the anchor, as illustrated in Fig. 1.
By applying different modulation frequencies, we shift the
signals for each polarization in the frequency domain for
improved isolation. Specifically, the responses are separated
in the frequency domain by:

∆fmod = fmod,H − fmod,V (6)

where fmod,H , and fmod,V are the modulation frequencies of
the HP and VP antennas. Using this technique, we can see that
∆fmod allows for separation of responses from the desired
polarization and the leakage of the orthogonal polarization.

We conduct a real world experiment to validate our dual-
frequency modulation technique. We use the same setup as
previously described and measure the received signal at the HP
radar. However, we now apply our dual-frequency technique
to modulate both the HP and VP antennas on the anchor.
Specifically, we shift the modulation frequency of the VP
antennas to 300kHz, and modulate the HP antennas at 350kHz.

Fig. 3 plots this result. The plot now displays a peak of
17 dB, but it is located near 300 kHz. This is the leakage
signal that has been shifted by the dual-frequency modulation.
There is also a ∼50 dB tall peak at 350 kHz. In comparison,
this peak is the desired localization signal (from the HP radar
to the HP anchor). Now, the leakage and desired signals can be
easily separated. This shows the benefit of our dual-frequency
modulation for improving isolation between polarized signals.6

Finally, one might wonder whether dual-modulation would
have been sufficient for 3D localization, without the need for
dual-polarization. However, that would not be sufficient or
desirable. First, we still need dual-polarization on the radar

6We note that some small amount of signal could travel from the VP radar
to the HP anchor to the HP receivers, causing interference. However, between
the polarization diversity and the dual-frequency modulation, the interference
is significantly reduced, such that remaining interference will not be strong
enough to hinder the localization.

transmitters themselves (to obtain 3D locations). Second, the
dual-polarized tag achieves a 6 dB gain over a simple linearly-
polarized one (e.g., at 45◦) due to better polarization matching.
Single-Shot 3D Localization: Now that the two signals are
easily separable, they can be used for localization. Since we
are using FMCW radars, the backscatter peak frequency shown
in Fig. 3b will be directly proportional to both the modulation
frequency and the anchor’s range. It can be defined as:

fbackscatter = fmod + frange (7)

where fbackscatter is the peak frequency of the backscatter’s
response (for the corresponding polarization), fmod is the cor-
responding modulation frequency, and frange is the frequency
shift corresponding to the anchor’s range.

Therefore, we can use this peak frequency to isolate the
backscatter response and perform 3D localization. We describe
this localization at a high level, and refer readers to [29] for
more details. Our localization follows three steps:
1) First, to find the backscatter frequency, we take an FFT of
the received signal. We then search for a peak frequency in a
window near the corresponding modulation frequency as:

f̂backscatter = argmax
f∈(fmod,fmod+W )

|FFTRX(f)| (8)

where f̂backscatter is the estimated backscatter frequency, W
is the window size, and FFTRX(f) is the FFT of the received
signal evaluated at frequency f .
2) Second, we compute the range to the anchor as [29]7:

r̂anchor =
c(f̂backscatter − fmod)

2k
(9)

where r̂anchor is the estimated range to the anchor, c is the
speed of light, and k is the slope of the FMCW chirp signal.
3) Finally, we can compute the angle-of-arrival (AoA) to
each radar, using the phase difference between the two RX
antennas. Specifically, we take the difference between the
phases of the FFT peaks between each RX signal (∆ϕ):

∆ϕ = ∠FFTRX,1(f̂backscatter)− ∠FFTRX,2(f̂backscatter) (10)

where FFTRX,1 and FFTRX,2 are the FFTs of the received
signals from RX antenna 1 & 2. Then, we compute AoA [29]:

φ = sin−1

(
∆ϕλ

2πd

)
(11)

where λ is the wavelength of the signal and d is the spacing
between the two RX antennas.
We repeat the above three steps for both radars, giving us the
range, azimuth, and elevation to the anchor 8 Then, our final
3D anchor location is defined as:
x = r̂anchor ∗ sin(φ) ∗ cos(θ), y = r̂anchor ∗ cos(φ) ∗ cos(θ)

z = r̂anchor ∗ sin(θ)

where x, y, and z are the coordinates of the anchor location,
φ and θ are the azimuth and elevation estimates, respectively.

Finally, it is worth noting that we employ an outlier rejection
7In practice, the anchor’s modulation produces two peaks in the FFT. We

use these two peaks to compute the anchor’s frequency f̂backscatter without
relying on a known value of fmod. We refer readers to [29] for more details.

8We average the range estimates from our two radars to improve accuracy.
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mechanism to remove low quality measurements. First, we
define the signal-to-noise ratio (SNR) of a measurement as:

SNR =
||FFT (fpeak)||2∑

f∈{fL,fH}−{fpeak}
||FFT (f)||2

(12)

where FFT (f) is the FFT at frequency f, ||·||2 denotes the
magnitude squared (power), and fL, fH are the bounds of the
search space over which we search for the anchor’s response9

Given this SNR, we can remove any outlier measurements
with a SNR below a threshold Pthresh

10:
SNR < Pthresh. (13)

B. RF-IMU Fusion
The previous sections described how we produce a high-

speed 3D location from a single anchor. In this section, we
first describe the challenge with converting these 3D anchor
estimates to 3D drone self-localization estimates. Then, we
describe how MiFly overcomes this challenge and additionally
produces 6DoF drone pose estimates.

As described in §III-A, our mmWave localization technique
produces a single-shot 3D location of our anchor. One might
think that these estimates can simply be inverted to provide
the drone’s 3D location. However, these anchor-based 3D
estimates cannot be used directly as the position of the drone
during flight. This is because the drone’s rotational movement
during flight causes ambiguity by entangling information from
the drone’s position and rotation in the AoA measurement.
Thus, any rotational movement can lead to error in the
estimated 3D location of the drone.

We illustrate an example of this in Fig. 4. In Fig. 4a, the
drone’s radars are directed towards the plane of the anchor
and the drones frame during flight is aligned with the anchors
frame a. In this case, the drone is at a distance of 2 m in x and
2 m in y from the anchor. Therefore, the radar would estimate
an azimuth of 45°, as shown by the blue azimuth angle (φ). In
Fig. 4b, the drone (and its radars) are at the same 3D location,
but have rotated 20° about the yaw, as shown by the green yaw
angle (ψ). In this case, the azimuth detected by the radars will
only be 25° (φ’ in purple). If we were to directly use this
azimuth estimate to produce a 3D drone location, this would
results in localization error of 80 cm in x and 56 cm in y. This
error is even further exacerbated as the range to the anchor
increases, since the azimuth offsets produce location errors
which are scaled by the distance. Additionally, this problem is
further complicated during simultaneous rotation in both yaw

9We remove a small gap around fpeak from the sum due to peak width.
10We additionally filter out measurements that have a large difference in

estimated range between the two receiver antennas on the radar.

and pitch, as ambiguity in the location is a complex function
of 6DoF pose.

To overcome this ambiguity, our system fuses the drone’s
internal IMU with the mmWave localization to account for
the variations in heading. To enable self-localization, our goal
is to solve for the position of the drone in the world frame
(pwdrone), where we define the world frame w as global frame
of reference. To start, recall from §III-A that we obtain an
estimate of anchor’s location from the radars, defined as:

pdrone
a = (x, y, z) (14)

where pdronea is the 3D position of the anchor in the drone’s
frame of reference during flight. Additionally, from the internal
IMU, we can determine the rotation of drone’s frame during
flight with respect to the world frame Rw

drone :
Rw

drone = RX(α)RY (β)RZ(γ) (15)

where RX , RY , RZ are the elementary rotation matrices.
α, β and γ are the IMU euler angles.11 Using this rotation
and the mmWave-based anchor location, we then apply a
transformation to determine the desired location of the drone
in the world frame. Formally:

pwdrone = −Rw
drone ∗ pdrone

a + twa (16)

where twa is the known transformation between the global
reference frame and the anchor location.

Thus, the final 6DoF pose estimate of the drone during flight
with respect to the world is (pwdrone, R

w
drone).

IV. IMPLEMENTATION & EVALUATION

mmWave Anchor Design. A real world photo of the anchor
is shown in Fig. 1, and the anchor design is shown in Fig. 5.
We custom-fabricated our anchor design on Rogers RO4350
substrate. The anchor consists of two receive antennas, one
horizontally polarized and one vertically polarized. The signals
received at these antennas are then fed through HMC547ALC3
SPDT switches which routes the signals to a matched load, or
feeds them into HMC342LC4 amplifiers. After the amplifiers,
the signals are routed to an identical set of antennas for re-
emission. Our anchor currently consumes 260 mW.12

Physical Setup. We implement MiFly on a DJI Mavic 3
Classic [14]. We mount two Infineon Position2Go 24 GHz
radars [22], a Raspberry Pi 4 Model B and UPS power supply
on the drone with custom 3D printed parts. We connect the
radars to the Pi via USB. We note that, in the future, the
radar could be powered entirely off the drone’s battery and

11We align the IMU reference orientation to align with the world frame.
12This is significantly lower power than approaches operate with a single

anchor (e.g., 5-25W per WiFi anchor [11]). It is also lower than most multi-
anchor approaches, even on a per-anchor basis [2].



Axis 10th pctl Median 90th pctl
X 0.9 cm 4.8 cm 11.8 cm
Y 0.2 cm 1.0 cm 3.2 cm
Z 0.5 cm 3.0 cm 9.4 cm

Roll 0.1° 0.5° 1.2°
Pitch 0.5° 1.3° 2.4°
Yaw 0.4° 1.3° 3.1°
3D 2.8 cm 7.2 cm 14.2 cm

TABLE I: Localization & Rotation Error. The 10th,
50th, 90th pctl errors in X, Y, Z, roll, pitch, yaw, & 3D.

Fig. 6: Flight Path. Two example trajectories with MiFly’s measurements (blue) and the
interpolated ground truth measurements (red) plotted in 3D.

only reduce the overall battery life by ∼1 minute (from 46
minutes to 45 minutes).13 The total payload is approximately
385 grams. We transmit chirps of 300µs duration over 200
MHz of bandwidth and average all 16 chirps within a frame
to produce a single localization measurement. We perform a
one-time calibration and apply it to all measurements to correct
for offsets in the radar and tag hardware.
Software. We combine the IMU information and RF mea-
surements in post processing on a laptop running Ubuntu
22.04. Since we do not have access to the drone’s software
to synchronize the IMU with the Raspberry Pi, we perform a
calibration to measure the time offset between the two.14 After
applying the time offset, we then interpolate the IMU data to
provide heading estimates at the times that the radar measure-
ments were captured. Since the two radars are not perfectly
clock synchronized, we pair the closest two measurements in
time to provide a single 3D estimate.
Evaluation Environment. We evaluate MiFly in different
environments: a typical office setting, with tables, chairs, cab-
inets, etc. (e.g., high multipath), and a flight space for further
range and angle evaluation. We note that our experiments were
conducted with people/objects moving in the background, as
well as typical wireless interference (WiFi, 5G, Bluetooth, etc).
Ground Truth. To measure the localization accuracy of our
system, we use the OptiTrack™ Motion Capture System to
provide 6DoF tracking. We place tracking markers on the
drone and continuously extract the 6DoF pose of the drone
during flight. In a case that the drone is temporarily missed by
the OptiTrack system, we remove that section of the trajectory
from the evaluation. Since the ground truth is recorded on a
separate computer than MiFly, we use the same NTP server to
provide time synchronization. We then interpolate the ground
truth measurements to find the ground truth at the times that
MiFly’s measurements were recorded.
Metric. We measure the localization error as the 3D L2
norm difference between MiFly’s predicted location and the
ground truth location. We also measure the rotation error as
the difference in degrees between the drone’s estimated euler
angles and the ground truth euler angles.
Baseline. We implement a visual inertial odometry (VIO)
baseline for comparison.15 We leverage an Intel® RealSense™
Tracking Camera T265. We mount the camera on the drone

13The Position2Go radar only consumes 2.1W [22], while the drone
averages ∼100W during flight [14]. Therefore, powering the radars from the
drone’s battery would have a negligible impact on the drone’s battery life.

14We rotate the drone at the start of a trajectory and correlate the change
in the IMU’s yaw with the change in radar’s azimuth to find the time offset.

using 3D printed mounts and use the cameras internal tracking
algorithm to extract the 3D coordinates of the drone.

V. PERFORMANCE RESULTS
A. 6DoF Error

To evaluate MiFly’s overall 6DoF error, we conducted
experiments where the drone was flown in the environment and
MiFly continuously tracked its location. Outlier measurements
were filtered using the procedure described in §III-A. The
IMU data was time aligned with mmWave measurements and
used to derive the final 6DoF estimates (§III-B). The ground
truth was simultaneously tracked (§IV). We collected over
6,600 localization estimates (after filtering) across 31 separate
trajectories. We collected measurements in both visual line-of-
sight (LOS) and non-line-of-sight (NLOS) of the tag16, in light
and in the dark, and while flying 1D, 2D, and 3D trajectories.

Table. I shows the 10th, 50th, and 90th percentile localization
errors in X, Y, Z, roll, pitch, yaw, and 3D L2 norm. We note:
• MiFly achieves a median L2 norm 3D error of 7.2 cm
and a 90th percentile less than 15 cm. Additionally, the 90th

percentile errors in roll, pitch, and yaw are 1.2°, 2.4°, and 3.1°,
respectively. This demonstrates MiFly’s ability to accurately
self-localize using a single anchor during flight.
• Interestingly, the median error in Y is 1 cm, while the
median in X and Z are 4.8 cm and 3.0 cm respectively. This is
due to the fact that error in Y is primarily determined by error
in our range estimate, while error in X and Z are primarily
determined by error in our azimuth and elevation estimates.
In general, MiFly has slightly higher accuracy in range than
AoA estimates. However, the overall 3D error still remains
low enough to enable drone self-localization.
B. Qualitative Results

Next, we show two qualitative results. Fig 6a-b show two
example trajectories with MiFly’s measurements (blue) and
the interpolated ground truth measurements (red), plotted in
3D. MiFly successfully reconstructs the trajectory, with the
estimated locations closely matching the ground truth.
C. Comparison to VIO

Next, we compare the performance of MiFly to that of our
VIO baseline (See §IV). We define two types of environments.
The first are well-lit, feature-rich environments favorable to
VIO. The second have low-light and fewer features, presenting
a challenge for VIO systems. We run three different trajecto-
ries in both of these environments.

15We compare to VIO as it is primarily used for indoor drone self-
localization [32]. While recent work has began exploring LIDAR [18], these
sensors are expensive ($2k), heavy for smaller indoor drone deployments, and
suffer in poor visibility (fog, smoke, etc) & featureless environments [3], [19].

16We use LOS/NLOS to refer to visual LOS/NLOS.
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Fig. 7 shows the median 3D error of MiFly and VIO in
low-light, low feature environments. The error bars denote
the 10th and 90th percentiles. We note that MiFly is able to
achieve a 90th percentile error of 14 cm. On the other hand,
VIO is unable to track with a high level of accuracy, with
a 90th percentile of 36 cm. We note that these errors are
due to complete loss of tracking. Over longer trajectories and
without pre-mapping of the environment, we estimate the VIO
performance would degrade even further. This shows the need
for MiFly’s mmWave localization, that can operate in low-
light, feature-less environments.17

VI. MICROBENCHMARKS
A. LOS vs NLOS

In our first microbenchmark, we evaluate the impact of
visual line-of-sight on MiFly’s localization accuracy. We flew
the drone along specific trajectories by following markers on
the floor. We repeat each trajectory twice, once when the
anchor was in LOS of the drone and once when the anchor
was hidden behind clutter such that it was in visual non-line-
of-sight of the drone throughout the entire trajectory. We ran
four different trajectories for a total of 8 trajectories and over
1,200 localization measurements for both LOS and NLOS.

Fig. 8 shows the median 3D error of MiFly in LOS and
NLOS. The error bars show the 10th and 90th percentiles. We
note that at all percentiles, the localization error in NLOS is
less than 1 cm larger than in LOS. This demonstrates that
MiFly is able to successfully self-localize even in practical
environments that include clutter and occlusions.
B. Error vs Range

Next, we evaluate the error of MiFly as a function of the
distance to the anchor. We flew the drone along a straight line
directly in front of the anchor, starting roughly 1 m away and
ending about 8 m away. We grouped MiFly’s measurements
into different bins based on how far the drone was from
the tag at the time of the measurement. We measured the
3D localization error with and without our outlier rejection
described in §III-A. We also measured the frame retention
rate (FRR), or the percentage of measurements within a given
distance bin not removed by our outlier rejection.

Fig. 9 shows the 3D error in meters as a function of the
distance to the anchor. The bar graph shows the median error
both with (red) and without (blue) outlier rejection, with the
error bars denoting the 10th and 90th percentile.18 The dotted

17In well-lit environments, the VIO tracks with a median of 2.1 cm and a
90th percentile of 4.1 cm, as expected.

18We remove any bars from the bar plot with 5 or fewer measurements,
since they are not statistically significant.

lines show the FRR. We make the following remarks:
• MiFly has a median and 90th percentile filtered 3D error
less than 14 cm and 25 cm up to 5 m, respectively. 19

• Beyond 5m, the 90th percentile of the unfiltered range error
increases above 50cm. This is mainly due to limitations of
MiFly’s hardware (e.g.,antenna array size, sampling rate, trans-
mit power etc.), which prevents it from successfully localizing
at these ranges. Various improvements can be made to further
boost performance in the future (see §VII). Further, the outlier
rejection removes these measurements to avoid large errors.
C. Error vs Rotation

Next, we evaluate MiFly’s error as a function of the drone’s
yaw rotation. We flew the drone at a fixed location, and rotated
360 degrees in both directions. We grouped measurements into
bins based on the drone’s yaw at the time of the measurement
(where 0 yaw is facing the tag). Since yaw rotation primarily
impacts the azimuth estimation, we evaluated azimuth error as
a function of the drone’s rotation.

Fig. 10a shows the error in azimuth (degrees) as a function
of the drone’s yaw angle (degrees). The bar graph shows
the median error both with (red) and without (blue) outlier
rejection, with the error bars denoting the 10th and 90th

percentile. The dotted lines show the FRR. We note:
• Between -50° and 40°, the median filtered error remains
below 5.1°, while the FRR is 100%. This demonstrates that
MiFly is able to operate at a wide range of rotations.
• At extreme angles of -70° and 70°, the median unfiltered
error increases to 127° and 109°. This is due to the fact that
the radar’s antenna design has a limited field-of-view (FoV),
and cannot accurately measure the tag’s response at this angle.
This demonstrates the need for MiFly’s outlier rejection to
remove these unreliable measurements.
D. Error vs Elevation

Next, we evaluate the error of MiFly as a function of the
drone’s elevation to test performance at different heights. We
flew the drone in a straight line vertically. We grouped mea-
surements into different bins based on the drone’s elevation
relative to the tag at the time of the measurement. Since the
relative height to the tag primarily impacts MiFly’s elevation
estimate, we evaluated the error in the elevation.

Fig. 10b shows the error in elevation (degrees) as a function
of the drone’s ground truth elevation (degrees). The bar graph
shows the median error both with (red) and without (blue)
outlier rejection, with the error bars denoting the 10th and 90th

percentile. The dotted lines show the FRRs. We note:
• Between -30° and 20°, the median filtered error remains
below 1.4° and the FRR remains above 75%. This shows that
MiFly is able to estimate elevation at a wide range of heights.
• At an extreme elevation angle of -40°, the median unfiltered
error increases to 25°. This is again due to the limited radar
FoV, and shows the benefit of MiFly’s outlier rejection.
E. Radar Isolation

Our final microbenchmark measures the isolation provided
by MiFly’s dual-polarization dual-modulation design. To do

19Note that since this microbenchmark is only a small subset of our flights
designed for evaluating the impact of distance on our accuracy, these numbers
are not expected to match the median & 90th reported in §V-A.
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Fig. 9: 3D Error vs Distance. Plot of median
3D error & FRR vs distance with (red) and without
(blue) filtering. Error bars denote 10th&90th pcntl.
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(b) Elevation Error vs Elevation.
Fig. 10: Angular Microbenchmarks. (a) plots the error & FRR (dashed lines) in azuimuth vs the
drone’s yaw angle with (red) and without (blue) filtering. (b) Error in elevation vs the drone’s elevation.
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Fig. 11: Anchor Isolation. The isolation between the radars when leverag-
ing MiFly’s anchor design (blue) and a 45° anchor (red).

so, we compare the leakage between the two radars when using
our design compared to a baseline 45° linearly-polarized tag.

We placed the drone and its radars 0.7 m from the anchor.
We programmed the anchor to modulate its VP antennas at
300 kHz and its HP antennas at 350 kHz. To measure the
leakage, we transmitted from the VP radar and received from
the HP radar. To ensure the measurement contained only the
interference between the radars and not signal transmitted from
the HP radar, we set the HP radar parameters to minimize
transmitted power and place a metal reflector to block the TX
antennas. We measured the interference as the magnitude of
the FFT peak corresponding to the interfering signal (relative
to the surrounding noise). We then repeated this experiment
with a 45° tag modulated at 350 kHz. We collected over 45
experimental trials for each anchor design.

Fig. 11 plots the interference magnitude in dB for MiFly
(blue) and a 45° tag (red). The bar graph shows the median
error, with error bars denoting the 25th and 75th percentiles.
We note that MiFly experiences a median interference of
4.8 dB, while the 45° tag experiences median of 20.7 dB.
Therefore, MiFly’s dual-frequency dual-modulation design
provides 15.9 dB of isolation, showing our technique’s value.

VII. DISCUSSION AND LIMITATIONS
Occlusions: MiFly does not need to be in visual line-of-
sight of the anchor to operate; however, it requires mmWave
signals to traverse occlusions on the direct path between the
anchor and the drone. MmWave signals can traverse everyday
occlusions (such as walls [17]), but are significantly attenuated
by certain materials (such as reinforced concrete & metal). In
cases of complete blockage, MiFly would temporarily lose
accurate tracking until the drone moved to a location where
the direct path was no longer fully blocked. Further, additional
anchors could be deployed to limit cases of complete blockage.
Coverage: We demonstrated MiFly’s robust performance up
to 5 m in §VI-B. While this is a promising start, there are
two important things to note. First, MiFly could extend the
operational range of an anchor to hundreds of meters via

power amplifiers, improved radars, improved antenna designs,
etc. [33], [47]. The angular field-of-view can also be increased
with the use of omnidirectional antennas. Second, in scenarios
where very large areas need to be covered (e.g., an urban
city) additional anchors can be deployed so that the drone can
switch between different anchors as it travels.
Extension to Multiple Drones: There are many ways to ex-
tend these techniques to operate with multiple drones, such as
transmitting different (orthogonal) waveforms from different
drones for multiple access to the same anchor.
Anchor Design: The ability to leverage a single anchor for
localization significantly reduces the infrastructure overhead
for indoor wireless drone self-localization. MiFly’s anchor
design can be made even more compact and easier to deploy.
In particular, its planar structure (which we fabricated on a
printed circuit board) can be printed as a sticker similar to
RFIDs, which are also backscatter technologies. Moreover,
the design can be transitioned to more optimized antenna
structures (e.g., retroreflective) that can make it more efficient,
potentially eliminating the need for power amplifiers altogether
and making the anchor entirely passive.
Incorporating Doppler: At high speeds, it is possible for
Doppler shifts to impact localization. However, commercial
deployment of indoor drones for applications such as ware-
house inventorying are typically limited to maximum flight
speeds of 2-3 mph [1], [12]. At these speeds, Doppler shifts
would induce a maximum error of 5 cm, allowing MiFly to
achieve accurate localization. That said, to increase the accu-
racy during faster flights, it would be interesting future work
to explore choosing range from the range-Doppler domain.

VIII. CONCLUSION
We present MiFly, a self-localization system for au-

tonomous drones using only a single millimeter-Wave an-
chor. MiFly leverages a novel dual-polarized, dual-modulated
mmWave anchor and mmWave-IMU Fusion self-localization
algorithm to ultimately achieve precise, high speed 6D lo-
calization. Our experiments verify that MiFly can robustly
self-localize in GPS denied environments, adverse lighting
conditions, and in non-line-of-sight to the anchor. For future
work, we aim to incorporate our self-localization into the
navigation of the drone and enable autonomous flight for
applications such as docking, delivery and discovery.
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