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Chapter 1

Introduction

Engineering design and optimization require not only understanding of the principles of

physics, but also application of necessary mathematical tools. Mathematically, many

components/systems and processes in applied science and engineering are modeled by

partial differential equations that describe the underlying physics. Typically, the quan-

tity of primary importance is not the full field variable, but rather certain selected outputs

defined as functionals of the field variable. Typical outputs include energies, and forces,

critical stresses or strains, flowrates or pressure drops, temperature, and flux. These out-

puts are functions of system parameters, or inputs, that serve to identify a particular con-

figuration of the component or system; these inputs typically reflect geometry, properties,

and boundary conditions and loads. The input-output relationship thus encapsulates the

behavior relevant to the desired engineering context. However, its evaluation demands

solution of the underlying partial differential equation (PDE). Engineering design and

optimization typically require thousands of input-output evaluations in real-time.

Virtually all classical numerical approaches (e.g., FEM/FDM/BEM etc.) consider

effectively “dense” approximation subspaces for the underlying PDE: the computational

time for a particular input is thus typically very long despite continuing advances in

computer speeds and hardware capabilities. An implication of this is that: we can not

address many in-operation/in-service applications in engineering design, operations, and

analysis that require either real-time response or simply many queries; and hence we

can not perform adaptive design and optimization of components or systems, robust

parameter estimation of properties and state, or control of missions and processes.
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A goal of this thesis is to remedy this deficiency and specifically to develop a com-

putational approach that can provide output predictions that are certifiably as good as

the classical truth approximations but literally several order of magnitude less expensive.

Another goal of this thesis is to apply the approach for numerical analysis of inverse

problems in engineering and science with special emphasis on real-time capability and

robust handling of uncertainty.

1.1 Problem Definition

1.1.1 Forward Problems

We consider the “exact” (superscript e) forward problem: Given µ ∈ D ⊂ RP , we

evaluate se(µ) = `(ue(µ)), where ue(µ) satisfies the weak form of the µ-parametrized

PDE, a(ue(µ), v;µ) = f(v), ∀ v ∈ Xe. Here µ and D are the input and (closed) input

domain, respectively; se(µ) is the output of interest; ue(µ;x) is our field variable; Xe is

a Hilbert space defined over the physical domain Ω ⊂ Rd with inner product (w, v)Xe

and associated norm ‖w‖Xe =
√

(w,w)Xe ; and a(·, ·;µ) and f(·), `(·) are Xe-continuous

bilinear and linear functionals, respectively.

It should be emphasized that the evaluation of input-output relationship demands

solution of the parametrized PDE. In general, the PDEs are not analytically solvable,

rather a classical approach like the finite element method is used to seek a weak-form

solution. We henceforth introduce X ⊂ Xe, a “truth” finite element approximation

space of dimension N . Our finite element approximation of the exact problem can then

be stated as: given µ ∈ D, find

s(µ) = `(u(µ)) , (1.1)

where u(µ) ∈ X satisfies a discrete weak formulation

a(u(µ), v;µ) = f(v), ∀v ∈ X . (1.2)

We assume that X is sufficiently rich that u(µ) (respectively, s(µ)) is sufficiently close to
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ue(µ) (respectively, se(µ)) for all µ in the (closed) parameter domain D. The dimension

N required to satisfy this condition — even with the application of appropriate (and even

parameter-dependent) adaptive mesh generation/refinement strategies — is typically very

large, and in particular much too large to provide real-time response in the design and

optimization contexts. We shall also assume that the forward problem is strictly well-

posed in the sense of Hadamard, i.e., it has a unique solution that depends continuously

on data.

1.1.2 Inverse Problems

In inverse problems we are concerned with predicting the unknown parameters from

the measured-observable outputs. In the context of inverse problems, our input has

two components, µ = (ν, σ), where ν ∈ Dν is characteristic-system parameter and σ

is experimental control variable. The inverse problems involve determining the true but

unknown parameter ν∗ from noise-free measurements {s(ν∗, σk), 1 ≤ k ≤ K}. In practice,

due to the presence of noise in measurement the experimental data is given in the form

of intervals

I(εexp, σk) ≡ [s(ν∗, σk)− εexp |s(ν∗, σk)| , s(ν∗, σk) + εexp |s(ν∗, σk)|] , k = 1, . . . , K ; (1.3)

where εexp is the error in measurement.

Our inverse problem formulation is thus: given experimental data I(εexp, σk), k =

1, . . . , K, we wish to determine the region P ∈ Dν in which the unknown parameter ν∗

must reside. Towards this end, we define

P ≡ {ν ∈ Dν |s(ν, σk) ∈ I(εexp, σk), 1 ≤ k ≤ K} (1.4)

where s(ν, σ) is determined by (1.1) and (1.2). Geometrically, the inverse problem for-

mulation can be interpreted as: find a region in parameter space such that every point

in this region has its image exactly in the given data set.

Unfortunately, the realization of P requires many queries of s(ν, σ), which in turn

necessitates repeated solutions of the underlying PDE. Instead, we shall construct a
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bounded “possibility region” R such that P ⊂ R. The important point is that R can

be constructed as suitably small as P but very inexpensively (see Section 1.2.4 for the

definition of R and Chapter 8 for the inverse computational method for constructing R).

1.2 A Motivational Example

The primary focus of this thesis is on: (1) the development of real-time methods for

accurate and reliable solution of the forward problems, (2) robust parameter estimation

methods for very fast solution region of inverse problems characterized by parametrized

PDEs, and (3) application of (1) and (2) to the adaptive design and robust optimization of

engineering components or systems. To demonstrate the various aspects of the methods

and illustrates the contexts in which we develop them, we consider a simple inverse

scattering problem relevant to the detection of an elliptical “mine”[30, 35] and present

some indicative results obtained by using the methods.

Before proceeding, we need to clarify our notation used in this section (and in much

of the thesis). In the following subsection, we use a tilde for those variables depending

on the spatial coordinates to indicate that the problem is being formulated over the orig-

inal domain. Since the original domain is usually parameter-dependent, in our actual

implementation, we do not solve the problem directly on the original domain, but refor-

mulate it in terms of a fixed reference domain via a continuous geometric mapping (see

Section 10.2 for further detail). In the reference domain, the corresponding variables and

weak formulation will bear no tilde.

1.2.1 Problem Description

We consider the scattering of a time harmonic acoustic incident wave (pressure field) ũi of

frequency ω by a bounded object D̃ in n–dimensional space Rn (n = 2, 3) having constant

density ρD and constant sound speed cD. We assume that the object D̃ is situated in a

homogeneous isotropic medium with density ρ and sound speed c. The incident field is a

plane wave

ũi(x̃) = eikx̃·d̃, (1.5)
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Figure 1-1: Schematic of the model inverse scattering problem: the incident field is a
plane wave interacting with the object, which in turn produces the scattered field and its
far field pattern.

where the wave number k is given by k = ω/c, and d̃ is the direction of the incident field.

Let ũ be the scattered wave of the sound-hard object (i.e., ρD/ρ → ∞) then the total

field ũt = ũi + ũ satisfies the following exterior Neumann problem [29]

∆ũt + k2ũt = 0 in Rn\D̃, (1.6a)

∂ũt

∂ν̃
= 0 on ∂D̃, (1.6b)

lim
r̃→∞

r̃(n−1)/2

(
∂ũ

∂r̃
− ikũ

)
= 0, r̃ = |x̃| (1.6c)

where ν̃ is the unit outward normal to ∂D̃. Mathematically, the Sommerfeld radiation

condition (1.6c) ensures the wellposedness of the problem (1.6); physically it characterizes

out-going waves [30]. Equation (1.6c) implies that the scattered wave has an asymptotic

behavior of the form [33]

ũ(x̃) =
eikr̃

r̃(n−1)/2
ũ∞(D̃, k, d̃, d̃s) +O

(
1

r̃(n+1)/2

)
, (1.7)

as |x̃| → ∞, where d̃s = x̃/|x̃|. The function ũ∞ defined on the unit sphere S̃ ⊂ Rn is

known as the scattering amplitude or the far-field pattern of the scattered wave. The

Green representation theorem and the asymptotic behavior of the fundamental solution
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ensures a representation of the far-field pattern in the form

ũ∞(D̃, k, d̃, d̃s) = βn

∫
∂D̃

{
ũ(x̃)

∂e−ikd̃s·x̃

∂ν̃
− ∂ũ(x̃)

∂ν̃
e−ikd̃s·x̃

}
(1.8)

with

βn =


i
4

√
2

πk
e−iπ/4 n = 2

1
4π

n = 3 .

(1.9)

The proof of (1.7) and (1.8) is given in Appendix A.

The forward problem, given the support of the object D̃ and the incident wave ũi,

is to find the scattered wave ũ and in particular the far field pattern ũ∞. Whereas, the

inverse problem is to determine the support of the object D̃ from measurements of the

far field pattern I(εexp, k, d̃, d̃
s) with error εexp. In the language of our introduction, the

input consists of D̃, k, d̃, d̃s in which D̃ is characteristic-system parameter and k, d̃, d̃s are

experimental control variables, and the output is ũ∞.

In this section, we shall consider a two-dimensional scattering problem in which D̃ is an

elliptical cross-section of an infinite cylinder. Many details including a three-dimensional

inverse scattering model will be further reported in Chapters 10 and 11. The object D̃

is then characterized by three parameters (a, b, α), where a, b, α are the major semiaxis,

minor semiaxis, and angle of the elliptical object, respectively. In this particular case,

the forward problem is to calculate ũ and ũ∞ for any given set of parameters µ ≡

(a, b, α, k, d̃, d̃s) ∈ R6; and our inverse problem is:

Given the far field data I(εexp, a
∗, b∗, α∗, k, d̃, d̃s) measured at several direc-

tions d̃s with experimental error εexp for one or several directions d̃ and wave

numbers k, we wish to find the shape of the elliptical object modeled by three

parameters (a∗, b∗, α∗).

1.2.2 Finite Element Discretization

Due to the complex boundary conditions and geometry, obtaining an exact solution to

the continuous problem (1.6) is not easy. Instead the finite element method is used to find

a good approximation to the exact solution. In the finite element method, the partial
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differential equation is transformed into an integral form called the weak formulation.

The weak formulation of the problem (1.6) can be derived as: find u(µ) ∈ X such that

a(u(µ), v;µ) = f(v;x;µ), ∀ v ∈ X ; (1.10)

the far-field pattern is then calculated as

s(µ) = `(u(µ);x;µ) + `o(x;µ) . (1.11)

Here a(·, ·) is a parametrized bilinear form, f, `, and `o are linear functionals, and X is a

finite element “truth” approximation space; note that u(µ) is complex and X is thus a

space of complex continuous functions. The precise definition of X, a, f , `, and `o can

be found in Section 10.3.

We then form the elemental matrices and vectors over each elements by representing

the approximate solution as the linear combination of basis functions and substituting

it into the weak formulation. Finally, by assembling elemental matrices and vectors and

imposing the boundary conditions, we transform the weak formulation into a finite set of

algebraic equations (see Section 2.4 for details of the finite element method)

A(µ) u(µ) = F , (1.12)

where A(µ) is the N × N stiffness matrix, F is the load vector of size N , and u(µ) is

the “complex” nodal vector of the finite element solution u(µ); here N is the dimension

of the truth approximation space X. By solving the algebraic system of equations, we

obtain nodal values from which the approximate solution u(µ) and the far-field pattern

u∞(µ) are constructed.

As an illustrative example, we present in Figure 1-2 the scattered wave u(µ) near

resonance region for a = b = 1, α = 0 and k = π. Here the incoming incident wave is a

plane wave traveling in the positive x–direction.
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(a) (b)

Figure 1-2: Pressure field near resonance region (a) real part (b) imaginary part.

1.2.3 Reduced-Basis Output Bounds

Using the finite element method, we can calculate numerically the far-field pattern s(µ)

for any given parameter µ. As the dimension of the truth approximation space increases,

the error in the approximation decreases. We shall assume that N is sufficiently large

such that numerical output is sufficiently close to the exact one. Unfortunately, for

any reason error tolerance, the dimension N needed to satisfy this condition is typically

extremely large, and in particular much too large to provide real-time solution of the

inverse scattering problem.

Our approach is based on the reduced-basis method. The main ingredients are

(i) rapidly uniformly convergent reduced-basis approximations — Galerkin projection

onto the reduced-basis space WN spanned by solutions of the governing partial differen-

tial equation at N (optimally) selected points in parameter space; (ii) a posteriori error

estimation — relaxations of the residual equation that provide inexpensive yet sharp and

rigorous bounds for the error in the outputs; and (iii) offline/online computational pro-

cedures — stratagems that exploit affine parametric structure to decouple the generation

and projection stages of the approximation process. The operation count for the online

stage — in which, given a new parameter value, we calculate the reduced-basis output

sN(µ) and associated error bound ∆s
N(µ) — depends only on N (typically small) and the

parametric complexity of the problem.
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We can thus provide output bounds s−N(µ) = sN(µ) − ∆s
N(µ) and s+

N(µ) = sN(µ) +

∆s
N(µ) that satisfy a bound condition s−N(µ) ≤ s(µ) ≤ s+

N(µ) and an error criterion

∆s
N(µ) ≤ εstol. Unlike the true value s(µ), these output bounds can be computed online

very expensively.

1.2.4 Possibility Region

Owing to the low marginal cost, the method is ideally suited to inverse problems and

parameter estimation for PDE models: rather than regularize the goodness-of-fit objec-

tive, we may instead identify all (or almost all, in the probabilistic sense) inverse solu-

tions consistent with the available experimental data. Towards this end, we first obtain

s±N(µ) ≡ sN(µ) ±∆s
N(µ) by applying the reduced-basis method to the discrete problem

(1.10), and thus — thanks to our rigorous output bounds — s(µ) ∈ [s−N(µ), s+
N(µ)].1 We

may then define

R ≡
{
ν ∈ Dν |

[
s−N(ν, σk), s

+
N(ν, σk)

]
∩ I(εexp, σk), 1 ≤ k ≤ K

}
. (1.13)

Recall that ν ≡ (a, b, α) and σ ≡ (d̃s, d̃, k). Clearly, we have accommodated both numer-

ical and experimental error and uncertainty, and hence ν∗ ∈ P ⊂ R.

Central to our inverse computational method is a robust algorithm to construct R.

However, in high parametric dimension constructing R is numerically expensive (even

with the application of the reduced-basis method) and representing R is geometrically

difficult. It is therefore desired to have more efficient and visible geometry for representing

R in high-dimensional parameter space. A natural choice is an ellipsoid that includes R.

1.2.5 Indicative Results

We turn to the inverse scattering problem that will serve to illustrate the new capabilities

enabled by rapid certified input-output evaluation. In particular, given experimental data

in the form of intervals I(εexp, σk) measured at several angles d̃s for several directions d̃ of

1Note for this particular example that our error estimators are not completely rigorous bounds in
theoretical aspect. However, numerical results in Section 6.6.6 show that in practice the bounds are
valid for all µ ∈ D — to be rigorous, they must be provably valid — since the non-rigorous component
is quite small relative to the dominant approximation error.
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the fixed-frequency incident wave, we wish to determine a region R ∈ Da,b,α in which the

true — but unknown — obstacle parameters, a∗, b∗ and α∗, must reside. In our numerical

experiments, we use a low fixed wavenumber,2 k = π/8, and three different directions,

d̃ = {0, π/4, π/2}, for the incident wave. For each direction of the incident wave, there

are I = 3 output angles d̃s
i = (i− 1)π/2, i = 1, . . . , I at which the outputs are collected;

hence, the number of measurements is K = 9. We show in Figures 1-3(a), 1-3(b), and 1-

3(c) the possibility regions — more precisely, (more convenient) 3-ellipsoids that contain

the possibility regions for the minor and major axes and orientation — for experimental

error of 5%, 2%, and 1%.

Figure 1-3: Ellipsoid containing possibility region R for experimental error of 5% in
(a), 2% in (b), and 1% in (c). Note the change in scale in the axes: R shrinks as the
experimental error decreases. The true parameters are a∗ = 1.4, b∗ = 1.1, α∗ = π/4.

As expected, as εexp decreases, R shrinks toward the exact (synthetic) value, a∗ = 1.4,

b∗ = 1.1, α∗ = π/4. More importantly, for any finite εexp, R rigorously captures the

uncertainty in our assessment of the unknown parameters without a priori assumptions.3

The crucial new ingredient is reliable fast evaluations that permit us to conduct a much

more extensive search over parameter space: for a given εexp, these possibility regions

may be generated online in less than 285 seconds on a Pentium 1.6 GHz laptop thanks to

a per forward evaluation time of only 0.008 seconds. We can thus undertake appropriate

real-time actions with confidence.

2For low wavenumber, the inverse scattering problem is computationally easier and less susceptible
in practice to scattering by particulates in the path; but, very small wavenumber can actually produce
insensitive data which may cause bad recovery [21, 38, 56].

3In fact, all uncertainty is eliminated only in the limit of exhaustive search of the parameter space to
confirm R.
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1.3 Approach

1.3.1 Reduced-Basis Methods

The reduced-basis method is a technique for accurate, reliable and real-time prediction

of functional outputs of parametrized PDEs, and is particularly relevant to the efficient

treatment of the forward problem 1.1-1.2. The method has been applied to a wide variety

of coercive and noncoercive linear equations [93, 121, 142, 141], linear eigenvalue equations

[85], semilinear elliptic equations (including incompressible Navier-Stokes) [140, 99], as

well as time-dependent equations [53, 54]. In this thesis, we shall provide further extension

and new development of the method for: (1) noncoercive problems in which a weaker

stability statement poses seriously numerical difficulties, (2) globally nonaffine problems

where differential operators do not admit either an affine decomposition or a locally

nonaffine dependence, (3) nonlinear problems where highly nonlinear operators are also

of our interest. In this section, we briefly review three basic components of the method.

Reduced-Basis Approximation

Recognizing that the field variable is not an arbitrary member of the truth approx-

imation space X, and that rather than it evolves in a low-dimensional manifold in-

duced by the parametric dependence, the reduced-basis method constructs a reduced-

basis approximation space to the manifold and seeks approximations to the field vari-

able and output in that space. Essentially, we introduce nested sample, SN = {µ1 ∈

D, · · · , µN ∈ D}, 1 ≤ N ≤ Nmax and associated Lagrangian reduced-basis space as

WN = span{ζj ≡ u(µj), 1 ≤ j ≤ N}, 1 ≤ N ≤ Nmax, where u(µj) is the solution to (1.2)

for µ = µj. Next we consider a standard Galerkin projection

a(uN , v;µ) = f(v), ∀ v ∈ WN , (1.14)

from which an N ×N linear system for the coefficients uN j, 1 ≤ j ≤ N, is derived

N∑
j=1

a(ζj, ζi;µ)uN j = f(ζi), i = 1, . . . , N . (1.15)
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The reduced-basis approximations to solution and output can then be calculated as

uN(µ) =
∑N

i=1 uN iζi and sN(µ) = `(uN(µ)) , respectively.

Typically [85, 121], and in some cases provably [93], uN(µ) (respectively, sN(µ)) con-

verges to u(µ) (respectively, s(µ)) uniformly and extremely rapidly and thus we may

achieve the desired accuracy for N � N . Sufficient accuracy can thus be obtained with

only N = O(10)−O(100) degrees of freedom.

A Posteriori Error Estimation

Despite its rapid and uniform convergence rates, without a posteriori error estimation the

reduced-basis approximation uN(µ) raises many more questions than it answers . Is there

even a solution u(µ) near uN(µ)? This question is particularly crucial in the nonlinear

context — for which in general we are guaranteed neither existence nor uniqueness. Is

|s(µ)− sN(µ)| ≤ εstol, where εstol is the maximum acceptable error? Is a crucial feasibility

condition s(µ) ≤ C (in, say, a constrained optimization exercise) satisfied — not just

for the reduced-basis approximation, sN(µ), but also for the “true” output, s(µ)? If

these questions can not be affirmatively answered, we may propose the wrong — and

potentially unsafe or infeasible — action. A fourth question is also important: Is N too

large, |s(µ) − sN(µ)| � εstol, with an associated steep (N3) penalty on computational

efficiency? In this case, an overly conservative approximation may jeopardize the real-

time response and associated action. Do we satisfy our global “acceptable error level”

condition, |s(µ) − sN(µ)| ≤ εstol, ∀ µ ∈ D, for (close to) the smallest possible value of

N? If the answers are not affirmative, then our reduced-basis approximations are more

expensive (and unstable) than necessary — and perhaps too expensive to provide real-

time response.

It is therefore critical that we can rigorously and sharply bound (a posteriori) the

approximation errors. In fact, in this thesis, we pay great attention to the development

of procedures for obtaining inexpensive error bounds ∆N(µ) and ∆s
N(µ) such that

‖u(µ)− uN(µ)‖X ≤ ∆N(µ); |s(µ)− sN(µ)| ≤ ∆s
N(µ) . (1.16)

For efficiency, we must also require ∆N(µ) and ∆s
N(µ) are sharp bounds.
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Offline–Online Computational Procedure

The remaining question we need to address is that can we calculate sN(µ),∆N(µ),∆s
N(µ)

inexpensively? To this end, we decompose the computational effort into two stages: an

expensive (offline) stage performed once; and an inexpensive (online) stage performed

many times. The operation count for the online stage — in which, given a new value of

the input, we calculate sN(µ), ∆N(µ), and ∆s
N(µ) — depends only on N (typically very

small) and the parametric complexity of the operator. This very low marginal cost is

critical in the inverse-problem context.

1.3.2 Robust Real-time Inverse Computational Method

The reduced-basis method overcomes the deficiency of the classical approaches by provid-

ing real-time prediction sN(µ) that is certifiably as good as the classical truth approxima-

tion s(µ) but literally several orders of magnitude less expensive. The method is endowed

with three basic features that account for its superiority over other competing methods.

First, with regard to accuracy, the unform and rapid convergence of the reduced-basis

approximation is facilitated by exploiting the low-dimensional structure and smoothness

of the solution manifold and by choosing the optimal approximation space. Second,

with regard to reliability, a posteriori error procedures for several classes of PDEs are

developed to quantify the error introduced by the reduced-basis approximation. Third,

with regard to efficiency, online complexity is independent of the dimension of the finite

element truth approximation space.

These advantages are further magnified within the inverse-problem context in which

thousands of output predictions are often required effectively in real-time. In particular,

based on the reduce-basis method we develop a robust inverse computational method

for very fast solution region of inverse problems characterized by parametrized PDEs.

The essential innovations are threefold: first, we apply the reduce-basis method to the

forward problem for the rapid certified evaluation of PDE input-output relations and

associated rigorous error bounds; second, we incorporate the reduced-basis approximation

and error bounds into the inverse problem formulation; and third, rather than strive for

only one regularized inverse solution, we may instead identify all (or almost all, in the
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probabilistic sense) inverse solutions consistent with the available experimental data.

Ill-posedness is captured in a bounded “possibility region” that furthermore shrinks as

the experimental error is decreased. Hence, not only can we rigorously accommodate

numerical uncertainty, but also robustly accommodate model uncertainty. Moreover, our

inverse computational method enables real-time responses in several (admittedly rather

simple) contexts: nondestructive evaluation of crack and material damage in a thin plate

in Chapter 9 and inverse scattering analysis of elliptical “mines” in Chapter 10.

1.4 Literature Review

1.4.1 Reduced-Basis Method

The reduced-basis method has first been introduced in the late 1970s [4, 101] for single-

parameter problems in nonlinear structural analysis, further extended by Noor [102] for

multi-parameter problems, and subsequently developed more broadly [45, 116, 113] to

include a priori error analysis. Much of the earlier work focused on the efficiency and

accuracy of the approach through local approximation space. Consequently, the compu-

tational gain compared to conventional numerical methods are modest. In [9, 65], global

approximation space spanned by solutions of the governing partial differential equation

at globally sampled points in the parameter space was suggested; accuracy and efficiency

have been much improved. Nevertheless, at the time no rigorous error analysis especially

a posteriori error estimation has been proposed to certify the approximation error.

Recently, Patera et. al. [109, 85, 93, 121, 143, 122, 104, 142, 141, 140, 99, 14, 53]

have greatly developed and brought in the technique with several useful insights and new

features which differ from the earlier efforts in several important ways: as stated [143]

“first, we develop global approximation spaces; second, we introduce rigorous a posteriori

error estimators; and third, we exploit off-line/on-line computational decompositions”.

In particular, Maday et. al. [93, 94] presented a first theoretical a priori convergence

that demonstrates uniform exponential convergence of the reduced-basis approximation.

Machiels et. al. [85, 86] developed the method for affine-parameter coercive elliptic

linear and eigenvalue problems. In [131], Rovas analyzed the technique in great detail
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and extended it more broadly for many different classes of parametrized partial differential

equations including noncoercive elliptic and parabolic linear problems. Veroy [139, 143,

142] generalized the concept of bound conditioners relevant to the a posteriori error

estimation. In her work, several bound conditioners was developed to yield rigorous and

sharp error estimators. The use of the reduced-basis method for quadratically nonlinear

problems — the steady incompressible Navier-Stokes equations — can be found in other

work of Veroy [141, 140]. Also, Solodukhov [135] proposed several reduced-basis strategies

for locally nonaffine problems and nonlinear problems.

Reduced-basis method has also found its applications in many areas such as nonlinear

structural analysis [101, 45, 116], fluid flow problems [113, 65, 66], bifurcation and post-

buckling analysis of composite plates [102], and nonlinear steady-state thermal analysis

[100]. With regard to the current developments, Machiels et. al. [87] used the technique to

find the optimal shape of a thermal fin. Ali [3] combined the method with assess-predict-

optimize strategy to obtain the “best” worst case scenarios of a system under design

in the presence of data uncertainty. In [51, 54], Grepl proposed new error estimation

methods for linear and nonlinear time-dependent problems and applied the technique to

adaptive (real-time) optimal control.

1.4.2 Model Order Reduction

Generally, there are three approaches in model-order reduction (MOR): 1) MOR al-

gorithms based on Krylov subspace methods, 2) techniques using Karhunen-Loeve ex-

pansion (or Proper Orthogonal Decomposition), 3) methods based on Hankel norm ap-

proximants and balanced truncation. A driving force behind the development of MOR

approaches is the need for efficient simulation tools for dynamical (time-varying) systems

arising in circuit simulation, structural dynamics and micro-electro-mechanical systems.

The basic and common idea applied by all of these approaches is a projection from high-

dimensional state space to very low dimensional state space, which in turn produces the

reduced-order model of the original system.

The Proper Orthogonal Decomposition (POD) has been used widely to obtain low

dimensional dynamical models of many applications in engineering and science. The idea
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is to start with an ensemble of data, called snapshots, collected from the experiment or a

numerical procedure of physical systems. POD technique is then used to produce a set of

basis functions from the snapshot collection and in turn implicitly captures the dominant

dynamics of a system [134]. A model of reduced complexity is finally generated by the

application of Galerkin projection onto a subspace spanned by these basis functions.

The method has been widely used to obtain the reduced-order model of many large-

scale linear dynamical systems: computational fluid dynamics [57, 130], fluid-structure

interaction [37], turbo-machinery flows [148, 149], optimal control of fluid flows [84, 126].

Recently, there has been a rapidly growing number of researches into the application

of POD for nonlinear systems [72], nonlinear structural dynamics [96], nonlinear MEMS

devices [26]. The POD has been also used to develop reduced-order models for parametric

applications such as turbomachinery flows with sampling in both time and over a range

of inter-blade phase angles [43] and inverse design of transonic airfoils [22].

Over past years, a great deal of attention has been also devoted to Krylov subspace-

based methods for efficient modeling, effective realization, and fast simulation of system

dynamics. The basic idea is to approximate the transfer function of original systems

by generating a subspace spanned by orthogonal basis functions and projecting original

systems onto that subspace [55]. Owing to their robustness and low computational cost,

the Krylov subspace-based methods have proved very attractive for producing reduced-

order model of many large-scale linear systems and have been broadly used in engineering

applications: structural dynamics [7], optimal control of fluid flows [75], circuit design

[28, 50], turbomachinery [150]. A number of linear MOR techniques based on Krylov

subspace have been extended to deal with weakly nonlinear problems [27, 114]. The merit

idea is to be able to represent the nonlinearity with a simplified form that can be treated

with standard linear or bilinear MOR procedures. The simplest form of these approaches

is to linearize or bilinearize multidimensional nonlinear functions using polynomial Taylor

series expansion [115]. The trajectory piecewise-linear method [129] has been proposed to

effectively obtain reduce-order models for highly nonlinear systems. In this approach, the

nonlinear system is represented as a combination of linear models, generated at different

linearization points in the state space about the state trajectory when driven by a fixed

“training” input.
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Finally, we have few general remarks concerning model order reduction techniques:

first, reduced-order modeling to capture parametric variation based on interpolation pro-

cedure is somehow heuristic; second, due to lack of efficient representation of nonlinearity

and fast exponential growth (with the degree of the nonlinear approximation order) of

computational complexity in the reduced-order model, the development of model order

reduction methods for nonlinear problems remains a continuous and open task; third,

although a priori error bounds to quantify the error in the model reduction have been

derived but only in the linear case, a posteriori error bounds have not been adequately

considered yet even for the linear case in MOR approaches; and fourth, while most MOR

techniques concentrate mainly on reduced-order modeling of time-variation systems, the

development of reduced-order models for parametric applications is much less common.

1.4.3 A Posteriori Error Estimation

A posteriori error estimation has received enormous attention in the finite-element con-

text where choice of mesh to define the finite-element approximation spaces becomes a

trade-off between computational efficiency and accuracy: A very fine mesh ensures accu-

racy but implies high computational cost which is prohibitive to many important applica-

tions in engineering optimization and design; on the other hand, a relatively coarse mesh

guarantees efficiency but the accuracy is uncertain. To minimize the computational effort

while honoring the desired accuracy, we must provide a posteriori rigorous, accurate error

bounds for the discretization error. A posteriori error estimation technique for finite ele-

ment discretization of partial differential equations was first introduced in the 1970s [6],

and subsequently extended [74, 10, 1] to a broader class of partial differential equations.

Most finite element a posteriori error estimation procedures developed measure the error

in the energy, H1, or Lp norms. However, more relevant to engineering purposes is the

prediction of the bounds for the engineering output of interest (typically articulated as

a functional of field variables). In [17, 18], Becker and Rannacher proposed a refined

approach to residual-based error estimation: in essence, the residual estimators — based

on a priori stability and approximation constants and presumed-exact mesh adjoint func-

tions — enable rapid evaluation for adaptive refinement, but not necessarily accurate and
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rigorous quantification for the quantities of interest. In [107, 110, 105, 106], Paraschivoiu

et. al. introduced an a posteriori finite element method for the efficient computation of

strict upper and lower bounds for linear-functional outputs of coercive partial differen-

tial equations. The methods are thus appropriate for both confirmation of accuracy and

mesh adaptivity. The bound techniques are further extended to treat a variety of different

problems — including the Helmholtz equations, the Burger equations, [111], eigenvalue

problems [90], as well as nonlinear equations (incompressible Navier-Stokes) [89].

Some of ideas of a posteriori error estimation in the finite element context have been

then used in the reduced-basis approximations of parametrized partial differential equa-

tions. Even though the methodologies are distinctively different, general ideas for a

posteriori error estimation are common. In [85], [121], and [143, 141, 142], Patera et.

al. introduced a family of rigorous error estimators for reduced-basis approximation of a

wide variety of partial differential equations. In this thesis, we will continue this theme

to develop a posteriori error bounds for noncoercive linear elliptic equations, nonaffine

linear elliptic equations, and highly nonlinear monotonic elliptic equations.

1.4.4 Computational Approaches in Inverse Problems

Inverse problems are typically formulated as an appropriate minimization for the dif-

ference between computed outputs and measured-observable outputs. In this frame-

work, the forward problem is taken as an additional set of constraints. One approach

to the (PDE-constrained) optimization-based inverse problems combines PDE discretiza-

tion techniques such as the finite element method, boundary element method, and finite

volume method with optimization procedures. In solving inverse problems by this ap-

proach, the forward problem has to be solved several times, as it is required by the

algorithm used to solve the optimization problem. Unfortunately, solution of the forward

problem by classical numerical methods is typically time-consuming due to (very) large

approximation spaces required to achieve a desired accuracy. Furthermore, the above

minimization may be appropriate for inverse problems with noise-free data, but it may

fail to give accurate solutions for ill-posed inverse problems whose ill-posedness comes

from data uncertainty. As a result, a regularization factor and associated regularization
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parameter reflecting the uncertainty are added to the minimization as a way to ensure

fairly accurate solutions; this leads to minimize the so-called Tikhonov functional [137].

The basic idea here is to replace the original ill-posed inverse problem with a family of

nearby well-posed problems by taking explicitly the uncertainty into the optimization

problem. The solution method for the Tikhonov functional minimization and choice of

regularization parameter (by which the solutions of inverse problems will be certainly af-

fected) is an important issue. Generally, there are two general rules of thumbs namely a

priori [39] and a posteriori choice [137, 112] for determining the regularization parameter.

Another approach to capture the uncertainty into the inverse formulation is by means

of statistics. In [11], the authors suggested to treat the estimated parameter as a random

variable with unknown distribution and then reformulate the deterministic parameter es-

timation problem into a problem of estimation of a random variable using sampled data

from a dynamical system which depends on the parameter. In [3], the uncertain data is

analyzed and incorporated into the optimization by continuously monitoring the propa-

gation of the error via assess-predict-optimize strategy. Though, in fact, the technique

was intended for optimal parametric design, it can be efficiently used to solve the inverse

problems with uncertainty.

Of course, optimization techniques for solution of optimization-based inverse prob-

lems are rich. Global heuristic optimization strategies such as neural networks, simulated

annealing, and genetic algorithms have powerful ability in finding optimal solutions for

general nonconvex problems. Liu et. all. [79, 80, 151] developed the projection genetic

algorithm which requires fewer number of generations to converge than ordinary genetic

algorithms and used it for detecting cracks and assessing damage in composite material.

The use of neural networks for inverse problems can be found in [152, 58]. However,

the problem with these approaches is that they are heuristic by nature and computa-

tionally expensive. Therefore, gradient methods like Newton’s method [8, 20, 19, 71],

descent methods [60, 125], and current state-of-the-art interior-point method [24] have

been employed to solve inverse problems in many cases. In [103, 104], Oliveira and Patera

incorporate reduced-basis approximations and associated a posteriori error bounds into

scaled trust-region interior-point method for the rapid reliable optimization of systems

described by parametric partial differential equations. The very low marginal cost of
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forward evaluation and the ability to correctly avoid non-optimal stationary points, and

hence provide true (at least local) optimizers, make this method attractive.

Finally, we review particular computational methods for nondestructive testing and

inverse scattering problems, which are two major applications of inverse problems and

shall be considered in this thesis. With regard to nondestructive testing, Liu et. al.

introduced a strip element method [77] and subsequently extended to investigate the

scattering of waves by cracks and detect the cracks in anisotropic laminated plates [78,

146, 83]. The method has been also used to investigate wave scattering by rectangular

flaws and assess material loss in sandwich plates [145, 79]. We also notice that various

computational methods have been proposed for solving the inverse scattering problems —

including the Newton-like methods [73, 19, 119, 44], linear sampling method [34, 30, 32],

and point-source method [117, 118]. The linear sampling method allows to determine

from measured scattering data whether or not a given point is inside a scattering object

by solving a linear integral equation of the first kind, which leads to the reconstruction of

the entire object. A particular advantage of the method is that it does not require a priori

knowledge of either the boundary condition or the connectivity of the scattering obstacle.

On the other hand, the method is restricted to the situation where all the data are at

the same frequency and require multi-static data. In point-source method, the idea is to

reconstruct the total field on parts of a domain from a finite number of measurements of

the far-field pattern; the reconstructed total field and the boundary condition for a sound-

soft object in the domain can be then used to find the location and shape of the object.

The main impediment to the method is that the error bounds on the field reconstruction

only hold at points on the exterior of the scatter, for a suitable exterior cone condition

and domain of approximation. Furthermore, in locating the boundary of the scatterer

from the reconstructed field, it is also required to identify points that are not on the

boundary due to the error in the field reconstruction.

As a summary, there are a wide variety of techniques for solving inverse problems.

However, in almost cases the inverse techniques are expensive due to the following rea-

sons: solution of the forward problem by classical numerical approaches is typically long;

associated optimization problems are usually nonlinear and nonconvex; and most impor-

tantly, inverse problems are typically ill-posed. Ill-posedness is traditionally addressed

20



by regularization. Though quite sophisticated, iterative regularization methods are quite

expensive (often fail to achieve numerical solutions in real-time) and often need additional

information and thus lose algorithmic generality (in many cases, do not well quantify un-

certainty). Furthermore, in the presence of uncertainty, solution of the inverse problem

should never be unique at least in terms of mathematical sense; there should be indefi-

nite inverse solutions that are consistent with model uncertainty. However, most inverse

techniques provide only one inverse solution among the universal; and hence they do not

exhibit and characterize ill-posed structure of the inverse problem.

1.5 Thesis Outline

The two central themes in this thesis are the development of the reduced-basis method

for parametrized partial differential equations and its application to inverse problems

in engineering and science. Before proceeding with the development of reduced-basis

method, we overview in the next chapter some relevant mathematical background that

will be used frequently throughout the thesis. In Chapter 3, we present basic concepts of

the reduced-basis method via applying the technique to a heat conduction problem which

will serve to illustrate essential components and key ideas of the method. In Chapter 4,

we propose an approach to the construction of rigorous and efficient lower bound — a

critical component of our a posteriori error estimators — for the critical stability factor.

In subsequent chapters, we develop reduced-basis approximations and a posteriori error

estimators for different classes of problems: in Chapter 5 for noncoercive linear problems,

in Chapter 6 for nonaffine linear problems, and in Chapter 7 for nonlinear problems.

Based on the reduced-basis approximations and associated a posteriori error estimators

of parametrized partial differential equations, we present in Chapter 8 the development of

a certified real-time computational inverse method for very fast solution region of inverse

problems even in the presence of significant uncertainty. In the subsequent two chapters,

we apply our computational inverse method to two important applications of inverse

problems: in Chapter 9 for crack detection and damage assessment of flawed materials

and in Chapter 10 for inverse scattering analysis. Finally, we conclude in Chapter 11

with summary of the thesis and some suggestions for future work.
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Chapter 2

Building Blocks

Before proceeding with the development of reduced-basis method, we review some rel-

evant mathematical background (“building blocks”) that will be used repeatedly in the

remaining chapters of the thesis. First, we review basic elements of the functional analysis

which will prove useful in deriving our weak statements of partial differential equations.

Second, we review only essential concepts from differential geometry that have direct use

in this thesis. Third, we review fundamental equations of linear elasticity which appear

frequently in several chapters. Finally, we review the finite element method which is used

for the numerical solution of continuum mechanics problems discussed in the thesis.

2.1 Review of Functional Analysis

In this section, we introduce some basic concepts of functional analysis that will be used

throughout in the thesis and refer to [76, 128] for a good introduction and specific details

on the topic. To begin, let Ω ⊂ Rd, d = 1, . . . , 3, be an open domain with Lipschitz-

continuous boundary Γ.

2.1.1 Function Spaces

Linear Spaces

Definition 1. Let K be an algebraic field, where K is either R (real field) or C (complex

field). A linear vector space X over the field K is a set of elements together with two
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operations, u, v ∈ X : u + v ∈ X (addition) and α ∈ K, v ∈ X, v ∈ X : αv ∈ X (scalar

multiplication), if the following axioms hold

(1) u+ v = v + u (commutative) ;

(2) (u+ v) + w = u+ (v + w) (associative) ;

(3) ∃0 such that u+ 0 = u for all u ∈ X (null vector) ;

(4) For each u ∈ X, ∃ − u ∈ X such that u+ (−u) = 0 (additive inverse vector) ;

(5) (αβ)u = α(βu) (associative) ;

(6) (α+ β)u = αu+ βu (distributive) ;

(7) α(u+ v) = αu+ αv (distributive) ;

(8) 1u = u .

Norm

Definition 2. A function ‖ · ‖X from a linear space X into K is called a norm if and

only if it has the following properties

(i) (a) ‖u‖X ≥ 0, and (b) ‖u‖X = 0 if and only if u = 0 ;

(ii) ‖αu‖X = |α|‖u‖X ,∀ α ∈ R ;

(iii) ‖u+ v‖X ≤ ‖u‖X + ‖v‖X ,∀ u, v ∈ X (the triangle inequality) .

If ‖u‖X satisfies (ia), (ii), and (iii) only, we call it a seminorm of the vector u, and

denote it by |u|. A linear vector space X together with a norm defined on itself is a

normed space.

Inner Product

Definition 3. Let X be a linear space over the field K. An inner product on X is a

scalar valued function on X ×X, whose values are denoted by (u, v)X , that satisfies the

following axioms

(i) (u, v)X = (v, u)X ,∀ u, v ∈ X (symmetric);

(ii) (u, u)X ≥ 0,∀ u ∈ X and (u, u)X = 0 if and only if u = 0 (positive definite);

(iii) (u + v, w)X = (u,w)X + (v, w)X ,∀ u, v ∈ X and (αu, v)X = α(u, v)X ,∀ u, v ∈

X,∀ α ∈ K (bilinear).

A linear vector space X on which an inner product can be defined is called an inner

product space. (Note that one can associate a norm with every inner product by defining
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‖u‖ =
√

(u, u)X .)

Spaces of Continuous Functions

Definition 4. For a nonnegative integer m, we define the set of real functions with

continuous derivatives up to and including order m as

Cm(Ω) = {v| Dαv is uniformly continuous and bounded on Ω, 0 ≤ |α| ≤ m} , (2.1)

with an associated norm

‖v‖Cm(Ω) = max
0≤|α|≤m

sup
x∈Ω

|Dαv(x)|, (2.2)

where α denotes n-tuple of nonnegative integers, α = (α1, . . . , αd), and

Dα =
∂|α|

∂xα1
1 · · · ∂xαd

d

, |α| =
d∑

i=1

αi .

It is clear that Cm(Ω) defined above is a Banach space, i.e. a complete normed linear

space. Also note that Cm
0 (Ω) is the space of continuous, mth differentiable functions with

compact support, i.e. vanishing near the boundary of Ω. We shall use the subscript 0 to

indicate spaces with functions of compact support.

Lebesgue Spaces

Definition 5. For 1 ≤ p ≤ ∞, we define the space of pth integrable functions as

Lp(Ω) =


{
v|
∫

Ω

|v|p dx <∞
}
, 1 ≤ p <∞{

v| ess sup
x∈Ω

|v(x)| <∞
}
, p = ∞

; (2.3)

with an associated norm

‖v‖Lp(Ω) =

(∫
Ω

|v|p dx
) 1

p

, 1 ≤ p <∞

‖v‖L∞(Ω) = ess sup
x∈Ω

|v(x)|, p = ∞ .

(2.4)
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These spaces are also Banach spaces. The ess sup (essential supremum) in the above

definition means the smallest supremum over Ω\B for all sets B of zero measure.

Hilbert Spaces

Definition 6. For a non-negative integer m, we define the Hilbert Space Hm(Ω) as

Hm(Ω) =
{
v| Dαv ∈ L2(Ω), ∀α : |α| ≤ m

}
; (2.5)

with associated inner product

(w, v)Hm(Ω) =
∑
|α|≤m

∫
Ω

Dαw ·Dαv dx , (2.6)

and induced norm

‖v‖Hm(Ω) =

∑
|α|≤m

∫
Ω

|Dαv|2 dx

 1
2

. (2.7)

These spaces are important not only in understanding well-posedness of weak state-

ments, but also in expressing the convergence rate of the finite element method. In

addition, we introduce Hm(Ω) semi-norm as

|v|Hm(Ω) =

(∫
Ω

|Dmv|2 dx
) 1

2

, (2.8)

which include only the mth derivative.

Complex Hilbert Spaces

Definition 7. For a non-negative integer m, we define the complex Hilbert Space Zm(Ω)

as

Zm(Ω) =
{
v = vR + ivI | vR ∈ Hm(Ω), vI ∈ Hm(Ω)

}
; (2.9)

with associated inner product

(w, v)Zm(Ω) =
∑
|α|≤m

∫
Ω

Dαw ·Dαv̄ dx , (2.10)
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and induced norm

‖v‖Zm(Ω) =

∑
|α|≤m

∫
Ω

|Dαv|2 dx

 1
2

. (2.11)

Here and throughout this thesis superscript R and I denote the real and imaginary

part, respectively, that is, vR = <(v) and vI = =(v); v̄ and |v| shall denote the complex

conjugate and modulus of v, respectively.

Sobolev Spaces

Definition 8. For m > 0 integer and p > 1, we define the Sobolev space Wm,p(Ω) as

Wm,p(Ω) =

 {v| Dαv ∈ Lp(Ω), ∀α : |α| ≤ m} , 1 ≤ p <∞

{v| Dαv ∈ L∞(Ω), ∀α : |α| ≤ m} , p = ∞,
(2.12)

with associated norm

‖v‖W m,p(Ω) =

∑
|α|≤m

∫
Ω

|Dαv|p dx

 1
p

, 1 ≤ p <∞

‖v‖W m,∞(Ω) = max
|α|≤m

ess sup
x∈Ω

|Dαv(x)|, p = ∞.

(2.13)

Note that Wm,2(Ω) = Hm(Ω), our earlier Hilbert spaces; and that the Lebesgue space

Lp(Ω) is a special case of Wm,p(Ω) for m = 0.

Dual Hilbert Spaces

In general, given a Hilbert space X, we can define the corresponding dual space X ′ as the

space of all bounded linear functionals, `(v), where `(v) is bounded if `(v) ≤ C||v||X ,∀v ∈

X, for some positive C. The norm of `(v) is given by

‖`‖X′ = sup
v∈X

`(v)

‖v‖z

. (2.14)

We note that this space of functionals is a linear space; that a bounded linear functional

is continuous; and that this space is also a Hilbert space and if X = Hm(Ω) we will
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denote the dual space X ′ = H−m(Ω). Generally, we have

Hm(Ω) ⊂ · · · ⊂ H1(Ω) ⊂ L2(Ω) ⊂ H−1(Ω) ⊂ · · · ⊂ H−m(Ω).

Finally, from the Riesz representation theorem we know that for every ` ∈ X ′ there exists

a u` ∈ X such that

(u`, v)X = `(v), ∀v ∈ X. (2.15)

It follows that

‖`‖X′ = sup
v∈X

(u`, v)X

‖v‖X

= ‖u`‖X . (2.16)

2.1.2 Linear Functionals and Bilinear Forms

Linear Functionals

Let X be a linear space over the field K which is either R (real field) or C (complex field),

a linear transformation ` of X into K is called a linear functional if and only if it satisfies

`(αu+ βv) = α`(u) + β`(v), ∀ u, v ∈ X,∀ α, β ∈ K .

The set of all linear functionals on a linear space X is itself a vector space, called the

dual space of X and denoted by X ′.

Bilinear Forms

Let X and Y be two linear spaces over the field K, an operator a : X × Y → K that

maps (u, v), u ∈ X, v ∈ Y into K is called a bilinear form if and only if it satisfies

a(αu1 + βu2, γv1 + λv2) = αγ̄a(u1, v1) + αλ̄a(u1, v2) + βγ̄a(u2, v1) + βλ̄a(u2, v2)

for all u1, u2 ∈ X, v1, v2 ∈ Y, α, β, γ, λ ∈ K. A bilinear form a : X ×X → K is said to be

symmetric if a(u, v) = a(v, u),∀u, v ∈ X.
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2.1.3 Fundamental Inequalities

Cauchy-Schwarz Inequality

Let a : X × X → K be a symmetric semi-definite bilinear form. Then a satisfies the

Cauchy-Schwarz inequality

|a(u, v)| ≤
√
a(u, u)

√
a(v, v), (2.17)

for all u, v ∈ X.

Hölder Inequality

If 1
p

+ 1
q

= 1, 1 < p <∞ then for all u ∈ Lp(Ω), v ∈ Lq(Ω), we have

‖uv‖L1(Ω) ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω). (2.18)

Minkowski Inequality

If 1 ≤ p ≤ ∞ then for all u, v ∈ Lp(Ω), we have

‖u± v‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖v‖Lp(Ω). (2.19)

Friedrichs Inequality

Let Ω be a domain with a Lipschitz boundary Γ, and let Γ1 be its open part with a

positive Lebesgue measure. Then there exists a positive constant c > 0, depending only

on the given domain and on Γ1 such that for every u ∈ H1(Ω), we have

‖u‖2
H1(Ω) ≤ c

{∑
j

∫
Ω

(
∂u

∂xj

)2

+

∫
Γ1

|u|2
}

. (2.20)

Also, for u ∈ H2(Ω), we have

‖u‖2
H2(Ω) ≤ c(Ω)

∑
|α|≤2

∫
Ω

|Dαu|2 +

∫
Γ

|u|2
 . (2.21)

28



Note that for u ∈ Hm
0 (Ω), the two inequalities hold without the boundary terms.

Poincaré Inequality

Let Ω be a domain with a Lipschitz boundary Γ, and let Γ be its open part with a

positive Lebesgue measure. Then there exists a positive constant c > 0 such that for all

u ∈ Hm(Ω)

‖u‖2
Hm(Ω) ≤ c(Ω)

∑
|α|≤m

∫
Ω

|Dαu|2 +
∑
|α|<m

(∫
Ω

|Dαu|
)2

 . (2.22)

2.2 Review of Differential Geometry

2.2.1 Metric Tensor and Coordinate Transformation

In an arbitrary (possibly curvilinear) three-dimensional coordinate system xi (i = 1, 2, 3),

at any point A we choose three vectors gi of such dimension and magnitude that the line

element vector can be expressed

ds =
∑

i

gidx
i = gidx

i . (2.23)

Here for simplicity of notation we use the summation convention: when the same Latin

letter (say i) appears in a product once as a superscript and once as a subscript, that

means a sum of all terms of this kind.

Now we consider a fixed point O (possibly the origin of the coordinate system) and a

position vector r leading from O to A; the line element ds is the increment of r (ds = dr),

which can be written as

dr =
∂r

∂xi
dxi . (2.24)

From (2.23) and (2.24), we have

gi =
∂r

∂xi
. (2.25)
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The vectors gi are called covariant base vectors. It follows from (2.23)-(2.25) that

ds2 = (gi · gj) dx
idxj =

(
∂r

∂xi
· ∂r
∂xj

)
dxidxj = gijdx

idxj , (2.26)

where

gij =
∂r

∂xi
· ∂r
∂xj

= gi · gj . (2.27)

The entity of the nine quantities gij defined above is call the metric tensor. Note that

in the Cartesian coordinate system gij = δij, where δij is the Kronecker delta symbol —

δij = 1 if i = j, otherwise δij = 0. We next find nine quantities gij that satisfy

gikg
jk = δj

i . (2.28)

The entity of such nine quantities gij is call the conjugate metric tensor. Here δj
i is just

another way of writing the Kronecker symbol δij.

Now consider a new coordinate system x̄i(i = 1, 2, 3) and associated base vectors

ḡi, we define a coordinate transformation from xi to x̄i by a set of transformation rules

xi = xi (x̄1, x̄2, x̄3) , i = 1, 2, 3. We then differentiate the relation to obtain

dxi =
∂xi

∂x̄j
dx̄j . (2.29)

The partial derivatives are obtained from the chain rule

∂

∂xi
=
∂x̄j

∂xi

∂

∂x̄j
. (2.30)

The Jacobian of the transformation is given by

J =

∣∣∣∣∣∣∣∣∣
∂x1

∂x̄1
∂x1

∂x̄2
∂x1

∂x̄3

∂x2

∂x̄1
∂x2

∂x̄2
∂x2

∂x̄3

∂x3

∂x̄1
∂x3

∂x̄2
∂x3

∂x̄3

∣∣∣∣∣∣∣∣∣ . (2.31)

Similarly, in the new coordinate system we have dr = ḡjdx̄
j. It directly follows from
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(2.24), (2.25), and (2.29) that

ḡi = gj
∂xj

∂x̄i
. (2.32)

2.2.2 Tangent Vectors and Normal Vectors

Curve

For a three-dimensional parametrized curve xi = xi(s) in a generalized coordinate system

with matrix tensor gij and arc length parameter s, the vector T = (T 1, T 2, T 3), with

T i = dxi

ds
, represents a tangent vector to the curve at a point P on the curve. The vector

T is a unit vector because

T ·T = gijT
iT j = gij

dxi

ds

dxj

ds
= 1 . (2.33)

Differentiating (2.33) with respect to s, we obtain

gijT
j dT

i

ds
= 0 . (2.34)

Hence, the vector dT
ds

is perpendicular to the tangent vector T. We now normalize it to

get the unit normal vector N to the curve as

N i =
1

κ

dT i

ds
; (2.35)

here κ, a scale factor called curvature, is determined such that gijN
iN j = 1.

Surface

For our purpose here, we shall consider Cartesian frame of reference (x, y, z) with as-

sociated base vectors ix, iy, iz; see [47] for formulations in a generalized coordinate sys-

tem. A surface in three-dimensional Euclidean space can be defined in three different

ways: explicitly z = f(x, y), implicitly F (x, y, z) = 0, or parametrically x = x(u, v), y =

y(u, v), z = z(u, v) which contains two independent parameters u, v called surface coor-

dinates. Using the parametric form of a surface, we can define the position vector to a
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point P on the surface as

r = x(u, v)ix + y(u, v)iy + z(u, v)iz . (2.36)

A square of the line element on the surface coordinates is given by

ds2 = dr · dr =
∂r

∂uα

∂r

∂uβ
duαduβ = aαβdu

αduβ, α, β = 1, 2 . (2.37)

In differential geometry, this expression is known as the first fundamental form, and aαβ

is called surface metric tensor and given by

aαβ =
∂r

∂uα

∂r

∂uβ
, α, β = 1, 2 , (2.38)

with conjugate metric tensor aαβ defined such that aαβaαγ = δγ
α.

Furthermore, the tangent plane to the surface at point P can be represented by two

basic tangent vectors

Tu =
∂r

∂u
, Tv =

∂r

∂v
(2.39)

from which we can construct a unit normal vector to the surface at point P as

N =
Tu ×Tv

|Tu ×Tv|
. (2.40)

If we transform from one set of curvilinear coordinates (u, v) to another set (ū, v̄) with

the transformation laws u = u(ū, v̄), v = v(ū, v̄), we can then derive the tangent vectors

for the new surface coordinates from the chain rule (2.30)

∂r

∂ū
=
∂r

∂u

∂u

∂ū
+
∂r

∂v

∂v

∂ū
and

∂r

∂v̄
=
∂r

∂u

∂u

∂v̄
+
∂r

∂v

∂v

∂v̄
; (2.41)

from which the associated normal unit vector can be readily defined.
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2.2.3 Curvature

We first note from the differentiation of the unit normal vector N and position vector r

to define the quadratic form

dr · dN =

(
∂r

∂u
du+

∂r

∂v
dv

)
·
(
∂N

∂u
du+

∂N

∂v
dv

)
= −bαβdu

αduβ . (2.42)

In differential geometry, this equation is known as the second fundamental form; and bαβ,

called the curvature tensor of the surface, are given by

b11 = −∂r
∂u

∂N

∂u
, b12 = −∂r

∂u

∂N

∂v
= −∂r

∂v

∂N

∂u
, b22 = −∂r

∂v

∂N

∂v
, (2.43)

from which we may derive the mixed components

bαβ = bγβa
γβ . (2.44)

From the curvature tensor two important invariant scalar quantities can be derived.

The first one is

H =
1

2
(b11 + b22) . (2.45)

It represents the average of the two principle curvatures and is called the mean curvature.

The other invariant is the determinant

K =

∣∣∣∣∣∣ b
1
1 b12

b21 b22

∣∣∣∣∣∣ = b11b
2
2 − b12b

2
1 (2.46)

and is called the Gaussian curvature of the surface.

2.3 Review of Linear Elasticity

2.3.1 Strain–Displacement Relations

The displacement vector u at a point in a solid has the three components ui(i = 1, 2, 3)

which are mutually orthogonal in a Cartesian coordinate system xi and are taken to be
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positive in the direction of the positive coordinate axes. Let us denote ε a strain tensor

with the components εij. Then the linearized straindisplacement relations, which form

the Cauchy’s infinitesimal strain tensor, are

εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (2.47)

By this equation, the strain tensor is symmetric and thus consists of six components.

Six strain components are required to characterize the state of strain at a point and

are computed from the displacement field. However, if it is required to find three dis-

placement components from the six components of strain, the six strain-displacement

equations should possess a solution. The existence of the solution is guaranteed if the

strain components satisfy the following six compatibility conditions

∂2εij

∂xm∂xn

+
∂2εmn

∂xi∂xj

=
∂2εim

∂xj∂xn

+
∂2εjn

∂xi∂xm

. (2.48)

Although there are six conditions, only three are independent.

2.3.2 Constitutive Relations

The kinematic conditions of Section 2.3.1 are applicable to any continuum irrespective

of its physical constitution. But the response of a given continuous body depends on its

material. The material is introduced to the formulation through the generalized Hooke’s

law relates the stress tensor σ and strain tensor ε

σij = Cijklεkl , (2.49)

where Cijkl depending on material properties is called elasticity tensor. Note from the

symmetry of both σij and εkl that Cijkl = Cjikl and Cijkl = Cijlk; and there are only 36

constants. When a strain-energy function exists, the number of independent constants is

reduced from 36 to 21. The number of elastic constants is reduced to 13 when one plane

of elastic symmetry exists, and is further reduced to 9 when three mutually orthogonal

planes of elastic symmetry exist. Finally, when the material is isotropic (i.e., the material
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has the same material properties in all directions), the number of independent constants

reduces to 2 and the isotropic elasticity tensor has the form

Cijkl = c1δijδkl + c2 (δikδjl + δilδjk) ; (2.50)

where c1 and c2 are the Lamé elastic constants, related to Young’s modulus, E, and

Poisson’s ratio, ν, as follows

c1 =
Eν

(1 + ν)(1− 2ν)
, c2 =

E

2(1 + ν)
. (2.51)

It can then be verified that the elasticity tensor satisfies

Cijkl = Cjikl = Cijlk = Cklij . (2.52)

It thus follows from (2.47), (2.49), and (2.52) that

σij = Cijkl
∂uk

∂xl

. (2.53)

2.3.3 Equations of Equilibrium/Motion

Equilibrium at a point in a solid is characterized by a relationship between stresses

and body forces (forces per unit volume) bi such as those generated by gravity. This

relationship is expressed by equations of equilibrium

∂σij

∂xj

+ bi = 0 . (2.54)

Including inertial effects via D’Alembert forces gives the equations of motion

∂σij

∂xj

+ bi = ρ
∂2ui

∂t
, (2.55)

where ρ is the material’s density. When the elastic solid subjected to a harmonic loading

(and harmonic body force) of frequency ω, the magnitude u of the harmonic response
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U = ue−iωt satisfies
∂σij

∂xj

+ bi + ρω2ui = 0 . (2.56)

2.3.4 Boundary Conditions

Let ΓD denote a part of the surface of the body on which some displacements ūi is

specified. Continuity condition requires that on the surface ΓD, the displacements ui be

equal to the specified displacements ūi

ui = ūi, on ΓD . (2.57)

Similarly, Let ΓN denote the part of the surface of the body on which forces are prescribed.

The boundary condition requires the forces applied to ΓN be in equilibrium with the stress

components on the surface

σijn̂j = ti, on ΓN, (2.58)

where n̂j are the components of the unit vector n̂ normal to the surface, and ti are

specified boundary stresses (surface forces per unit area).

2.3.5 Weak Formulation

In the thesis, we shall limit our attention to only linear constitutive models. Hence,

substituting (2.53) into (2.55) yields governing equations for the displacement field u as

∂

∂xj

(
Cijkl

∂uk

∂xl

)
+ bi + ω2ui = 0 in Ω . (2.59)

To derive the weak form of the governing equations, we introduce a function space

Xe = {v ∈
(
H1(Ω)

)d | vi = 0 on ΓD} , (2.60)

and associated norm

||v||Xe =

(
d∑

i=1

||vi||2H1(Ω)

)1/2

. (2.61)
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Next multiplying (2.59) by a test function v ∈ Xe and integrating by parts we obtain

∫
Ω

∂vi

∂xj

Cijkl
∂uk

∂xl

− ω2

∫
Ω

uivi −
∫

Γ

Cijkl
∂uk

∂xl

n̂jvi −
∫

Ω

bivi = 0 . (2.62)

It thus follows from (2.58) and v ∈ Xe that the displacement field ue ∈ Xe satisfies

a(ue, v) = f(v) , ∀ v ∈ Xe , (2.63)

where

a(w, v) =

∫
Ω

∂vi

∂xj

Cijkl
∂wk

∂xl

− ω2wivi , (2.64)

f(v) =

∫
Ω

bivi +

∫
ΓN

viti . (2.65)

This is the weak formulation in linear constitutive models for elastic solid subjected to

a harmonic loading. In the next section, we review the finite element method which is

one of the most frequently used method for numerical solution of PDEs arising in solid

elasticity, fluid mechanics, heat transfer, etc.

2.4 Review of Finite Element Method

2.4.1 Weak Formulation

While the derivation of governing equations for most engineering problems is not difficult,

their exact solution by analytical techniques is very hard or even impossible to find. In

such cases, numerical methods are used to obtain an approximate solution. Among many

possible choices, the finite element method is most frequently used to obtain an accurate

approximation to the exact solution. The point of departure for the finite element method

is an weighted–integral statement of a differential equation, called the weak formulation.

The weak formulation (or, in short, weak form) allows for more general solution spaces and

includes the natural boundary and continuity conditions of the problem. Typically, the

weak form of the linear boundary value problems can be stated as: find se(µ) = `(ue(µ)),
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where ue(µ) ∈ Xe is the solution of

a(ue(µ), v;µ) = f(v), ∀ v ∈ Xe . (2.66)

Here a(·, ·;µ) is a µ-parametrized bilinear form, f is a linear functional, and Xe is an

appropriate Hilbert space over the physical domain Ω ∈ Rd.

2.4.2 Space and Basis

In the finite element method, we seek the approximate solution over a discretized domain

known as a triangulation Th of the physical domain Ω: Ω =
⋃

Th∈Th
T h, where T k

h , k =

1, . . . , K, are the elements, xi, i = 1, . . . ,N , are the nodes, and subscript h denoting the

diameter of the triangulation Th is the maximum of the longest edges of all elements. We

next define a finite element “truth” approximation space X ⊂ Xe

X = {v ∈ Xe | v|Th
∈ Pp(Th), ∀ Th ∈ Th} , (2.67)

where Pp(Th) is the space of pth degree polynomials over element Th.

Furthermore, if the function space Xe is complex such that

Xe = {v = vR + ivI | vR ∈ H1(Ω), vI ∈ H1(Ω)} , (2.68)

we must then require our truth approximation space be complexified as

X =
{
v = vR + ivI ∈ Xe | vR|Th

∈ Pp(Th), v
I|Th

∈ Pp(Th), ∀ Th ∈ Th

}
, (2.69)

in terms of which we define the associated inner product as

(w, v)X =

∫
Ω

∇w∇v̄ + wv̄ . (2.70)

Recall that R and I denote the real and imaginary part, respectively; and that v̄ and

|v| denote the complex conjugate and modulus of v, respectively. Note the notion of

symmetry in the complex case, a bilinear form a(w, v) is said to be symmetric if and only
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if a(w, v) = a(v, w),∀w, v ∈ X. It is clear that (·, ·)X defined above is symmetric.

To obtain the discrete equations of the weak form, we express the field variable u(µ) ∈

X in terms of the nodal basic functions ϕi ∈ X, ϕi(xj) = δij, such that

X = span {ϕ1, . . . , ϕN} , (2.71)

u(µ) =
N∑

i=1

ui(µ)ϕi, ∀ v ∈ X ; (2.72)

here ui(µ), i = 1, . . . ,N , is the nodal value of u(µ) at node xi and is real for the real

space Xe, otherwise complex.

Finally, we note that for complex domains involving curved boundaries or surfaces,

simple triangular elements may not be sufficient. In such cases, the use of arbitrary

shape elements, which are known as isoparametric elements, can lead to higher accuracy.

However, since all problems discussed in the thesis have rather simple geometry, we shall

not use isoparametric elements in our implementation of the finite element method.

2.4.3 Discrete Equations

Using the Galerkin projection on the discrete space X, we can find the approximation

u(µ) ∈ X to ue(µ) ∈ Xe from

a(u(µ), v;µ) = f(v), ∀ v ∈ X . (2.73)

We next substitute the approximation u(µ) =
∑N

j=1 uj(µ)ϕj into (2.73) and take v as the

basis functions ϕi, i = 1, . . . ,N , to obtain the desired linear system

N∑
j=1

a (ϕj, ϕi;µ)uj(µ) = f (ϕi) , i = 1, . . . ,N , (2.74)

which can be written into matrix form

A(µ) u(µ) = F . (2.75)
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Here A(µ) is an N×N matrix with Aij(µ) = a (ϕj, ϕi;µ), F is an vector with Fi = f (ϕi),

and u(µ) is an vector with ui(µ) = u(xi;µ), where xi is the coordinates of the node i. The

matrix A and vector F depend on the finite element mesh and type of basis functions.

They can be formed via assembling elemental matrices and vectors associated with each

elements Th of Th.

By solving the linear system, we obtain the nodal values u(µ) and thus u(µ) =∑N
i=1 ui(µ)ϕi. Finally, the output approximation s(µ) can be calculated as

s(µ) = `(u(µ)) . (2.76)

A complete discussion and detailed implementation of the finite element procedure can

be found in most finite element method textbooks (see, for example, [15]).

2.4.4 A Priori Convergence

The finite element method seeks the approximate solution u(µ) (respectively, the approx-

imate output s(µ)) in the finite element “truth” approximation space X to the exact

solution ue(µ) (respectively, the exact output se(µ)) of the underlying PDE. The a priori

convergence analysis for the finite element approximation suggests that ‖ue(µ)− u(µ)‖X

and |se(µ) − s(µ)| will converge as hα and hβ, respectively; here α and β are posi-

tive constants whose value depend on the specific problem, the output functional, and

the regularity of force functional and domain. In general, we have u(µ) → ue(µ) and

s(µ) → se(µ), as h → 0. For a particular case in which a is symmetric positive-definite,

Ω and f, (` = f) are sufficiently regular, ‖ue(µ) − u(µ)‖X and |se(µ) − s(µ)| will vanish

as O(h) and O(h2), respectively, for P1 elements; it means in practice that in order to

decrease |se(µ)−s(µ)| by a factor of C, we need to increase N roughly by the same factor

for two-dimensional problems, but a factor of C3/2 for three-dimensional problems.

As the requirements for accuracy increase, we need higher N to obtain accurate and

reliable results; adequately converged truth approximations are thus achieved only for

spaces X of very large dimension N . For many medium or large-scale applications,

N is typically in the order of O(104) up to O(106). Unfortunately, the computational

complexity for solving the linear system (2.75) scales as O(N γ), where γ depends on the
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sparse structure and condition number of the stiffness matrix A(µ). The computational

time for a particular input is thus typically long; especially, in contexts where many

and real-time queries of the parametrized discrete system (2.75)-(2.76) are required, the

computational requirements become prohibitive.

2.4.5 Computational Complexity

Finally, we remark briefly solution methods for linear algebraic systems with specific at-

tention to the FEM context. Typically, the FEM yields large and spare systems. Many

techniques exist for solving such systems (see [95] for comprehensive discussion including

algorithms, convergence analysis, preconditioning of several techniques for large linear

systems). The appropriate technique depends on many factors, including the mathemat-

ical and structural properties of the matrix A, the dimension of A, and the number of

right-hand sides. Generally, there are two classes of algorithms used to solve linear sys-

tems: direct methods and iterative methods. Direct methods obtain the solution after a

finite number of arithmetic operations by performing some type of elimination procedure

directly on a linear system; hence, direct methods will yield an exact solution in a finite

number of steps if all calculations are exact (without truncation and round-off errors).

In contrast, iterative methods define a sequence of approximations which converge to the

exact solution of linear systems within some error tolerance.

The most standard direct method is the Gaussian elimination, which consists of the

LU factorization and the backward substitution. The LU factorization of A generates

lower and upper triangular matrices, L and U , respectively, such that A = L U . The

backward substitution is straightforward: L w = F and U u = w. Since A is sparse and

banded, banded LU scheme is usually used to factorize A with (typical) cost O(N 2) and

storage O(N 3/2) for problems in R2. In R3, the order of factorization cost and storage

requirement for banded LU factorization can be higher mainly due to the increasingly

complicated sparse structure of the matrix.1 In the case of symmetric positive-definite

(SPD) systems, A can be factorized into RTR, where R is upper triangular, by Cholesky

1Note for general domain and unstructured meshes, there are a number of heuristic methods to
minimize the bandwidth. More generally, graph-based sparse matrix techniques can be applied — the
edges and vertices of the matrix graph are simply the vertices and edges of the triangulation.
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decomposition with a saving factor of 2 in both computational cost and storage.

Direct methods are usually preferred if the dimension of A are not too large, the spare

structure is banded and well-structured, and there are a number of right-hand sides, since

they are very fast and reliable in such situations. However, for general sparse matrices, the

situation is considerably more complicated; in particular, the factors L and U can become

extremely dense even though A is extremely spare; if pivoting is required, implementing

sparse factorization can use a lot of time searching lists of numbers and creating a great

deal of computational overhead. Iterative methods prove appropriate and outperform

direct methods for solving general sparse and unstructured systems, especially arising

from finite element discretization of three-dimensional problems.

Iterative methods start with an initial approximation u0 and construct a sequence of

approximate solutions un+1 to the exact solution u. If converged, ‖Aun+1−F‖/‖un+1‖ or

‖un+1 − un‖/‖un+1‖ becomes sufficiently small within a specific error tolerance. During

the iterations, A is involved only in matrix-vector products, there is no need to store the

matrix A. Such methods are thus particularly useful for very large sparse systems — the

matrices can be huge, sometimes involving several million unknowns. Iterative methods

may be further classified into stationary iterative methods and gradient methods.

The Jacobi, Gauss-Seidel, successive over-relaxation (SOR) methods fall into the first

class. The idea here is do matrix splitting A = M − N and write the linear system

A u = F into an iterative fashion M un+1 = N un + F ; here M must be nonsingular. We

can further reduce the above iteration into an equivalent form, un+1 = B un + C, where

B = M−1N and C = M−1F . A iterative scheme of this form is called stationary iterative

method and B is the iteration matrix (In a non-stationary method, B varies with n). We

have M = D, N = L + U for Jacobi method and M = D − L, N = U for Gauss-Seidel

method, where D, L, U are the diagonal part, strictly negative lower triangular part, and

strictly negative upper triangular part of the matrix A, respectively, i.e., A = D−L−U .

In SOR method, M , N , and B depend on a relaxation parameter ω; in particular, we

have B = (D − ωL)−1[(1 − ω)D + ωU ]. Clearly, the Gauss-Seidel method is a special

case of SOR method in which ω = 1. The convergence and rate of convergence of the

Jacobi, Gauss-Seidel, and SOR schemes depend on the spectral radius of B defined as

ρ(B) = max1≤i≤N ‖λi(B)‖, where λi, 1 ≤ i ≤ N , are eigenvalues of B. Typically, ρ(B) is
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large, and hence the convergence rate of the stationary iterative methods are quite slow.

This observation has stimulated the development of gradient methods.

The literature of gradient methods are rich and many gradient methods have been

developed over past decades; however, we shall confine our discussion to only the conju-

gate gradient (CG) method — one of the most important iterative methods for solving

large SPD systems. The CG algorithm is given in Figure 2-1.

1. Set u0(say) = 0, r0 = F, p0 = r0

2. for n = 0, 1, . . . ,until convergence

3. αn = (rn)T rn/(pn)TApn

4. un+1 = un + αnpn

5. rn+1 = rn − αnApn

6. βn = (rn+1)T rn+1/(rn)T rn

7. pn+1 = rn+1 + βnpn

8. Test for convergence ‖rn+1‖/‖un+1‖ ≤ ε

9. end for

Figure 2-1: Conjugate Gradient Method for SPD systems.

The convergence rate of the CG method is given by the following estimate

(u− un)TA(u− un)

(u)TAu
≤ 2

(√
κ− 1√
κ+ 1

)n

, (2.77)

where κ is the condition number of matrix A

κ =
λmax(A)

λmin(A)
. (2.78)

Here λmax and λmin refer to the maximum eigenvalue and minimum eigenvalue of A.

(In addition to the above result, we also obtain, at least in infinite precision, the finite

termination property uN = u, though this is generally not much of interest.) By taking

the logarithm of both sides of (2.77) and using the Taylor series for ln(1 + z) in the

right-hand side, we obtain the number of iteration niter required to reduce the error by
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some fixed fraction ε as

niter =
1

2

√
κ(A) ln

(
2

ε

)
. (2.79)

We see that niter depends on h: as h decreases, κ increases, which in turn decreases the

convergence rate. However, the dependence on h is not so strong, and is also independent

of spatial dimension.

As proven in [124], the upper bound for the condition number is obtained as κ(A) ≤

Ch−2 for quasi-uniform and regular meshes.2 Hence, we have niter ≈ O(1/h) ≈ O(N 1/2)

for problems in R2 and niter ≈ O(1/h) ≈ O(N 1/3) for problems in R3. We further observe

from the CG algorithm that the work per iteration is roughly O(N ) due to the sparsity of

the matrix A. The complexity of the CG method is thus O(N 3/2) in R2 and O(N 5/3) in

R3. In addition, the storage requirement for CG is only O(N ) since we only need to store

the elemental matrices and the field vectors, both of which are O(N ).3 We see that in R2,

the CG method can be better than the banded LU factorization. In R3, the improvement

is even more dramatic. Despite the relatively good convergence rate of the CG method,

it is often of interest to improve things further by preconditioning. Especially, in the case

of nonsymmetric indefinite systems and unstructured meshes, the iterative procedures

are much less effective. In such cases, preconditioned iterative methods should be used

to speed the convergence rate.

2This result is valid for any SPD second-oder elliptic PDE and any order of polynomial approximation;
C depends on the polynomial order, coercivity and continuity constants, but not on h.

3Of course, with regard to the operation counts for both the computational complexity and the storage
requirement, the constant in R3 is higher than that in R2.
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Chapter 3

Reduced-Basis Methods: Basic

Concepts

The focus in this chapter is on the computational methods that solve the direct prob-

lems very efficiently. Our approach is based on the reduced-basis method which permits

rapid yet accurate and reliable evaluation of the input-output relationship induced by

parametrized partial differential equations. For the purpose of illustrating essential com-

ponents and key ideas of the reduced-basis method, in this chapter we choose to review

the technique for coercive elliptic linear partial differential equations. In subsequent

chapters, we shall develop the method for noncoercive linear and nonaffine linear elliptic

equations, as well as nonlinear elliptic equations.

3.1 Abstraction

3.1.1 Preliminaries

We consider the “exact” (superscript e) problem: for any µ ∈ D ⊂ RP , find se(µ) =

`(ue(µ)), where ue(µ) satisfies the weak form of the µ-parametrized PDE

a(ue(µ), v;µ) = f(v), ∀ v ∈ Xe. (3.1)
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Here µ and D are the input and (closed) input domain, respectively; se(µ) is the output

of interest; ue(x;µ) is our field variable; Xe is a Hilbert space defined over the physical

domain Ω ⊂ Rd with inner product (w, v)Xe and associated norm ‖w‖Xe =
√

(w,w)Xe ;

and a(·, ·;µ) and f(·), `(·) are Xe-continuous bilinear and linear functionals, respectively.

Our interest here is in second-order PDEs, and our function space Xe will thus satisfy

(H1
0 (Ω))ν ⊂ Xe ⊂ (H1(Ω))ν , where ν = 1 for a scalar field variable and ν = d for a

vector field variable. Recall that H1(Ω) (respectively, H1
0 (Ω)) is the usual Hilbert space

(respectively, the Hilbert space of functions that vanish on the domain boundary ∂Ω)

defined in Section 2.1.

In actual practice, we replaceXe withX ⊂ Xe, a “truth” finite element approximation

space of dimension N . The inner product and norm associated with X are given by (·, ·)X

and ‖·‖X = (·, ·)1/2
X , respectively. A typical choice for (·, ·)X is

(w, v)X =

∫
Ω

∇w · ∇v + wv , (3.2)

which is simply the standard H1(Ω) inner product. We shall next denote by X ′ the dual

space of X. For a h ∈ X ′, the dual norm is given by

‖h‖X′ ≡ sup
v∈X

h(v)

‖v‖X

. (3.3)

We shall assume that the bilinear form a is symmetric, a(w, v;µ) = a(v, w;µ),∀w, v ∈

X,∀µ ∈ D, and satisfies a coercivity and continuity condition

0 < α0 ≤ α(µ) ≡ inf
v∈X

a(v, v;µ)

‖v‖2
X

, ∀ µ ∈ D (3.4)

sup
v∈X

a(v, v;µ)

‖v‖2
X

≡ γ(µ) <∞, ∀ µ ∈ D . (3.5)

Here α(µ) is the coercivity constant — the minimum (generalized) singular value asso-

ciated with our differential operator — and γ(µ) is the standard continuity constant; of

course, both these “constants” depend on the parameter µ. It is then standard, by the

Lax-Milgram theorem [127], to prove the existence and uniqueness for the problem (3.1)
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provided that the domain Ω and functional f are sufficiently regular.

Finally, we suppose that for some finite integer Q, a may be expressed as an affine

decomposition of the form

a(w, v;µ) =

Q∑
q=1

Θq(µ)aq(w, v), (3.6)

where for 1 ≤ q ≤ Q, Θq : D → R are differentiable parameter-dependent coefficient

functions and bilinear forms aq : X ×X → R are parameter-independent.

3.1.2 General Problem Statement

Our approximation of the continuous problem in the finite approximation space X can

then be stated as: given µ ∈ D ∈ RP , we evaluate

s(µ) = `(u(µ)) (3.7)

where u(µ) ∈ X is the solution of the discretized weak form

a(u(µ), v;µ) = f(v), ∀v ∈ X . (3.8)

We shall assume — hence the appellation “truth” — that X is sufficiently rich that u

(respectively, s) is sufficiently close to ue(µ) (respectively, se(µ)) for all µ in the (closed)

parameter domain D. We must be certain that our formulation are stable and efficient

as N → ∞. Unfortunately, for any reasonable error tolerance, the dimension N re-

quired to satisfy this condition — even with the application of appropriate (and even

parameter-dependent) adaptive mesh generation/refinement strategies — is typically ex-

tremely large, and in particular much too large to provide real-time response.

3.1.3 A Model Problem

We consider heat conduction in a thermal fin of width and height unity, and thermal

conductivity unity; the height of the fin post is 4/5 of the total height. The two-

dimensional fin, shown in Figure 3-1(a), is characterized by a two-component param-
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eter input µ = (µ1, µ2), where µ1 = Bi and µ2 = t̃/t; µ may take on any value in a

specified design set D ≡ [0.01, 1] × [1/3, 5/3] ⊂ RP=2. Here Bi is the Biot number, a

non-dimensional heat transfer coefficient reflecting convective transport to the air at the

fin surfaces; and t̃ is the width of the fin post.

(a) (b)

Figure 3-1: Two-dimensional thermal fin: (a) original (parameter-dependent) domain
and (b) reference (parameter-independent) domain (t = 0.3).

The thermal fin is under a prescribed unit heat flux at the root. The steady-state

temperature distribution within the fin, ũ(µ), is governed by the elliptic partial differential

equation

−∇2ũ = 0, in Ω̃ . (3.9)

We now introduce a Neumann boundary condition on the fin root

−∇ũ · ˆ̃n = −1, on Γ̃root, (3.10)

which models the heat source; and a Robin boundary condition on the remaining bound-

ary

−∇ũ · ˆ̃n = Bi ũ, on ∂Ω̃\Γ̃root, (3.11)

which models the convective heat losses; here ∂Ω̃ denotes the boundary of Ω̃ and ˆ̃n is the

unit vector normal to the boundary.
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The output considered is s(µ), the average steady-state temperature of the fin root

normalized by the prescribed heat flux into the fin root

s(µ) ≡ `(ũ(µ)) =

∫
Γ̃root

ũ(µ) . (3.12)

The weak formulation of (3.9), (3.10), and (3.11) is then derived as

∫
Ω̃

∇ũ∇ṽ + Bi

∫
∂Ω̃\Γ̃root

ũṽ =

∫
Γ̃root

ṽ, ∀ṽ ∈ H1(Ω̃) . (3.13)

The problem statement (3.7) and (3.8) is recovered. Clearly, a is continuous, coercive,

and symmetric, but not affine in the parameter yet. We now apply a continuous affine

mapping from µ-dependent domain Ω̃ to a fixed (µ-independent) reference domain Ω (see

Figure 3-1(b)). In the reference domain, our abstract form (3.7)-(3.8) is recovered; in

particular, a is affine for Q = 5, ` is “compliant” (i.e., ` = f), and X is a piecewise-linear

finite element approximation space of dimension N = 2977. Note that the geometric

variations are reflected, via the mapping, in the parametric coefficient functions Θq(µ).

3.2 Reduced-Basis Approximation

3.2.1 Manifold of Solutions

The reduced-basis method recognizes that although the field variable ue(µ) generally be-

longs to the infinite-dimensional space Xe associated with the underlying partial differen-

tial equation, in fact ue(µ) resides on a very low-dimensional manifold Me ≡ {ue(µ) |µ ∈

D} induced by the parametric dependence. For example, for a single parameter, µ ∈ D ⊂

RP=1, ue(µ) will describe a one-dimensional filament that winds through Xe as depicted

in Figure 3-2(a). The manifold containing all possible solutions of the partial differential

equation induced by parametric dependence is much smaller than the function space.

In the finite element method, even in the adaptive context, the approximation space X

is much too general — X can approximate many functions that do not reside on the

manifold of interest — and hence much too expensive. This critical observation presents

a clear opportunity: we can effect significant, in many cases Draconian, dimension reduc-
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tion in state space if we restrict attention toMe; the field variable can then be adequately

approximated by a space of dimension N � N .

(a) (b)

Figure 3-2: (a) Low-dimensional manifold in which the field variable resides; and (b)
approximation of the solution at µnew by a linear combination of precomputed solutions.

3.2.2 Dimension Reduction

Since all solutions of the parametrized PDE live in a low-dimensional manifold, we

wish to construct an approximation space to the manifold. The approximation space

consists of solutions at selected points in the parameter space as shown in Figure 3-

2(b). Then for any given parameter µ, we can approximate the solution u(µ) by a

projection onto the approximation space. Essentially, we introduce nested samples,

SN = {µ1 ∈ D, · · · , µN ∈ D}, 1 ≤ N ≤ Nmax and associated nested Lagrangian reduced-

basis spaces as WN = span{ζj ≡ u(µj), 1 ≤ j ≤ N}, 1 ≤ N ≤ Nmax, where u(µj) is the

solution to (3.8) for µ = µj. In actual practice, the basis should be orthogonalized with

respect to the inner product (·, ·)X ; the algebraic systems then inherit the “conditioning”

properties of the underlying PDE. The reduced-basis space WN comprises “snapshots”

on the parametrically induced manifold M≡ {u(µ) |µ ∈ D} ⊂ X. It is clear that M is

very low-dimensional ; furthermore, it can be shown — we consider the equations for the

sensitivity derivatives and invoke stability and continuity — that M is very smooth. We

thus anticipate that uN(µ) → u(µ) very rapidly, and that we may hence choose N � N .

Many numerical examples justify this expectation; and, in certain simple cases, exponen-

tial convergence can be proven [85, 93, 121]. We finally apply a Galerkin projection onto
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WN to obtain uN(µ) ∈ WN from

a(uN(µ), v;µ) = f(v), ∀v ∈ WN , (3.14)

in terms of which the reduced-basis approximation sN(µ) to s(µ) can be evaluated as

sN(µ) = `(uN(µ)) . (3.15)

Figure 3-3: Few typical basic functions in WN for the thermal fin problem.

An important question is that how we choose WN so as to maximize the results
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while minimizing the computational effort? An ad hoc or intuitive choice may not lead

to satisfactory approximation even for large N . Naturally, we should find and include

less smooth members of M into WN because those solutions contain the highest quality

information about structure of the manifold. In doing so, any information about M must

be exploited and any corner of M must be explored. Of course, we can not afford the

“accepted/rejected” strategy in which only a few basic solutions in WN are selectively

obtained from a large set of solutions as in POD economization procedure [134]. Our

strategy is that we use inexpensive error bounds to guide us to potential candidates in

M and an adaptive sampling procedure to explore M. We shall discuss our way of

choosing WN in more detail shortly later.

3.2.3 A Priori Convergence Theory

We consider here the convergence rate of uN(µ) and sN(µ) to u(µ) and s(µ), respectively.

In fact, it is a simple matter to show that the reduced-basis approximation uN(µ) obtained

in the reduced-basis space WN is optimal in X-norm

‖u(µ)− uN(µ)‖X ≤

√
γ(µ)

α(µ)
min

wN∈WN

‖u(µ)− wN(µ)‖X . (3.16)

Proof. We first note from (3.8) and (3.14)that

a(u(µ)− uN(µ), v;µ) = 0, ∀v ∈ WN . (3.17)

It then follows for any wN = uN + vN ∈ WN , where vN 6= 0, that

a(u− wN , u− wN ;µ) = a(u− uN − vN , u− uN − vN ;µ)

= a(u− uN , u− uN ;µ)− 2a(u− uN , vN ;µ) + a(vN , vN ;µ)

= a(u− uN , u− uN ;µ) + a(vN , vN ;µ)

> a(u− uN , u− uN ;µ) . (3.18)
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Furthermore, from (3.4), (3.5), and (3.18) we have

α(µ) ‖u(µ)− uN(µ)‖2
X ≤ a(u(µ)− uN(µ), u(µ)− uN(µ);µ)

≤ a(u(µ)− wN(µ), u(µ)− wN(µ);µ)

≤ γ(µ) min
wN∈WN

‖u(µ)− wN‖2
X , (3.19)

which concludes the proof.

In a similar argument, we can also show that sN(µ) converges optimally to s(µ) in X-

norm. We show that for the compliance case ` = f

s(µ)− sN(µ) = `(u(µ)− uN(µ))

= a(u(µ), u(µ)− uN(µ);µ)

= a(u(µ)− uN(µ), u(µ)− uN(µ);µ)

≤ γ(µ) ‖u(µ)− uN(µ)‖2
X

≤ γ2(µ)

α(µ)
min

wN∈WN

‖u(µ)− wN(µ)‖2
X ; (3.20)

in arriving at the above result, we use ` = f in the second equality, Galerkin orthogo-

nality (3.17) and symmetry of a in the third equality, continuity condition in the fourth

inequality, and the result (3.16) in the last equality. We see that sN(µ) converges to s(µ)

as the square of error in uN(µ).

3.2.4 Offline-Online Computational Procedure

Of course, even though N may be small, the elements of WN are in some sense large:

ζn ≡ u(µn) will be represented in terms of N � N truth finite element basis func-

tions. To eliminate the N -contamination, we must consider offline-online computational

procedures. To begin, we expand our reduced-basis approximation as

uN(µ) =
N∑

j=1

uN j(µ)ζj . (3.21)
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It thus follows from (3.6) and (3.14) that the coefficients uN j(µ), 1 ≤ j ≤ N , satisfy the

N ×N linear algebraic system

N∑
j=1

{
Q∑

q=1

Θq(µ) aq(ζj, ζi)

}
uN j(µ) = f(ζi), 1 ≤ i ≤ N . (3.22)

The reduced-basis output can then be calculated as

sN(µ) =
N∑

j=1

uN j(µ) `(ζj) . (3.23)

It is clear from (3.22) that we may pursue an offline-online computational strategy to

economize the output evaluation.

In the offline stage — performed once — we first solve for the ζi, 1 ≤ i ≤ N ; we

then form and store `(ζi), 1 ≤ i ≤ N , and aq(ζj, ζi), 1 ≤ i, j ≤ N , 1 ≤ q ≤ Q. In actual

practice, in the offline stage we consider N = Nmax; then, in the online stage, we extract

the necessary subvectors and submatrices. This will become clearer when we discuss the

generation of the SN , 1 ≤ N ≤ Nmax. Note all quantities computed in the offline stage

are independent of the parameter µ. Specifically, the offline computation requires N

expensive finite-element solutions and O(QN2) finite-element vector inner products.

In the online stage — performed many times , for each new value of µ — we first

assemble and subsequently invert the (full) N×N “stiffness matrix”
∑Q

q=1 Θq(µ)aq(ζj, ζi)

in (3.22) — this yields the uN j(µ), 1 ≤ j ≤ N ; we next perform the summation (3.23) —

this yields the sN(µ). The operation count for the online stage is respectively O(QN2)

and O(N3) to assemble (recall the aq(ζj, ζi), 1 ≤ i, j ≤ N , 1 ≤ q ≤ Q, are pre-stored)

and invert the stiffness matrix, and O(N) to evaluate the output inner product (recall

the `(ζj) are pre-stored); note that the reduced-basis stiffness matrix is, in general, full .

The essential point is that the online complexity is independent of N , the dimension of

the underlying truth finite element approximation space. Since N � N , we expect —

and often realize — significant, orders-of-magnitude computational economies relative to

classical discretization approaches.

54



3.2.5 Orthogonalized Basis

In forming the reduced-basis space WN , the basis functions must be selected such that

they are linearly independent to make the algebraic system (3.14) well-conditioned as

possible, or at least not singular. However, the basis functions are the solutions of the

parametrized partial differential equation at different configurations, they are nearly ori-

ented in the same direction. Consequently, the associated algebraic system (3.14) is very

ill-conditioned especially for large N . Typically, the condition number of the “reduced-

stiffness” matrix in (3.14) grows exponentially with N . We thus need a new basis which

is orthogonal and able to preserve all approximation properties of the original basis. To

this end, using Gram-Schmidt orthogonalization we orthogonalize our basis with respect

to the inner product associated with the Hilbert space X, (·, ·)X , and thus obtain

(ζi, ζj)X = δij, 1 ≤ i, j ≤ N . (3.24)

Then the algebraic system (3.14) inherits the conditioning properties of the underlying

PDE, as we shall now prove. We first note that for any wN ∈ WN , we can write w =∑N
i=1wN iζi. It then follows from (3.4) and (3.24) that

N∑
i=1

N∑
j=1

wN iwN ja(ζi, ζj;µ) ≥ α(µ)
N∑

i=1

N∑
j=1

wN iwN j(ζi, ζj)X

= α(µ)
N∑

i=1

N∑
j=1

wN iwN jδij

= α(µ)
N∑

i=1

w2
N i . (3.25)

Similarly, we have

N∑
i=1

N∑
j=1

wN iwN ja(ζi, ζj;µ) ≤ γ(µ)
N∑

i=1

N∑
j=1

wN iwN j(ζi, ζj)X

= γ(µ)
N∑

i=1

N∑
j=1

wN iwN jδij

= γ(µ)
N∑

i=1

w2
N i . (3.26)
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It finally follows from (3.25) and (3.26) that

α(µ) ≤
∑N

j=1wN iwN ja(ζi, ζj;µ)∑N
i=1w

2
N i

≤ γ(µ), ∀wN ∈ RN . (3.27)

Clearly, our algebraic system in the orthogonalized basis has the same conditioning prop-

erties as the underlying PDE. In the worst case, the condition number is bounded by the

ratio γ(µ)/α(µ), which is independent of N .

Using the thermal fin problem as typical demonstration, we present in Figure 3-4 the

condition number of the reduced-stiffness matrix in the original basis and orthogonalized

one as a function of N for µt = (0.1, 1.0). The exponential growth of the condition

number of a(ζi, ζj) in the original basis is expected; in contrast, the condition number of

a(ζi, ζj) in the orthogonalized basis increases linearly with N and begins to be saturated

at N = 4 with value of 10.00 since for this particular test point, γ(µt)/α(µt) = 10.00.
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Figure 3-4: Condition number of the reduced-stifness matrix in the original and orthog-
onalized basis as a function of N , for the test point µt = (0.1, 1.0).

3.3 A Posteriori Error Estimation

From the previous section, we know in theory N can be chosen quite small. Nevertheless,

in practice, we do not know how small N should be chosen in order for the reduced-basis

method to produce desired accuracy for all parameter inputs. In fact, the reduced-basis
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approximation raises many questions than it answers. Is |s(µ)− sN(µ)| ≤ εs
tol, where εs

tol

is the acceptable tolerance? Is N too large, |s(µ)− sN(µ)| � εs
tol, with an associated

steep penalty on computational efficiency? Do we satisfy the acceptable error condition

|s(µ)− sN(µ)| ≤ εs
tol for the smallest possible value of N? In short, the pre-asymptotic

and essentially ad hoc nature of reduced-basis approximations, the strongly superlinear

scaling with N of the reduced-basis complexity, and the particular needs of real-time

demand rigorous a posteriori error estimation.

3.3.1 Error Bounds

We assume for now that we are given a positive µ-dependent lower bound α̂(µ) for the

stability constant α(µ): α(µ) ≥ α̂(µ) ≥ α0 > 0,∀µ ∈ D. The calculation of α̂(µ) will be

discussed in great length in the next chapter. We next introduce the dual norm of the

residual

εN(µ) = sup
v∈X

r(v;µ)

‖v‖X

, (3.28)

where

r(v;µ) = f(v)− a(uN(µ), v;µ), ∀v ∈ X (3.29)

is the residual associated with uN(µ). We may now define our energy error bound

∆N(µ) =
εN(µ)

α̂(µ)
(3.30)

and the associated effectivity as

ηN(µ) ≡ ∆N(µ)

‖u(µ)− uN(µ)‖X

. (3.31)

We may also develop error bounds for the error in the output. We consider here the

special “compliance” case in which ` = f and a is symmetric — more general functionals

` and nonsymmetric a require adjoint techniques [91, 121, 99]. We then define our output

error estimator as

∆s
N(µ) ≡ ε2

N(µ)/α̂(µ) , (3.32)
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and its corresponding effectivity as

ηs
N(µ) ≡ ∆s

N(µ)

|s(µ)− sN(µ)|
. (3.33)

Note that ∆s
N(µ) scales as the square of the dual norm of the residual, εN(µ).

3.3.2 Rigor and Sharpness of Error Bounds

We shall prove in this section that 1 ≤ ηN(µ), ηs
N(µ) ≤ γ(µ)/α̂(µ),∀N,∀µ ∈ D. Es-

sentially, the left inequality states that ∆N(µ) (respectively, ∆s
N(µ)) is a rigorous upper

bound for ‖u(µ)−uN(µ)‖X (respectively, |s(µ)− sN(µ)|); the right inequality states that

∆N(µ) (respectively, ∆s
N(µ)) is a sharp upper bound for ‖u(µ) − uN(µ)‖ (respectively,

|s(µ)− sN(µ)|). In fact, many numerical examples [121, 142] show that ηN(µ) and ηs
N(µ)

are of order unity.

Proposition 1. For the error bounds ∆N(µ) and ∆s
N(µ) given in (3.30) and (3.32), the

corresponding effectivities satisfy

1 ≤ ηN(µ) ≤ γ(µ)/α̂(µ), ∀N, ∀µ ∈ D , (3.34)

1 ≤ ηs
N(µ) ≤ γ(µ)/α̂(µ), ∀N, ∀µ ∈ D . (3.35)

Proof. To begin, we note from (3.8) and (3.29) that the error e(µ) ≡ u(µ)−uN(µ) satisfies

a(e(µ), v;µ) = r(v;µ), ∀ v ∈ X . (3.36)

Furthermore, we note from standard duality arguments that

εN(µ) ≡ ‖r(v;µ)‖X′ = ‖ê(µ)‖X , (3.37)

where

(ê(µ), v)X = r(v;µ), ∀ v ∈ X . (3.38)

We next invoke the coercivity and continuity of the bilinear form a together with (3.36)
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and (3.38) to obtain

α(µ) ‖e(µ)‖2
X ≤ a(e(µ), e(µ);µ)

= (ê(µ), e(µ))X

≤ ‖ê(µ)‖X ‖e(µ)‖X , (3.39)

and

‖ê(µ)‖2
X = a(e(µ), ê(µ);µ)

≤ a(e(µ), e(µ);µ)1/2a(ê(µ), ê(µ);µ)1/2

≤ γ(µ) ‖ê(µ)‖X ‖e(µ)‖X . (3.40)

Note that we have used Cauchy-Schwarz inequality in the last inequality of (3.39) and in

the second inequality of (3.40). We thus conclude from (3.39) and (3.40) that

α(µ) ≤ ‖ê(µ)‖X

‖e(µ)‖X

≤ γ(µ) . (3.41)

The first result immediately follows from the definition of ηN(µ), (3.37), and (3.41).

Furthermore, we note from (3.39) and (3.41) that

s(µ)− sN(µ) = a(e(µ), e(µ);µ) ≤ ‖ê(µ)‖X ‖e(µ)‖X ≤ ‖ê(µ)‖2
X

α(µ)
, (3.42)

and from (3.40) that

‖ê(µ)‖2
X ≤ a(e(µ), e(µ);µ)1/2a(ê(µ), ê(µ);µ)1/2

≤ a(e(µ), e(µ);µ)1/2γ1/2(µ) ‖ê(µ)‖X . (3.43)

We thus conclude from (3.42) and (3.43) that

α(µ) ≤ ‖ê(µ)‖2
X

s(µ)− sN(µ)
≤ γ(µ) . (3.44)

The second result follows from the definition of ηs
N(µ), (3.37), and (3.44).
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The effectivity result (3.34) and (3.35) is crucial. From the left inequality, we deduce

that ∆N(µ) (respectively, ∆s
N(µ)) is a rigorous upper bound for the error in the solution

(respectively, the error in the output) — this provides certification. From the right

inequality, we deduce that ∆N(µ) and ∆s
N(µ) overestimate the true errors by at most

γ(µ)/β̃(µ), independent of N — this relates to efficiency: clearly an overly conservative

error bound will be manifested in an unnecessarily large N and unduly expensive reduced-

basis approximation. Note however that these error bounds are relative to our underlying

“truth” approximation, u(µ) ∈ X and s(µ), not the exact solution and output, ue(µ) ∈ Xe

and se(µ), respectively.

The real challenge in a posteriori error estimation is not the presentation of these

rather classical results, but rather the development of efficient computational approaches

for the evaluation of the necessary constituents. In our particular deployed context, “effi-

cient” translates to “online complexity independent of N ,” and “necessary constituents”

translates to “dual norm of the residual, εN(µ) ≡ ‖r(v;µ)‖X′ , and lower bound for the

inf-sup constant, β̃(µ).” In fact, for linear problems, the latter are rather universal —

necessary and sufficient for most rigorous a posteriori contexts and approaches. In the

nonlinear context, additional ingredients are required. We now address the former issue

and leave the latter issue to be the subject of extensive study in the next chapter.

3.3.3 Offline/Online Computational Procedure

To begin, we invoke the affine assumption (3.6) to rewrite the relaxed error equation

(3.38) as

(ê(µ), v)X = f(v)−
Q∑

q=1

N∑
n=1

Θq(µ)uN n(µ)aq(ζn, v) . (3.45)

It immediately follows from linear superposition that

ê(µ) = C +

Q∑
q=1

N∑
n=1

Θq(µ)uN n(µ)Lq
n, ∀v ∈ X , (3.46)
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where (C, v)X = f(v),∀v ∈ X, and (Lq
n, v)X = −aq(ζn, v),∀v ∈ X, for 1 ≤ q ≤ Q, 1 ≤

n ≤ N . Inserting the expression into (3.37), we obtain

ε2
N(µ) = (C, C)X + 2

Q∑
q=1

N∑
n=1

Θq(µ)uN n(µ)(C,Lq
n)X

+

Q∑
q=1

Q∑
q′=1

N∑
n=1

N∑
n′=1

Θq(µ)Θq′(µ)uN n(µ)uN n′(µ)(Lq
n,L

q′

n′)X . (3.47)

An efficient offline/online decomposition may now be identified.

In the offline stage — performed once — we first solve for C and Lq
n, 1 ≤ n ≤ N ,

1 ≤ q ≤ Q; we then form and store the relevant parameter-independent inner products

(C, C)X , (C,Lq
n)X , (Lq

n,L
q′

n′)X , 1 ≤ n, n′ ≤ N , 1 ≤ q, q′ ≤ Q. Note that all quantities

computed in the offline stage are independent of the parameter µ.

In the online stage — performed many times, for each new value of µ — we simply

evaluate the sum (3.47) in terms of the Θq(µ), uN n(µ) and the pre-calculated and stored

(parameter-independent) (·, ·)X inner products. The operation count for the online stage

is only O(Q2N2) — again, the essential point is that the online complexity is independent

of N , the dimension of the underlying truth finite element approximation space. We

further note that unless Q is quite large (typically, Q is O(10) or less), the online cost

associated with the calculation of the dual norm of the residual is commensurate with

the online cost associated with the calculation of sN(µ).

3.3.4 Bound Conditioners

We review here the simplest form of “bound conditioner” formulations developed in [139,

143] for calculating, α̂(µ), the lower bound of α(µ). In particular, in the case of symmetric

coercive operators we can often determine α̂(µ) ≤ α(µ), ∀ µ ∈ D) “by inspection.” For

example, if we verify Θq(µ) > 0, ∀ µ ∈ D, and aq(v, v) ≥ 0, ∀ v ∈ X, 1 ≤ q ≤ Q, then we

may choose for our coercivity parameter an lower bound

α̂(µ) =

(
min

q∈{1,...,Q}

Θq(µ)

Θq(µ)

)
α(µ) , (3.48)

for an appropriate value µ ∈ D, as we now prove
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Proof. We invoke (3.4) and (3.6) to obtain the desired result

α(µ) ≡ inf
v∈X

∑Q
q=1 Θq(µ)aq(v, v)

‖v‖2
X

≥ inf
v∈X

(
minq∈{1,...,Q}

Θq(µ)
Θq(µ̄)

)∑Q
q=1 Θq(µ̄)aq(v, v)

‖v‖2
X

=

(
min

q∈{1,...,Q}

Θq(µ)

Θq(µ)

)
α(µ), ∀µ ∈ D ,

since Θq(µ) > 0, ∀ µ ∈ D, and aq(v, v) ≥ 0, ∀ v ∈ X, 1 ≤ q ≤ Q.

It can be verified that the thermal fin problem discussed in Section 3.1.3 accommodates

these hypotheses. Moreover, for our choice of (w, v)X =
∑Q

q=1 a
q(w, v) and µ̄ = (1, 1) we

readily compute α(µ̄) = 1 and Θq(µ̄) = 1 for 1 ≤ q ≤ Q. Unfortunately, these hypotheses

are rather restrictive, and hence more complicated (and offline-expensive) bound condi-

tioner recipes must be pursued [139, 143, 99]. As we shall see in subsequent chapters, the

Helmholtz and elasticity problems do not admit the above hypotheses because Θq(µ) > 0,

∀ µ ∈ D, and aq(v, v) ≥ 0, ∀ v ∈ X, 1 ≤ q ≤ Q can not be satisfied simultaneously.

3.3.5 Sample Construction and Adaptive Online Strategy

In conclusion, we can calculate a rigorous and sharp upper bound ∆s
N(µ) = ε2

N(µ)/β̃(µ)

for |s(µ) − sN(µ)| with online complexity independent of N . These inexpensive error

bounds may be gainfully enlisted in the offline stage — to construct optimal samples

SN . We assume that we are given a sample SN , and hence space WN and associated

reduced-basis approximation (procedure) uN(µ), ∀ µ ∈ D. We first calculate µ∗N =

arg maxµ∈ΞF
∆N(µ), where ∆N(µ) is our “online” error bound (3.30) and ΞF is a very

(exhaustively) fine random grid over the parameter domain D of size nF � 1; we next

append µ∗N to SN to form SN+1, and hence WN+1 and a procedure for uN+1(µ), ∀ µ ∈ D;

we then continue this process until ε∗Nmax
≡ ∆Nmax(µ

∗
Nmax

) = εtol,min, where εtol,min is the

smallest error tolerance anticipated.

Moreover, the bounds may also serve most crucially in the online stage — to choose

optimal N , to confirm the desired accuracy, to establish strict feasibility, and to control

sub-optimality: given any desired εtol ∈ [εtol, min,∞[ and any new value of µ ∈ D “in the
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field,” we first choose N from a pre-tabulated array such that ε∗N ≡ ∆N(µ∗N) = εtol; we

next calculate uN(µ) and ∆N(µ), and then verify that — and if necessary, subsequently

increase N such that — the condition ∆N(µ) ≤ εtol is indeed satisfied. We should not

and do not rely on the finite sample ΞF for either rigor or sharpness. This strategy will

minimize the online computational effort while simultaneously satisfying the requisite

accuracy with certainty.

The crucial point is that ∆N(µ) is an accurate and “online-inexpensive” — order-unity

effectivity and N -independent complexity — surrogate for the true (very-expensive-to-

calculate) error ‖u(µ) − uN(µ)‖X . This surrogate permits us to (i) offline, perform a

much more exhaustive and hence meaningful search for the best samples SN and hence

most rapidly uniformly convergent spaces WN , and (ii) online, determine the smallest N ,

and hence the most efficient approximation, for which we rigorously achieve the desired

accuracy. We may in fact view our offline sampling process as a (greedy, parameter

space, “L∞(D)”) variant of the POD economization procedure [134] in which — thanks

to ∆N(µ) — we need never construct the “rejected” snapshots.

3.4 Numerical Results

We now present basic numerical results obtained with the thermal fin problem. We pursue

the optimal sampling procedure described in the previous section on a regular grid ΞF

of size nF = 1681 to arrive at Nmax = 15 for our reduced-basis space SN max as shown in

Figure 3-5. It can be seen that nearly all of sample points lie on the boundary of D, and

that more sample points allocate on the left boundary. This is because for smaller Biot

number temperature dissipates slowly so that the corresponding temperature distribution

is more varying than that of large Biot number.

We next present in Table 3.1 the normalized maximum errors εN,max,rel and εs
N,max,rel,

as a function of N , for the (log) random and adaptive sampling processes (note that,

in the results for the random sampling process, the sample SN is different for each N).

Here εN,max,rel is the maximum over ΞTest of ‖e(µ)‖X/‖u(µ)‖X , and εs
N,max,rel is the max-

imum over ΞTest of |s(µ)− sN(µ)| / |s(µ)|, where ΞTest ⊂ (D)256 is a regular 16× 16 grid

over D. We observe that the adaptive sampling procedure yields higher accuracy even
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Figure 3-5: Sample SN max from optimal sampling procedure.

with lower N as N increases; and that even these modest reductions in N can trans-

late into measurable performance improvements especially in the context of design and

optimization.

N
εN,max,rel

“Random”

εN,max,rel

“Adaptive”

εs
N,max,rel

“Random”

εs
N,max,rel

“Adaptive”
3 2.33×10−1 5.55×10−1 3.06×10−2 2.51×10−1

6 4.59×10−2 1.04×10−1 2.67×10−3 8.55×10−3

9 1.63×10−2 1.58×10−2 3.52×10−4 2.55×10−4

12 6.39×10−3 2.97×10−3 3.24×10−5 1.20×10−5

15 4.59×10−3 5.42×10−4 1.88×10−5 2.71×10−7

Table 3.1: Maximum relative errors as a function of N for random and adaptive samples.

We finally present in Table 3.2 ∆N,max,rel, ηN,ave, ∆s
N,max,rel, and ηs

N,ave as a function of

N . Here ∆N,max,rel is the maximum over ΞTest of ∆N(µ)/‖uN(µ)‖, ηN,ave is the average over

ΞTest of ∆N(µ)/‖u(µ)−uN(µ)‖, ∆s
N,max,rel is the maximum over ΞTest of ∆s

N(µ)/‖sN(µ)‖,

and ηs
N,ave is the average over ΞTest of ∆s

N(µ)/‖s(µ) − sN(µ)‖. We observe that the

reduced-basis approximation converges very rapidly, and that our rigorous error bounds

are in fact quite sharp as the effectivities are in O(5). As expected, the error bound for

the output scales as the square of the error bound for the solution.
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N ∆N,max,rel ηN,ave ∆s
N,max,rel ηs

N,ave

3 1.07×10−0 7.81 5.55×10−1 8.45
6 1.43×10−1 9.00 1.33×10−2 9.26
9 2.35×10−2 8.98 4.41×10−4 9.27
12 5.96×10−3 8.76 2.68×10−5 6.78
15 5.99×10−4 8.81 2.87×10−7 3.81

Table 3.2: Error bounds and effectivities as a function of N .

3.5 Remarks

We present thus far in this chapter basic but important concepts of the reduced-basis

method via applying the technique to elliptic linear problems with many restrictions on

our abstract statement. More specifically, we have assumed that bilinear form a(., .) is

coercive, symmetric, affine in the parameter, and that output functional is compliant

` = f . However, many of these crucial concepts and observations will remain applicable

to more general problems. In addition, we have not addressed the calculation of the lower

bound α̂(µ) of the stability parameter α(µ). We shall leave it as a subject of extensive

study in the next chapter. In this section, we discuss briefly relaxation of these restrictions

and leave the detailed and generalized developments for subsequent chapters.

3.5.1 Noncompliant Outputs and Nonsymmetric Operators

For noncompliant output ` (6= f) or nonsymmetric operator a, we may define an error

bound for the output as ∆s
N(µ) = ‖`‖X′ ∆N(µ), for which we clearly obtain |s(µ) −

sN(µ)| = `(e(µ)) ≤ ‖`‖X′‖e(µ)‖X ≤ ∆s
N(µ). This error bound is admittedly rather crude,

hence the associated effectivity may be very large. However, in numerous applications

the error bound may be adequate to satisfy a specified tolerance condition thanks to the

rapid convergence of our reduced-basis approximation.

In order to obtain the optimal convergence and thus recover the “square” effect, we

use the adjoint techniques [121, 99]. To begin, we introduce a dual or adjoint, problem

of the primal (3.8): given µ ∈ D, ψ(µ) satisfies

a(v, ψ(µ);µ) = −`(v), ∀v ∈ X . (3.49)
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Note that if a is symmetric and ` = f , which we shall denote “compliance,” ψ(µ) = −u(µ).

In addition to WN , we introduce dual reduced-basis approximation spaces W du
Ndu as

W du
Ndu ≡ span

{
ζdu
n ≡ ψ(µdu

n ), 1 ≤ n ≤ Ndu
}
,

where ψ(µdu
n ) ∈ X are the solutions to the dual problem at selected points µdu

n , n =

1, . . . , Ndu. We then apply Galerkin projection for both the primal and dual problems

a(uN(µ), v;µ) = f(v), ∀v ∈ WN , (3.50)

a(v, ψNdu(µ);µ) = −`(v), ∀v ∈ W du
Ndu , (3.51)

in terms of which the reduced-basis approximation output can be evaluated as

sN(µ) = `(uN(µ))− f(ψNdu(µ)) + a(uN(µ), ψNdu(µ);µ) . (3.52)

To show the optimal convergence rate of the approximation, we first recall the necessary

result given in Section 3.2.3

‖u(µ)− uN(µ)‖X ≤

√
γ(µ)

α(µ)
min

wN∈WN

‖u(µ)− wN‖X , (3.53)

‖ψ(µ)− ψNdu(µ)‖X ≤

√
γ(µ)

α(µ)
min

wdu
Ndu∈Wdu

Ndu

∥∥ψ(µ)− wdu
Ndu

∥∥
X
. (3.54)

It then follows that

|s(µ)− sN(µ)| = |`(u(µ)− uN(µ)) + f(ψNdu)− a(uN(µ), ψNdu ;µ)|

= |−a(u(µ)− uN(µ), ψ(µ);µ) + a(u(µ)− uN(µ), ψNdu ;µ)|

= |a(u(µ)− uN(µ), ψNdu − ψ(µ);µ)|

≤ γ(µ) ‖u(µ)− uN(µ)‖X ‖ψ(µ)− ψNdu‖X

≤ γ2(µ)

α(µ)
min

wN∈WN

‖u(µ)− wN‖X min
wdu

Ndu∈Wdu
Ndu

∥∥ψ(µ)− wdu
Ndu

∥∥
X

(3.55)
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from the definition of the primal and dual problems, Galerkin orthogonality, continuity

condition. As in the compliance case, equations (3.53), (3.54), and (3.55) together state

that uN(µ) (and ψNdu) is the best approximation with respect to the X-norm, and that

the error in the output converges as the product of the primal and dual errors.

To see the benefit of introducing the dual problem, we assume that Ndu is in the

order of O(N); the online cost for solving both the primal and dual problem is thus

O(2N3). Furthermore, in order for the reduced-basis formulation with the dual problem

to achieve the same output error bound as the reduced-basis formulation with the dual

problem does, we need to increase N by a factor of 2 or more, leading to an online cost

of O(8N3) or higher.1 As a result, the dual reduced-basis formulation typically enjoys

O(4) (or greater) reduction in computational effort. Note, however, that the simple crude

output bound ∆s
N(µ) = ‖`‖X′ ∆N(µ) is very useful for cases with many outputs present,

since adjoint techniques have a computational complexity (in both the offline and online

stage) proportional to the number of outputs. A detailed formulation and theory for

noncompliant problems can be found in [121, 139] upon which we extend the method for

general nonaffine and noncompliant problems as described in Section 6.6.

3.5.2 Noncoercive Elliptic Problems

In noncoercive problems, the bilinear form a(·, ·) is required to satisfy the following inf-sup

condition for well-posedness of problems

0 < β0 ≤ β(µ) ≡ inf
w∈X

sup
v∈X

a(w, v;µ)

‖w‖X‖v‖X

, ∀µ ∈ D , (3.56)

γ(µ) ≡ sup
w∈X

sup
v∈X

a(w, v;µ)

‖w‖X‖v‖X

. (3.57)

Here β(µ) is the Babuška “inf–sup” (stability) parameter — the minimum (generalized)

singular value associated with our differential operator — and γ(µ) is the standard con-

1To see this, we note that the output bound is O(∆N (µ)) with the usual reduced-basis formulation
and is O(∆2

N (µ)) with the primal-dual formulation (here we assume that ‖ψ(µ)−ψN (µ)‖X converges like
‖u(µ)− uN (µ)‖X). Therefore, we need to double N in order for the usual reduced-basis formulation to
obtain the output bound O(∆2

N (µ)), if the reduced-basis approximation uN (µ) converges exponentially;
otherwise, we need to increase N by even more than a factor of 2.
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tinuity constant.

Numerical difficulties arise due to noncoercivity and “weaker” stability condition in

both (i) the approximation and (ii) error estimation. In (i), large and rapid variation

of the field variables in both x and µ can lead to poor convergence rate. Furthermore,

in the noncoercive case, standard Galerkin projection does not guarantee stability of the

discrete reduced-basis system (which is another factor leading to poor approximations).

However, it is possible to improve the approximation and ensure the stability by consid-

ering projections other than standard Galerkin like minimum-residual or Petrov-Galerkin

projections with infimizer–supremizer enriched [91, 131]. Obviously, our adaptive sam-

pling procedure also plays an important role in improving the convergence by ensuring

good approximation properties for WN . In (ii), the primary difficulty lies in estimation

of the inf-sup parameter which is typically very small near resonances and in resonances.

In particular, β(µ) can not typically be deduced analytically, and thus must be approx-

imated. The developments presented in Chapter 4 can be used to obtain the necessary

approximation (more specifically, a lower bound) to the inf–sup parameter. We shall

leave greater discussion of noncoercive problems for Chapter 5.

3.5.3 Nonaffine Linear Elliptic Problems

Throughout this chapter we assume that a(w, v;µ) is affine in µ as given by (3.6), we

then develop extremely efficient offline-online computational strategy. The online cost to

evaluate sN(µ) and ∆s
N(µ) is independent of N . Unfortunately, if a is not affine in the

parameter, the online complexity is no longer independent of N . For example, for general

g(x;µ), the bilinear form

a(w, v;µ) ≡
∫

Ω

∇w · ∇v +

∫
Ω

g(x;µ) wv (3.58)

will not admit an efficient online-offline decomposition. The difficulty here is that the

nonaffine dependence of g(x;µ) on parameter µ does not allow separation of the gener-

ation and projection stages and thus leads to online N dependence. Consequently, the

computational improvements in using the reduced-basis method relative to conventional

(say) finite element approximation are modest.
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In Chapter 6, we describe a technique that recovers online N independence even

in the presence of non-affine parameter dependence. Our approach (applied to (3.58),

say) is simple: we develop a “collateral” reduced-basis expansion gM(x;µ) for g(x;µ);

we then replace g(x;µ) in (3.58) with the (necessarily) affine approximation gM(x;µ).

The essential ingredients are (i) a “good” collateral reduced-basis approximation space,

(ii) a stable and inexpensive interpolation procedure, and (iii) an effective a posteriori

estimator to quantify the newly introduced error terms. It is perhaps only in the latter

that the technique is somewhat disappointing: the error estimators — though quite sharp

and very efficient — are completely (provably) rigorous upper bounds only in certain

restricted situations [135].

3.5.4 Nonlinear Elliptic Problems

Obviously nonlinear equations do not admit the same degree of generality as linear equa-

tions. We thus present our approach to nonlinear equations for a particular nonlinear

problem. In particular, we consider the following nonlinear elliptic problem

a(u, v;µ) +

∫
Ω

g(u;x;µ)v = f(v), ∀v ∈ X, (3.59)

where as before a is a symmetric, continuous, and coercive bilinear form, f is bounded

linear functional, and g(u;x;µ) is a general nonlinear function of the parameter µ, spatial

coordinate x, and field variable u(x;µ). Furthermore, we need to restrict our attention

to only g such that the equation (3.59) is well-posed and sufficiently stable. Even so, the

nonlinearity in g creates many numerical difficulties.

It should be emphasized that the application of the reduced-basis method to quadrat-

ically nonlinear problems — the steady incompressible Navier-Stokes equations — has

been considered [141, 140]. In this thesis, we shall pursue a further development of the

method for highly nonlinear problems. Our approach to nonlinear elliptic problems uses

the same ideas as above for nonaffine linear elliptic problems, but involves more sophis-

ticated and expensive treatment.
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Chapter 4

Lower Bounds for Stability Factors

for Elliptic Problems

4.1 Introduction

In the previous chapter, we have presented various aspects of the reduced-basis method

and demonstrated through the heat conduction problem the efficiency and accuracy of

the technique. However, we have not addressed the calculation of the lower bound α̂(µ)

for the stability factor α(µ) — a generalized minimum singular value — which is crucial

to our error estimation since the lower bound enters in the denominator of the error

bounds. Upper bounds for minimum eigenvalues are essentially “free”; however rigorous

lower bounds are notoriously difficult to obtain. In earlier works [121, 120, 143, 139, 142],

a family of rigorous error estimators for reduced-basis approximation of a wide class of

partial differential equations has been introduced; in particular, rigorous a posteriori

error estimation procedures which rely critically on the existence of a bound conditioner

– in essence, an operator preconditioner that (i) satisfies an additional spectral“bound”

requirement, and (ii) admits the reduced-basis off-line/on-line computational stratagem.

In this section, we shall review shortly the concept of bound conditioners upon which

we construct the lower bounds and develop a posteriori error estimation procedures for

elliptic linear problems that yield rigorous error statements for all N .

70



4.1.1 General Bound Conditioner

A new class of improved bound conditioners based on the direct approximation of the

parametric dependence of the inverse of the operator (rather than the operator itself) was

first introduced in [143]. In particular, the authors suggested a symmetric, continuous,

and coercive bound conditioner c : X ×X ×D → R such that

c−1( · , · ;µ) =
∑

i∈I(µ)

ρi(µ)c−1
i ( · , · ) . (4.1)

Here D ∈ RP is the parameter domain; X is an appropriate function space over the

real field R; I(µ) ∈ {1, . . . , I} is a parameter-dependent set of indices, where I is a fi-

nite (preferably small) integer; ci : X × X → R, 1 ≤ i ≤ I, are parameter-independent

symmetric, coercive operators. The “separability” of c−1( · , · ;µ) as a sum of products

of parameter-dependent functions ρi(µ) and parameter-independent operators c−1
i allows

a higher-order effectivity constructions (e.g., piecewise-linear) while simultaneously pre-

serving online efficiency.

4.1.2 Multi-Point Bound Conditioner

When a single bound conditioner c( · , · ;µ) is used for all µ ∈ D, we call this bound con-

ditioner as single-point bound conditioner. In many cases, the effectivity bound obtained

with single-point bound conditioner is quite pessimistic. The effectivity may be improved

by judicious choice of multi-point bound conditioner. The critical observation is that us-

ing many “local” bound conditioners may lead to better approximation of the effectivity

factor and thus smaller effectivity. To this end, we specify in the parameter domain a

set of partitions PK ≡ {P1, . . . ,PK} such that ∪K
k=1Pk = D and ∩J

k=1Pk = ∅, where Pk

is the closure of Pk; we next associate each Pk with bound conditioner ck( · , · ;µ) and

separately pursue the effectivity construction for each ck( · , · ;µ) on the corresponding

region Pk, k = 1, . . . , K; we then select the appropriate local bound conditioner (e.g.,

ci( · , · ;µ)) and the associated effectivity construction for our online calculation according

to value of µ (e.g., µ ∈ Pi).
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4.1.3 Stability-Factor Bound Conditioner

We consider a special case in which I = 1 andK = 1, hence c(·, ·;µ) = c1(·, ·)/ρ(µ), where

c1(·, ·) is a parameter-independent symmetric coercive operator. We shall denote c1(·, ·)

as (·, ·)X and call it as “stability-factor” bound conditioner (in short, bound conditioner)

because it can be used as the inner product to define relevant stability and continuity

constants for a coercive/noncoercive operator. For a coercive operator a(·, ·;µ), we may

conveniently state the stability condition as

0 < α0 ≤ α(µ) ≡ inf
v∈X

a(v, v;µ)

‖v‖2
X

, ∀µ ∈ D . (4.2)

A similar stability statement is completely applicable for a noncoerive operator a(·, ·;µ),

but now in terms of the inf-sup condition

0 < β0 ≤ β(µ) ≡ inf
w∈X

sup
v∈X

a(w, v;µ)

‖w‖X ‖v‖X

, ∀µ ∈ D . (4.3)

A typical choice for (·, ·)X may be

(w, v)X ≡
∫

Ω

∇w · ∇v + δ

∫
Ω

wv , (4.4)

for some appropriately pre-determined nonnegative constant δ ≥ 0.

In the following, we shall develop the lower bound construction for the stability factors.

For simplicity of exposition, we consider the single stability-factor bound conditioner. Of

course, the development can be applied to general and multi-point bound conditioners.

In addition, we assume that for some finite integer Q, a may be expressed as an affine

decomposition of the form

a(w, v;µ) =

Q∑
q=1

Θq(µ)aq(w, v), ∀ w, v ∈ X, ∀ µ ∈ D , (4.5)

where for 1 ≤ q ≤ Q, Θq : D → R are differentiable parameter-dependent functions and

aq : X ×X → R are parameter-independent continuous forms. It is worth noting that

the following lower bound formulations though developed for the real function space X
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and real parametric functions Θq(µ), 1 ≤ q ≤ Q, can be easily generalized to the complex

case in which X is the function space over the complex field C and Θq : D → C are

complex functions; see Appendix C for the generalization of the lower bound formulation

for complex noncoercive operators.

4.2 Lower Bounds for Coercive Problems

4.2.1 Coercivity Parameter

Recall that the stability factor of the coercive operator a(·, ·;µ) is defined as

α(µ) ≡ inf
v∈X

a(v, v;µ)

‖v‖2
X

, (4.6)

which shall be called coercivity parameter to distinguish it from the stability factor of

noncoercive operators. We note that

Lemma 4.2.1. If Θq(µ), 1 ≤ q ≤ Q, are concave function of µ and aq(w,w), 1 ≤ q ≤ Q,

are positive-semidefinite then the function α(µ) is concave in µ.

Proof. For any µ1 ∈ D, µ2 ∈ D, and λ ∈ [0, 1], we have

α(λµ1 + (1− λ)µ2) = inf
w∈X

∑Q
q=1 Θq(λµ1 + (1− λ)µ2)a

q(w,w)

‖w‖2
X

≥ inf
w∈X

∑Q
q=2 (λΘq(µ1) + (1− λ)Θq(µ2)) a

q(w,w)

‖w‖2
X

≥ λ inf
w∈X

∑Q
q=1 Θq(µ1)a

q(w,w)

‖w‖2
X

+ (1− λ) inf
w∈X

∑Q
q=1 Θq(µ2)a

q(w,w)

‖w‖2
X

= λα(µ1) + (1− λ)α(µ2)

from the concavity of Θq(µ) and the positive-semidefiniteness of aq(·, ·) for 1 ≤ q ≤ Q.

It is necessary to study and exploit the concavity of α(µ) because if α(µ) is concave

we may then pursue the lower bound construction based directly on α(µ) rather than

the concave but more expensive intermediary F(µ − µ;µ). However, since the above

assumptions are quite restricted, Lemma 4.2.1 is of little practical value. We henceforth

opt a complicated but general construction as discussed next.
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4.2.2 Lower Bound Formulation

We now consider the construction of α̂(µ), a lower bound for α(µ). To begin, given µ ∈ D

and t = (t(1), . . . , t(P )) ∈ RP , we introduce the bilinear form

T (w, v; t;µ) = a(w, v;µ)X +
P∑

p=1

t(p)

Q∑
q=1

∂Θq

∂µ(p)

(µ)aq(w, v) (4.7)

and associated Rayleigh quotient

F(t;µ) = min
v∈X

T (v, v; t;µ)

‖v‖2
X

. (4.8)

It is crucial to note (and we shall exploit) the property that F(t;µ) is concave in t, and

hence Dµ ≡
{
µ ∈ RP | F(µ− µ;µ) ≥ 0

}
is perforce convex.

Lemma 4.2.2. For given µ ∈ D, the function F(t;µ) is concave in t. Hence, given

t1 < t2, for all t ∈ [t1, t2], F(t;µ) ≥ min(F(t1; µ),F(t2; µ)).

Proof. We define λ = (t2 − t)/(t2 − t1) ∈ [0, 1] such that t = λt1 + (1 − λ) t2. It follows

from (4.7) that T (v, v; t;µ) = λ T (v, v; t1;µ) + (1− λ) T (v, v; t2;µ) , and hence

F(t;µ) = infv∈X (λ T (v, v; t1;µ) + (1− λ) T (v, v; t2;µ)) /‖v‖2
X

≥ λ F(t1;µ) + (1− λ) F(t2;µ)

≥ min(F(t1;µ),F(t2;µ)) .

Next we assume that aq are continuous in the sense that there exist positive finite

constants Γq, 1 ≤ q ≤ Q, such that

|aq(w,w)| ≤ Γq |w|2q , ∀w ∈ X; (4.9)

here |·|q : X → R+ are seminorms that satisfy

CX = sup
w∈X

∑Q
q=1 |w|

2
q

‖w‖2
X

, (4.10)

for some positive constant CX . It is often the case that Θ1(µ) = Constant, in which
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case the q = 1 contribution to the sum in (4.7) and (4.10) may be discarded. (Note that

CX is typically independent of Q, since the aq are often associated with non-overlapping

subdomains of Ω.) We may then define, for µ ∈ D, µ ∈ D,

Φ(µ, µ) ≡ CX max
q∈{1,...,Q}

(
Γq

∣∣∣∣∣Θq(µ)−Θq(µ)−
P∑

p=1

(µ(p) − µ(p))
∂Θq

∂µ(p)

(µ)

∣∣∣∣∣
)

, (4.11)

where µ ∈ RP is denoted (µ(1), . . . , µ(p)).

In short, F(µ−µ;µ) represents the first-order terms in parameter expansions about µ

of α(µ); and Φ(µ, µ) is a second-order remainder term that bounds the effect of deviation

(of the operator coefficients) from linear parameter dependence.

We can now develop our lower bound α̂(µ). We first require a parameter sample VJ ≡

{µ1 ∈ D, . . . , µJ ∈ D} and associated sets of polytopes, PJ ≡ {Pµ1 ∈ Dµ1 , . . . ,PµJ ∈

DµJ} that satisfy a “Coverage Condition,”

D ⊂
J⋃

j=1

P µ̄j , (4.12)

and a “Positivity Condition,”

min
ν∈Vµ̄j

F(ν − µ̄j; µ̄j)− max
µ∈Pµ̄j

Φ(µ; µ̄j) ≥ εαα(µ̄j), 1 ≤ j ≤ J . (4.13)

Here V µ̄j is the set of vertices associated with the polytope P µ̄j — for example, P µ̄j may

be a simplex with |V µ̄j | = P +1 vertices; and εα ∈ ]0, 1[ is a prescribed accuracy constant.

Our lower bound is then given by

α̂PC(µ) ≡ max
j∈{1,...,J}|µ∈Pµ̄j

εαα(µj) , (4.14)

which is a piecewise–constant approximation for α(µ). However, in some cases it is

advantageous to define a piecewise–linear approximation

α̂PL(µ) ≡ max
j∈{1,...,J}|µ∈Pµ̄j

[
(1− λ(µ))α(µj) + λ(µ)εαα(µj)

]
; (4.15)
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where λ(µ) is given by

λ(µ) =
|µj − µ|
|µj − µe

j |
. (4.16)

Here µe
j is the intersection point between the line µjµ with one of the edges of the polytope

P µ̄j ; and |·| denotes the Euclidean length of a vector; also note that 0 ≤ λ(µ) ≤ 1. Finally,

we introduce an index mapping I : D → {1, . . . , J} such that for any µ ∈ D,

Iµ = arg max
j∈{1,...,J}

εαα(µj), (4.17)

for piecewise–constant lower bound; but

Iµ = arg max
j∈{1,...,J}

[
(1− λ(µ))α(µj) + λ(µ)εαα(µj)

]
, (4.18)

for piecewise–linear lower bound. We can readily show that

4.2.3 Bound Proof

Proposition 2. For any VJ and PJ such that the Coverage Condition (4.12) and Posi-

tivity Condition (4.13) are satisfied, we have εαα
(
µIµ

)
= α̂PC(µ) ≤ α(µ) , ∀ µ ∈ D.

Proof. To simplify the notation we denote µIµ by µ and note from (4.6) and (4.5) to

express α(µ) as

α(µ) = inf
w∈X

a(w,w;µ) +
∑Q

q=1 (Θq(µ)−Θq(µ)) aq(w,w)

‖w‖2
X

≥ inf
w∈X

a(w,w;µ) +
∑P

p=1

∑Q
q=1(µ(p) − µ(p))

∂Θq

∂µ(p)
(µ)aq(w,w)

‖w‖2
X

+ inf
w∈X

∑Q
q=1

(
Θq(µ)−Θq(µ)−

∑P
p=1(µ(p) − µ(p))

∂Θq(µ)
∂µ(p)

)
aq(w,w)

‖w‖2
X

≥ F(µ− µ;µ)

− sup
w∈X

∑Q
q=1

(
Θq(µ)−Θq(µ)−

∑P
p=1(µ(p) − µ(p))

∂Θq(µ)
∂µ(p)

)
aq(w,w)

‖w‖2
X

. (4.19)
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Furthermore, from (4.9), (4.10) and (4.11) we have

sup
w∈X

Q∑
q=1

(
Θq(µ)−Θq(µ)−

P∑
p=1

(µ(p) − µ(p))
∂Θq

∂µ(p)

(µ)

)
aq(w,w)

‖w‖2
X

≤ sup
w∈X

Q∑
q=1

∣∣∣∣∣Θq(µ)−Θq(µ)−
Q∑

p=1

(µ(p) − µ(p))
∂Θq

∂µ(p)

(µ)

∣∣∣∣∣ |aq(w,w)|
‖w‖2

X

≤ max
q∈{1,...,Q}

(
Γq

∣∣∣∣∣Θq(µ)−Θq(µ)−
Q∑

p=1

(µ(p) − µ(p))
∂Θq

∂µ(p)

(µ)

∣∣∣∣∣
)

sup
w∈X

∑Q
q=1 |w|

2
q

‖w‖2
X

= Φ(µ, µ) . (4.20)

We thus conclude from (4.19) and (4.20) that

α(µ) ≥ F(µ− µ̄; µ̄)− Φ(µ, µ̄)

≥ min
ν∈Vµ̄

F(ν − µ̄; µ̄)−max
µ∈Pµ̄

Φ(µ; µ̄)

≥ εαα(µ̄) = α̂PC(µ) (4.21)

from the construction of VJ and PJ , the definition of α̂PC(µ), and the concavity of F(µ−

µ;µ) in µ.

In addition, there is a special case that should be exploited to enhance our lower

bounds for the stability factor and also to ease computational effort. In particular, if

−Φ(µ, µ) is concave in µ (which can be verified a priori for given coefficient functions

Θq(µ), 1 ≤ q ≤ Q), we can combine the two functions F(µ− µ;µ) and −Φ(µ, µ) into the

min in the Positivity Condition. Furthermore, we also obtain lower-bound property for

our piecewise-linear approximation α̂PL(µ). This follows from our proof in Proposition 2

and concavity of the function F(µ− µ;µ)− Φ(µ, µ) in µ.

Corollary 4.2.3. If −Φ(µ, µ) is a concave function of µ in Dµ̄ for all µ̄ ∈ D, then the

Positivity Condition is defined as

min
ν∈Vµ̄j

{F(ν − µ̄j; µ̄j)− Φ(µ; µ̄j)} ≥ εαα(µ̄j), 1 ≤ j ≤ J ; (4.22)

and α̂PL(µ) satisfies α̂PC(µ) ≤ α̂PL(µ) ≤ α(µ), ∀µ ∈ Dµ̄Iµ, where Iµ is determined

by (4.18).
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It remains to address the question for which functions Θq(µ), 1 ≤ q ≤ Q, −Φ(µ, µ) is

a concave function of µ in Dµ̄.

Lemma 4.2.4. For any µ̄ ∈ D, if Θq(µ), 1 ≤ q ≤ Q, are either concave or convex in Dµ̄

then the function −Φ(µ, µ̄) is concave in Dµ̄.

Proof. Equivalently, we need to show the convexity of Φ(µ, µ̄) in Dµ̄. To this end, we

note from convex analysis and differentiability of Θq(µ) that

Θq(µ) ≥ Θq(µ)−
P∑

p=1

(µ(p) − µ(p))
∂Θq

∂µ(p)

(µ), ∀ µ ∈ Dµ̄ , (4.23)

if Θq(µ) is convex and that

Θq(µ) ≤ Θq(µ)−
P∑

p=1

(µ(p) − µ(p))
∂Θq

∂µ(p)

(µ), ∀ µ ∈ Dµ̄ , (4.24)

if Θq(µ) is concave. We thus obtain

Ψq(µ) ≡

∣∣∣∣∣Θq(µ)−Θq(µ)−
P∑

p=1

(µ(p) − µ(p))
∂Θq

∂µ(p)

(µ)

∣∣∣∣∣
=

 Θq(µ)−Θq(µ)−
∑P

p=1 (µ(p) − µ(p))
∂Θq

∂µ(p)
(µ) if Θq(µ) is convex

Θq(µ) +
∑P

p=1 (µ(p) − µ(p))
∂Θq

∂µ(p)
(µ)−Θq(µ) if Θq(µ) is concave

(4.25)

which are convex functions of µ in Dµ̄ for q = 1, . . . , Q. Since furthermore Φ(µ, µ̄) defined

in (4.11) is a pointwise maximum function, it follows from the convexity of Ψq(µ), q =

1, . . . , Q, that Φ(µ, µ̄) is convex in Dµ̄.

4.3 Lower Bounds for Noncoercive Problems

4.3.1 Inf-Sup Parameter

Again we consider the single stability-factor bound conditioner and also assume that the

bilinear form a admits an affine decomposition (4.5). For noncoercive operators, stability
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and thus well-posedness is guaranteed by an inf-sup condition

0 < β0 ≤ β(µ) ≡ inf
w∈X

sup
v∈X

a(w, v;µ)

‖w‖X‖v‖X

, ∀µ ∈ D . (4.26)

Here β(µ) is the Babuška “inf–sup” parameter — the minimum (generalized) singular

value associated with our differential operator. It shall prove convenient to write the

stability parameter in terms of a supremizing operator T µ : X → X such that, for any w

in X

(T µw, v)X = a(w, v;µ), ∀ v ∈ X ; (4.27)

it is readily shown by Riesz representation that

T µw = arg sup
v∈X

a(w, v;µ)

‖v‖
, ∀ v ∈ X . (4.28)

We then define

σ(w;µ) ≡ ‖T µw‖X

‖w‖X

, (4.29)

and note from (4.26), (4.28), (4.29) that

β(µ) = inf
w∈X

σ(w;µ) . (4.30)

In the following, we construct a lower bound for β(µ) for real noncoercive problems. See

Appendix C for the lower bound formulation for complex noncoercive problems in which

X is the function space over the complex field C and Θq : D → C are complex functions.

4.3.2 Inf-Sup Lower Bound Formulation

To begin, given µ ∈ D and t = (t(1), . . . , t(P )) ∈ RP , we introduce the bilinear form

T (w, v; t;µ) = (T µw, T µv)X

+
P∑

p=1

t(p)

{
Q∑

q=1

∂Θq

∂µ(p)

(µ)
[
aq(w, T µv) + aq(v, T µw)

]}
(4.31)
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and associated Rayleigh quotient

F(t;µ) = min
v∈X

T (v, v; t;µ)

‖v‖2
X

. (4.32)

In a similar argument, we can prove that F(t;µ) is concave in t; and hence Dµ ≡{
µ ∈ RP | F(µ− µ;µ) ≥ 0

}
is perforce convex.

We next assume that aq are continuous in the sense that there exist positive finite

constants Γq, 1 ≤ q ≤ Q, such that

|aq(w, v)| ≤ Γq |w|q |v|q , ∀w, v ∈ X . (4.33)

Here |·|q : H1(Ω) → R+ are seminorms that satisfy

CX = sup
w∈X

Q∑
q=1

|w|2q

‖w‖2
X

, (4.34)

for some positive parameter-independent constant CX . We then define, for µ ∈ D, µ ∈ D,

Φ(µ, µ) ≡ CX max
q∈{1,...,Q}

(
Γq

∣∣∣∣∣Θq(µ)−Θq(µ)−
P∑

p=1

(µ(p) − µ(p))
∂Θq

∂µ(p)

(µ)

∣∣∣∣∣
)

. (4.35)

In short, T (w,w;µ − µ;µ)/‖w‖2
X and F(µ − µ;µ) represent the first-order terms in

parameter expansions about µ of σ2(w;µ) and β2(µ), respectively; and Φ(µ, µ) is a second-

order remainder term that bounds the effect of deviation (of the operator coefficients)

from linear parameter dependence.

We now require a parameter sample VJ ≡ {µ1 ∈ D, . . . , µJ ∈ D} and associated sets

of polytopes, PJ ≡ {Pµ1 ∈ Dµ1 , . . . ,PµJ ∈ DµJ} that satisfy a “Coverage Condition,”

D ⊂
J⋃

j=1

P µ̄j , (4.36)
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and a “Positivity Condition,”

min
ν∈Vµ̄j

√
F(ν − µ̄j; µ̄j)− max

µ∈Pµ̄j
Φ(µ; µ̄j) ≥ εββ(µ̄j), 1 ≤ j ≤ J . (4.37)

Here V µ̄j is the set of vertices associated with the polytope P µ̄j ; and εβ ∈ ]0, 1[ is a

prescribed accuracy constant. Our lower bound is then given by

β̂PC(µ) ≡ max
j∈{1,...,J}|µ∈Pµ̄j

εββ(µj). (4.38)

which is a piecewise–constant approximation for β(µ). However, in some cases it is

possible to define a piecewise–linear approximation

β̂PL(µ) ≡ max
j∈{1,...,J}|µ∈Pµ̄j

[
(1− λ(µ)) β(µj) + λ(µ)εββ(µj)

]
, (4.39)

where as before λ(µ) is given by

λ(µ) =
|µj − µ|
|µj − µe

j |
. (4.40)

Here µe
j is the intersection point between the line µjµ with one of the edges of the polytope

P µ̄j . We finally introduce an index mapping I : D → {1, . . . , J} such that for any µ ∈ D,

Iµ = arg max
j∈{1,...,J}

εββ(µj), (4.41)

for piecewise–constant lower bound; but

Iµ = arg max
j∈{1,...,J}

[
(1− λ(µ)) β(µj) + λ(µ)εββ(µj)

]
, (4.42)

for piecewise–linear lower bound. We can readily demonstrate that

4.3.3 Bound Proof

Proposition 3. For any VJ and PJ such that the Coverage Condition (4.36) and Posi-

tivity Condition (4.37) are satisfied, we have εββ
(
µIµ

)
= β̂PC(µ) ≤ β(µ) , ∀ µ ∈ DµIµ .

Proof. To simplify the notation we denote µIµ by µ and express T µw = T µw + (T µw −
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T µw) as in (4.29) to obtain

σ2(w;µ) = {‖T µw‖2
X + ‖T µw − T µw‖2

X + 2(T µw − T µw, T µw)X}/‖w‖2
X . (4.43)

We next note from (4.5) and (4.27) that, for t = µ− µ,

(T µw − T µw, T µw)X =

Q∑
q=1

(Θq(µ)−Θq(µ))aq(w, T µw)

=
P∑

p=1

Q∑
q=1

t(p)
∂Θq

∂µ(p)

(µ)aq(w, T µw)

+

Q∑
q=1

(
Θq(µ)−Θq(µ)−

P∑
p=1

t(p)
∂Θq(µ)

∂µ(p)

)
aq(w, T µw).(4.44)

Furthermore, it follows from (4.33), (4.34), (4.35), triangle inequality, and Cauchy-

Schwarz inequality that

∣∣∣∣∣
Q∑

q=1

(
Θq(µ)−Θq(µ)−

P∑
p=1

(µ(p) − µ(p))
∂Θq

∂µ(p)

(µ)

)
aq(w, T µw)

∣∣∣∣∣
≤ max

q∈{1,...,Q}

(
Γq

∣∣∣∣∣Θq(µ)−Θq(µ)−
P∑

p=1

(µ(p) − µ(p))
∂Θq

∂µ(p)

(µ)

∣∣∣∣∣
)

Q∑
q=1

|w|q|T µw|q

≤ Φ(µ, µ)||w||X ||T µw||X

≤ Φ(µ, µ)||w||X
(
||T µw||X + ||T µw − T µw||X

)
≤ Φ(µ, µ)||w||X ||T µw||X +

1

2
||T µw − T µw||2X +

1

2
Φ2(t;µ)||w||2X . (4.45)

We thus conclude from (4.31), (4.43), (4.44), and (4.45) that

σ2(w;µ) ≥ T (w,w; t;µ)

‖w‖2
X

− 2Φ(µ, µ) σ(w;µ)− Φ2(t;µ) . (4.46)

We now solve the quadratic inequality to obtain

σ(w;µ) ≥
[
T (w,w;µ− µ;µ)/‖w‖2

X

] 1
2 − Φ(µ, µ) . (4.47)
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It immediately follows from (4.30, (4.32) and (4.47) that

β(µ) ≥
√
F(µ− µ;µ)− Φ(µ, µ) . (4.48)

The desired result finally follows from the construction of VJ and PJ , the definition of

β̂PC(µ) and β̂PL(µ), and the concavity of F(µ− µ;µ) in µ.

In fact, we can prove Proposition 3 by following a straightforward (simpler) route

β(µ) ≥ inf
w∈X

a(w, T µw;µ)

‖w‖X‖T µw‖X

= inf
w∈X

a(w, T µw; µ̄) + a(w, T µw;µ)− a(w, T µw; µ̄)

‖w‖X‖T µw‖X

= inf
w∈X

(T µw, T µw)X +
∑P

p=1

∑Q
q=1(µ(p) − µ̄(p))

∂Θq

∂µ(p)
(µ)aq(w, T µw)

‖w‖X‖T µw‖X

+

∑Q
q=1

(
Θq(µ)−Θq(µ)−

∑P
p=1(µ(p) − µ̄(p))

∂Θq(µ)
∂µ(p)

)
aq(w, T µw)

‖w‖X‖T µw‖X


≥ inf

w∈X

(T µw, T µw)X +
∑P

p=1

∑Q
q=1(µ(p) − µ̄(p))

∂Θq

∂µ(p)
(µ)aq(w, T µw)

‖w‖X‖T µw‖X

− sup
w∈X

∑Q
q=1

(
Θq(µ)−Θq(µ)−

∑P
p=1(µ(p) − µ̄(p))

∂Θq(µ)
∂µ(p)

)
aq(w, T µw)

‖w‖X‖T µw‖X

≥

√√√√
inf

w∈X

(
(T µw, T µw)X +

∑P
p=1

∑Q
q=1(µ(p) − µ̄(p))

∂Θq

∂µ(p)
(µ)aq(w, T µw)

)2

‖w‖2
X‖T µw‖2

X

− max
q∈{1,...,Q}

(
Γq

∣∣∣∣∣Θq(µ)−Θq(µ)−
P∑

p=1

(µ− µ)(p)
∂Θq(µ)

∂µ(p)

∣∣∣∣∣
)

sup
w∈X

∑Q
q=1 |w|q|T µw|q
‖w‖X‖T µw‖X

≥
[
T (w,w;µ− µ;µ)/‖w‖2

X

] 1
2 − Φ(µ, µ)

from (4.5), (4.27), (4.31), (4.43), (4.44), (4.45), and Cauchy-Schwarz inequality.

By a similar argument as for the coercive case, we can also state

Corollary 4.3.1. If −Φ(µ, µ) is a concave function of µ in Dµ̄ for all µ̄ in D, then the

Positivity Condition is defined as

min
ν∈Vµ̄j

{
√
F(ν − µ̄j; µ̄j)− Φ(µ; µ̄j)} ≥ εββ(µ̄j), 1 ≤ j ≤ J ; (4.49)
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and β̂PL(µ) satisfies β̂PC(µ) ≤ β̂PL(µ) ≤ β(µ),∀µ ∈ DµIµ, where Iµ is determined

by (4.42).

In Lemma 4.2.4, we demonstrate that if Θq(µ), q = 1, . . . , Q, are either convex or

concave in Dµ̄ then −Φ(µ, µ) is concave in Dµ̄.

4.3.4 Discrete Eigenvalue Problems

We address the numerical calculation of the inf-sup parameter β(µ) and the Rayleigh

quotient F(µ − µ̄; µ̄). To begin, we denote by A(µ), Aq, C the finite element matrices

associated with a(·, ·;µ), aq(·, ·), (·, ·)X , respectively. We introduce the discrete eigen-

problem: Given µ ∈ D, find the minimum eigenmode (χ
min

(µ), λmin(µ)) such that

(A(µ))TC−1A(µ)χ
min

(µ) = λmin(µ)Cχ
min

(µ) , (4.50)

(χ
min

(µ))TCχ
min

(µ) = 1 . (4.51)

The discrete value of β(µ) is then
√
λmin(µ).

The computation of F involving a more complex eigenvalue problem is rather com-

plicated and more expensive. In particular, we first write the matrix form T (µ− µ̄; µ̄) of

the bilinear form T (·, ·;µ− µ̄; µ̄) in (4.31) as

T (µ− µ̄; µ̄) = (A(µ))TC−1A(µ)

+
P∑

p=1

(µ− µ̄)(p)

{
Q∑

q=1

∂Θq(µ)

∂µ(p)

[
(Aq)TC−1A(µ) + (A(µ))TC−1Aq

]}
.

Next we introduce the second discrete eigenproblem: Given a pair (µ ∈ D, µ̄ ∈ D), find

Ψmin(µ− µ̄; µ̄) ∈ RN , ρmin(µ− µ̄; µ̄) ∈ R such that

T (µ− µ̄; µ̄) Ψmin(µ− µ̄; µ̄) = ρmin(µ− µ̄; µ̄)C Ψmin(µ− µ̄; µ̄) , (4.52)

(Ψmin(µ− µ̄; µ̄))T C Ψmin(µ− µ̄; µ̄) = 1 . (4.53)

And F(µ− µ̄; µ̄) is essentially the minimum eigenvalue ρmin(µ− µ̄; µ̄).

We see that the two discrete eigenproblems involve the invert matrix C−1. However,
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in our actual implementation, the two eigenproblems can be addressed efficiently by the

Lanczos procedure without calculating C−1 explicitly (see Appendix B for the Lanczos

procedure). Take the first eigenproblem for example, during the Lanczos procedure we

often compute w(µ) = (A(µ))TC−1A(µ)v for some v and do this as follows: solve the

linear system Cy(µ) = A(µ)v for y(µ) and simply set w(µ) = (A(µ))Ty(µ).

4.4 Choice of Bound Conditioner and Seminorms

In this section, we shall give a general guideline how to select appropriate bound condi-

tioner (·; ·)X and seminorms |·|q such that the associated constants Γq, 1 ≤ q ≤ Q, and CX

are small. For simplicity of exposition, we confine our demonstration to two-dimensional

problems. The results for three-dimensional problems can be similarly derived. It shall

prove useful to have a summation convention that repeated subscript indices imply sum-

mation, and unless otherwise indicated, subscript indices take on integers 1 through 2.

4.4.1 Poisson Problems

We are concerned with defining bound conditioner and seminorms for the following bi-

linear form

a(w, v;µ) =

∫
Ω

Cij(µ)
∂v

∂xi

∂w

∂xj

+D(µ)vw . (4.54)

Here Cij(µ) and D(µ) are parameter-dependent coefficient functions; note that we permit

negative value of D(µ) and in such case arrive at the noncoercive operator. More gener-

ally, we consider inhomogeneous physical domain Ω which consists of R non-overlapping

homogeneous subdomains Ωr such that Ω =
⋃R

r=1 Ω
r

(Ω denotes the closure of Ω). The

bilinear form a is thus given by

a(w, v;µ) =
R∑

r=1

∫
Ωr

Cr
ij(µ)

∂v

∂xi

∂w

∂xj

+Dr(µ)vw . (4.55)
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Assuming that the tensors Cr
ij(µ), 1 ≤ r ≤ R, are symmetric, we next rearrange (4.55) to

obtain the desired form (4.5) with

aq(1,r)(w, v) =

∫
Ωr

∂w

∂x1

∂v

∂x2

+
∂w

∂x2

∂v

∂x1

, Θq(1,r)(µ) = Cr
12(µ) = Cr

21(µ) ,

aq(2,r)(w, v) =

∫
Ωr

∂w

∂x1

∂v

∂x1

, Θq(2,r)(µ) = Cr
11(µ) ,

aq(3,r) =

∫
Ωr

∂w

∂x2

∂v

∂x2

, Θq(3,r)(µ) = Cr
22(µ) ,

aq(4,r)(w, v) =

∫
Ωr

wv, Θq(4,r)(µ) = Dr(µ) ,

for q : {1, . . . , 4} × {1, . . . , R} → {1, . . . , Q}. We then define associated seminorms

|w|2q(1,r) =

∫
Ωr

(
∂w

∂x1

)2

+

(
∂w

∂x2

)2

, |w|2q(2,r) =

∫
Ωr

(
∂w

∂x1

)2

, (4.56)

|w|2q(3,r) =

∫
Ωr

(
∂w

∂x2

)2

, |w|2q(4,r) =

∫
Ωr

w2 . (4.57)

By using Cauchy-Schwarz inequality, we find Γq = 1, 1 ≤ q ≤ Q as follows

aq(1,r)(w, v) =

∫
Ωr

∂w

∂x1

∂v

∂x2

+
∂w

∂x2

∂v

∂x1

≤

√∫
Ωr

(
∂w

∂x1

)2
√∫

Ωr

(
∂v

∂x2

)2

+

√∫
Ωr

(
∂w

∂x2

)2
√∫

Ωr

(
∂v

∂x1

)2

≤

√∫
Ωr

(
∂w

∂x1

)2

+

(
∂w

∂x2

)2
√∫

Ωr

(
∂v

∂x1

)2

+

(
∂v

∂x2

)2

= |w|q(1,r) |v|q(1,r)

for 1 ≤ r ≤ R; furthermore, the remaining bilinear forms are positive-semidefinite and

thus satisfy aq(w, v) ≤
√
aq(w,w)

√
aq(v, v) = |w|q|v|q.

Finally, we define our bound conditioner as

(w, v)X =

∫
Ω

∂w

∂x1

∂v

∂x1

+
∂w

∂x2

∂v

∂x2

+ wv , (4.58)
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which is simply the standard H1(Ω) inner product. We thus obtain

CX = sup
w∈X

∑Q
q(1,r) |w|2q(1,r)

‖w‖2
X

= sup
w∈X

∫
Ω

2 |∇w|2 + w2∫
Ω
|∇w|2 + w2

≤ 2 . (4.59)

4.4.2 Elasticity Problems

We consider here plane elasticity problems. A similar derivation can be easily carried out

for more general cases including three-dimensional elasticity problems. In particular, we

wish to choose bound conditioner and seminorms for the following elasticity operator

a(w, v;µ) =
R∑

r=1

∫
Ωr

∂vi

∂xj

Cr
ijk`(µ)

∂wk

∂x`

+Dr
i (µ)viwi . (4.60)

Here Ω consists of R non-overlapping homogeneous subdomains Ωr such that Ω =⋃R
r=1 Ω

r
; Cr

ijk`(µ) is the elasticity tensor and Dr
i (µ) is related to frequency and mate-

rial quantity such as density; both of them are parameter-dependent and Dr
i (µ) can be

negative. We assume that the tensors Cr
ijk`(µ) are symmetric such that a comprises the

following parameter-independent bilinear forms

aq(1,r)(w, v) = cr1

∫
Ωr

(
∂v1

∂x1

∂w2

∂x2

+
∂v2

∂x2

∂w1

∂x1

)
, aq(2,r)(w, v) = cr2

∫
Ωr

(
∂v1

∂x2

∂w2

∂x1

+
∂v2

∂x1

∂w1

∂x2

)
,

aq(3,r)(w, v) = cr3

∫
Ωr

(
∂v1

∂x1

∂w1

∂x1

)
, aq(4,r)(w, v) = cr4

∫
Ωr

(
∂v2

∂x1

∂w2

∂x1

)
,

aq(5,r)(w, v) = cr5

∫
Ωr

(
∂v2

∂x2

∂w2

∂x2

)
, aq(6,r)(w, v) = cr6

∫
Ωr

(
∂v1

∂x2

∂w1

∂x2

)
,

aq(7,r)(w, v) = cr7

∫
Ωr

w1v1, aq(8,r)(w, v) = cr8

∫
Ωr

w2v2 ,

for q : {1, . . . , 8} × {1, . . . , R} → {1, . . . , Q}, where cr1, . . . , c
r
8 are positive constants. We

next introduce associated seminorms

|w|2q(1,r) = cr1

∫
Ωr

(
∂w1

∂x1

)2

+

(
∂w2

∂x2

)2

, |w|2q(2,r) = cr2

∫
Ωr

(
∂w2

∂x1

)2

+

(
∂w1

∂x2

)2

, (4.61)
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|w|2q(3,r) = cr3

∫
Ωr

(
∂w1

∂x1

)2

, |w|2q(4,r) = cr4

∫
Ωr

(
∂w2

∂x1

)2

, (4.62)

|w|2q(5,r) = cr5

∫
Ωr

(
∂w1

∂x2

)2

, |w|2q(6,r) = cr6

∫
Ωr

(
∂w2

∂x2

)2

, (4.63)

|w|2q(7,r) = cr7

∫
Ωr

w2
1, |w|2q(8,r) = cr8

∫
Ωr

w2
2 . (4.64)

Again by using Cauchy-Schwarz inequality, we obtain Γq = 1, 1 ≤ q ≤ Q, as follows

aq(1,r)(w, v) = cr1

∫
Ωr

(
∂v1

∂x1

∂w2

∂x2

+
∂v2

∂x2

∂w1

∂x1

)
≤ cr1

√∫
Ωr

(
∂v1

∂x1

)2
√∫

Ωr

(
∂w2

∂x2

)2

+ cr1

√∫
Ωr

(
∂v2

∂x2

)2
√∫

Ωr

(
∂w1

∂x1

)2

≤ cr1

√∫
Ωr

(
∂v1

∂x1

)2

+

(
∂v2

∂x2

)2
√∫

Ωr

(
∂w1

∂x1

)2

+

(
∂w2

∂x2

)2

= |w|q(1,r) |v|q(1,r) ,

aq(2,r)(w, v) = cr2

∫
Ωr

(
∂v1

∂x2

∂w2

∂x1

+
∂v2

∂x1

∂w1

∂x2

)
≤ cr2

√∫
Ωr

(
∂v1

∂x2

)2
√∫

Ωr

(
∂w2

∂x1

)2

+ cr2

√∫
Ωr

(
∂v2

∂x1

)2
√∫

Ωr

(
∂w1

∂x2

)2

≤ cr2

√∫
Ωr

(
∂v1

∂x2

)2

+

(
∂v2

∂x1

)2
√∫

Ωr

(
∂w1

∂x2

)2

+

(
∂w2

∂x1

)2

= |w|q(2,r) |v|q(2,r) ,

for 1 ≤ r ≤ R; the other bilinear forms are positive-semidefinite and thus satisfy

aq(w, v) ≤
√
aq(w,w)

√
aq(v, v) = |w|q|v|q.

Finally, we define our bound conditioner as

(w, v)X =
R∑

r=1

∫
Ωr

cr3
∂v1

∂x1

∂w1

∂x1

+ cr4
∂v2

∂x1

∂w2

∂x1

+ cr5
∂v1

∂x2

∂w1

∂x2

+ cr6
∂v2

∂x2

∂w2

∂x2

+ cr7w1v1 + cr8w2v2 . (4.65)
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The associated parameter-independent continuity constant is thus bounded by

CX = sup
w∈X

∑Q
q=1 |w|2q
‖w‖2

X

≤ max
1≤r≤R

{
cr1 + cr3
cr3

,
cr2 + cr4
cr4

,
cr1 + cr5
cr5

,
cr2 + cr6
cr6

}
. (4.66)

In the case of an isotropic medium, cr1 and cr2 are typically smaller than cr3, . . . , c
r
6, 1 ≤

r ≤ R, the continuity constant CX will thus be less than 2. Note also that CX may be

deduced analytically for simple cases; however, for most problems, it can be computed

sharply numerically as a maximum eigenvalue of an eigenproblem.

4.4.3 Remarks

In conclusion, we may select seminorms and define bound conditioner such that Γq =

1, 1 ≤ q ≤ Q and CX = O(1). However, there are certain special structure of the bilinear

form a that can be exploited to obtain tighter bound for CX . In particular, we observe

that if a is affine such that

a(w, v;µ) = Θ1a1(w, v) +

Q∑
q=2

Θq(µ)aq(w, v) ; (4.67)

where Θ1 is a “constant”, then the q = 1 contribution to the sum in (4.31) and (4.34) may

be discarded. We may therefore obtain a sharper value of CX . For example, when a geo-

metric affine transformation involving only dilation and translation from a µ-dependent

domain to a fixed reference domain is applied, it appears that the Θq associated with the

“cross terms” aq(w, v) (e.g., aq(1,r)(w, v) in Poisson problems and aq(1,r)(w, v), aq(2,r)(w, v)

in Elasticity problems) are independent of µ. In such case, we sum these bilinear forms

into a1 and need only to define seminorms for the remaining bilinear forms. This leads to

CX = 1, since (w,w)X =
∑Q

q=2 a
q(w,w). In fact, several numerical examples in this and

subsequent chapters support it. This observation is so important that we formally state

Corollary 4.4.1. (Dilation-Translation Corollary) In the above definition of bound

conditioner and seminorms, if the coefficient functions Θq, q = 1, . . . , QC < Q, associated

with the cross terms aq(·; ·), q = 1, . . . , QC , are parameter-independent, then CX is unity.
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4.5 Lower Bound Construction

In this section, we discuss the construction of our lower bounds for noncoercive operators.

Application of the following development to coercive operators is straightforward.

4.5.1 Offline/Online Computational Procedure

We now turn to the offline/online decomposition. The offline stage comprises two parts:

the generation of a set of points and polytopes/vertices, µ̄j and P µ̄j , V µ̄j , 1 ≤ j ≤ J ;

and the verification that (4.36) (trivial) and (4.37) (nontrivial) are indeed satisfied. We

first focus on verification. To verify (4.37), the essential observation is that the expensive

terms — “truth” eigenproblems associated with F , (4.32), and β, (4.30) — are limited

to a finite set of vertices,

J +
J∑

j=1

|V µ̄j |

in total; only for the extremely inexpensive — and typically algebraically very simple —

Φ(µ; µ̄j) terms must we consider maximization over the polytopes . The dominant compu-

tational cost is thus
J∑

j=1

|V µ̄j | F -solves and J β-solves. Next, we create a search/look-up

table of size J ×P which has row j storing µ̄j while column p storing the pth component

of the vector µ̄j and is ordered such that µ̄j ≤ µ̄i for j ≤ i;1 furthermore, we assign each

µ̄j a list Ij containing indices of its “neighbors” (i.e., if i ∈ Ij then µi is neighboring to

µj). The generation is rather complicated and left for the next subsection.

Fortunately, the online stage (4.38)-(4.39) is very simple: for a given new parameter

µ, we conduct a binary chop search (with cost log J) for an index j such that µ ∈ [µ̄j, µ̄j+1]

and then check (with cost polynomial in P ) all possible polytopes Pi, i ∈ Ij ∪ Ij+1, which

contain the parameter µ.

1By placing the most significant weight to the first component and the least significant weight to
the last component of a vector, we can compare two “vectors” in the same way as two numbers. For
example, the vector (2, 9, 1) is greater than (2, 8, 12) since their first components are equal and the
second component of the first vector is greater than the second component of the second vector.
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4.5.2 Generation Algorithm

The offline eigenvalue problems (4.30) and (4.32) can be rather nasty due to the gen-

eralized nature of our singular value (note T µ involves the inverse Laplacian) and the

presence of a continuous component to the spectrum. However, effective computational

strategies can be developed by making use of inexpensive surrogates for β(µ) and in

particular F(µ− µ;µ). We assume that we may compute efficiently accurate surrogates

β̃(µ) for β(µ) and F̃(µ − µ;µ) for F(µ − µ;µ). To form VJ and PJ for prescribed εβ

such that the coverage condition is satisfied, we exploit a maximal-polytopes construc-

tion based on directional binary chop. For simplicity of exposition, we suppose that

Φ(µ, µ̄) = 0. Now assume that we are given VJ ′ and PJ ′ , we next choose a new point

µ̄J ′+1 ∈ D such that µ̄J ′+1 /∈ ∪J ′
j=1P µ̄j ; we then find the next vertex tuple V µ̄J′+1 ≡ {µ′i ∈

Dµ̄J′+1 , 1 ≤ i ≤ |V µ̄J′+1 |} and the associated polytope P µ̄J′+1 by using binary chop algo-

rithm to solve |V µ̄J′+1 | nonlinear algebraic equations
√
F̃(µ

′
i − µ̄J ′+1; µ̄J ′+1) = εββ̃(µ̄J ′+1)

for vertex points µ
′
i, i = 1, . . . , |V µ̄J′+1|, respectively;2 we continue this process until the

Coverage Condition ∪J
j=1P µ̄j = D is satisfied. Note that all vertex tuples V µ̄j consist of

vertex points satisfying minν∈Vµ̄j

√
F̃(ν − µ̄j; µ̄j) = εββ̃(µ̄j) exactly, which will in turn

lead to maximal polytopes; and hence J is as small as possible.

For our choice of surrogates, the reduced-basis approximation βN(µ) to β(µ) and

FN(µ − µ;µ) to F(µ − µ;µ) are particularly relevant; thanks to the rapid uniform con-

vergence of the reduced-basis approximation, N can be chosen quite small to achieve

extremely inexpensive yet accurate surrogates [85].

4.5.3 A Simple Demonstration

As a simple demonstration, we apply lower bound construction to the Helmholtz-elasticity

crack example described in Section 4.6.1 in which the crack location b and crack length

L are fixed, and only the frequency squared ω2 is permitted to vary in D. It can be

verified for this particular instantiation that P = 1, µ ≡ ω2, and that Q = 2, Θ1(µ) = 1,

Θ2(µ) = −ω2, a1(w, v) is the sum of the first seven bilinear forms in Table 4.1, a2(w, v)

is the sum of the last three bilinear forms in Table 4.1. Clearly, we have Φ(µ, µ̄) = 0.

2Note that the concavity of F(µ − µ̄; µ̄) (and hence F̃(µ − µ̄; µ̄)) allows us to perform very efficient
binary search for the roots of these equations.
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Furthermore for bound conditioner (w, v)X = a1(w, v) + a2(w, v) and seminorms |w|21 =

a1(w,w), |w|22 = a2(w,w), we readily obtain Γ1 = 1, Γ2 = 1, and CX = 1.

(a) (b)

Figure 4-1: A simple demonstration: (a) construction of V µ̄ and P µ̄ for a given µ̄ and (b)
set of polytopes PJ and associated lower bounds β̂PC(µ), β̂PL(µ).

Now for a given µ̄ ≡ µ̄1, we find V µ̄ and P µ̄ by using binary chop algorithm to

solve
√
F̃(µ− µ̄; µ̄) = εββ̃(µ̄). Since F̃(µ − µ̄; µ̄) is concave, the equation has two roots

(represented by the cross points) which form V µ̄ as shown in Figure 4-1(a). We next

choose a second point µ2 /∈ P µ̄1 and similarly construct V µ̄2 and P µ̄2 . As shown in

Figure 4-1(b), the two polytopes P µ̄1 and P µ̄2 are overlapped and satisfy D ⊂ P µ̄1 ∪P µ̄2 ;

hence the generation stage is done. The verification is simple: we first obtain β(µ̄1), β(µ̄2)

and F(µ′ − µ̄1; µ̄1) for µ′ ∈ V µ̄1 , F(µ′ − µ̄2; µ̄2) for µ′ ∈ V µ̄2 and then verify that (4.37)

is indeed satisfied for εβ = 0.48. The piecewise-constant approximation β̂PC(µ) and

piecewise-linear approximation β̂PL(µ) to β(µ) are also presented in Figure 4-1(b).

Note however that we use reduced-basis surrogates to generate the necessary set of

points and polytopes; hence in the verification stage the Positivity Condition may not be

respected for the prescribed εβ which is used during the generation. In this case, we need

to adjust εβ. This may result in a slightly different new value of εβ since the reduced-basis

surrogates are generally very accurate.
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4.6 Numerical Examples

4.6.1 Helmholtz-Elasticity Crack Problem

We consider a two-dimensional thin plate with a horizontal crack at the (say) interface of

two lamina with a horizontal crack at the (say) interface of two lamina: the (original) do-

main Ω̃(b, L) ⊂ R2 is defined as [0, 2]×[0, 1]\Γ̃C, where Γ̃C ≡ {x̃1 ∈ [b−L/2, b+L/2], x̃2 =

1/2} defines the idealized crack. The crack surface is modeled extremely simplistically as

a stress-free boundary. The left surface of the plate Γ̃D is secured; the top and bottom

boundaries Γ̃N are stress-free; and the right boundary Γ̃F is subject to a vertical oscillatory

uniform force of frequency ω. Our parameter is thus µ ≡ (µ(1), µ(2), µ(3)) = (ω2, b, L). We

model the plate as plane-stress linear isotropic elastic with (scaled) density unity, Young’s

modulus unity, and Poisson ratio 0.25. The governing equations for the displacement field

ũ(x̃;µ) ∈ X̃(µ) are thus

∂σ̃11

∂x̃1

+
∂σ̃12

∂x̃2

+ ω2ũ2
1 = 0

∂σ̃12

∂x̃1

+
∂σ̃22

∂x̃2

+ ω2ũ2
2 = 0

(4.68)

ε̃11 =
∂ũ1

∂x̃1

, ε̃22 =
∂ũ2

∂x̃2

, 2ε̃12 =

(
∂ũ1

∂x̃2

+
∂ũ2

∂x̃1

)
, (4.69)


σ̃11

σ̃22

σ̃12

 =


c11 c12 0

c12 c22 0

0 0 c66




ε̃11

ε̃22

ε̃12

 (4.70)

where the constitutive constants are given by

c11 =
1

1− ν2
, c22 = c11, c12 =

ν

1− ν2
, c66 =

1

2(1 + ν)
.

The boundary conditions on the (secured) left edge are

ũ1 = ũ2 = 0, on Γ̃D . (4.71)

93



The boundary conditions on the top and bottom boundaries and the crack surface are

σ̃11
ˆ̃n1 + σ̃12

ˆ̃n2 = 0 on Γ̃N ∪ Γ̃C ,

σ̃12
ˆ̃n1 + σ̃22

ˆ̃n2 = 0 on Γ̃N ∪ Γ̃C .
(4.72)

The boundary conditions on the right edge are

σ̃11
ˆ̃n1 + σ̃12

ˆ̃n2 = 0 on Γ̃F ,

σ̃12
ˆ̃n1 + σ̃22

ˆ̃n2 = 1 on Γ̃F .
(4.73)

Here ˆ̃n is the unit outward normal to the boundary. We now introduce X̃(µ) — a

quadratic finite element truth approximation subspace (of dimension N = 14,662) of

Xe(µ) = {ṽ ∈ (H1(Ω̃(b, L)))2 | ṽ|Γ̃F
= 0}. The weak formulation can then be derived as

ã(ũ(µ), ṽ;µ) = f̃(ṽ), ∀ ṽ ∈ X̃(µ) (4.74)

where

ã(w, v;µ) = c12

∫
Ω̃

(
∂v1

∂x̃1

∂w2

∂x̃2

+
∂v2

∂x̃2

∂w1

∂x̃1

)
+ c66

∫
Ω̃

(
∂v1

∂x̃2

∂w2

∂x̃1

+
∂v2

∂x̃1

∂w1

∂x̃2

)
+ c11

∫
Ω̃

(
∂v1

∂x̃1

∂w1

∂x̃1

)
+ c66

∫
Ω̃

(
∂v2

∂x̃1

∂w2

∂x̃1

)
+ c22

∫
Ω̃

(
∂v2

∂x̃2

∂w2

∂x̃2

)
+ c66

∫
Ω̃

(
∂v1

∂x̃2

∂w1

∂x̃2

)
− ω2

∫
Ω̃

w1v1 + w2v2,(4.75)

f̃(v) =

∫
Γ̃F

v2 . (4.76)

We now define three subdomains Ω1 ≡ ]0, br − Lr/2[× ]0, 1[ , Ω2 ≡ ]br − Lr/2, br +

Lr/2[× ]0, 1[ , Ω3 ≡ ]br + Lr/2, 2[× ]0, 1[ and a reference domain Ω as Ω = Ω1 ∪Ω2 ∪Ω3;

clearly, Ω is corresponding to the geometry b = br = 1.0 and L = Lr = 0.2. We then map

Ω̃(b, L) → Ω ≡ Ω̃(br, Lr) by a continuous piecewise-affine (in fact, piecewise-dilation-in-

x1) transformation (details of the problem formulation in terms of the reference domain

can be found in Section 9.2.) This new problem can now be cast precisely in the desired

form a(u, v;µ) = f(v),∀v ∈ X, in which Ω, X, and (w, v)X are independent of the
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q Θq(µ) aq(w, v)

1 1 c12

∫
Ω

(
∂v1

∂x1

∂w2

∂x2
+ ∂v2

∂x2

∂w1

∂x1

)
+ c66

∫
Ω

(
∂v1

∂x2

∂w2

∂x1
+ ∂v2

∂x1

∂w1

∂x2

)
2 br−Lr/2

b−L/2
c11
∫

Ω1

(
∂v1

∂x1

∂w1

∂x1

)
+ c66

∫
Ω1

(
∂v2

∂x1

∂w2

∂x1

)
3 Lr

L
c11
∫

Ω2

(
∂v1

∂x1

∂w1

∂x1

)
+ c66

∫
Ω2

(
∂v2

∂x1

∂w2

∂x1

)
4 2−br−Lr/2

2−b−L/2
c11
∫

Ω3

(
∂v1

∂x1

∂w1

∂x1

)
+ c66

∫
Ω3

(
∂v2

∂x1

∂w2

∂x1

)
5 b−L/2

br−Lr/2
c22
∫

Ω1

(
∂v2

∂x2

∂w2

∂x2

)
+ c66

∫
Ω1

(
∂v1

∂x2

∂w1

∂x2

)
6 L

Lr
c22
∫

Ω2

(
∂v2

∂x2

∂w2

∂x2

)
+ c66

∫
Ω2

(
∂v1

∂x2

∂w1

∂x2

)
7 2−b−L/2

2−br−Lr/2
c22
∫

Ω3

(
∂v2

∂x2

∂w2

∂x2

)
+ c66

∫
Ω3

(
∂v1

∂x2

∂w1

∂x2

)
8 −ω2 b−L/2

br−Lr/2

∫
Ω1
w1v1 + w2v2

9 −ω2 L
Lr

∫
Ω2
w1v1 + w2v2

10 −ω2 2−b−L/2
2−br−Lr/2

∫
Ω3
w1v1 + w2v2

Table 4.1: Parametric functions Θq(µ) and parameter-independent bilinear forms aq(w, v)
for the two-dimensional crack problem.

parameter µ. In particular, our bilinear form a is affine for Q = 10 as shown in Table 4.1.

4.6.2 A Coercive Case: Equilibrium Elasticity

As an illustrative example of coercive problems, we consider the Helmholtz-elasticity

crack example above for µ = (ω2 = 0, b ∈ [0.9, 1.1], L ∈ [0.15, 0.25]). The elasticity

operator becomes coercive for zero frequency. Our affine assumption (4.5) thus applies

for Q = 7, where Θq(µ) and aq, 1 ≤ q ≤ 7, are the first seven entries in Table 4.1 and

convex in D ≡ [0.9, 1.1] × [0.15, 0.25]; furthermore, since Θ1(µ) = 1 we may choose our

bound conditioner (w, v)X =
∑Q

q=1 a
q(w, v) and seminorms |w|2q = aq(w,w), 2 ≤ q ≤ Q.

It thus follows that Γq = 1, 2 ≤ q ≤ Q, and (numerically computed) CX = 1.9430.

We present in Figure 4-2 α(µ) and α̂(µ;µ) ≡ F(µ;µ) − Φ(µ, µ) for µ = (0, 1.0, 0.2)

as a function of µ. We find that a sample EJ=1 suffices to satisfy our Positivity and

Coverage Conditions for εα = 0.38. The value of J is equal to 1 since (i) α(µ) is highly

smooth in µ — generally the case for coercive operators, (ii) F correctly captures the

first-order information, and (iii) the more pessimistic bounds (e.g., CX) appear only

to second order. We further observe that both α(µ) and α̂(µ;µ) are concave in µ and

that α̂(µ;µ) is a strict lower bound of α(µ). The concavity of α̂(µ;µ) follows from the
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Figure 4-2: α(µ) (upper surface) and α̂(µ;µ) (lower surface) as a function of µ.

concavity of F(µ;µ) and −Φ(µ, µ), since Θq, 1 ≤ q ≤ Q, are convex in D.

4.6.3 A Noncoercive Case: Helmholtz Elasticity

As an illustrative example of noncoercive problems, we consider the Helmholtz-elasticity

crack example above for µ = (ω2 = 4.0, b ∈ [0.9, 1.1], L ∈ [0.15, 0.25]). For positive

constant frequency, our affine assumption (4.5) applies for Q = 10, where Θq(µ) and

aq, 1 ≤ q ≤ Q, given in Table 4.1 (with ω2 = 4.0) are convex in D ≡ [0.9, 1.1] ×

[0.15, 0.25]. We now define bound conditioner (w, v)X =
∑Q

q=2 a
q(w, v); thanks to the

Dirichlet condition at x̃1 = 0, (·, ·)X is appropriately coercive. We observe that Θ1(µ) = 1

and we can thus disregard the q = 1 term in our continuity bound. We may then choose

|v|2q = aq(v, v), 2 ≤ q ≤ Q, since the aq(·, ·) are positive semi-definite; it thus follows from

the Cauchy-Schwarz inequality that Γq = 1, 2 ≤ q ≤ Q. Furthermore, from (4.34), we

directly obtain CX = 1.

We show in Figure 4-3 β2(µ) and F(µ− µ̄; µ̄) for µ̄ = (4.0, 1.0, 0.2). We observe that

(in this particular case, even without Φ(µ; µ̄)), F(µ − µ̄; µ̄) is a lower bound for β2(µ);

that F(µ− µ̄;µ) is concave; and that F(µ− µ̄;µ) is tangent to β2(µ) at µ = µ̄.
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Figure 4-3: β2(µ) and F(µ− µ̄; µ̄) for µ̄ = (4, 1, 0.2) as a function of (b, L); ω2 = 4.0.

4.6.4 A Noncoercive Case: Damping and Resonance

We consider here the particular case: P = 1, Q = 2, Θ1(µ) = C (a constant func-

tion), Θ2(µ) = µ, a(w, v;µ) = Ca1(w, v) + µa2(w, v) and X is a complex function space;

we further suppose that D is convex. Given any µ ∈ D, we introduce T (w, v;µ;µ) ≡

(T µw, T µv)X + (µ − µ)[a2(w, T µv) + a2(v, T µw)] and Dµ ≡ {µ ∈ D | T (v, v;µ;µ) ≥ 0};

it can be easily verified that T (·, ·;µ;µ) is symmetric: T (w, v;µ;µ) = (T µv, T µw)X +

(µ − µ)[a2(v, T µw) + a2(w, T µv)] = T (v, w;µ;µ) due to the symmetry of (·, ·)X and

a2(w, T µv) + a2(v, T µw) since a2(w, T µv) is a complex conjugate of a2(v, T µw). We may

then define

β̂(µ;µ) ≡
√

inf
w∈X

T (w,w;µ;µ)/‖w‖2
X , ∀ µ ∈ Dµ , (4.77)

and note from Φ(µ, µ) = 0 that our function β̂(µ;µ) enjoys three properties: (i) β(µ) ≥

β̂(µ;µ) ≥ 0, ∀ µ ∈ Dµ; (ii) β̂(µ;µ) is concave in µ over the convex domain Dµ; and (iii)

β̂(µ;µ) is tangent to β(µ) at µ = µ. To make property (iii) rigorous we must in general

consider non-smooth analysis and also possibly a continuous spectrum as N → ∞. We

now prove those properties of β̂(µ;µ) and refer to Appendix C for detailed formulation

of the inf-sup lower bounds for general complex noncoercive problems. The concavity of
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β̂(µ;µ) follows from Lemma 4.2.2. The lower bound property of β̂(µ;µ) is proven below

β2(µ) = inf
w∈X

(T µw + T µw − T µw, T µw + T µw − T µw)X

‖w‖2
X

= inf
w∈X

‖T µw‖2
X + (T µw − T µw, T µw)X + (T µw − T µw, T µw)X + ‖T µw − T µw‖2

X

‖w‖2
X

= inf
w∈X

{
‖T µw‖2

X +
∑Q

q=1 (Θq(µ)−Θq(µ)) aq(w, T µw)

‖w‖2
X

+∑Q
q=1 (Θq(µ)−Θq(µ)) aq(w, T µw) + ‖T µw − T µw‖2

X

‖w‖2
X

}

= inf
w∈X

‖T µw‖2
X + (µ− µ)

(
a2(w, T µw) + a2(w, T µw)

)
+ ‖T µw − T µw‖2

X

‖w‖2
X

≥ inf
w∈X

T (w,w;µ;µ)

‖w‖2
X

≡ β̂2(µ;µ), ∀ µ ∈ Dµ.

Furthermore, it follows from the above result that we have

dβ2(µ)

dµ
=
dβ̂2(µ;µ)

dµ
= inf

w∈X

a2(w, T µw) + a2(w, T µw)

‖w‖2
X

at µ = µ, which means property (iii) .

Specifically, we consider the Helmholtz-elasticity crack example described in Sec-

tion 4.6.1 for µ = (ω2 ∈ [2.5, 5.0], b = 1.0, L = 0.2) — only ω2 is permitted to vary

— and material damping coefficient dm (note that both third mode and fourth mode

resonances are within our frequency range). Since the problem is a complex bound-

ary value problem, our quadratic finite element truth approximation space of dimension

N = 14,662 is complexified such that

X =
{
v = vR + ivI ∈ Xe | vR|Th

∈ P2(Th), v
I|Th

∈ P2(Th), ∀ Th ∈ Th

}
, (4.78)

where P2(Th) is the space of second-order polynomials over element Th and Xe is a

complex function space defined as

Xe = {v = vR + ivI | vR ∈
(
H1(Ω)

)2
, vI ∈

(
H1(Ω)

)2
, vR|x1=0 = 0, vI|x1=0 = 0} . (4.79)
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Recall that R and I denote the real and imaginary part, respectively; and that v̄ denotes

the complex conjugate of v, and |v| the modulus of v. By a simple “hysteretic” Kelvin

model [13] for complex Young’s modulus, our bilinear form is given by

a(w, v;µ) = Θ1(µ)a1(w, v) + Θ2(µ)a2(w, v) , (4.80)

where the parameter-dependent functions are

Θ1(µ) = 1 + idm, Θ2(µ) = −ω2 = −µ , (4.81)

and the parameter-independent bilinear forms are

a1(w, v) = c12

∫
Ω

(
∂w1

∂x1

∂v̄2

∂x2

+
∂w2

∂x2

∂v̄1

∂x1

)
+ c66

∫
Ω

(
∂w1

∂x2

∂v̄2

∂x1

+
∂w2

∂x1

∂v̄1

∂x2

)
(4.82)

+ c11

∫
Ω

(
∂w1

∂x1

∂v̄1

∂x1

)
+ c22

∫
Ω

(
∂w2

∂x2

∂v̄2

∂x2

)
+ c66

∫
Ω

(
∂w2

∂x1

∂v̄2

∂x1

)
+ c66

∫
Ω

(
∂w1

∂x2

∂v̄1

∂x2

)

a2(w, v) =

∫
Ω

w1v̄1 + w2v̄2 . (4.83)

Note that the a1(w, v) and a2(w, v) are symmetric positive-semidefinite. We furthermore

define our bound conditioner (·, ·)X as

(w, v)X = a1(w, v) + a2(w, v) (4.84)

which is a µ-independent continuous coercive symmetric bilinear form.

We present in Figure 4-4 β(µ), β̂(µ;µj) for µ ∈ Dµj , 1 ≤ j ≤ J , β̂PC(µ), and β̂PL(µ)

for material damping coefficient of 0.05 and 0.1. We find that a sample EJ=3 suffices to

satisfy our Positivity and Coverage Conditions with εβ = 0.32 for dm = 0.05 and with

εβ = 0.4 for dm = 0.1. Unlike the previous example β(µ) is not concave (or convex) or even

quasi-concave, and hence β̂(µ;µ) is a necessary intermediary in the construction (in fact,

constructive proof) of our lower bound. We further observe that the damping coefficient

has a strong “shift-up” effect on our inf-sup parameter and lower bounds especially near

99



resonance region: increasing dm tends to move the curve β(µ) up.

(a) (b)

Figure 4-4: Plots of β(µ); β̂(µ;µ1), β̂(µ;µ2), β̂(µ;µ3) for µ ∈ Dµj , 1 ≤ j ≤ J ; and our
lower bounds β̂PC(µ) and β̂PL(µ): (a) dm = 0.05 and (b) dm = 0.1.

4.6.5 A Noncoercive Case: Infinite Domain

We consider the Helmholtz equation ∆2u + k2u = 0 in Ω ⊂ R3, ∂u
∂n̂

= 1 on ΓN, and

∂u
∂n̂

=
(
ik − 1

R

)
u on ΓR; here Ω is bounded by a inner unit sphere and outer sphere of

radius R; ΓN is the surface of the unit sphere; ΓR is the surface of the outer sphere;

and n̂ is the unit outward normal to the boundary. Our parameter is µ = k ∈ D ≡

[0.1, 1.5], where k is a wave number. The exact solution is given by ue(r) = eik(r−1)

r(ik−1)
, where

r is a distance from the origin. We further note for large R that the “exact” Robin

condition can be approximated by an “inexact” boundary condition, ∂u
∂n̂

= iku on ΓR. In

this example, we investigate the behavior of the inf-sup parameter β(µ) and the lower

bound β̂(µ) for a large variation of radius R for both exact and inexact conditions. This

study give us a better understanding into the effect of domain truncation and boundary

condition approximation on numerical solutions and reduced-basis formulation of the

inverse scattering problems discussed in Chapter 10.

By invoking the symmetry of the problem, we can simplify it into a one-dimensional

problem: ∂u
∂r

(
r2 ∂u

∂r

)
+ k2r2u = 0 in Ω ≡]1, R[, ∂u

∂r
= 1 at r = 1, and ∂u

∂r
=
(
ik − 1

R

)
u
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at r = R; and the “inexact” boundary condition is given by ∂u
∂r

= iku at r = R. It is

then a simple matter to show that: Q = 3, a1(w, v) =
∫

Ω
r2 ∂w

∂r
∂v̄
∂r

, a2(w, v) =
∫

Ω
r2wv̄, and

a3(w, v) = R2w(R)v̄(R); furthermore we have Θ1(µ) = 1, Θ2(µ) = −µ2, Θ3(µ) = −iµ+ 1
R

for exact Robin condition, but Θ1(µ) = 1, Θ2(µ) = −µ2, Θ3(µ) = −iµ for approximate

Robin condition. We next choose bound conditioner (w, v)X ≡
∫

Ω
r2 ∂w

∂r
∂v̄
∂r

+ 1
R

∫
Ω
r2wv̄,3

and seminorms |w|21 = a1(w,w), |w|22 = a2(w,w), |w|23 = a3(w,w). We readily calculate

Γ1 = 1, Γ2 = 1, Γ3 = 1; note however that the constant CX depends on R — CX = 3.35

for R = 3 and CX = 10.03 for R = 10.

We present β(µ), β̂PC(µ), and β̂(µ;µj), 1 ≤ j ≤ J , for exact and approximate Robin

conditions in Figure 4-5 and in Figure 4-6, respectively, where

β̂(µ;µ) ≡
√

max(F(µ− µ;µ),Φ2(µ, µ))− Φ(µ, µ) . (4.85)

We observe in both cases that J increases with R — J = 3 for R = 3 and J = 10 for

R = 10. Clearly, increasing R has strong effect on β(µ) and β̂(µ;µj), as R increases β(µ)

is smaller while β̂(µ;µj) decreases even more rapidly. This is because (i) CX is quite

large and grows rapidly with R and (ii) F(µ−µ;µ) decreases with µ−µ more rapidly as

R increases. Particularly, we observe that the CX term dominates F in causing the large

J for R = 3, but the F function is a primary cause for the large J for R = 10. Note also

that for approximate Robin condition there is not only outgoing, but incoming wave in

the solution. This is reflected by the oscillation of the associated inf-sup parameter.

3The 1/R scaling factor in
∫
Ω
r2wv will increase smoothness and magnitude of the inf-sup parameter

β(µ), albeit at the large value of CX .
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(a) (b)

Figure 4-5: Plots of β(µ); β̂PC(µ); and β̂(µ;µj), 1 ≤ j ≤ J , for exact Robin Condition:
(a) R = 3, J = 3 and (b) R = 10, J = 10.

(a) (b)

Figure 4-6: Plots of β(µ); β̂PC(µ) and β̂(µ;µj), 1 ≤ j ≤ J , for approximate Robin
Condition: (a) R = 3, J = 3 and (b) R = 10, J = 10.
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Chapter 5

A Posteriori Error Estimation for

Noncoercive Elliptic Problems

5.1 Abstraction

5.1.1 Preliminaries

We consider the “exact” (superscript e) problem: Given µ ∈ D ⊂ RP , we evaluate

se(µ) = `(ue(µ)), where ue(µ) satisfies the weak form of the µ-parametrized PDE

a(ue(µ), v;µ) = f(v), ∀ v ∈ Xe . (5.1)

Here µ and D are the input and (closed) input domain, respectively; ue(x;µ) is field

variable; Xe is a Hilbert space with inner product (w, v)Xe and associated norm ‖w‖ =√
(w,w)Xe ; and a(·, ·;µ) and f(·), `(·) are Xe-continuous bilinear and linear functionals,

respectively. (We may also consider complex-valued fields and spaces.) Our interest here

is in second-order PDEs, and our function space Xe will thus satisfy (H1
0 (Ω))ν ⊂ Xe ⊂

(H1(Ω))ν , where Ω ⊂ Rd is our spatial domain, a point of which is denoted x, and ν = 1

for a scalar field variable and ν = d for a vector field variable.

We now introduce X (typically, X ⊂ Xe), a “truth” finite element approximation

space of dimension N . The inner product and norm associated with X are given by
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(·, ·)X and ‖·‖X = (·, ·)1/2
X , respectively. A typical choice for (·, ·)X is

(w, v)X =

∫
Ω

∇w · ∇v + wv , (5.2)

which is simply the standard H1(Ω) inner product. We shall denote by X ′ the dual space

of X. For a h ∈ X ′, the dual norm is given by

‖h‖X′ ≡ sup
v∈X

h(v)

‖v‖X

. (5.3)

In this chapter, we continue to assume that our output functional is compliant, ` = f ,

and that a is symmetric, a(w, v;µ) = a(v, w;µ),∀w, v ∈ X. This assumption will be

readily relaxed in the next chapter.

We shall also make two crucial hypotheses. The first hypothesis is related to well-

posedness, and is often verified only a posteriori . We assume that a satisfies a continuity

and inf-sup condition for all µ ∈ D, as we now state more precisely. It shall prove

convenient to state our hypotheses by introducing a supremizing operator T µ : X → X

such that, for any w in X

(T µw, v)X = a(w, v;µ), ∀ v ∈ X . (5.4)

We then define

σ(w;µ) ≡ ‖T µw‖X

‖w‖X

, (5.5)

and note that

β(µ) ≡ inf
w∈X

sup
v∈X

a(w, v;µ)

‖w‖X‖v‖X

= inf
w∈X

σ(w;µ) (5.6)

γ(µ) ≡ sup
w∈X

sup
v∈X

a(w, v;µ)

‖w‖X‖v‖X

= sup
w∈X

σ(w;µ) . (5.7)

Here β(µ) is the Babuška “inf-sup” (stability) constant and γ(µ) is the standard conti-

nuity constant; of course, both these “constants” depend on the parameter µ. Our first

hypothesis is then: 0 < β0 ≤ β(µ) and γ(µ) ≤ γ0 <∞, ∀ µ ∈ D.

The second hypothesis is related primarily to numerical efficiency, and is typically
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verified a priori . We assume that for some finite integer Q, a may be expressed as an

affine decomposition of the form

a(w, v;µ) =

Q∑
q=1

Θq(µ)aq(w, v), ∀ w, v ∈ X,∀ µ ∈ D , (5.8)

where for 1 ≤ q ≤ Q, Θq : D → R are differentiable parameter-dependent coefficient

functions and bilinear forms aq : X×X → R are parameter-independent. This hypothesis

is quite restricted and will be relaxed in the next chapter.

Finally, it directly follows from (5.4) and (5.8) that, for any w ∈ X, T µw ∈ X may

be expressed as

T µw =

Q∑
q=1

Θq(µ) T qw , (5.9)

where, for any w ∈ X, T qw, 1 ≤ q ≤ Q, is given by

(T qw, v)X = aq(w, v), ∀ v ∈ X . (5.10)

Note that the operators T q : X → X are independent of the parameter µ.

5.1.2 General Problem Statement

Our truth finite-element approximation to the continuous problem (5.1) is stated as:

Given µ ∈ D, we evaluate

s(µ) = `(u(µ)), (5.11)

where the finite element approximation u(µ) ∈ X is the solution of

a(u(µ), v;µ) = f(v), ∀ v ∈ X . (5.12)

In essence, u(µ) ∈ X is a calculable surrogate for ue(µ) upon which we will build our

RB approximation and with respect to which we will evaluate the RB error; u(µ) shall

also serve as the “classical alternative” relative to which we will assess the efficiency of

our approach. We assume that ‖ue(µ) − u(µ)‖ is suitably small and hence that N is

typically very large: our formulation must be both stable and efficient as N →∞.

105



5.1.3 A Model Problem

Our model problem is the Helmholtz-Elasticity Crack example described thoroughly in

Section 4.6.1. Recall that the input is µ ≡ (µ1, µ2, µ3) = (ω2, b, L), where ω is the

frequency of oscillatory uniform force applied at the right edge, b is the crack location,

and L is the crack length. The weak form for the displacement field ũ(x̃;µ) ∈ X̃(µ) is

ã(ũ(µ), ṽ;µ) = f̃(ṽ), ∀ ṽ ∈ X̃(µ) (5.13)

where X̃(µ) is a quadratic finite element truth approximation subspace (of dimension

N = 14,662) of Xe(µ) = {ṽ ∈ (H1(Ω̃(b, L)))2 | ṽ|x̃1=0 = 0}, and

ã(w, v;µ) = c12

∫
Ω̃

(
∂v1

∂x̃1

∂w2

∂x̃2

+
∂v2

∂x̃2

∂w1

∂x̃1

)
+ c66

∫
Ω̃

(
∂v1

∂x̃2

∂w2

∂x̃1

+
∂v2

∂x̃1

∂w1

∂x̃2

)
+ c11

∫
Ω̃

(
∂v1

∂x̃1

∂w1

∂x̃1

)
+ c66

∫
Ω̃

(
∂v2

∂x̃1

∂w2

∂x̃1

)
+ c22

∫
Ω̃

(
∂v2

∂x̃2

∂w2

∂x̃2

)
+ c66

∫
Ω̃

(
∂v1

∂x̃2

∂w1

∂x̃2

)
− ω2

∫
Ω̃

w1v1 + w2v2 ,(5.14)

f̃(v) =

∫
Γ̃F

v2 . (5.15)

The output is the (oscillatory) amplitude of the average vertical displacement on the right

edge of the plate, s(µ) = ˜̀(ũ(µ)) with ˜̀= f̃ ; we are thus “in compliance”.

0 2
0

1

Figure 5-1: Quadratic triangular finite element mesh on the reference domain with the
crack in red. Note that each element has six nodes.
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By using a continuous piecewise-affine (in fact, piecewise-dilation-in-x1) transforma-

tion to map the original domain Ω̃(b, L) to the reference domain Ω ≡ Ω̃(br, Lr) with

br = 1.0 and Lr = 0.2, we arrive at the desired form (5.12) in which Ω, X, and (·, ·)X

are independent of the parameter µ, a is affine for Q = 10 as given in Table 4.1, and

f(v) =
∫

Γ̃F
v2. Furthermore, we use a regular quadratic triangular mesh for X as shown

in Figure 5-1. (No crack-tip element is needed as the output of interest is on the right

edge — far from the crack tips.)

5.2 Reduced-Basis Approximation

In this section we review briefly the reduced-basis approximation since many details has

been already discussed in Chapter 3. Moreover, we shall also discuss approximation

approaches other than Galerkin projection, in particular the Petrov-Galerkin projection,

which can be advantageous for noncoercive problems.

5.2.1 Galerkin Approximation

In the “Lagrangian” [116] reduced-basis approach, the field variable u(µ) is approximated

by (typically) Galerkin projection onto a space spanned by solutions of the governing

PDE at N selected points in parameter space. We introduce nested parameter samples

SN ≡ {µ1 ∈ D, · · · , µN ∈ D}, 1 ≤ N ≤ Nmax and associated nested reduced-basis spaces

WN ≡ span{ζj ≡ u(µj), 1 ≤ j ≤ N}, 1 ≤ N ≤ Nmax, where u(µj) is the solution to (5.12)

for µ = µj. We next apply Galerkin projection onto WN to obtain uN(µ) ∈ WN from

a(uN(µ), v;µ) = f(v), ∀ v ∈ WN , (5.16)

in terms of which the reduced-basis approximation to s(µ) is then calculated as

sN(µ) = `(uN(µ)) . (5.17)

However, Galerkin projection does not guarantee stability of the discrete reduced-basis

system. More sophisticated minimum-residual [91, 131] and in particular Petrov-Galerkin
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[92, 131] approaches restore (guaranteed) stability, albeit at some additional complexity.

5.2.2 Petrov-Galerkin Approximation

In addition to the primal problem, the Petrov-Galerkin approach shall require the dual

problem: find ψ(µ) ∈ X such that

a(v, ψ(µ);µ) = −`(v), ∀ v ∈ X . (5.18)

Note that the dual problem is useful to the noncompliance case in which a is nonsymmetric

or ` 6= f . In the compliance case, symmetric a and ` = f , the dual problem becomes

unnecessary since ψ(µ) = −u(µ).

We can now introduce sample Spr
N1

= {µpr
1 ∈ D, · · · , µpr

N1
∈ D} and associated La-

grangian space W pr
N1

= span{u(µpr
j ),∀µpr

j ∈ Spr
N1
}. Similarly, we select sample Sdu

N2
=

{µdu
1 ∈ D, · · · , µdu

N2
∈ D}, possibly different from the ones above, and form associated

dual space W du
N2

= span{ψ(µdu
j ), ∀µdu

j ∈ Sdu
N2
}. We then define the infimizing space as

WN = W pr
N1

+W du
N2

= span{u(µpr
i ), ψ(µdu

j ), ∀µpr
i ∈ Spr

N1
, ∀µdu

j ∈ Sdu
N2
} (5.19)

≡ span{ζ1, . . . , ζN}.

The dimension of our reduced-basis approximation is thus N = N1 +N2.

The Petrov-Galerkin will also need supremizing space. To this end, we compute T qζn

from (5.10) for 1 ≤ n ≤ N and 1 ≤ q ≤ Q, and define the supremizing space as

VN ≡ span

{
Q∑

q=1

Θq(µ)T qζn, n = 1, . . . , N

}
. (5.20)

We make a few observations: first, while the infimizing space WN effects good approxima-

tion, the supremizing space VN is crucial for stability of the reduced-basis approximation;

second, the supremizing space is related to infimizing space through the choice of ζi; third,

unlike earlier definitions of reduced-basis spaces, the supremizing space is now parameter-

dependent — this will require modifications of the offline/online computational procedure;
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and fourth, even though we need NQ functions, the T qζn, the supremizing space has di-

mension N . See [131] for greater details including the important proof of good behavior

of the discrete inf-sup parameter essential to both approximation and stability.

With the defined infimizing space WN and supremizing space VN , we can readily

obtain uN(µ) ∈ WN and ψN(µ) ∈ WN from

a(uN(µ), v;µ) = f(v), ∀ v ∈ VN ; (5.21)

a(v, ψN(µ);µ) = −`(v), ∀ v ∈ VN ; (5.22)

which are Petrov-Galerkin projections onto WN for the primal and dual problems, re-

spectively. Our output approximation is then given by

sN(µ) = `(uN(µ))− f(ψN(µ)) + a(ψN(µ), uN(µ);µ) ; (5.23)

the additional adjoint terms will improve the accuracy [88, 108].

Finally, we have two important remarks. First, there are significant computational

and conditioning advantages associated with a “segregated” approach in which we intro-

duce separate primal W pr
N = span{u(µpr

j ), 1 ≤ j ≤ N} and dual W du
N = span{ψ(µdu

j ), 1 ≤

j ≤ N} approximation spaces for u(µ) and ψ(µ), respectively. Particularly, if a is sym-

metric and ` = f , then there will probably be degeneracy in the spaces WN and VN and

ill-conditioning in our reduced-basis systems for the “nonsegregated” approach described

above; but this is usually not the case for the segregated approach. Second, there is an-

other simple reduced-basis approximation that can work very well for the output accuracy:

we introduce WN = span{u(µpr
j ), 1 ≤ j ≤ N} and VN = span{ψ(µdu

j ), 1 ≤ j ≤ N}, and

evaluate sN(µ) = `(uN(µ)), where uN(µ) ∈ WN satisfies a(uN(µ), v;µ) = f(v),∀v ∈ VN .

This simple approach may lead to high accuracy for the output approximation, albeit at

the loss of stability.

It should be clear that we include the Petrov-Galerkin projection mainly for the sake

of completeness and will only use the Galerkin projection for all numerical examples in

the thesis.
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5.2.3 A Priori Convergence Theory

We shall demonstrate the optimal convergence rate of uN(µ) → u(µ) and s(µ) → sN(µ)

for the Galerkin projection (see [131] for convergence results in the case of Petrov-

Galekin). To begin, we introduce the operator T µ
N : WN → WN such that, for any

wN ∈ WN ,

(T µ
NwN , vN)X = a(wN , vN ;µ), ∀ vN ∈ WN .

We then define βN(µ) ∈ R as

βN(µ) ≡ inf
wN∈WN

sup
vN∈WN

a(wN , vN ;µ)

‖wN‖X‖vN‖X

, (5.24)

and note that

βN(µ) = inf
wN∈WN

‖T µ
NwN‖X

‖wN‖X

.

It thus follows that

βN(µ)‖wN‖X‖T µ
NwN‖X ≤ a(wN , T

µ
NwN ;µ), ∀ wN ∈ WN . (5.25)

We now demonstrate that if βN(µ) ≥ β0 > 0, ∀µ ∈ D, then uN(µ) is optimal in the

X-norm

‖u(µ)− uN(µ)‖X ≤
(

1 +
γ0

β0

)
min

wN∈WN

‖u(µ)− wN‖X . (5.26)

Proof. We first note from (5.12) and (5.16) that

a(u(µ)− uN(µ), v;µ) = 0, ∀ v ∈ WN . (5.27)

It thus follows for any wN ∈ WN that

βN(µ)‖wN − uN‖X‖T µ
N(wN − uN)‖X ≤ a(wN − uN , T

µ
N(wN − uN);µ)

= a(wN − u+ u− uN , T
µ
N(wN − uN);µ)

= a(wN − u, T µ
N(wN − uN);µ)

+ a(u− uN , T
µ
N(wN − uN);µ)

≤ γ(µ)‖u− wN‖X‖T µ
N(wN − uN)‖X . (5.28)
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The desired result immediately follows from (5.28), the triangle inequality, and our hy-

pothesis on βN(µ).

In the compliance case ` = f , we may further show for any wN ∈ WN that

|s(µ)− sN(µ)| = |a(u(µ)− uN(µ), u(µ);µ)|

= |a(u(µ)− uN(µ), u(µ)− wN ;µ)|

≤ γ(µ) ‖u(µ)− uN(µ)‖X ‖u(µ)− wN‖X

≤ γ0

(
1 +

γ0

β0

)
min

wN∈WN

‖u(µ)− wN‖2
X ; (5.29)

from symmetry of a, Galerkin orthogonality (5.27), continuity condition, and (5.26). Note

that sN(µ) converges to s(µ) as the square of error in the field variable.

5.3 A Posteriori Error Estimation

5.3.1 Objective

We wish to develop a posteriori error bounds ∆N(µ) and ∆s
N(µ) such that

‖u(µ)− uN(µ)‖X ≤ ∆N(µ) , (5.30)

and

|s(µ)− sN(µ)| ≤ ∆s
N(µ) . (5.31)

It shall prove convenient to introduce the notion of effectivity, defined (here) as

ηN(µ) ≡ ∆N(µ)

‖u(µ)− uN(µ)‖X

, ηs
N(µ) ≡ ∆s

N(µ)

|s(µ)− sN(µ)|
. (5.32)

Our certainty requirement (5.30) and (5.31) may be stated as ηN(µ) ≥ 1 and ηs
N(µ) ≥ 1,

∀ µ ∈ Dµ. However, for efficiency, we must also require ηN(µ) ≤ Cη and ηs
N(µ) ≤ Cη,

where Cη ≥ 1 is a constant independent of N and µ; preferably, Cη is close to unity, thus

ensuring that we choose the smallest N — and hence most economical — reduced-basis

approximation consistent with the specified error tolerance.
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5.3.2 Error Bounds

We assume that we may calculate µ-dependent lower bound β̂(µ) for the inf-sup parameter

β(µ): β(µ) ≥ β̂(µ) ≥ β0 > 0,∀µ ∈ D. The calculation of β̂(µ) has been extensively

studied in the previous chapter. We next introduce the dual norm of the residual

εN(µ) = sup
v∈X

r(v;µ)

‖v‖X

, (5.33)

where

r(v;µ) = f(v)− a(uN(µ), v;µ), ∀ v ∈ X (5.34)

is the residual associated with uN(µ).

We can now define our energy error bound

∆N(µ) ≡ εN(µ)

β̂(µ)
, (5.35)

and output error bound

∆s
N(µ) ≡ ε2

N(µ)/β̂(µ) . (5.36)

We shall prove that ∆N(µ) and ∆s
N(µ) are rigorous and sharp bounds for ‖u(µ)− uN(µ)‖X

and |s(µ)− sN(µ)|, respectively.

5.3.3 Bounding Properties

Proposition 4. For the error bounds ∆N(µ) of (5.35) and ∆s
N(µ) of (5.36), the corre-

sponding effectivities satisfy

1 ≤ ηN(µ) ≤ γ(µ)

β̂(µ)
, ∀ µ ∈ D , (5.37)

1 ≤ ηs
N(µ), ∀µ ∈ D . (5.38)
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Proof. We first note from (5.12) and (5.34) that the error e(µ) ≡ u(µ)− uN(µ) satisfies

a(e(µ), v;µ) = r(v;µ), ∀ v ∈ X, (5.39)

Furthermore, from standard duality argument we have

εN(µ) = ‖ê(µ)‖X , (5.40)

where

(ê(µ), v)X = r(v;µ), ∀ v ∈ X . (5.41)

It then follows from (5.4), (5.39), and (5.41) that

‖ê(µ)‖X = ‖T µe(µ)‖X . (5.42)

In addition, from (5.5) we know that

‖e(µ)‖X =
‖T µe(µ)‖X

σ(e(µ);µ)
. (5.43)

It thus follows from (5.32), (5.35), (5.40), (5.42), and (5.43) that

ηN(µ) =
σ(e(µ);µ)

β̂(µ)
; (5.44)

this proves the desired result (5.37) since γ(µ) ≥ σ(e(µ);µ) ≥ β(µ) ≥ β̂(µ).

Finally, it follows from symmetry of a, compliance of `, (5.12), Galerkin orthogonality,

(5.39), and the result (5.37) that

|s(µ)− sN(µ)| = |a(e(µ), u(µ);µ)|

= |a(e(µ), e(µ);µ)|

= |r(e(µ);µ)|

≤ ‖r‖X′ ‖e(µ)‖X

≤ ‖ê(µ)‖2
X

β̂(µ)
.
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This concludes the proof.

5.3.4 Offline/Online Computational Procedure

It remains to develop associated offline-online computational procedure for the efficient

evaluation of εN . To begin, we note from our reduced-basis approximation uN(µ) =∑N
n=1 uN n(µ) ζn and affine assumption (5.8) that r(v;µ) may be expressed as

r(v;µ) = f(v)−
Q∑

q=1

N∑
n=1

Θq(µ)uN n(µ) aq(ζn, v), ∀ v ∈ X. (5.45)

It thus follows from (5.41) and (5.45) that ê(µ) ∈ X satisfies

(ê(µ), v)X = f(v)−
Q∑

q=1

N∑
n=1

Θq(µ) uN n(µ) aq(ζn, v), ∀ v ∈ X. (5.46)

The critical observation is that the right-hand side of (5.46) is a sum of products of

parameter-dependent functions and parameter-independent linear functionals. In partic-

ular, it follows from linear superposition that we may write ê(µ) ∈ X as

ê(µ) = C +

Q∑
q=1

N∑
n=1

Θq(µ) uN n(µ) Lq
n , (5.47)

where (C, v)X = f(v), ∀ v ∈ X, and (Lq
n, v)X = −aq(ζn, v), ∀ v ∈ X, 1 ≤ n ≤ N ,

1 ≤ q ≤ Q; note that the latter are simple parameter-independent (scalar or vector)

Poisson, or Poisson-like, problems. It thus follows that

‖ê(µ)‖2
X = (C, C)X +

Q∑
q=1

N∑
n=1

Θq(µ) uN n(µ)

{
2(C,Lq

n)X

+

Q∑
q′=1

N∑
n′=1

Θq′(µ) uN n′(µ) (Lq
n,L

q′

n′)X

}
.

(5.48)

The expression (5.48) is the sum of products of parameter-dependent (simple, known)

functions and parameter-independent inner products. The offline-online decomposition

is now clear.
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In the offline stage — performed once — we first solve for C and Lq
n, 1 ≤ n ≤ N ,

1 ≤ q ≤ Q; we then evaluate and save the relevant parameter-independent inner products

(C, C)X , (C,Lq
n)X , (Lq

n,L
q′

n′)X , 1 ≤ n, n′ ≤ N , 1 ≤ q, q′ ≤ Q. Note that all quantities

computed in the offline stage are independent of the parameter µ.

In the online stage — performed many times, for each new value of µ “in the field” —

we simply evaluate the sum (5.48) in terms of the Θq(µ), uN n(µ) and the precalculated

and stored (parameter-independent) (·, ·)X inner products. The operation count for the

online stage is only O(Q2N2) — again, the essential point is that the online complexity

is independent of N , the dimension of the underlying truth finite element approximation

space. We further note that unless Q is quite large, the online cost associated with

the calculation of the dual norm of the residual is commensurate with the online cost

associated with the calculation of sN(µ).

5.4 Numerical Results

In this section, we shall present and discuss several numerical results for our model

problem. We consider the parameter domain D ≡ [3.2, 4.8] × [0.9, 1.1] × [0.15, 0.25].

Note that D does not contain any resonances, and hence β(µ) is bounded away from

zero; however, ω2 = 3.2 and ω2 = 4.8 are in fact quite close to corresponding natural

frequencies, and hence the problem is distinctly non-coercive.

Recall that our affine assumption is applied for Q = 10, and the Θq(µ), aq(w, v), 1 ≤

q ≤ Q, were summarized in Table 4.1. We define (w, v)X =
∑Q

q=2 a
q(w, v) for our bound

conditioner; thanks to the Dirichlet conditions at x1 = 0, (·, ·)X is appropriately coercive.

We further observe that Θ1(µ) = 1(Γ1 = 0) and we can thus disregard the q = 1 term

in our continuity bound. We may then choose |v|2q = aq(v, v), 2 ≤ q ≤ Q, since the

aq(·, ·) are positive semi-definite; it thus follows from the Cauchy-Schwarz inequality that

Γq = 1, 2 ≤ q ≤ Q. Furthermore, from (4.34), we directly obtain CX = 1. We readily

perform piecewise-constant construction of the inf-sup lower bounds: we can cover D (for

ε̄β = 0.2) such that (4.36) and (4.37) are satisfied with only J = 84 polytopes; in this

particular case the P µ̄j , 1 ≤ j ≤ J, are hexahedrons such that |Vµj | = 8, 1 ≤ j ≤ J .

Armed with the inf-sup lower bounds, we can now pursue the adaptive sampling
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strategy described in Section 3.3.5: for εtol, min = 10−3 and nF = 729 we obtain Nmax = 32

(as shown in Figure 5-2) such that εNmax ≡ ∆Nmax(µ
pr
Nmax

) = 9.03× 10−4. We observe that

more sample points lie at the two ends of the frequency range, ω2 = 3.2 and ω2 = 4.8.

This is because ω2 = 3.2 and ω2 = 4.8 are quite close to corresponding natural frequencies,

at which the solutions vary greatly and the inf-sup parameter decreases rapidly to zero.

3.2
3.6

4
4.4

4.8

0.9
0.95

1
1.05

1.1
0.15

0.175

0.2

0.225

0.25

ω2b

L

Figure 5-2: Sample SNmax obtained with the adaptive sampling procedure for Nmax = 32.
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Figure 5-3: Convergence for the reduced-basis approximations at test points: (a) error in
the solution and (b) error in the output.

We next present in Figure 5-3 the error in the output and the error in the solution as a

function of N for five random test points. We observe that initially for small values of N

(less than 10) the errors are quite significant, oscillating, and not reduced by increasing
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N . This is because for small values of N the basis functions included in the reduced-basis

space have no good approximation properties for the solutions at the test points. As we

further increase N we see that the errors decrease rapidly with N ; that the convergence

rate is quite similar for all test points; and that the error in the output is square of the

error in the solution (note that the “square” effect is typically true for the compliance

case — here the model problem is as such).

We furthermore present in Table 5.1 ∆N,max,rel, ηN,ave, ∆s
N,max, and ηs

N,ave as a func-

tion of N . Here ∆N,max,rel is the maximum over ΞTest of ∆N(µ)/‖umax‖X , ηN,ave is the

average over ΞTest of ∆N(µ)/‖u(µ) − uN(µ)‖X , ∆s
N,max,rel is the maximum over ΞTest

of ∆s
N(µ)/|smax|, and ηs

N,ave is the average over ΞTest of ∆s
N(µ)/|s(µ) − sN(µ)|. Here

ΞTest ∈ (D)343 is a random sample of size 343; ‖umax‖X ≡ maxµ∈ΞTest
‖u(µ)‖X and

|smax| ≡ maxµ∈ΞTest
|s(µ)|. We observe that the reduced-basis approximation converges

very rapidly, and that our rigorous error bounds are in fact quite sharp. The effectivities

are not quite O(1) primarily due to the relatively crude piecewise-constant inf-sup lower

bound. Effectivities O(10) are acceptable within the reduced-basis context: thanks to

the very rapid convergence rates, the “unnecessary” increase in N — to achieve a given

error tolerance — is proportionately very small.

N ∆N,max,rel ηN,ave ∆s
N,max,rel ηs

N,ave

12 1.54× 10−1 13.41 3.31× 10−2 15.93
16 3.40× 10−2 12.24 2.13× 10−3 14.86
20 1.58× 10−2 13.22 4.50× 10−4 15.44
24 5.91× 10−3 12.56 4.81× 10−5 14.45
28 2.42× 10−3 12.44 9.98× 10−6 14.53

Table 5.1: Effectivities for the model problem.

Turning now to the computational effort, we present in Table 5.2 the time ratio

normalized to the running time of computing sN(µ) for N = 20 (recall that for N ≥ 20,

|∆s
N(µ)/sN(µ)| ≤ 4.50× 10−4). We achieve computational savings of O(500): N is very

small thanks to the good convergence properties of SN and hence WN ; and the marginal

cost to evaluate sN(µ) and ∆s
N(µ) depends only on N , not on N thanks to the offline-

online decomposition. We emphasize that the reduced-basis entry does not include the
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extensive offline computations — and is thus only meaningful in the real-time or many-

query contexts. As illustrated in Chapter 9, the significant reduction in computational

time enables the deployed/real-time Assess-Act scenario in which we Assess all possible

crack parameters consistent with experimental measurements through robust parameter

estimation procedures and subsequently Act upon our earlier crack assessments through

adaptive optimization procedures to provide an intermediate and fail-safe action.

Online Time Online Time Time
N sN(µ) ∆s

N(µ) s(µ) (N = 14,662)
12 0.65 0.84
16 0.9 0.94
20 1.0 1.05 882
24 1.23 1.29
28 1.45 1.54

Table 5.2: Time savings per online evaluation.

5.5 Additional Example: Material Damage Model

5.5.1 Problem Description

We consider a two-dimensional sandwich plate with a rectangular flaw at the core layer

of three lamina: the (original) domain Ω̃ ⊂ R2 is defined as [0, 2] × [0, 1]; the thickness

of core layer is 0.8 while that of two face layers is 0.1; the left surface of the plate, Γ̃D, is

secured; the top and bottom boundaries, Γ̃N, are stress-free; and the right boundary, Γ̃F,

is subject to a vertical oscillatory uniform force of frequency ω̃. To simplify the problem,

we assume that the flaw is throughout the thickness of the core. The flaw length is

denoted by L and the distance from the center of the flaw to the left surface is denoted

by b. The rectangular flaw is considered as a damaged zone in which density of the

material remains the same but the elastic constants are reduced by a factor δ (damage

factor). Note that δ = 1 indicates no flaw while δ = 0 means a void in the sandwich

plate.

We model the plate as plane-stress linear elastic lamina structure in which material

properties of the two face layers and core layer are shown in Table 5.3. We introduce
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nondimensional quantities ω2 = (ω̃)2ρ̃c/Ẽc, Ec = Ẽc/Ẽc, Ef = Ẽf/Ẽc, ρc = ρ̃c/ρ̃c,

and ρf = ρ̃f/ρ̃c, where Ẽc and ρ̃c are the Young’s modulus and density of the core

layer and Ẽf and ρ̃f are the Young’s modulus and density of the face layer. Our input is

µ ≡ (µ(1), µ(2), µ(3), µ(4)) = (ω2, b, L, δ) ∈ Dω×Db,L,δ, where Db,L,δ ≡ [0.9, 1.1]× [0.5, 0.7]×

[0.4, 0.6] ; our output is the (oscillatory) amplitude of the average vertical displacement

on the right edge of the plate.

L 

b 

Flaw Core Layer 

Face Layer 

Figure 5-4: Rectangular flaw in a sandwich plate.

Young’s modulus
(N/m2)

Density
(kg/m3)

Poisson ratio

Face layers 1.67× 1010 1760 0.3
Core layer 0.013× 1010 130 0.3

Table 5.3: Material properties of core layer and face layers.

The governing equations for the displacement field ũ(x̃;µ) ∈ X̃(µ) are thus

∂σ̃11

∂x̃1

+
∂σ̃12

∂x̃2

+ ρω2ũ2
1 = 0

∂σ̃12

∂x̃1

+
∂σ̃22

∂x̃2

+ ρω2ũ2
2 = 0

ε̃11 =
∂ũ1

∂x̃1

, ε̃22 =
∂ũ2

∂x̃2

, 2ε̃12 =

(
∂ũ1

∂x̃2

+
∂ũ2

∂x̃1

)
,
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σ̃11

σ̃22

σ̃12

 =


c11 c12 0

c12 c22 0

0 0 c66




ε̃11

ε̃22

ε̃12


where the constitutive constants are given by

c11 =
E

1− ν2
, c22 = c11, c12 =

Eν

1− ν2
, c66 =

E

2(1 + ν)
.

Note importantly that, in the above equations, the density ρ and Young’s modulus E

are different for face layers, core layer, and damage zone; in particular, we have ρ = ρf ,

E = Ef in face layers, ρ = ρc, E = Ec in core layer, and ρ = ρc, E = δEc in damage

zone. The boundary conditions on the (secured) left edge are

ũ1 = ũ2 = 0, on Γ̃D .

The boundary conditions on the top and bottom boundaries are

σ̃11
ˆ̃n1 + σ̃12

ˆ̃n2 = 0 on Γ̃N ,

σ̃12
ˆ̃n1 + σ̃22

ˆ̃n2 = 0 on Γ̃N .

The boundary conditions on the right edge are

σ̃11
ˆ̃n1 + σ̃12

ˆ̃n2 = 0 on Γ̃F ,

σ̃12
ˆ̃n1 + σ̃22

ˆ̃n2 = 1 on Γ̃F .

We now introduce X̃(µ) — a quadratic finite element truth approximation subspace

(of dimension N = 14,640) of Xe(µ) = {ṽ ∈ (H1(Ω̃(b, L)))2 | ṽ|Γ̃F
= 0}. The weak

formulation can then be derived as

ã(ũ(µ), ṽ;µ) = f̃(ṽ), ∀ ṽ ∈ X̃(µ) (5.49)
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where

ã(w, v;µ) = c12

∫
Ω̃

(
∂v1

∂x̃1

∂w2

∂x̃2

+
∂v2

∂x̃2

∂w1

∂x̃1

)
+ c66

∫
Ω̃

(
∂v1

∂x̃2

∂w2

∂x̃1

+
∂v2

∂x̃1

∂w1

∂x̃2

)
+ c11

∫
Ω̃

(
∂v1

∂x̃1

∂w1

∂x̃1

)
+ c66

∫
Ω̃

(
∂v2

∂x̃1

∂w2

∂x̃1

)
+ c22

∫
Ω̃

(
∂v2

∂x̃2

∂w2

∂x̃2

)
+ c66

∫
Ω̃

(
∂v1

∂x̃2

∂w1

∂x̃2

)
− ω2

∫
Ω̃

ρ(w1v1 + w2v2) ,

f̃(v) =

∫
Γ̃F

v2 .

The output is given by s̃(µ) = ˜̀(ũ(µ)), where ˜̀(v) = f̃(v); we are thus “in compliance.”

We now define a reference domain corresponding to the geometry b = br = 1 and

L = Lr = 0.5. We then map Ω̃(b, L) → Ω ≡ Ω̃(br, Lr) by a continuous piecewise-

affine (in fact, piecewise-dilation-in-x1) transformation. We define three subdomains,

Ω1 ≡ ]0, br−Lr/2[× ]0, 1[ , Ω2 ≡ ]br−Lr/2, br +Lr/2[× ]0, 1[ , Ω3 ≡ ]br +Lr/2, 2[× ]0, 1[ ,

such that Ω̄ = Ω̄1 ∪ Ω̄2 ∪ Ω̄3; in addition, we define Ωc
1 ≡ ]0, br − Lr/2[× ]0.1, 0.9[ , Ωf

1 ≡

Ω1\Ωc
1, Ωd ≡ ]br−Lr/2, br +Lr/2[× ]0.1, 0.9[ , Ωf

2 ≡ Ω2\Ωd, Ωc
2 ≡ ]br +Lr/2, 2[× ]0.1, 0.9[ ,

Ωf
2 ≡ Ω3\Ωc

2.

We thus arrive at the desired form (5.12) in which f(v) =
∫

Γ̃F
v2 and the bilinear form

a is expressed as an affine sum for Q = 13; the Θq(µ), aq(w, v), 1 ≤ q ≤ 13, are given

in Table 5.4. For plane stress and a linear isotropic solid, the constitutive constants in

Table 5.4 are given by

cc11 =
Ec

1− ν2
, cc22 = cc11, cc12 =

Ecν

1− ν2
, cc66 =

Ec

2(1 + ν)
,

cf11 =
Ef

1− ν2
, cf22 = cf11, cf12 =

Efν

1− ν2
, cf66 =

Ef

2(1 + ν)
,

where ν = 0.3 is the Poisson ratio and the normalized Young’s modulus Ec and Ef are

introduced earlier.
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q Θq(µ) aq(w, v)

1 1
∑2

r=1

{
cc12

∫
Ωc

r

(
∂v1

∂x1

∂w2

∂x2
+ ∂v2

∂x2

∂w1

∂x1

)
+ cc66

∫
Ωc

r

(
∂v1

∂x2

∂w2

∂x1
+ ∂v2

∂x1

∂w1

∂x2

)}
+
∑3

r=1

{
cf12

∫
Ωf

r

(
∂v1

∂x1

∂w2

∂x2
+ ∂v2

∂x2

∂w1

∂x1

)
+ cf66

∫
Ωf

r

(
∂v1

∂x2

∂w2

∂x1
+ ∂v2

∂x1

∂w1

∂x2

)}
2 δ cc12

∫
Ωd

(
∂v1

∂x1

∂w2

∂x2
+ ∂v2

∂x2

∂w1

∂x1

)
+ cc66

∫
Ωd

(
∂v1

∂x2

∂w2

∂x1
+ ∂v2

∂x1

∂w1

∂x2

)
3 br−Lr/2

b−L/2
cc11
∫

Ωc
1

(
∂v1

∂x1

∂w1

∂x1

)
+ cc66

∫
Ωc

1

(
∂v2

∂x1

∂w2

∂x1

)
+ cf11

∫
Ωf

1

(
∂v1

∂x1

∂w1

∂x1

)
+ cf66

∫
Ωf

1

(
∂v2

∂x1

∂w2

∂x1

)
4 Lr

L
cf11
∫

Ωf
2

(
∂v1

∂x1

∂w1

∂x1

)
+ cf66

∫
Ωf

2

(
∂v2

∂x1

∂w2

∂x1

)
5 δLr

L
cc11
∫

Ωd

(
∂v1

∂x1

∂w1

∂x1

)
+ cc66

∫
Ωd

(
∂v2

∂x1

∂w2

∂x1

)
6 2−br−Lr/2

2−b−L/2
cc11
∫

Ωc
2

(
∂v1

∂x1

∂w1

∂x1

)
+ cc66

∫
Ωc

2

(
∂v2

∂x1

∂w2

∂x1

)
+ cf11

∫
Ωf

3

(
∂v1

∂x1

∂w1

∂x1

)
+ cf66

∫
Ωf

3

(
∂v2

∂x1

∂w2

∂x1

)
7 b−L/2

br−Lr/2
cc22
∫

Ωc
1

(
∂v2

∂x2

∂w2

∂x2

)
+ cc66

∫
Ωc

1

(
∂v1

∂x2

∂w1

∂x2

)
+ cf22

∫
Ωf

1

(
∂v2

∂x2

∂w2

∂x2

)
+ cf66

∫
Ωf

1

(
∂v1

∂x2

∂w1

∂x2

)
8 L

Lr
cf22
∫

Ωf
2

(
∂v2

∂x2

∂w2

∂x2

)
+ cf66

∫
Ωf

2

(
∂v1

∂x2

∂w1

∂x2

)
9 δ L

Lr
cc22
∫

Ωd

(
∂v2

∂x2

∂w2

∂x2

)
+ cc66

∫
Ωd

(
∂v1

∂x2

∂w1

∂x2

)
10 2−b−L/2

2−br−Lr/2
cc22
∫

Ωc
2

(
∂v2

∂x2

∂w2

∂x2

)
+ cc66

∫
Ωc

2

(
∂v1

∂x2

∂w1

∂x2

)
+ cf22

∫
Ωf

3

(
∂v2

∂x2

∂w2

∂x2

)
+ cf66

∫
Ωf

3

(
∂v1

∂x2

∂w1

∂x2

)
11 −ω2 b−L/2

br−Lr/2

∫
Ωc

1
w1v1 + w2v2 + ρf

∫
Ωf

1
w1v1 + w2v2

12 −ω2 L
Lr

∫
Ωd w1v1 + w2v2 + ρf

∫
Ωf

2
w1v1 + w2v2

13 −ω2 2−b−L/2
2−br−Lr/2

∫
Ωc

2
w1v1 + w2v2 + ρf

∫
Ωf

3
w1v1 + w2v2

Table 5.4: Parametric functions Θq(µ) and parameter-independent bilinear forms aq(w, v)
for the two-dimensional damage material problem.
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5.5.2 Numerical Results

We first show in Figure 5-5 the finite element mesh on which our quadratic truth approx-

imation subspace of dimension N = 14,640 is defined.

0 2
0

1

Figure 5-5: Quaratic triangular finite element mesh on the reference domain. Note that
each element has six nodes.

Next we define our inner product-cum-bound conditioner as (w, v)X ≡
∑Q

q=3 a
q(w, v);

thanks to the Dirichlet conditions at x1 = 0 (and also the wivi term), (·, ·)X is appropri-

ately coercive. We now observe that Θ(µ) = 1 (Γ1 = 0) and we can thus disregard the

q = 1 term in our continuity bounds. We may then choose

|v|22 = cc12

∫
Ωd

(
∂v1

∂x1

)2

+

(
∂v2

∂x2

)2

+ cc66

∫
Ωd

(
∂v1

∂x2

)2

+

(
∂v2

∂x1

)2

and |v|2q = aq(v, v), 3 ≤ q ≤ Q, since the aq(·, ·), 3 ≤ q ≤ Q, are positive semi-definite; it

thus follows from the Cauchy-Schwarz inequality that Γq = 1, 2 ≤ q ≤ Q; furthermore,

from (4.34), we calculate CX = 1.0000 numerically.

We shall consider three different frequencies and associated reduced-basis models:

Model I for ω2
1 = 0.58, Model II for ω2

2 = 1.53, and model III for ω2
3 = 2.95; these

frequencies are in fact quite close to the corresponding resonance modes, and hence the

problem is distinctly noncoercive. We henceforth perform piecewise-constant construction

of the inf-sup lower bounds for each model: we can cover Db,L,δ (for ε̄β = 0.5) with

J I = 133 polytopes, J II = 169 polytopes, and J III = 196 polytopes such that the Coverage

and Positivity conditions are satisfied; here the P µ̄j , 1 ≤ j ≤ J, are hexahedrons such
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that |Vµj | = 8, 1 ≤ j ≤ J . Armed with the piecewise constant lower bounds, we pursue

the adaptive sampling strategy: for nF = 729 we obtain N I
max = 50, N II

max = 50, and

N III
max = 50.

We next show the convergence of the reduced-basis approximation. We present in

Tables 5.5, 5.6, and 5.7 ∆N,max,rel, ηN,ave, ∆s
N,max,rel, and ηs

N,ave as a function of N for

three models. Here ∆N,max,rel is the maximum over ΞTest of ∆N(µ)/‖u(µ)‖X , ηN,ave is the

average over ΞTest of ∆N(µ)/‖u(µ) − uN(µ)‖X , ∆s
N,max,rel is the maximum over ΞTest of

∆s
N(µ)/|s(µ)|, and ηs

N,ave is the average over ΞTest of ∆s
N(µ)/|s(µ)−sN(µ)|; where ΞTest ∈

(DI)343 is a random parameter sample of size 343. We observe that the reduced-basis

approximation converges very rapidly, and that our rigorous error bounds are moderately

sharp. The effectivities are not quite O(1) primarily due to the high-mode frequencies

near resonances; but note that, thanks to the rapid convergence of the reduced-basis

approximation, O(10) effectivities do not significantly affect efficiency — the induced

increase in reduced-basis dimension N is quite modest. Note also that ∆N,max,rel is not

really the square order of ∆s
N,max,rel due to our different choice of the denominator in the

respective normalization; however, the error in the output and output error bound do

in fact converge quadratically with respect to the error norm and energy error bound,

respectively.

Finally, we note that the total Online computational time on a Pentium 1.6GHz

processor to compute sN(µ) and ∆s
N(µ) to a relative error of 10−4 (with N = 40) is less

than 1/279 times the Total Time to directly calculate the truth output s(µ) = `(u(µ)).

Clearly, the savings will be even larger for problems with more complex geometry and

solution structure in particular in three space dimensions. Nevertheless, even for our

current very modest example, the computational economies are very significant.

N ∆N,max,rel ηN,ave ∆s
N,max,rel ηs

N,ave

10 4.33 ×10−1 11.25 3.06 ×10−0 15.08
20 8.02 ×10−3 11.33 7.74 ×10−4 12.76
30 2.43 ×10−3 8.03 6.93 ×10−5 12.82
40 1.49 ×10−3 9.09 2.56 ×10−5 13.90
50 9.81 ×10−4 9.05 1.16 ×10−5 12.50

Table 5.5: Convergence and effectivities for Model I.
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N ∆N,max,rel ηN,ave ∆s
N,max,rel ηs

N,ave

10 1.56 ×10−1 12.37 1.44 ×10−1 35.74
20 5.23 ×10−2 12.04 1.63 ×10−2 30.13
30 1.71 ×10−2 12.72 2.10 ×10−3 27.76
40 5.44 ×10−3 13.14 1.71 ×10−4 25.91
50 1.05 ×10−3 11.37 8.36 ×10−6 17.71

Table 5.6: Convergence and effectivities for Model II.

N ∆N,max,rel ηN,ave ∆s
N,max,rel ηs

N,ave

10 6.17 ×10−0 10.06 8.49 ×10+2 21.41
20 1.90 ×10−2 10.35 4.92 ×10−3 19.31
30 4.13 ×10−3 9.07 2.38 ×10−4 19.88
40 1.34 ×10−3 10.42 2.42 ×10−5 19.94
50 8.83 ×10−4 11.09 1.14 ×10−5 18.28

Table 5.7: Convergence and effectivities for Model III.
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Chapter 6

An Empirical Interpolation Method

for Nonaffine Elliptic Problems

Thus far we have developed the reduced-basis method for parametrized partial differ-

ential equations with affine parameter dependence. The affine assumption allows us to

develop extremely efficient offline-online computational strategy; the online cost to evalu-

ate sN(µ) and ∆s
N(µ) depends only on N and Q, not on N — the dimension of the truth

approximation space. Unfortunately, if the differential operator is not affine in the pa-

rameter, the online complexity is no longer independent of N . This is because operators

of nonaffine parameter dependence do not accommodate the separation of the generation

and projection stages during the online computation.

In this chapter we describe a technique that recovers online N independence even

in the presence of non-affine parameter dependence. In our approach, we replace non-

affine functions of the parameter and spatial coordinate with collateral reduced-basis

expansions. The essential ingredients of the approach are (i) good collateral reduced-basis

samples and spaces, (ii) a stable and inexpensive online interpolation procedure by which

to determine the collateral reduced-basis coefficients (as a function of the parameter), and

(iii) an effective a posteriori error bounds with which to quantify the effect of the newly

introduced truncation.

126



6.1 Abstraction

6.1.1 Preliminaries

We consider the “exact” (superscript e) problem: for any µ ∈ D ⊂ RP , find se(µ) =

`(ue(µ)), where ue(µ) satisfies the weak form of the µ-parametrized PDE

a(ue(µ), v; g(x;µ)) = f(v;h(x;µ)), ∀ v ∈ Xe . (6.1)

Here µ and D are the input and input domain; a(·, ·; g(x;µ)) is a Xe-continuous linear

operator; and f(·;h(x;µ)) and `(·) are Xe-continuous linear functionals. Note that a and

f depend on g(x;µ) and h(x;µ); we further assume that these functions are continuous in

the closed domain Ω̄ and sufficiently smooth with respect to all µ in D. We shall suppose

that a is of the form

a(w, v; g(x;µ)) = a0(w, v) + a1(w, v, g(x;µ)), (6.2)

where a0(·, ·) is a continuous (and, for simplicity, parameter-independent) bilinear form

and a1(·, ·, g(·)) is a trilinear form. For simplicity of exposition, we assume here that

h(x;µ) = g(x;µ).

We consider here second-order PDEs; and hence (H1
0 (Ω))ν ⊂ Xe ⊂ (H1(Ω))ν , where

ν = 1 for a scalar field variable and ν = d for a vector field variable. In actual practice,

we replace Xe with X ⊂ Xe, a “truth” approximation space of dimension N . The inner

product and norm associated with X are given by (·, ·)X and ‖·‖X = (·, ·)1/2
X , respectively.

We shall assume that a satisfies a coercivity and continuity condition

0 < α0 ≤ α(µ) ≡ inf
w∈X

a(w,w; g(x;µ))

‖w‖2
X

, ∀ µ ∈ D, (6.3)

γ(µ) ≡ sup
w∈X

a(w,w; g(x;µ))

‖w‖2
X

≤ γ0 <∞, ∀ µ ∈ D; (6.4)

here α(µ) and γ(µ) are the coercivity constant and the standard continuity constant,

respectively. (We (plausibly) suppose that α0, γ0 may be chosen independent of N .)
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Finally, we assume that the trilinear form a1 satisfies

a1(w, v, z) ≤ γ1‖w‖X ‖v‖X ‖z‖L∞(Ω), ∀ w, v ∈ X. (6.5)

It is then standard, given that g(·;µ) ∈ L∞(Ω), to prove existence and uniqueness.

6.1.2 General Problem Statement

Our approximation of the continuous problem in the finite approximation subspace X

can then be stated as: given µ ∈ D ∈ RP , we evaluate

s(µ) = `(u(µ)) , (6.6)

where u(µ) ∈ X is the solution of the discretized weak formulation

a(u(µ), v; g(x;µ)) = f(v; g(x;µ)), ∀v ∈ X . (6.7)

We shall assume — hence the appellation “truth” — that X is sufficiently rich that u

(respectively, s) is sufficiently close to ue(µ) (respectively, se(µ)) for all µ in the (closed)

parameter domain D. The reduced-basis approximation shall be built upon our reference

finite element approximation, and the reduced-basis error will thus be evaluated with

respect to u(µ) ∈ X. Typically, N , the dimension ofX, will be very large; our formulation

must be both stable and computationally efficient as N →∞.

6.1.3 A Model Problem

We consider the following model problem: the input is µ = (µ(1), µ(2)) ∈ D ≡ [−1,−0.01]2;

the spatial domain is the unit square Ω =]0, 1[2∈ R2; our piecewise-linear finite element

approximation space X = H1
0 ≡ {v ∈ H1(Ω) | v|∂Ω = 0} has dimension N = 2601; the

field variable u(µ) satisfies (6.7) with

a0(w, v) =

∫
Ω

∇w · ∇v, a1(w, v, z) =

∫
Ω

z w v, f(v; z) =

∫
Ω

z v, (6.8)
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g(x;µ) =
1√

(x(1) − µ(1))2 + (x(2) − µ(2))2
; (6.9)

and the output s(µ) is evaluated from (6.6) with

`(v) =

∫
Ω

v . (6.10)

We give in Figure 6-1 the solutions corresponding to smallest parameter value and largest

parameter value obtained with a piecewise-linear finite element approximation of N =

2601. It should be noted that the solution develops a boundary layer in the vicinity of

x = (0, 0) for µ near the “corner” (−0.01,−0.01). We further observe that the peak of

the solution at the largest parameter value is much higher than that of the solution at

the smallest parameter value.

(a) (b)

Figure 6-1: Numerical solutions at typical parameter points: (a) µ = (−1,−1) and (b)
µ = (−0.01,−0.01).
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6.2 Empirical Interpolation Method

6.2.1 Function Approximation Problem

We consider the problem of approximating a given µ-dependent function g( · ;µ) ∈

L∞(Ω), ∀µ ∈ D, of sufficient regularity by a linear combination of known basis functions.

To this end, we assume for now that we are given nested samples Sg
M = {µg

1 ∈ D, . . . , µ
g
M ∈

D} and associated nested approximation spaces W g
M = span {ξm ≡ g(x;µg

m), 1 ≤ m ≤

M}, 1 ≤ M ≤ Mmax. In essence, W g
M comprises basis functions on the parametrically

induced manifold Mg ≡ {g( · ;µ) | µ ∈ D}. Our approximation to g(·;µ) ∈ Mg is then

gM(·;µ) ∈ W g
M . As for the reduced-basis approximation the critical observation is that:

since the manifold Mg is low-dimensional and very smooth in µ, we may thus anticipate

that gM(·;µ) → g(·;µ) very rapidly, and that we may hence choose M very small. But as

for the reduced-basis approximation, it gives rise to two questions: an immediate ques-

tion is how to choose Sg
M so as to ensure good approximation properties for W g

M ; equally

important question is how to obtain good approximation gM efficiently. In the following,

we shall address our choice of Sg
M and develop an efficient approximation approach for

computing such gM(·;µ).

6.2.2 Coefficient-Function Approximation Procedure

To begin, we choose µg
1, and define Sg

1 = {µg
1}, ξ1 ≡ g(x;µg

1), and W g
1 = span {ξ1}; we

assume that ξ1 6= 0. Then, for M ≥ 2, we set µg
M = arg maxµ∈Ξ

g infz∈W g
M−1

‖g(x;µ) −

z‖L∞(Ω), where Ξg is a suitably fine parameter sample over D. We then set Sg
M =

Sg
M−1 ∪ µ

g
M , ξM = g(x;µg

M), and W g
M = span {ξm, 1 ≤ m ≤ M}. It should be noted

that our coefficient-function approximation is required to be consistent with the truth

approximation of the underlying PDE, the “vector” g(x;µ) is thus in fact the interpolant

of the “function” g(·;µ) on the finite element truth mesh; and hence, infz∈W g
M−1

‖g(x;µ)−

z‖L∞(Ω) is simply a standard linear program.

Before we proceed, we note that the evaluation of ε∗M(µ), 1 ≤ M ≤ Mmax, requires

the solution of a linear program for each parameter sample in Ξg; the computational cost

involved thus depends strongly on the size of Ξg as well as on Mmax. Fortunately, we
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can avoid solving the costly linear program by simply replacing the L∞(Ω)-norm in our

best approximation by the L2(Ω)-norm — our next sample point is thus based on µg
M =

arg maxµ∈Ξ
g infz∈W g

M−1
‖g(x;µ)−z‖L2(Ω) — which is relatively inexpensive to evaluate; the

computational cost is O(MN ) +O(M3). Although the following analysis is not rigorous

for this alternative (or “surrogate”) construction of Sg
M , we in fact obtain very similar

convergence results in practice [52]. Hence, the L2(Ω)-based construction is extremely

useful for problems with many parameters and large dimensional truth approximation.

However, we shall consider only the L∞(Ω)-based construction, because (i) the following

analysis remains valid with our choice and (ii) the linear program cost is affordable for

all numerical examples in the thesis.

Lemma 6.2.1. Suppose that Mmax is chosen such that the dimension of Mg exceeds

Mmax, then the space W g
M is of dimension M .

Proof. We first introduce the best approximation

g∗M( · ;µ) ≡ arg min
z∈W g

M

‖g( · ;µ)− z‖L∞(Ω) , (6.11)

and the associated error

ε∗M(µ) ≡ ‖g( · ;µ)− g∗M( · ;µ)‖L∞(Ω) . (6.12)

It directly follows from our hypothesis on Mmax that ε0 ≡ ε∗Mmax
(µg

Mmax+1) > 0; our “arg

max” construction then implies ε∗M−1(µ
g
M) ≥ ε0, 2 ≤ M ≤ Mmax, since ε∗M−1(µ

g
M) ≥

ε∗M−1(µ
g
M+1) ≥ ε∗M(µg

M+1). We now prove lemma 6.2.1 by induction. Clearly, dim(W g
1 ) =

1. Assume dim(W g
M−1) = M − 1; then if dim(W g

M) 6= M , we have g( · ;µg
M) ∈ W g

M−1 and

thus ε∗M−1(µ
g
M) = 0; however, the latter contradicts ε∗M−1(µ

g
M) ≥ ε0 > 0.

We now construct nested sets of interpolation points TM = {t1, . . . , tM}, 1 ≤ M ≤

Mmax. We first set t1 = arg ess supx∈Ω |ξ1(x)|, q1 = ξ1(x)/ξ1(t1), B
1
11 = 1. Then for

M = 2, . . . ,Mmax, we solve the linear system
∑M−1

j=1 σM−1
j qj(ti) = ξM(ti), 1 ≤ i ≤M −1,

and set rM(x) = ξM(x) −
∑M−1

j=1 σM−1
j qj(x), tM = arg ess supx∈Ω |rM(x)|, qM(x) =

rM(x)/rM(tM), and BM
i j = qj(ti), 1 ≤ i, j ≤M . It remains to demonstrate
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Lemma 6.2.2. The construction of the interpolation points is well-defined, and the func-

tions {q1, . . . , qM} form a basis for W g
M .

Proof. We shall proceed by induction. Clearly, we have W g
1 = span{q1}. Next we assume

W g
M−1 = span {q1, . . . , qM−1}; if (i) |rM(tM))| > 0 and (ii) BM−1 is invertible, then our

construction may proceed and we may form W g
M = span {q1, . . . , qM}. To prove (i), we

observe that |rM(tM)| ≥ ε∗M−1(µ
g
M) ≥ ε0 > 0 since ε∗M−1(µ

g
M) is the error associated with

the best approximation. To prove (ii), we just note by the construction procedure that

BM
i j = qj(ti) = rj(ti)/rj(tj) = 0, for i < j

since rj(ti) = 0, 1 ≤ i ≤ j − 1, 2 ≤ j ≤M ; that

BM
i j = qj(ti) = 1, for i = j

since qi(ti) = ri(ti)/ri(ti), 1 ≤ i ≤M ; and that

∣∣BM
i j

∣∣ = |qj(ti)| ≤ 1, for i > j

since ti = arg ess supx∈Ω |ri(x)|, 1 ≤ i ≤ M . Hence, BM−1 is lower triangular with unity

diagonal.

Lemma 6.2.3. For any M-tuple (αi)i=1,...,M of real numbers, there exists a unique ele-

ment w ∈ W g
M such that ∀i, 1 ≤ i ≤M,w(ti) = αi.

Proof. Since the functions {q1, . . . , qM} form a basis for W g
M (Lemma 6.2.2), any member

of W g
M can be expressed as w =

∑M
j=1 qj(x)κj. Recalling that BM is invertible, we

may now consider the particular function w corresponding to the choice of coefficients

κj, 1 ≤ j ≤ M , such that
∑M

j=1B
M
ij κj = αi, 1 ≤ i ≤ M ; but since BM

ij = qj(ti),

w(ti) =
∑M

j=1 qj(ti)κj =
∑M

j=1B
M
ij κj = αi, 1 ≤ i ≤ M , which hence proves existence.

To prove uniqueness, we need only consider two possible candidates and again invoke the

invertibility of BM .

It remains to develop an efficient procedure for obtaining a good collateral reduced-

basis expansion gM(·;µ). Based on the approximation space W g
M and set of interpolation
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points TM , we can readily construct an approximation to g(;µ). Indeed, our coefficient

function approximation is the interpolant of g over TM as provided for Lemma 6.2.3:

gM(x;µ) =
M∑

m=1

ϕM m(µ) qm(x) , (6.13)

where ϕM(µ) ∈ RM is the solution of

M∑
j=1

BM
i j ϕM j(µ) = g(ti;µ), 1 ≤ i ≤M ; (6.14)

note that gM(ti;µ) = g(ti;µ), 1 ≤ i ≤M . We define the associated error as

εM(µ) ≡ ‖g( · ;µ)− gM( · ;µ)‖L∞(Ω). (6.15)

6.3 Error Analyses for the Empirical Interpolation

6.3.1 A Priori Framework

To begin, we define a “Lebesgue constant” [123]

ΛM = sup
x∈Ω

M∑
m=1

|V M
m (x)| . (6.16)

Here the V M
m (x) ∈ W g

M are characteristic functions satisfying V M
m (tn) = δmn, the existence

and uniqueness of which is guaranteed by Lemma 6.2.3. It can be shown that

Lemma 6.3.1. The characteristic functions V M
m are a basis for W g

M . And the two bases

qm, 1 ≤ m ≤M, and V M
m , 1 ≤ m ≤M, are related by

qi(x) =
M∑

j=1

BM
j i V

M
j (x), 1 ≤ i ≤M . (6.17)

Proof. We first consider x = tn, 1 ≤ n ≤ M , and note that
∑M

j=1 BM
j i V

M
j (tn) =∑M

j=1 B
M
j i δjn = BM

n i = qi(tn), 1 ≤ i ≤ M ; it thus follows from Lemma 6.2.3 that (6.17)

holds. It further follows from Lemma 6.2.2 and from Lemma 6.2.3 that any w ∈
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W g
M can be uniquely expressed as w =

∑M
i=1 κiqi(x) =

∑M
i=1 κi(

∑M
j=1 BM

j i V
M
j (x)) =∑M

j=1(
∑M

i=1 κi B
M
j i )V

M
j (x) =

∑M
j=1 αjV

M
j (x), where αj = w(tj), 1 ≤ j ≤ M ; thus the

V M
j , 1 ≤ j ≤M , form a (“nodal”) basis for W g

M .

We further observe that ΛM depends on W g
M and TM , but not on µ nor on our choice

of basis for W g
M . We can further prove

Lemma 6.3.2. The interpolation error εM(µ) satisfies εM(µ) ≤ ε∗M(µ)(1+ΛM), ∀µ ∈ D.

Proof. We first define the error function for g∗M(x;µ) as

e∗M(x;µ) ≡ g(x;µ)− g∗M(x;µ)

= (g(x;µ)− gM(x;µ)) + (gM(x;µ)− g∗M(x;µ)) . (6.18)

Since gM(x;µ) ∈ W g
M , g

∗
M(x;µ) ∈ W g

M there exists κ(µ) ∈ RM such that

gM(x;µ)− g∗M(x;µ) =
M∑

m=1

κm(µ) qm(x) . (6.19)

It then follows from (6.18) and (6.19) that

e∗M(ti;µ) = (g(ti;µ)− gM(ti;µ)) +
M∑

m=1

κm(µ) qm(ti)

=
M∑

m=1

BM
i mκm(µ), 1 ≤ i ≤M ; (6.20)

here we invoke (6.13) and (6.14) to arrive at the second equality. The desired result
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immediately follows

εM(µ)− ε∗M(µ) = ‖g( · ;µ)− gM( · ;µ)‖L∞(Ω) − ‖g( · ;µ)− g∗M( · ;µ)‖L∞(Ω)

≤ ‖gM( · ;µ)− g∗M( · ;µ)‖L∞(Ω)

= ‖
M∑

m=1

κm(µ) qm(x)‖L∞(Ω)

= ‖
M∑

k=1

M∑
m=1

BM
k m κm(µ) V M

k (x)‖L∞(Ω)

= ‖
M∑
i=1

e∗M(ti;µ) V M
i (x)‖L∞(Ω)

≤ ε∗M(µ) ΛM

from triangle inequality, (6.19), (6.17), (6.20), and |e∗M(ti;µ)| ≤ ε∗M(µ), 1 ≤ i ≤M .

We can further show

Proposition 5. The Lebesgue constant ΛM satisfies ΛM ≤ 2M − 1.

Proof. We first recall two crucial properties of the matrix BM : (i) BM is lower triangular

with unity diagonal — qm(tm) = 1, 1 ≤ m ≤M , and (ii) all entries of BM are of modulus

no greater than unity — ‖qm‖L∞(Ω) ≤ 1, 1 ≤ m ≤M . Hence, from (6.17) we can write

|V M
m (x)| =

∣∣∣∣∣qm(x)−
M∑

i=m+1

BM
i mV

M
i (x)

∣∣∣∣∣
≤ |qm(x)|+

M∑
i=m+1

|V M
i (x)|

≤ 1 +
M∑

i=m+1

|V M
i (x)| (6.21)

for m = 1, . . . ,M − 1. It follows that, starting from |V M
M (x)| = |qM(x)| ≤ 1, we can

deduce |V M
M+1−m(x)| ≤ 1 + |V M

M (x)| + . . . + |V M
M+2−m(x)| ≤ 2m−1, 2 ≤ m ≤ M , and thus

have
∑M

m=1 |V M
m (x)| ≤ 2M − 1.

Proposition 5 is very pessimistric and of little practical value (though ε∗M(µ) does often

converge sufficiently rapidly that ε∗M(µ) 2M → 0 as M →∞); this is not surprising given

135



analogous results in the theory of polynomial interpolation [123]. However, Proposition 5

does provide some notion of stability.

6.3.2 A Posteriori Estimators

Given a coefficient function approximation gM(x;µ) for M ≤Mmax − 1, we define

EM(x;µ) ≡ ε̂M(µ) qM+1(x) , (6.22)

where

ε̂M(µ) ≡ |g(tM+1;µ)− gM(tM+1;µ)| . (6.23)

In general, εM(µ) ≥ ε̂M(µ), since εM(µ) = ||g(·;µ)−gM(·;µ)||L∞(Ω) ≥ |g(x;µ)−gM(x;µ)|

for all x ∈ Ω, and thus also for x = tM+1. However, we can prove

Proposition 6. If g( · ;µ) ∈ W g
M+1, then (i) g(x;µ) − gM(x;µ) = ±EM(x;µ) (either

EM(x;µ) or −EM(x;µ)), and (ii) ‖g( · ;µ)− gM( · ;µ)‖L∞(Ω) = ε̂M(µ).

Proof. By our assumption g( · ;µ) ∈ W g
M+1, there exists κ(µ) ∈ RM+1 such that g(x;µ)−

gM(x;µ) =
∑M+1

m=1 κm(µ) qm(x). We now consider x = ti, 1 ≤ i ≤M + 1, and arrive at

M+1∑
m=1

κm(µ) qm(ti) = g(ti;µ)− gM(ti;µ), 1 ≤ i ≤M + 1 . (6.24)

We next note from (6.13) and (6.14) that

g(ti;µ)− gM(ti;µ) = 0, 1 ≤ i ≤M . (6.25)

Therefore, κm(µ) = 0, 1 ≤ m ≤ M , since the matrix qm(ti) is lower triangular, and

κM+1(µ) = g(tM+1;µ) − gM(tM+1;µ), since qM+1(tM+1) = 1; this concludes the proof of

(i). The proof of (ii) then directly follows from ‖qM+1‖L∞(Ω) = 1.

Of course, in general g( · ;µ) 6∈ W g
M+1, and hence our estimator ε̂M(µ) is not quite a

rigorous upper bound; however, if εM(µ) → 0 very fast, we expect that the effectivity

ηM(µ) ≡ ε̂M(µ)

εM(µ)
, (6.26)
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shall be close to unity. Furthermore, the estimator is very inexpensive – one additional

evaluation of g( · ;µ) at a single point in Ω.

6.3.3 Numerical Results

We consider the nonaffine function G(x;µ) ≡
(
(x(1) − µ(1))

2 + (x(2) − µ(2))
2
)−1/2

for x ∈

Ω ≡ ]0, 1[ 2 and µ ∈ D ≡ [−1,−0.01]2. We choose for Ξg a deterministic grid of 40 × 40

parameter points over D and we take µg
1 = (−0.01,−0.01). Next we then pursue the

empirical interpolation procedure described in Section 6.2 to construct Sg
M , W g

M , TM , and

BM , 1 ≤M ≤Mmax, for Mmax = 52. We present in Figure 6-2 Sg
Mmax

and TMmax . It is not

surprising from the given form of G(x;µ) that the sample points are distributed mostly

around the corner (−0.01,−0.01) of the parameter domain; and that the interpolation

points are allocated mainly around the corner (0.00, 0.00) of the physical domain.
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Figure 6-2: (a) Parameter sample set Sg
M , Mmax = 52, and (b) Interpolation points

tm, 1 ≤ m ≤Mmax, for the nonaffine function (6.9).

We now introduce a regular parameter test sample Ξg
Test of size QTest = 225, and

define ε∗M,max = maxµ∈Ξg
Test

ε∗M(µ), ρM = Q−1
Test

∑
µ∈Ξg

Test

(
εM(µ)/(ε∗M(µ)(1 + ΛM))

)
, ηM =

Q−1
Test

∑
µ∈Ξg

Test
ηM(µ), κM as condition number of BM ; here ηM(µ) is the effectivity defined

in (6.26). We present in Table 6.1 these quantities as a function of M (Mmax = 52). We

observe that ε∗M,max converges rapidly with M ; that the Lebesgue constant provides a

reasonably sharp measure of the interpolation-induced error; that the Lebesgue constant

grows very slowly — εM(µ) is only slightly larger that the min max result ε∗M(µ); that
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the error estimator effectivity is reasonably close to unity; and that BM is quite well-

conditioned for our choice of basis (For the non-orthogonalized basis ξm, 1 ≤ m ≤ M ,

the condition number of BM will grow exponentially with M .) These results are expected

since the given function G(x;µ) is quite regular and smooth in the parameter µ.

M ε∗M,max ρM ΛM ηM κM

8 8.30E– 02 0.68 1.76 0.17 3.65
16 4.22E– 03 0.67 2.63 0.10 6.08
24 2.68E– 04 0.49 4.42 0.28 9.19
32 5.64E– 05 0.48 5.15 0.20 12.86
40 3.66E– 06 0.54 4.98 0.60 18.37
48 6.08E– 07 0.37 7.43 0.29 20.41

Table 6.1: ε∗M,max, ρM , ΛM , ηM , and κM as a function of M .

6.4 Reduced-Basis Approximation

6.4.1 Discrete Equations

We begin with motivating the need for the empirical interpolation approach in deal-

ing with nonaffine problems. Specifcally, we introduce nested samples, SN = {µu
1 ∈

D, · · · , µu
N ∈ D}, 1 ≤ N ≤ Nmax and associated nested Lagrangian reduced-basis spaces

as WN = span{ζj ≡ u(µu
j ), 1 ≤ j ≤ N}, 1 ≤ N ≤ Nmax, where u(µu

j ) is the solution to

(6.7) for µ = µu
j . Were we to follow the classical recipe, our reduced-basis approximation

would then be: for a given µ ∈ D, we evaluate sN(µ) = `(uN(µ)), where uN(µ) ∈ WN is

the solution of

a0(uN(µ), v) + a1(uN(µ), v, g(x;µ)) = f(v; g(x;µ)), ∀v ∈ WN . (6.27)

If we now express uN(µ) =
∑N

j=1 uN j(µ)ζj and choose a test function v = ζn, 1 ≤ n ≤ N,,

we obtain the N ×N linear algebraic system

N∑
j=1

(a0(ζi, ζj) + a1(ζi, ζj, g(x;µ)))uN j(µ) = f(ζi; g(x;µ)), 1 ≤ i ≤ N. (6.28)
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We observe that while a0(ζi, ζj) is parameter-independent and can thus be pre-computed

offline, f(ζi; g(x;µ)) and a1(ζi, ζj, g(x;µ)) depend on g(x;µ) and must thus be evaluated

online for every new parameter value µ. The operation count for the online stage will

thus scale as O(N2N ), where N is the dimension of the underlying truth finite element

approximation space: the reduction in marginal cost gain obtained in moving from the

truth finite element approximation space to the reduced-basis space will be quite modest

regardless of the dimension reduction.

To recover onlineN independence, we replace g(x;µ) by gM(x;µ) =
∑M

m=1 ϕM m(µ)qm

which is a coefficient-function approximation defined in Section 6.2 and analyzed in Sec-

tion 6.3. We thus construct nested samples Sg
M = {µg

1 ∈ D, · · · , µg
M ∈ D}, 1 ≤ M ≤

M g
max, associated nested approximation spaces W g

M = span{ξm ≡ g(µg
m), 1 ≤ m ≤

M}, 1 ≤ M ≤ Mmax, and nested sets of interpolation points TM = {t1, . . . , tM}, 1 ≤

M ≤ Mmax following the procedure of Section 6.2. Our reduced-basis approximation is

now: Given µ ∈ D, we evaluate sN,M(µ) = `(uN,M(µ)), where uN,M(µ) ∈ WN is the

solution of

a0(uN,M(µ), v) + a1(uN,M(µ), v, gM(x;µ)) = f(v; gM(x;µ)), ∀v ∈ WN . (6.29)

It thus follow from uN,M(µ) =
∑N

j=1 uN,M j(µ)ζj and trilinearity of a1 that the uN,M j, 1 ≤

j ≤ N, satisfies the N ×N linear algebraic system

N∑
j=1

(
a0 (ζj, ζi) +

M∑
m=1

ϕM m(µ)a1 (ζj, ζi, qm)

)
uN,M j(µ) =

M∑
m=1

ϕM m(µ)f(ζi; qm), (6.30)

for i = 1, · · · , N ; here ϕM m(µ), 1 ≤ m ≤ M , is determined from (6.14). We recover

the online N -independence: the quantities a0(ζi, ζj), a1(ζi, ζj, qm), and f(ζi; qm) are all

parameter independent and can thus be pre-computed offline as discribed in Section 6.4.3.

6.4.2 A Priori Theory

We consider here the convergence rate of uN,M(µ) → u(µ). In fact, it is a simple matter

to demonstrate the optimality of uN,M(µ) in
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Proposition 7. For εM(µ) of (6.15) satisfying εM(µ) ≤ 1
2

α(µ)
φ2(µ)

, we have

‖u(µ)− uN,M(µ)‖X ≤
(

1 +
γ(µ)

α(µ)

)
inf

wN∈WN

‖u(µ)− wN‖X

+ εM(µ)

(
φ1(µ)α(µ) + 2φ2(µ)φ3(µ)

α2(µ)

)
; (6.31)

here φ1(µ), φ2(µ), and φ3(µ) are given by

φ1(µ) =
1

εM(µ)
sup
v∈X

f(v; g(·;µ)− gM(·;µ))

|v‖X

, (6.32)

φ2(µ) =
1

εM(µ)
sup
w∈X

sup
v∈X

a(w, v; g(·;µ)− gM(·;µ))

‖w‖X‖v‖X

, (6.33)

φ3(µ) = sup
v∈X

f(v; gM(·;µ))

|v‖X

. (6.34)

Proof. For any wN = uN,M(µ) + vN ∈ WN , we have

α(µ)‖wN − uN,M‖2
X ≤ a(wN − uN,M , wN − uN,M ; g(·;µ))

= a(wN − u, vN ; g(·;µ)) + a(u− uN,M , vN ; g(·;µ))

≤ γ(µ)‖wN − u‖X‖vN‖X + a(u− uN,M , vN ; g(·;µ)) . (6.35)

It follows from (6.1), (6.29), and (6.32)-(6.34) that the second term can be bounded by

a(u− uN,M , vN ; g(·;µ)) = f(vN ; g(·;µ))− a(uN,M , vN ; g(·;µ))

= f(vN ; g(·;µ)− gM(·;µ))− a(uN,M , vN ; g(·;µ)− gM(·;µ))

≤ εM(µ)φ1(µ)‖vN‖X + εM(µ)φ2(µ)‖vN‖X‖uN,M‖X

≤ εM(µ)

(
φ1(µ)α(µ) + 2φ2(µ)φ3(µ)

α(µ)

)
‖vN‖X , (6.36)
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where the last inequality derives from

α(µ)‖uN,M(µ)‖2
X ≤ a(uN,M(µ), uN,M(µ); g(x;µ))

= f(uN,M(µ); gM(x;µ)) + a(uN,M(µ), uN,M(µ); g(x;µ)− gM(x;µ))

≤ φ3(µ)‖uN,M(µ)‖X + εM(µ)φ2(µ)‖uN,M(µ)‖2
X , (6.37)

and our hypothesis on εM(µ). It then follows from (6.35) and (6.36) that ∀ wN ∈ WN ,

‖wN − uN,M(µ)‖X ≤ γ(µ)

α(µ)
‖wN − u(µ)‖X + εM(µ)

(
φ1(µ)α(µ) + 2φ2(µ)φ3(µ)

α2(µ)

)
. (6.38)

The result follows from (6.38) and the triangle inequality. (Note for a affine φ1(µ) =

φ2(µ) = 0,∀µ ∈ D, we recover the optimality result for affine linear problems [121].)

As regards the best approximation, we note that WN comprises “snapshots” on the

parametrically induced manifold Mu ≡ {u(µ) | ∀ µ ∈ D} ⊂ X. The critical observation

is that Mu is very low-dimensional; and that Mu is smooth under our hypotheses on

stability and continuity. We thus expect that the best approximation will converge to u(µ)

very rapidly, and hence that N may be chosen small. (This is proven for a particularly

simple case in [93].)

6.4.3 Offline/Online Computational Procedure

The theoretical and numerical results of Sections 6.3 and 6.3.3 suggest that M may also

be chosen small. We now develop offline-online computational procedures that exploit

this dimension reduction provided by the reduced-basis method [9, 65, 85, 121] and our

empirical interpolation method.

In the offline stage — performed only once — we first construct nested approximation

spaces W g
M = {q1, . . . , qM} and nested sets of interpolation points TM , 1 ≤ M ≤ Mmax;

we then solve for the ζn, 1 ≤ n ≤ N ; we finally form and store BM , a0(ζj, ζi), a1(ζj, ζi, qm),

and f(ζi; qm), `(ζi), 1 ≤ i, j ≤ N, 1 ≤ m ≤Mmax − 1. Note that all quantities computed

in the offline stage are independent of the parameter µ.

In the online stage — performed many times for each new µ— we first compute ϕM(µ)

from (6.14) at cost O(M2) by multiplying the pre-computed inverse matrix (BM)−1 with
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the vector g(ti;µ), 1 ≤ i ≤M ; we then assemble and invert the (full) N×N reduced-basis

stiffness matrix a0 (ζj, ζi) +
∑M

m=1 ϕM m(µ)a1 (ζj, ζi, qm) to obtain uN,M j, 1 ≤ j ≤ N , at

cost O(N2M) + O(N3); we finally evaluate the reduced-basis output sN,M(µ) at cost

O(N). The operation count for the online stage is thus only O(M2 + N2M + N3); the

online complexity is independent of N , the dimension of the underlying “truth” finite

element approximation space. Since N, M � N we expect significant computational

savings in the online stage relative to classical discretization and solution approaches

(and relative to standard reduced-basis approaches built upon (6.28)).

6.5 A Posteriori Error Estimation

6.5.1 Error Bounds

We assume that we may calculate α̂(µ) such that α(µ) ≥ α̂(µ),∀µ ∈ D as discussed in

Chapter 4. We then define an error bound ∆N,M(µ) for ‖u(µ)− uN,M(µ)‖X as

∆N,M(µ) =
1

α̂(µ)
sup
v∈X

r(v; gM(x;µ))

‖v‖X

+
ε̂M

α̂(µ)
sup
v∈X

f(v; qM+1(x))− a1 (uN,M(µ), v, qM+1(x))

‖v‖X

, (6.39)

and an output error bound ∆s
N,M(µ) for |s(µ)− sN,M(µ)| as

∆s
N,M(µ) = sup

v∈X

`(v)

‖v‖X

∆N,M(µ) . (6.40)

Here r(v; gM(x;µ)) is the residual associated with uN,M(µ) and gM(x;µ)

r(v; gM(x;µ)) = f(v; gM(x;µ))− a(uN,M(µ), v; gM(x;µ)), ∀ v ∈ X . (6.41)

For our purposes here, we shall focus on the energy error bound, ∆N,M(µ), rather

than ∆s
N,M(µ); the latter may be significantly improved by the introduction of adjoint

techniques described in Section 6.6. We can readily prove

Proposition 8. Suppose that g(x;µ) ∈ W g
M+1, then for the error bounds ∆N,M(µ) of

(6.39) and ∆s
N,M(µ) of (6.40), the corresponding effectivities satisfy 1 ≤ ηN,M(µ),∀µ ∈ D
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and 1 ≤ ηs
N,M(µ),∀µ ∈ D.

Proof. We first note from (6.7) and (6.41) that e(µ) ≡ u(µ)− uN,M(µ) satisfies

a(e(µ), v; g(·;µ)) = r(v; gM(x;µ)) + f(v; g(·;µ)− gM(·;µ))

− a1(uN,M(µ), v, g(·;µ)− gM(·;µ)), ∀ v ∈ X . (6.42)

The first result immediately follows from

‖e(µ)‖X ≤ 1

α(µ)

a(e(µ), e(µ); g(·;µ))

‖e(µ)‖X

≤ 1

α̂(µ)

{
r(e(µ); gM(·;µ)) + f(e(µ); g(·;µ)− gM(·;µ))

‖e(µ)‖X

− a1(uN,M(µ), e(µ), g(·;µ)− gM(·;µ))

‖e(µ)‖X

}
≤ 1

α̂(µ)
sup
v∈X

{
r(v; gM(·;µ)) + f(v; g(·;µ)− gM(·;µ))

‖e(µ)‖X

− a1(uN,M(µ), v, g(·;µ)− gM(·;µ))

‖v‖X

}
≤ 1

α̂(µ)

(
sup
v∈X

r(v; gM(·;µ))

‖v‖X

+ ε̂M sup
v∈X

f(v; qM+1)− a1(uN,M(µ), v, qM+1)

‖v‖X

)

where we have used a-coercivity in the first step, (6.42) in the second step, and our

assumption g(·;µ) ∈ W g
M+1 and Proposition 6 in the last step. Furthermore, we have

|s(µ)− sN,M(µ)| = |`(eN,M(µ))| ≤ sup
v∈X

`(v)

‖v‖X

‖eN,M(µ)‖X ≤ ∆s
N,M(µ) .

This concludes the proof.

In general, g(x;µ) ∈ W g
M+1 is not satisfied and our error bounds may thus not be

completely rigorous due to the second term in (6.39), since ε̂M(µ) is indeed a lower bound

surrogate for εM(µ). Therefore, for rigor of the energy error bound (and thus the output

bound) M should be chosen sufficiently large such that the “Safety Condition”

∆N,M,n(µ)

∆N,M(µ)
≤ 1/2 (6.43)
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satisfies, where

∆N,M,n(µ) =
ε̂M(µ)

α̂(µ)
sup
v∈X

[{f(v; qM+1)− a1(uN,M(µ), v, qM+1)}/‖v‖X ] . (6.44)

This implies that εM should be roughly O(‖r(v; gM(x;µ))‖X′) since supv∈X [{f(v; qM+1)−

a1(uN,M(µ), v, qM+1)}/‖v‖X ] are actually O(1) due to ‖qM+1‖L∞(Ω) = 1; note also that

rather than 1/2, more conservative choices will be even safer. If M is chosen too small the

nonrigorous component ∆N,M,n(µ) will dominate, we may thus risk to obtain nonrigorous

bounds. Of course, M should not also be chosen too large, since the online complexity

scale as O(M2N2 +N3) as discussed follows.

6.5.2 Offline/Online Computational Procedure

It remains to develop the offline-online computational procedure for the efficient calcula-

tion of ∆N,M(µ) and ∆s
N,M(µ). To begin, we invoke duality arguments to obtain

sup
v∈X

r(v; gM(x;µ))

‖v‖X

= ‖êN,M(µ)‖X , (6.45)

where êN,M(µ) is the solution of

(êN,M(µ), v)X = r(v; gM(x;µ)), ∀v ∈ X . (6.46)

We next note from our reduced-basis approximation uN,M n(µ) =
∑N

n=1 uN,M n(µ) ζn and

coefficient-function approximation gM(;µ) =
∑M

m=1 ϕM m(µ) qm to expand

r(v; gM(x;µ)) =
M∑

m=1

ϕM m(µ) f(v; qm)−
N∑

n=1

uN,M n(µ)a0(ζn, v)

−
M∑

m=1

N∑
n=1

ϕM m(µ)uN,M n(µ) a1(ζn, v, qm), ∀ v ∈ X. (6.47)

It follows from (6.46)-(6.47) and linear superposition that we may write êN,M(µ) ∈ X as

êN,M(µ) =
M+N∑
k=1

σk(µ)Ck +
M∑

m=1

N∑
n=1

ϕM m(µ) uN,M n(µ) Lmn , (6.48)
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where σk(µ) = ϕM k(µ), (Ck, v)X = f(v; qk),∀v ∈ X, 1 ≤ k ≤ M and σk+M(µ) =

uN,M k(µ), (Ck+M , v)X = −a0(ζk; v),∀v ∈ X, 1 ≤ k ≤ N , and (Lmn, v)X = −a1(ζn, v, qm),

∀ v ∈ X, 1 ≤ n ≤ N , 1 ≤ m ≤M ; note that the latter are simple parameter-independent

(scalar or vector) Poisson, or Poisson-like, problems. It thus follows that

‖(êN,M(µ)‖2
X =

M∑
m=1

N∑
n=1

M∑
m′=1

N∑
n′=1

ϕM m(µ) uN,M n(µ)ϕM m′(µ) uN,M n′(µ) (Lmn,Lm′n′)X

+ 2
M∑

m=1

N∑
n=1

M+N∑
k=1

ϕM m(µ) uN,M n(µ)σk(µ)(Ck,Lmn)X

+
M+N∑
k=1

M+N∑
k′=1

σk(µ)σk′(Ck, Ck′)X . (6.49)

Similarly, we have

sup
v∈X

f(v; qM+1(x))− a1(uN,M(µ), v, qM+1(x))

‖v‖X

= (Z0,Z0)X +
N∑

n=1

uN,M n(µ)(Z0,Zn)X

+
N∑

n=1

N∑
n′=1

uN,M n(µ)uN,M n′(µ) (Zn,Zn′)X (6.50)

where (Z0, v)X = f(v; qM+1(x)), (Zn, v)X = −a1(ζn, v, qM+1(x)), ∀ v ∈ X, 1 ≤ n ≤ N .

The offline-online decomposition may now be identified.

In the offline stage — performed only once — we first solve for Ck,Lmn,Z0, and Zn,

1 ≤ k ≤ M + N, 1 ≤ n ≤ N, 1 ≤ m ≤ M ; we then form and store the associated

parameter-independent inner products (Ck, Ck′)X , (Ck,Lmn)X , (Lmn,Lm′n′)X , (Z0,Z0)X ,

(Z0,Zn)X , (Zn,Zn′)X , 1 ≤ n, n′ ≤ N, 1 ≤ m,m′ ≤M , 1 ≤ k, k′ ≤M +N . This requires

1 +M + 2N +MN (expensive) finite element solutions and 1 +N +N2 + (M +N)2 +

NM(M + N) + M2N2 finite-element-vector inner products. Note that all quantities

computed offline are independent of the parameter µ.

In the online stage — performed many times for each new µ — we simply evaluate

the two sums (6.49) and (6.50) in terms of ϕM m(µ), uN,M n(µ) and the precomputed inner

products. The operation count for the online stage is only O(M2N2); again the online

complexity is independent of N . Note however that if M is the same order of N , the

online cost for calculating the error bounds is one degree higher than the online cost for
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evaluating sN,M(µ).

6.5.3 Sample Construction and Adaptive Online Strategy

Our error estimation procedures also allow us to pursue (i) more rational constructions of

our parameter sample SN and (ii) efficient execution of the online stage in which we can

choose minimal N and M such that the error criterion ‖u(µ)−uN(µ)‖X ≡ ‖e(µ)‖X ≤ εtol

and the Safety Condition (6.43) are satisfied. We denote the smallest error tolerance

anticipated as εtol, min — this must be determined a priori offline; we then permit εtol ∈

[εtol, min,∞[ to be specified online. In addition to the random sample Ξg of size nG � 1,

we introduce Ξu ∈ DnF , a very fine random sample over the parameter domain D of size

nF � 1.

We first consider the offline stage. We set M = Mmax − 1, N = 1, and choose

an initial (random) sample set S1 = {µ1} and hence space W1. We then calculate

µ∗N+1 = arg maxµ∈Ξu ∆N,M(µ); here ∆N,M(µ) is our “online” error bound (6.39) that,

in the limit of nF →∞ queries, may be evaluated (on average) at cost O(N2M2 +N3).

We next append µ∗N+1 to SN to form SN+1, and hence WN+1. We continue this process

until N = Nmax such that ε∗Nmax
= εtol,min, where ε∗N ≡ ∆N,M(µ∗N), 1 ≤ N ≤ Nmax. In

addition, we compute and store ε∗M ≡ arg maxµ∈Ξu εM(µ) and ‖êN,Mmax−1(µ
∗
N)‖X for all

M ∈ [1,Mmax] and N ∈ [1, Nmax].

In the online stage, given any desired εtol ∈ [εtol, min,∞[ and any new µ, we first

choose N from a pre-tabulated array such that ε∗N (≡ ∆N,M(µ∗N)) = εtol and choose M

accordingly from another pre-tabulated array such that ε∗M ≈ ‖êN,Mmax−1(µ
∗
N)‖X . We

next calculate uN,M(µ) and ∆N,M(µ) totally in O(M2N2 + N3) operations, and verify

that ∆N,M(µ) ≤ εtol is indeed satisfied. If the condition is not yet satisfied we increment

M := M +M+ (say, M+ = 1) until either ∆N,M(µ) ≤ εtol, ∆N,M,n(µ)/∆N,M(µ) ≤ 1/2 or

∆N,M(µ) does not further decrease;1 in the latter case, we subsequently increase N while

ensuring ∆N,M,n(µ)/∆N,M(µ) ≤ 1/2 until ∆N,M(µ) ≤ εtol. This strategy will provide not

only online efficiency but also the requisite rigor and accuracy with certainty. (We should

1We should increaseM first because (i) our sample construction would ensure ∆N,M (µ) ≤ εtol,∀µ ∈ D
(in the limit of nF →∞) for the chosen N and M = Mmax−1, and (ii) the online cost grows faster with
N than with M .
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not and do not rely on the finite sample Ξu for either rigor or sharpness.)

6.5.4 Numerical Results

We readily apply our approach to the model problem described in Section 6.1.3. It

should be mentioned that the problem is coercive and that we choose bound conditioner,

(w, v)X =
∫

Ω
∇w ·∇v. It thus follows that α(µ) ≡ infv∈X{a(v, v, g(x;µ))/||v||2X} > 1; and

hence α̂(µ) = 1 is a valid lower bound for α(µ),∀µ ∈ D. The sample set SN and associated

reduced-basis space WN are developed based on an adaptive sampling procedure 6.5.3:

for nF = 1600 and εtol,min = 2× 10−5, we obtain Nmax = 20.

We now introduce a parameter sample ΞTest ⊂ (D)225 of size 225 (in fact, a regu-

lar 15 × 15 grid over D), and define εN,M,max,rel = maxµ∈ΞTest
‖eN,M(µ)‖X/‖umax‖X and

εs
N,M,max,rel = maxµ∈ΞTest

|s(µ)− sN,M(µ)|/|smax|; here ‖umax‖X = maxµ∈ΞTest
‖u(µ)‖X and

|smax| = maxµ∈ΞTest
|s(µ)|. We present in Figure 6-3 εN,M,max,rel and εs

N,M,max,rel as a func-

tion of N and M . We observe the reduced-basis approximations converge very rapidly.

Note the “plateau” in the curves for M fixed and the “drops” in the N →∞ asymptotes

as M is increased, reflecting the trade-off between the reduced-basis approximation and

coefficient-function approximation contribution to the error: for fixed M the error in our

coefficient function approximation gM(x;µ) to g(x;µ) will ultimately dominate for large

N ; increasing M renders the coefficient function approximation more accurate, which in

turn leads to the drops in the error. Note further the separation points in the conver-

gence plot reflecting the balanced contribution of the reduced-basis approximation and

coefficient-function approximation to the error: increasing either N or M have very small

effect on the error, and the error can only be reduced by increasing both N and M .

We furthermore present in Table 6.2 ∆N,M,max,rel, η̄N,M , ∆s
N,M,max,rel, and η̄s

N,M as a

function of N and M . Here ∆N,M,max,rel is the maximum over ΞTest of ∆N,M(µ)/‖umax‖X ,

η̄N,M is the average over ΞTest of ∆N,M(µ)/‖e(µ)‖X , ∆s
N,M,max,rel is the maximum over

ΞTest of ∆s
N,M(µ)/|smax|, and η̄s

N,M is the average over ΞTest of ∆s
N,M(µ)/|s(µ)− sN,M(µ)|.

We observe that the reduced-basis approximation — in particular, for the solution —

converges very rapidly, and that the energy error bound is quite sharp as its effectivities

are in order of O(1). However, the effectivities for the output estimate are large and thus
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Figure 6-3: Convergence of the reduced-basis approximations for the model problem.

our output bounds are not sharp — we will further discuss this issue in the next section.

N M ∆N,M,max,rel η̄N,M ∆s
N,M,max,rel η̄s

N,M

4 15 1.35E– 02 1.16 1.43E– 02 11.32
8 20 1.23E– 03 1.01 1.30E– 03 13.41
12 25 2.77E– 04 1.08 2.92E– 04 17.28
16 30 3.93E– 05 1.00 4.15E– 05 20.40

Table 6.2: Effectivities for the model problem.

In general, g(x;µ) ∈ W g
M+1 is not satisfied and our error estimators may thus not be

completely rigorous upper bounds. We may thus investigate the relative contribution of

the rigorous and non-rigorous components to the error bound ∆N,M(µ). For this purpose

we define ∆N,M,ave as the average over ΞTest of ∆N,M(µ) and ∆N,M,ave,n as the average over

ΞTest of ∆N,M,n(µ). We present in Figure 6-4 the ratio ∆N,M,ave,n/∆N,M,ave as a function

of N and M . We observe that the ratio increases with N , but decreases with M . This

is because ∆N,M(µ) converges faster with N but slower with M than ∆N,M,n(µ). We can

now understand our adaptive online strategy more clearly by looking at the graph 6-4.

For example, in the online stage, we already choose N = 12 from a pre-tabulated, our

online adaptivity will be likely to give M = 20. This is because, for M < 20, the Safety

Condition (possibly the error criterion as well) is not satisfied; at M = 20, the Safety

Condition is satisfied as seen from the graph; increasing M above 20 will not improve the

error bounds too much, but online complexity increases. Note further that for M = 26,
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the nonrigorous component ∆N,M,n is almost less than 10 percentage of ∆N,M(µ) for all

N (≤ Nmax) — its contribution to the error bound is very small.
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Figure 6-4: ∆N,M,ave,n/∆N,M,ave as a function of N and M .

Finally, we present in Table 6.3 the online computational times to calculate sN,M(µ)

and ∆s
N,M(µ) as a function of (N,M). The values are normalized with respect to

the computational time for the direct calculation of the truth approximation output

s(µ) = `(u(µ)). We achieve significant computational savings: for an accuracy of close

to 0.1 percent (N = 8, M = 20) in the output bound, the online saving is more than a

factor of 100. We also note that the time to calculate ∆s
N,M(µ) exceeds that of calculating

sN(µ) considerably — this is due to the higher computational cost, O(M2N2), to evaluate

∆N,M(µ). Hence, although the theory suggests to choose M large so that the nonrigorous

component due to the coefficient function approximation does not dominate the rigorous

component, we should choose M as small as possible to retain the computational effi-

ciency. Our online adaptive strategy is thus necessary for providing rigor, accuracy and

efficiency.

6.5.5 Remark on Noncoercive Case

We close this section with a short discussion on the application of our approach to non-

coercive problems. We have presented the approach to a coercive case in which the lower

bound of the stability factor, α̂(µ), may be deduced analytically as shown in the numer-

ical example. For noncoercive case, analytical deduction is generally not easy; and in
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N M sN,M(µ) ∆s
N,M(µ) s(µ)

4 15 2.39E– 04 3.77E– 03 1
8 20 4.33E– 04 6.40E– 03 1
12 25 5.41E– 03 9.90E– 03 1
16 30 6.93E– 03 1.41E– 02 1

Table 6.3: Online computational times (normalized with respect to the time to solve for
s(µ)) for the model problem.

most cases the inf-sup lower bound β̂(µ) to β(µ) must typically be constructed, where

β(µ) ≡ inf
w∈X

sup
v∈X

a(w, v, g(x;µ))

‖w‖X‖v‖X

. (6.51)

The primary difficulty here lies in the nonaffine dependence of a(w, v, g(x;µ)) on µ, be-

cause our lower bound construction described in Chapter 4 is only valid for affine operators

and thus no longer applicable to this case. To resolve the difficulty, we first construct

a lower bound for the inf-sup parameter βM(µ) associated with the approximated bi-

linear form; we must then add an additional inf-sup correction βc due to the operator

perturbation. Specifically, we define

βM(µ) ≡ inf
w∈X

sup
v∈X

a0(w, v) + a1(w, v, gM(x;µ))

‖w‖X‖v‖X

, (6.52)

γc
M ≡ sup

w∈X
sup
v∈X

a1 (w, v, qM+1(x))

‖w‖X‖v‖X

, (6.53)

and introduce a supremizer

v∗(w) = arg sup
v∈X

a0(w, v) + a1(w, v, gM(x;µ))

‖v‖X

. (6.54)

It follows from (6.52) and (6.54) that

βM(µ) = inf
w∈X

a0(w, v
∗(w)) + a1(w, v

∗(w), gM(x;µ))

‖w‖X‖v∗(w)‖X

. (6.55)
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We now continue to assume that g(x;µ) ∈ W g
M+1. It immediately follows from (6.51)-

(6.55) that

β(µ) = inf
w∈X

sup
v∈X

a0(w, v) + a1 (w, v, gM(x;µ)± ε̂M(µ)qM+1(x))

‖w‖X‖v‖X

= inf
w∈X

sup
v∈X

a0(w, v) + a1(w, v, gM(x;µ))± ε̂M(µ)a1 (w, v, qM+1(x))

‖w‖X‖v‖X

≥ inf
w∈X

a0(w, v
∗(w)) + a1(w, v

∗(w), gM(x;µ))± ε̂M(µ)a1 (w, v∗(w), qM+1(x))

‖w‖X‖v∗(w)‖X

≥ inf
w∈X

a0(w, v
∗(w)) + a1(w, v

∗(w), gM(x;µ))

‖w‖X‖v∗(w)‖X

− ε̂M(µ) sup
w∈X

a1 (w, v∗(w), qM+1(x))

‖w‖X‖v∗(w)‖X

≥ βM(µ)− ε̂M(µ)γc
M . (6.56)

Since a1(w, v, gM(x;µ)) is affine in parameter, we can construct the lower bound β̂M(µ)

for βM(µ) by the method developed in Chapter 4. Note further that the inf-sup correction

γc
M is independent of the parameter and can thus be computed offline. Hence, given any

new µ we obtain the lower bound for β(µ) as β̂(µ) = β̂M(µ)− ε̂M(µ)γc
M . Of course, our

remark is also applicable to coercive problems in which the lower bound for the stability

factor can not be found by inspection.

6.6 Adjoint Techniques

We consider here an alternative reduced-basis approximation and a posteriori error esti-

mation procedure relevant to noncompliant output functional ` (6= f). In particular, we

shall employ a “primal-dual” formulation well-suited to good approximation and error

characterization of the output. As a generalization of our abstract formulation in Sec-

tion 6.1, we define the primal problem as in (6.7) and also introduce an associated dual,

or adjoint, problem: given µ ∈ D, ψ(µ) ∈ X satisfies

a(v, ψ(µ); g(x;µ)) = −`(v), ∀ v ∈ X. (6.57)
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6.6.1 Important Theoretical Observation

Before proceeding with our development, we give a theoretical explanation for why the

reduced-basis formulation described in Sections 6.4 and 6.5 can result in slower output

convergence for the noncompliance case than the primal-dual formulation discussed in

this section. We first need to prove an intermediate result

Proposition 9. Suppose that g(x;µ) ∈ W g
M+1, then, for all wN ∈ WN , we have

s(µ)− sN,M(µ) = −a(u(µ)− uN,M(µ), ψ(µ)− wN ; g(·;µ))

± εM(µ){a(uN,M(µ), wN ; qM+1)− f(wN ; qM+1)}. (6.58)

Proof. We invoke (6.6),(6.7), (6.57), our hypothesis g(x;µ) ∈ W g
M+1 and Proposition 6

to obtain the desired result

s(µ)− sN,M(µ) = `(u(µ)− uN,M(µ))

= −a(u(µ)− uN,M(µ), ψ(µ)− wN ; g(·;µ))

− a(u(µ)− uN,M(µ), wN ; g(·;µ)),

= −a(u(µ)− uN,M(µ), ψ(µ)− wN ; g(·;µ))− f(wN ; g(·;µ)− gM(·;µ))

+ a(uN,M(µ), wN ; g(·;µ)− gM(·;µ)),

= −a(u(µ)− uN,M(µ), ψ(µ)− wN ; g(·;µ))

± εM(µ){a(uN,M(µ), wN ; qM+1)− f(wN ; qM+1)}, (6.59)

for all wN ∈ WN .

We readily interpret the theoretical implications of Proposition 9. If εM(µ) is suf-

ficiently small such that the second term of the output error can be ignored for any

wN ∈ WN , we consider two cases of the dual solution ψ(µ) to the primal approximation

space WN . In the first case, ψ(µ)−wN is large for all wN ∈ WN , the first term of the out-

put error is thus also large compared to a(u(µ)−uN,M(µ), ψ(µ)−ψN,M(µ); g(·;µ)) which

results from the primal-dual formulation; here ψN,M(µ) is the reduced-basis approxima-
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tion for ψ(µ). The reduced-basis output without dual correction will thus converge slower

than that with dual correction. In the second case, ψ(µ)−wN is small for some wN ∈ WN ,

the actual output error is thus much smaller than ∆s
N,M(µ) ≡ supv∈X [`(v)/‖v‖X ]∆N,M(µ)

since this error bound is essentially based on (6.58) for wN = 0.2 This will result in large

output effectivity as already observed in Table 6.2. The primal-dual formulation can sig-

nificantly improve the poor output effectivity due to this effect; however, as we shall point

out, the output effectivity can still be large because the primal-dual formulation does not

capture the “correlation” between the primal error and dual error into the output bound.

Of course, if εM(µ) is large such that the second term in (6.58) dominates, we can not

improve the output convergence even with the introduction of the adjoint techniques.

Numerical results in [52] also confirmed our theoretical claim: by using the adjoint

techniques, significant improvement for both the output approximation and output ef-

fectivity has been observed. This improvement can then translate to online efficiency

relative to the usual reduced-basis formulation. In particular, we observe that the on-

line cost for solving either the primal problem or the dual problem is typically O(N3)

under some reasonable assumption on the order of M [52], the online complexity for the

primal-dual formulation is thus O(2N3); we further assume that εM(µ) is in order of

O(a(u(µ)−uN,M(µ), ψ(µ)−ψN,M(µ); gM(·;µ))); thus in order to obtain the same output

bound for the usual reduced-basis formulation without the dual problem we would need

to increase N by a factor of 2 or even more, leading to an online cost of O(8N3) or higher

(Section 3.5.1 provides clarification for our claim). As a result, the dual reduced-basis

formulation typically enjoys O(4) (or greater) reduction in computational effort. How-

ever, the simple crude output bound ∆s
N(µ) = ‖`‖X′ ∆N(µ) is still very useful for cases

with many outputs present, since adjoint techniques have a computational complexity

(in both the offline and online stage) proportional to the number of outputs.

In this section, we shall not discuss the primal-dual formulation and theory for this

set of problems, as the detail was given in [52]. Instead, we will develop a primal-

dual formulation for another set of problems relevant to the inverse scattering problems

described in Chapter 10.

2To see this, we need only note from (6.57) that supv∈X
`(v)
‖v‖X

= supv∈X
a(v,ψ(µ);g(·;µ))

‖v‖X
.
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6.6.2 Problem Statement

We consider the following problem: Given µ ∈ D, we evaluate

s(µ) = `(u(µ);h(x;µ)) , (6.60)

where u(µ) is the solution of

a(u, v;µ) = f(v; g(x;µ)), ∀ v ∈ X . (6.61)

Here a(·, ·;µ) and f(·; g(x;µ)), `(·;h(x;µ)) are continuous complex bilinear form and linear

functionals, respectively; the nonaffine complex functions, g(x;µ) and h(x;µ), are assumed

to be continuous in the closed domain Ω̄ and sufficiently smooth with respect to µ; and

X is a complexified truth approximation space. We further assume that a satisfies a

continuity and inf-sup condition in terms of a supremizing operator T µ : X → X: in

particular, for any w in X,

(T µw, v)X = a(w, v;µ), ∀ v ∈ X ; (6.62)

we then define

σ(w;µ) ≡ ‖T µw‖X

‖w‖X

, (6.63)

and require that

0 < β0 ≤ β(µ) ≡ inf
w∈X

sup
v∈X

|a(w, v;µ)|
‖w‖X‖v‖X

= inf
w∈X

σ(w;µ), ∀ µ ∈ D , (6.64)

γ(µ) ≡ sup
w∈X

sup
v∈X

|a(w, v;µ)|
‖w‖X‖v‖X

= sup
w∈X

σ(w;µ) <∞, ∀ µ ∈ D . (6.65)

Finally, we assume that for some finite integer Q, a may be expressed

a(w, v;µ) =

Q∑
q=1

Θq(µ)aq(w, v), ∀ w, v ∈ X, ∀ µ ∈ D; (6.66)
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where for 1 ≤ q ≤ Q, Θq : D → C are differentiable complex parameter-dependent

coefficient functions and bilinear forms aq : X ×X → C are parameter-independent.

6.6.3 Reduced-Basis Approximation

Discrete Equations

We first develop a primal-dual reduced-basis approximation that can significantly improve

accuracy of the output approximation. To begin, we introduce a dual, or adjoint, problem:

given µ ∈ D, ψ(µ) ∈ X satisfies

a(v, ψ(µ);µ) = −`(v̄;h(x;µ)), ∀ v ∈ X. (6.67)

We next construct nested parameter samples Sg
Mg = {µg

1 ∈ D, · · · , µg
Mg ∈ D}, 1 ≤

M g ≤M g
max, S

h
Mh = {µh

1 ∈ D, · · · , µh
Mh ∈ D}, 1 ≤Mh ≤Mh

max, associated nested approx-

imation spaces W g
Mg = span{qg

1 , . . . , q
g
Mg}, 1 ≤ M g ≤ M g

max, W
h
Mh = span{qh

1 , . . . , q
h
Mh},

1 ≤ Mh ≤ Mh
max, and the nested sets of interpolation points T g

M = {tg1, . . . , t
g
Mg}, 1 ≤

M g ≤M g
max, T

h
M = {th1 , . . . , thMh}, 1 ≤Mh ≤Mh

max following the procedure of Section 6.2.

For the primal problem, (6.61), we introduce nested parameter samples SN ≡ {µpr
1 ∈

D, . . . , µpr
N ∈ D} and associated nested reduced-basis spaces WN ≡ span {ζn ≡ u(µpr

n ),

1 ≤ n ≤ N} for 1 ≤ N ≤ Nmax; similarly, for the dual problem (6.67), we define cor-

responding samples Sdu
Ndu ≡ {µdu

1 ∈ D, . . . , µdu
Ndu ∈ D} and reduced-basis approximation

spaces W du
Ndu ≡ span {ζdu

n ≡ ψ(µdu
n ), 1 ≤ n ≤ Ndu} for 1 ≤ Ndu ≤ Ndu

max. Our reduced-

basis approximation is thus: given µ ∈ D, we evaluate

sN(µ) = `(uN(µ);hMh(x;µ))− rpr(ψNdu(µ); gMg(x;µ)) , (6.68)

where uN(µ) ∈ WN and ψNdu(µ) ∈ W du
Ndu satisfy

a(uN(µ), v;µ) = f(v; gMg(x;µ)), ∀ v ∈ WN , (6.69)

a(v, ψNdu(µ);µ) = −`(v;hMh(x;µ)), ∀ v ∈ W du
Ndu . (6.70)
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Here rpr(v; gMg(x;µ)) is the residual associated with the primal problem

rpr(v; gMg(x;µ)) = f(v; gMg(x;µ))− a(uN(µ), v;µ), ∀ v ∈ X . (6.71)

Recall that gMg(x;µ) and hMh(x;µ) — the coefficient-function approximations for g(x;µ)

and h(x;µ), respectively — are given by

gMg(x;µ) =
Mg∑
m=1

ϕg
Mg m(µ)qg

m , hMh(x;µ) =
Mh∑
m=1

ϕh
Mh m

(µ)qh
m ; (6.72)

where
∑Mg

j=1 qg
j (t

g
i ) ϕ

g
Mg j(µ) = g(tgi ;µ), 1 ≤ i ≤ M g, and

∑Mh

j=1 qh
j (thi ) ϕ

h
Mh j

(µ) =

h(thi ;µ), 1 ≤ i ≤Mh.

Offline-Online Computational Procedure

We expand our reduced-basis approximations as

uN(µ) =
N∑

j=1

uN j(µ)ζj , ψNdu(µ) =
Ndu∑
j=1

ψNdu j(µ)ζdu
j . (6.73)

It then follows from (6.66), (6.68), (6.71), (6.72), and (6.73) that

sN(µ) =
Mh∑
m=1

N∑
j=1

ϕh
Mh m(µ)uN j(µ) `(ζj; q

h
m)−

Mg∑
m=1

Ndu∑
j=1

ϕg
Mg m(µ)ψNdu j(µ)f(ζdu

j ; qg
m)

+
N∑

j=1

Ndu∑
j′=1

Q∑
q=1

uN j(µ)ψNdu j′(µ)Θq(µ)aq(ζj, ζ
du
j′ ) , (6.74)

where the coefficients uN j(µ), 1 ≤ j ≤ N , and ψNdu j, 1 ≤ j ≤ Ndu, satisfy the N × N

and Ndu ×Ndu linear algebraic systems

N∑
j=1

{
Q∑

q=1

Θq(µ) aq(ζj, ζi)

}
uN j(µ) =

∑Mg

m=1 ϕ
g
Mg m(µ)f(ζi; q

g
m), 1 ≤ i ≤ N , (6.75)

Ndu∑
j=1

{
Q∑

q=1

Θq(µ) aq(ζdu
i , ζdu

j )

}
ψNdu j(µ) = −

∑Mh

m=1 ϕ
h
Mh m

(µ)`(ζ
du

i ; qh
m), 1 ≤ i ≤ Ndu .

(6.76)

156



The offline-online decomposition is now clear. For simplicity below we assume that Ndu =

N and Mh = M g ≡M .

In the offline stage — performed once — we first generate nested approximation

spaces W g
M = {qg

1 , . . . , q
g
M}, W h

M = {qh
1 , . . . , q

h
M}; we then solve for the ζi, ζ

du
i , 1 ≤ i ≤ N ;

we finally form and store `(ζ i; q
h
m), f(ζi; q

g
m), `(ζ

du

i ; qh
m), and f(ζdu

i ; qg
m), 1 ≤ i ≤ N ,

1 ≤ m ≤ M , and aq(ζj, ζi), a
q(ζdu

i , ζdu
j ), aq(ζi, ζ

du
j ), 1 ≤ i, j ≤ N , 1 ≤ q ≤ Q. This

requires 2N (expensive) finite element solutions, linear optimization cost for constructing

W g
M and W h

M , and 4MN+3QN2 finite-element-vector inner products. Note all quantities

computed in the offline stage are independent of the parameter µ.

In the online stage — performed many times , for each new value of µ — we first solve

for the ϕg
Mg m(µ), ϕh

Mh m
(µ), 1 ≤ m ≤ M ; we then assemble and subsequently invert the

N ×N “stiffness matrices”
∑Q

q=1 Θq(µ) aq(ζj, ζi) of (6.75) and
∑Q

q=1 Θq(µ) aq(ζdu
i , ζdu

j ) of

(6.76) — this yields the uN j(µ), ψNdu j(µ), 1 ≤ j ≤ N ; we finally perform the summation

(6.74) — this yields the sN(µ). The operation count for the online stage is respectively

O(M2) to calculate the ϕg
Mg m(µ), ϕh

Mh m
(µ), 1 ≤ m ≤M , O(QN2) andO(N3) to assemble

and invert the stiffness matrices, and O(MN) + O(QN2) to evaluate the output. The

essential point is that the online complexity is independent of N , the dimension of the

underlying truth finite element approximation space. Since M g,Mh, N,Ndu � N , we

expect — and often realize — significant, orders-of-magnitude computational economies

relative to classical discretization approaches.

6.6.4 A Posteriori Error Estimators

Error Bounds

We assume that we are privy to a lower bound for the inf-sup parameter, β̂(µ), such that

β(µ) ≥ β̂(µ) ≥ εββ(µ), ∀ µ ∈ D, where εβ ∈ ]0, 1[ . The construction of β̂(µ) is described

in detail in Section 4.3. We then introduce an energy error bound for the primal

∆N(µ) =
1

β̂(µ)

(
sup
v∈X

rpr(v; gMg)

‖v‖X

+ ε̂g
Mg sup

v∈X

f(v; qg
Mg+1)

‖v‖X

)
, (6.77)
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and an energy error bound for the dual

∆du
Ndu(µ) =

1

β̂(µ)

(
sup
v∈X

rdu(v;hMh)

‖v‖X

+ ε̂h
Mh sup

v∈X

`(v; qh
Mh+1

)

‖v‖X

)
. (6.78)

Here rdu(v;hMh(x;µ)) is the residual associated with the dual problem

rdu(v;hMh(x;µ)) = −`(v;hMh(x;µ))− a(v, ψNdu(µ);µ), ∀ v ∈ X . (6.79)

We can then state

Proposition 10. Suppose that g(x;µ) ∈ W g
Mg+1 and h(x;µ) ∈ W h

Mh+1
, then the energy

error bounds satisfy ‖u(µ)−uN(µ)‖X ≤ ∆N(µ), ‖ψ(µ)−ψNdu(µ)‖X ≤ ∆du
Ndu(µ), ∀µ ∈ D.

Proof. We consider only the primal since the dual result can be derived by a similar

route. We first note from (6.61) and (6.71) that the error e(µ) ≡ u(µ)− uN(µ) satisfies

a(e(µ), v;µ) = rpr(v; gMg(x;µ)) + f(v; g(x;µ)− gMg(x;µ)), ∀ v ∈ X . (6.80)

It then follows (6.62) and (6.80) that

(T µe(µ), v)X = rpr(v; gMg(x;µ)) + f(v; g(x;µ)− gMg(x;µ)), ∀ v ∈ X . (6.81)

The desired result immediately follows

‖e(µ)‖X ≤ ‖T µe(µ)‖X

β(µ)

≤ 1

β̂(µ)

rpr(T µe(µ); gMg(x;µ)) + f(T µe(µ); g(x;µ)− gMg(x;µ))

‖T µe(µ)‖X

≤ 1

β̂(µ)

(
sup
v∈X

rpr(v; gMg(x;µ))

‖v‖X

+ ε̂g
Mg sup

v∈X

f(v; qg
Mg+1)

‖v‖X

)
, (6.82)

from (6.63) and (6.64) in the first inequality, (6.81) in the second inequality, and our

assumption g(x;µ) ∈ W g
Mg+1 in the last inequality.
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We may also define an output error bound for the error in the output as

∆s
N(µ) = ε̂h

Mh(µ)|`(uN(µ); qh
Mh+1)|+ ε̂g

Mg(µ)|f(ψNdu(µ); qg
Mg+1)|+ β̂(µ)∆N(µ)∆du

Ndu(µ)

(6.83)

for which we readily demonstrate

Proposition 11. Suppose that g(x;µ) ∈ W g
Mg+1 and h(x;µ) ∈ W h

Mh+1
, then the output

error bound satisfies |s(µ)− sN(µ)| ≤ ∆s
N(µ).

Proof. We first note from (6.61), (6.67), (6.69), (6.70), and (6.71) to express

s(µ)− sN(µ) = `(u;h)− `(uN ;hMh) + rpr(ψNdu ; gMg)

= `(uN ;h− hMh)− a(u, ψ;µ) + a(uN , ψ;µ) + rpr(ψNdu ; gMg)

= `(uN ;h− hMh)− f(ψ; g) + f(ψ; gMg)

− f(ψ; gMg) + a(uN , ψ;µ) + rpr(ψNdu ; gMg)

= `(uN ;h− hMh)− f(ψNdu ; g − gMg)

− f(ψ − ψNdu ; g − gMg)− rpr(ψ − ψNdu ; gMg) . (6.84)

It thus follows from g(x;µ) ∈ W g
Mg+1, h(x;µ) ∈ W h

Mh+1
, and Proposition 10 that

|s(µ)− sN(µ)| ≤ ε̂h
Mh(µ)|`(uN ; qh

Mh+1)|+ ε̂g
Mg(µ)|f(ψNdu ; qg

Mg+1)|

+ ε̂g
Mg(µ)|f(ψ − ψNdu ; qg

Mg+1)|+ |rpr(ψ − ψNdu ; gMg)|

≤ ε̂h
Mh(µ)|`(uN ; qh

Mh+1)|+ ε̂g
Mg(µ)|f(ψNdu ; qg

Mg+1)|

+ ε̂g
Mg(µ)∆du

Ndu(µ) sup
v∈X

f
(
v; qg

Mg+1

)
‖v‖X

+ sup
v∈X

rpr(v; gMg)

‖v‖X

∆du
Ndu(µ)

= ∆s
N(µ) .

This concludes the proof.

Equation (6.83) suggests that for rigor of the output bound M g and Mh should be

chosen such that
∆s

N,n(µ)

∆s
N(µ)

≤ 1/2 , (6.85)
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where ∆s
N,n(µ) is the nonrigorous component in the output bound

∆s
N,n(µ) = ε̂h

Mh(µ)|`(uN(µ); qh
Mh+1)|+ ε̂g

Mg(µ)|f(ψNdu(µ); qg
Mg+1)| . (6.86)

From the perspective of computational efficiency, M g andMh should be chosen so that the

ratio ∆s
N,n(µ)/∆s

N(µ) is as close to 1/2 as possible; that is, εg
Mg(µ) and εh

Mh(µ) are roughly

O(β̂(µ)∆N(µ)∆du
Ndu(µ)) since |f(ψNdu(µ), qg

Mg+1)| and |`(uN(µ), qh
Mh+1

)| are actually O(1)

due to ‖qg
Mg+1‖L∞(Ω) = ‖qh

Mh+1
‖L∞(Ω) = 1. If M g and Mh are chosen too large the last

term in (6.83) dominates, we may thus obtain rigorous bounds but at the expense of

unnecessarily increasing the computational cost. On the other hand, we may risk to

obtain nonrigorous bounds if M g or Mh are chosen too small.

Moreover, if εg
Mg(µ) and εh

Mh(µ) are sufficiently small, we then obtain the same result

as for the affine linear case [99], |s(µ) − sN(µ)| ≈ a(u(µ) − uN(µ), ψ(µ) − ψNdu) =

rpr(ψ(µ) − ψNdu(µ); gMg(x;µ)) and ∆s
N,M(µ) ≈ β̂(µ)∆N(µ)∆du

Ndu(µ): the output error

(and output error bound) vanishes as the product of the primal and dual error (bounds),

and hence much more rapidly than either the primal or dual error. From the perspective

of computational efficiency, a good choice is ∆N(µ) ≈ ∆du
Ndu(µ); the latter also ensures

that the bound (6.83) will be quite sharp. However, the output effectivity can still be

rather large because the “correlation” between the primal and dual errors is not captured

into the output error bound which is constructed by using either the Cauchy-Schwarz

inequality for a(u(µ) − uN(µ), ψ(µ) − ψNdu) or the Riesz representation for rpr(ψ(µ) −

ψNdu(µ); gMg(x;µ)).

Offline-Online Computational Procedure

We consider only the primal residual; the dual residual admits a similar treatment. To

begin, we note from standard duality arguments that

‖rpr(v; gMg(x;µ))‖X′ = ‖ê(µ)‖X , (6.87)

where ê(µ) ∈ X satisfies

(ê(µ), v)X = rpr(v; gMg(x;µ)), ∀ v ∈ X . (6.88)
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We next observe from our reduced-basis representation (6.73) and affine assumption (6.66)

that rpr(v; gMg(x;µ)) may be expressed as

rpr(v; gMg(x;µ)) =
Mg∑
m=1

ϕg
Mg m(µ)f(v; qg

m)−
Q∑

q=1

N∑
n=1

uN n(µ)Θq(µ)aq(ζj, v), ∀v ∈ X.

(6.89)

It thus follows from (6.88) and (6.89) that ê(µ) ∈ X satisfies

(ê(µ), v)X =
Mg∑
m=1

ϕg
Mg m(µ)f(v; qg

m)−
Q∑

q=1

N∑
n=1

uN n(µ)Θq(µ)aq(ζj, v), ∀v ∈ X. (6.90)

The critical observation is that the right-hand side of (6.90) is a sum of products of

parameter-dependent functions and parameter-independent linear functionals. In partic-

ular, it follows from linear superposition that we may write ê(µ) ∈ X as

ê(µ) =
Mg∑
m=1

ϕg
Mg m(µ) Cm +

Q∑
q=1

N∑
n=1

uN n(µ)Θq(µ) Lq
n ,

for Cm ∈ X satisfying (Cm, v)X = f(v; qg
m), ∀ v ∈ X, 1 ≤ m ≤M g, and Lq

n ∈ X satisfying

(Lq
n, v)X = −aq(ζn, v), ∀ v ∈ X, 1 ≤ n ≤ N , 1 ≤ q ≤ Q. It thus follows that

‖ê(µ)‖2
X =

Mg∑
m=1

Mg∑
m′=1

ϕg
Mg m(µ)ϕg

Mg m′(µ)(Cm, Cm′)X +
Q∑

q=1

N∑
n=1

Θq(µ)uN n(µ)×{ Mg∑
m=1

ϕg
Mg m(µ)(Lq

n, Cm)X +
Q∑

q′=1

N∑
n′=1

Θ
q′

(µ)uN n′(µ)(Lq
n,L

q′

n′)X

}
+

Q∑
q=1

N∑
n=1

Mg∑
m=1

Θ
q
(µ)uN n(µ)ϕg

Mg m(µ)(Cm,Lq
n)X .

(6.91)

Furthermore, we invoke our reduced-basis representation (6.73) to write

`(uN(µ); qh
Mh+1) =

N∑
n=1

uN n(µ)`(ζn; qh
Mh+1

) , (6.92)

f(ψNdu(µ); qg
Mg+1) =

Ndu∑
n=1

ψNdu n(µ)f(ζdu
n ; qg

Mg+1) . (6.93)
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Note that `(ζn; qh
Mh+1

) and f(ζdu
n ; qg

Mg+1) have been already formed and stored in the

previous section. The offline-online decomposition may now be identified. For simplicity

below we assume that Ndu = N and Mh = M g ≡M .

In the offline stage — performed once — we first solve for Cm, 1 ≤ m ≤ M , and Lq
n,

1 ≤ n ≤ N , 1 ≤ q ≤ Q; we then evaluate and save the relevant parameter-independent

inner products (Cm, Cm′)X , (Cm,Lq
n)X , (Lq

n,L
q′

n′)X , 1 ≤ m,m′ ≤ M , 1 ≤ n, n′ ≤ N ,

1 ≤ q, q′ ≤ Q. This requires M +QN finite element solutions and M2 +MQN +Q2N2

finite-element inner products. Note that all quantities computed in the offline stage are

independent of the parameter µ.

In the online stage — performed many times, for each new value of µ “in the field”

— we simply evaluate the sums (6.91), (6.92), and (6.93) in terms of the Θq(µ), uN n(µ)

and the precalculated and stored (parameter-independent) (·, ·)X inner products. The

operation count for the online stage is only O(M2+MQN+Q2N2) — again, the essential

point is that the online complexity is independent of N , the dimension of the underlying

truth finite element approximation space. We further note that, unless M and Q are quite

large, the online cost associated with the calculation of the dual norm of the residual is

commensurate with the online cost associated with the calculation of sN(µ).

6.6.5 A Forward Scattering Problem

We apply the above primal-dual reduced-basis formulation for the forward scattering

problem described in Section 10.3. We briefly mention that the problem in the original

domain Ω̃ is reformulated in terms of a reference domain Ω corresponding to the geometry

bounded by a unit circle ∂D and a square Γ ≡ [−5, 5] × [−5, 5] as shown in Figure 6-5;

and that the mapped problem can be cast in the desired form (6.60)-(6.61) in which

µ = (µ1, µ2, µ3, µ4, µ5, µ6) ∈ D ≡ [π/16, 3π/16] × [1/3, 1] × [0, π] × [0, 2π] × [0, 2π] ×

[π/8, π/8] ⊂ R6, the bilinear form is affine for Q = 5 as shown in Table 6.4, and the force

and output functionals are given below

f(v; g(x;µ)) = −
∫

∂D

v̄g(x;µ), `(v;h(x;µ)) = − i

4

√
2

πk
e−iπ/4

∫
∂D

vh(x;µ) , (6.94)

162



g(x;µ) = iµ1 ((µ2x1 cosµ3 − x2 sinµ3) cosµ4 + (µ2x1 sinµ3 + x2 cosµ3) sinµ4)×

eiµ1((x1 cos µ3−µ2x2 sin µ3) cos µ4+(x1 sin µ3+µ2x2 cos µ3) sin µ4) ,

h(x;µ) = iµ1 ((µ2x1 cosµ3 − x2 sinµ3) cosµ5 + (µ2x1 sinµ3 + x2 cosµ3) sinµ5)×

e−iµ1((x1 cos µ3−µ2x2 sin µ3) cos µ5+(x1 sin µ3+µ2x2 cos µ3) sin µ5) .

q Θq(µ) aq(w, v)

1 µ2

∫
Ω

∂w
∂x1

∂v̄
∂x1

2 1
µ2

∫
Ω

∂w
∂x2

∂v̄
∂x2

3 −µ2
1µ2

∫
Ω
wv̄

4 −iµ1

∫
Γ1
wv̄ +

∫
Γ3
wv̄

5 −iµ1µ2

∫
Γ2
wv̄ +

∫
Γ4
wv̄

Table 6.4: Parametric functions Θq(µ) and parameter-independent bilinear forms aq(w, v)
for the forward scattering problem.

−5 5
−5

5

Γ 

Γ 

Γ 

Γ 

1 

2 

3 

4 ∂ D 

Figure 6-5: Linear triangular finite element mesh on the reference domain.

It should be noted that the forward scattering problem is a complex boundary value
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problem, our piecewise-linear finite element approximation space of dimension N = 6,863

is thus complexified such that

X =
{
v = vR + ivI ∈ Xe | vR|Th

∈ P1(Th), v
I|Th

∈ P1(Th), ∀ Th ∈ Th

}
, (6.95)

where Xe is a complex function space defined as

Xe = {v = vR + ivI | vR ∈ H1(Ω), vI ∈ H1(Ω)} . (6.96)

The associated inner product is defined as

(w, v)X =

∫
Ω

∇w∇v̄ + wv̄ . (6.97)

Here R and I denote the real and imaginary part, respectively; and v̄ denotes the complex

conjugate of v, and |v| the modulus of v. Figure 6-5 shows the triangulation Th.

6.6.6 Numerical Results

We pursue the empirical interpolation procedure described in Section 6.2 to construct

Sg
Mg , W

g
Mg , T

g
Mg , 1 ≤ M g ≤ M g

max, for M g
max = 21, and Sh

Mh , W
h
Mh , T

h
Mh , 1 ≤ Mh ≤

Mh
max, for Mh

max = 21. We present in Table 6.5 εg
Mg ,max for different values of M g and

εh
Mh,max

for different values of Mh, where εg
Mg ,max = maxµ∈Ξg

Test
εg

Mg(µ) and εh
Mh,max

=

maxµ∈Ξh
Test

εh
Mh(µ), and Ξg

Test = Ξh
Test ⊂ (D)256 is a regular parameter grid of size 256.

We observe that the coefficient function approximations converge very rapidly. This is

expected as both the functions g(·;µ) and h(·;µ) defined on ∂D are smooth and regular

in the parameter µ.

M g = Mh εg
Mg ,max εh

Mh,max

4 2.65×10−01 4.32×10−01

8 2.18×10−02 2.19×10−02

12 3.42×10−04 3.53×10−04

16 1.34×10−05 3.37×10−05

20 8.73×10−07 1.36×10−06

Table 6.5: εg
Mg ,max as a function of M g and εh

Mh,max
as a function of Mh.
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We next consider the piecewise-constant construction for the inf-sup lower bounds.

For this purpose, we choose (w; v)X =
∫

Ω
∇w · ∇v̄ + wv̄, |v|2q = aq(v, v), 1 ≤ q ≤ q, since

the aq(·, ·) are positive semi-definite; it thus follows from the Cauchy-Schwarz inequality

that Γq = 1, 1 ≤ q ≤ Q, and the numerically calculated CX = 1.0000. We can cover

the parameter space of the bilinear form a (for ε̄β = 0.5) with J = 20 polytopes;3 here

the P µ̄j , 1 ≤ j ≤ J, are quadrilaterals such that |Vµj | = 4, 1 ≤ j ≤ J . Armed with

the inf-sup lower bounds, we can pursue the adaptive sampling strategy to arrive at

Nmax = Ndu
max = 60 for nF = 1024.

N ∆N,max,rel ηN,ave ∆du
Ndu,max,rel

ηdu
Ndu,ave

∆s
N,max,rel ηs

N,ave

10 3.50×10−00 29.15 2.40×10−00 30.45 7.87×10−00 47.49
20 1.83×10−00 28.15 6.97×10−01 30.88 6.67×10−01 50.41
30 1.97×10−01 25.68 4.85×10−01 28.82 6.23×10−02 92.96
40 8.54×10−02 30.86 1.28×10−01 29.24 1.07×10−02 92.62
50 2.85×10−02 27.92 3.98×10−02 29.48 8.58×10−04 99.33
60 1.52×10−03 27.91 1.47×10−02 29.36 1.90×10−04 68.65

Table 6.6: Convergence and effectivities for the forward scattering problem obtained with
M g = Mh = 20.

We readily present basic numerical results and take Ndu = N for this purpose. We

show in Table 6.6 ∆N,max,rel, ηN,ave,∆
du
Ndu,max,rel

, ηdu
Ndu,ave

, ∆s
N,max,rel, and ηs

N,ave as a func-

tion of N . Here ∆N,max,rel is the maximum over ΞTest of ∆N(µ)/‖u(µ)‖X , ηN,ave is the

average over ΞTest of ∆N(µ)/‖u(µ) − uN(µ)‖X , ∆du
Ndu,max,rel

is the maximum over ΞTest

of ∆du
Ndu(µ)/‖ψ(µ)‖X , ηdu

Ndu,ave
is the average over ΞTest of ∆du

Ndu(µ)/‖ψ(µ) − ψNdu(µ)‖X ,

∆s
N,max,rel is the maximum over ΞTest of ∆s

N(µ)/|s(µ) − sN(µ)|, and ηs
N,ave is the average

over ΞTest of ∆s
N(µ)/|s(µ) − sN(µ)|, where ΞTest ⊂ (D)256 is a regular parameter grid of

size 256. We observe that the reduced-basis approximation converges very rapidly; that

our error bounds are fairly sharp; and that the output error (and output error bound)

vanishes as the product of the primal and dual error (bounds) since εg
Mg ,max and εh

Mh,max

are very small for M g = Mh = 20. The output effectivity is quite large primarily due

to the fact that correlation between the primal error and dual error is not captured into

the output error bound. However, effectivities O(100) are readily acceptable within the

3Although the problem has six-component parameter, µ = (µ(1), . . . , µ(6)), but a depends only on
µ(1) and µ(2); hence its parameter space is two-dimensional. Note further that no inf-sup correction is
required since a is affine in the parameter.
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reduced-basis context: thanks to the very rapid convergence rates, the “unnecessary”

increase in N and Ndu — to achieve a given error tolerance — is proportionately very

small.

Next we look at the relative contribution of the rigorous and nonrigorous components

to the error bounds ∆N(µ), ∆du
Ndu(µ), ∆s

N(µ). We provide in Table 6.7 ∆N,ave,n/∆N,ave,

∆du
Ndu,ave,n

/∆du
Ndu,ave

, and ∆s
N,ave,n/∆

s
N,ave as a function of N . Here ∆N,ave is the average

over ΞTest of ∆N(µ); ∆N,ave,n is the average over ΞTest of
ε̂g
Mg

β̂(µ)
supv∈X [f(v; qg

Mg+1)/‖v‖X ];

∆du
Ndu,ave

is the average over ΞTest of ∆du
Ndu(µ); ∆du

Ndu,ave,n
is the average over ΞTest of

ε̂h
Mh

β̂(µ)
supv∈X [`(v; qh

Mh+1
)/‖v‖X ]; ∆s

N,ave is the average over ΞTest of ∆s
N(µ); ∆s

N,ave,n is the

average over ΞTest of ∆s
N,n. As expected, the ratios increase with N , but still much less

than unity; and thus, in the error bounds, the rigorous components strongly dominate

the nonrigorous components.

N ∆N,ave,n/∆N,ave ∆du
Ndu,ave,n

/∆du
Ndu,ave

∆s
N,ave,n/∆

s
N,ave

10 1.34×10−06 1.44×10−06 1.84×10−06

20 4.69×10−06 6.09×10−06 1.28×10−05

30 1.73×10−05 1.78×10−05 8.46×10−05

40 5.96×10−05 5.29×10−05 7.28×10−04

50 1.41×10−04 1.32×10−04 4.07×10−03

60 3.46×10−04 3.21×10−04 2.34×10−02

Table 6.7: Relative contribution of the non-rigorous components to the error bounds as
a function of N for M g = Mh = 20.

Turning now to computational effort, for (say)N = 30 and any given µ (say, a = b = 1,

α = 0, k = π/8, d̃ = (1, 0), d̃s = (1, 0)) — for which the error in the reduced-basis

output sN(µ) relative to the truth approximation s(µ) is certifiably less than ∆s
N(µ)

(= 2.29× 10−5) — the Online Time (marginal cost) to compute both sN(µ) and ∆s
N(µ)

is less than 1/122 the Total Time to directly calculate the truth result s(µ) = `(u(µ)).

Clearly, the savings will be even larger for problems with more complex geometry and

solution structure in particular in three space dimensions. Nevertheless, even for our

current very modest example, the computational economies are very significant.
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Chapter 7

An Empirical Interpolation Method

for Nonlinear Elliptic Problems

In this chapter, we extend the technique developed in Chapter 6 to nonlinear elliptic

problems in which g is a nonaffine nonlinear function of the parameter µ, spatial coor-

dinate x, and field variable u — we hence treat certain classes of nonlinear problems.

The nonlinear dependence of g on u introduces new numerical difficulties (and a new

opportunity) for our approach: first, our greedy choice of basis functions ensures good

approximation properties, but it is quite expensive in the nonlinear case; second, since

u is not known in advance, it is difficult to generate an explicitly affine approximation

for g(u;x;µ); and third, it is challenging to ensure that the online complexity remains

independent of N even in the presence of highly nonlinear terms. We shall address most

of these concerns in this chapter and leave some for future research.

Our approach to nonlinear elliptic problems is based on the ideas described in Chap-

ter 6: we first apply the empirical interpolation method to build a collateral reduced-basis

expansion for g(u;x;µ); we then approximate g(uN,M(x;µ);x;µ) — as required in our

reduced-basis projection for uN,M(µ) — by g
uN,M

M (x;µ) =
∑M

m=1 ϕM m(µ)qm(x); we fi-

nally construct an efficient offline-online computational procedure to rapidly evaluate the

reduced-basis approximation uN,M(µ) and sN,M(µ) to u(µ) and s(µ) and associated a

posteriori error bounds ∆N,M(µ) and ∆s
N,M(µ).
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7.1 Abstraction

7.1.1 Weak Statement

Of course, nonlinear equations do not admit the same degree of generality as linear

equations. We thus present our approach to nonlinear equations for a particular nonlinear

problem. In particular, we consider the following “exact” (superscript e) problem: for

any µ ∈ D ⊂ RP , find se(µ) = `(ue(µ)), where ue(µ) ∈ Xe satisfies the weak form of the

µ-parametrized nonlinear PDE

aL(ue(µ), v) +

∫
Ω

g(ue;x;µ)v = f(v), ∀ v ∈ Xe. (7.1)

Here g(ue;x;µ) is a general nonaffine nonlinear function of the parameter µ, spatial

coordinate x, and field variable ue(x;µ); aL(·, ·) and f(·), `(·) are Xe-continuous bounded

bilinear and linear functionals, respectively; these forms are assumed to be parameter-

independent for the sake of simplicity.

We next introduce X ⊂ Xe, a reference finite element approximation space of di-

mension N . The truth finite element approximation is then found by (say) Galerkin

projection: Given µ ∈ D ∈ RP , we evaluate

s(µ) = `(u(µ)) (7.2)

where u(µ) ∈ X is the solution of the discretized weak formulation

aL(u(µ), v) +

∫
Ω

g(u;x;µ)v = f(v), ∀v ∈ X . (7.3)

We assume that ‖ue(µ)− u(µ)‖X is suitably small and hence that N will typically be

very large.

We shall make the following assumptions. First, we assume that the bilinear form

aL(·, ·) : X ×X → R is symmetric, aL(w, v) = aL(v, w),∀ w, v ∈ X. We shall also make

two crucial hypotheses related to well-posedness. Our first hypothesis is that the bilinear
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form aL satisfies a stability and continuity condition

0 < α ≡ inf
v∈X

aL(v, v)

‖v‖2
X

; (7.4)

sup
v∈X

aL(v, v)

‖v‖2
X

≡ γ <∞ . (7.5)

For the second hypothesis we require that g be a monotonically increasing function of

its first argument and be of such nonlinearity that the equation (7.3) is well-posed and

sufficiently stable.

Finally, we note that under the above assumptions if solution of the problem (7.3)

exists then it is unique: Suppose that (7.3) has two solution, u1 and u2, this implies

aL(u1 − u2, v) +

∫
Ω

(g(u1;x;µ)− g(u2;x;µ)) v = 0, ∀ v ∈ X .

By choosing v = u1 − u2, we obtain

aL(u1 − u2, u1 − u2) +

∫
Ω

(g(u1;x;µ)− g(u2;x;µ)) (u1 − u2) = 0, ∀ v ∈ X ;

it thus follows from the coercivity of aL and monotonicity of g that u1 = u2. For proof

of existence, we refer to [52].

7.1.2 A Model Problem

We consider the following model problem −∇2u+µ(1)
e
µ(2)u−1

µ(2)
= 102 sin(2πx(1)) cos(2πx(2))

in a domain Ω =]0, 1[2 with a homogeneous Dirichlet condition on boundary ∂Ω, where

µ = (µ(1), µ(2)) ∈ Dµ ≡ [0.01, 10]2. The output of interest is the average of the product of

field variable and force over the physical domain. The weak formulation is then stated as:

given µ ∈ Dµ, find s(µ) =
∫

Ω
f(x)u(µ), where u(µ) ∈ X = H1

0 (Ω) ≡ {v ∈ H1(Ω) | v|∂Ω =

0} is the solution of

∫
Ω

∇u · ∇v +

∫
Ω

µ(1)
eµ(2)u − 1

µ(2)

v = 100

∫
Ω

sin(2πx(1)) cos(2πx(2)) v, ∀v ∈ X . (7.6)

169



Our abstract statement (7.2) and (7.3) is then obtained for

aL(w, v) =

∫
Ω

∇w · ∇v, f(v) = 100

∫
Ω

sin(2πx(1)) cos(2πx(2)) v, `(v) =

∫
Ω

v, (7.7)

and

g(u;µ) = µ(1)
eµ(2)u − 1

µ(2)

. (7.8)

Our model problem is well-posed as proven in [52]. Note also that µ(1) controls the

strength of the sink term and µ(2) controls the strength of the nonlinearity.

We give in Figure 7-1 two typical solutions obtained with a piecewise-linear finite

element approximation space X of dimension N = 2601. We see for µ = (0.01, 0.01)

that the solution has two negative peaks and two positive peaks with the same height

(this solution is very similar to that of the linear problem in which g(u;µ) is absent).

However, due to the exponential nonlinearity, as µ increases the negative peaks remain

largely unchanged while the positive peaks get rectified as shown in Figure 7-1(b) for

µ = (10, 10). This is because the exponential function µ(1)e
µ(2)u in g(u;µ) sinks the

positive part of u(µ), but has no effect on the negative part of u(µ) as µ increases.

(a) (b)

Figure 7-1: Numerical solutions at typical parameter points: (a) µ = (0.01, 0.01) and (b)
µ = (10, 10).
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7.2 Coefficient–Approximation Procedure

Given a continuous non-affine nonlinear function g(u;x;µ) ∈ L∞(Ω) of sufficient regular-

ity, we seek to approximate g(w;x;µ) for any given w ∈ X by a collateral reduced-basis

expansion gw
M(x;µ) of an approximation space W g

M spanned by basis functions at M se-

lected points in the parameter space. Specifically, we choose µg
1, and define Sg

1 = {µg
1},

ξ1 ≡ g(u;x;µg
1), and W g

1 = span {ξ1}; we assume that ξ1 6= 0. Then, for M ≥ 2, we

set µg
M = arg maxµ∈Ξ

g infz∈W g
M−1

‖g( ·; · ;µ)− z‖L∞(Ω), where Ξg is a suitably fine param-

eter sample over D of size Jg. We then set Sg
M = Sg

M−1 ∪ µ
g
M , ξM = g(u;x;µg

M), and

W g
M = span {ξm, 1 ≤ m ≤M} for M ≤Mmax. Note that since w is in the finite element

approximation space X, g(w;x;µ) is really the interpolant of g(we;x;µ), we ∈ Xe, on the

finite element “truth” mesh.

Next, we construct nested sets of interpolation points TM = {t1, . . . , tM}, 1 ≤ M ≤

Mmax. We first set t1 = arg ess supx∈Ω |ξ1(x)|, q1 = ξ1(x)/ξ1(t1), B
1
11 = 1. Then for

M = 2, . . . ,Mmax, we solve the linear system
∑M−1

j=1 σM−1
j qj(ti) = ξM(ti), 1 ≤ i ≤M −1,

and set rM(x) = ξM(x) −
∑M−1

j=1 σM−1
j qj(x), tM = arg ess supx∈Ω |rM(x)|, qM(x) =

rM(x)/rM(tM), and BM
i j = qj(ti), 1 ≤ i, j ≤M .

Finally, our coefficient-function approximation to g(w;x;µ) is the interpolant of g

over TM as defined from Lemma 6.2.3: gw
M(x;µ) =

∑M
m=1 ϕM m(µ)qm(x), where ϕM ∈ RM

is found from
∑M

j=1 B
M
i j ϕM j(µ) = g(w(ti); ti;µ), 1 ≤ i ≤ M . Moreover, we define the

interpolation error as εM(µ) ≡ ‖g(w, x;µ)− gw
M(x;µ)‖L∞(Ω) and calculate the associated

error estimator as ε̂M(µ) ≡ |g(w, tM+1;µ)− gw
M(tM+1;µ)|.

7.3 Reduced-Basis Approximation

7.3.1 Discrete Equations

We first motivate the need for incorporating the empirical interpolation procedure into

the reduced-basis method to treat nonlinear equations. The most significant numeri-

cal difficulty here is in finding an efficient representation of the nonlinear terms. To

understand the implications, we consider a Galerkin projection directly on the non-

linear equation (7.3). Towards this end, we introduce nested samples, SN = {µu
1 ∈
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D, · · · , µu
N ∈ D}, 1 ≤ N ≤ Nmax and associated nested Lagrangian reduced-basis spaces

as WN = span{ζj ≡ u(µu
j ), 1 ≤ j ≤ N}, 1 ≤ N ≤ Nmax, where u(µu

j ) is the solution

to (7.3) for µ = µu
j . Our reduced-basis approximation is then: for a given µ ∈ D, we

evaluate sN(µ) = `(uN(µ)), where uN(µ) ∈ WN satisfies

aL(uN(µ), v) +

∫
Ω

g(uN(µ);x;µ)v = f(v), ∀v ∈ WN . (7.9)

To obtain uN(µ) and sN(µ) = `(uN(µ)), we may apply a Newton iterative scheme: given

a current iterate ūN(µ) =
∑N

j=1 ūN j(µ)ζj, find an increment δuN ∈ WN such that

aL(δuN , v) +

∫
Ω

g1(ūN(µ);x;µ)δuNv = r(v; g(ūN(µ);x;µ)), ∀ v ∈ WN ; (7.10)

here r(v; g(ūN(µ);x;µ)) = f(v)− aL(ūN(µ), v) +
∫

Ω
g(ūN(µ);x;µ)v, ∀ v ∈ X, is the usual

residual; and gu is the partial derivative with respect to its first argument.

The associated algebraic system is thus

N∑
j=1

{
aL(ζj, ζi) +

∫
Ω

g1

( N∑
n=1

ūN n(µ)ζn;x;µ
)
ζjζi

}
δuN j

= f(ζi)− aL
( N∑

n=1

ūN n(µ)ζn, ζi

)
−
∫

Ω

g
( N∑

n=1

ūN n(µ)ζn;x;µ
)
ζi, 1 ≤ i ≤ N. (7.11)

Observe that if g is a low-order (at most quadratically) polynomial nonlinearity of

u, we can then develop an efficient offline-online procedure by resolving the nonlinear

terms, g
(∑N

n=1 ūN n(µ)ζn;x;µ
)

and g1

(∑N
n=1 ūN n(µ)ζn;x;µ

)
, into their power series.

Unfortunately, this useful trick can not be applied to high-order polynomial and non-

polynomial nonlinearities; and hence the quantities
∫

Ω
g1

(∑N
n=1 ūN n(µ)ζn;x;µ

)
ζjζi and∫

Ω
g
(∑N

n=1 ūN n(µ)ζn;x;µ
)
ζi must be evaluated online at every Newton iteration with

N -dependent cost. The operation count for the on-line stage will thus scale in some

order with N — the dimension of the truth finite element approximation space: the com-

putational advantage relative to classical approaches using advanced iterative techniques

is not obvious; and, in any event, real-time response may not be guaranteed.

In the reduced-basis approach, we seek an online evaluation cost that depends only
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on the dimension of reduced-basis approximation spaces and the parametric complexity

of the problems, not on N . To achieve this goal, we develop a collateral reduced-basis

expansion for the nonlinear terms by using the empirical interpolation method. We

henceforth construct nested samples Sg
M = {µg

1 ∈ D, · · · , µg
M ∈ D}, 1 ≤ M ≤ Mmax,

associated nested approximation spaces W g
M = span{ξm ≡ g(u(µg

m);x;µg
m), 1 ≤ m ≤

M} = span{q1, . . . , qM}, 1 ≤ M ≤ Mmax, and nested sets of interpolation points TM =

{t1, . . . , tM}, 1 ≤ M ≤ Mmax following the procedure of Section 7.2. Then for any

given w ∈ X and M , we may approximate g(w;x;µ) by gw
M(x;µ) =

∑M
m=1 ϕM m(µ)qm(x),

where
∑M

j=1 B
M
i j ϕM j(µ) = g(w(ti); ti;µ), 1 ≤ i ≤M ; note that although this “composed”

interpolant is defined for general w ∈ X, we expect good approximation only for w (very)

close to the manifoldMu ≡ {u(µ)|µ ∈ D} as which W g
M is constructed. The construction

of W g
M requires solutions of the underlying nonlinear PDE (7.3) at all parameter points

in Ξg — the associated computational cost may be very high. (In contrast, in the linear

nonaffine case, g was only a function of the spatial coordinate x and the parameter µ; the

construction of W g
M involved only the evaluation of the function g(x;µ), ∀µ ∈ D, and not

the solution of the PDE itself.) Hence, at present our approach to nonlinear problems is

not very effective in high-dimensional parameter spaces.

We may now approximate g(uN,M ;x;µ) — as required in our reduced-basis projection

for uN,M(µ) — by g
uN,M

M (x;µ). Our reduced-basis approximation is thus: Given µ ∈ D,

we evaluate

sN,M(µ) = `(uN,M(µ)) (7.12)

where uN,M(µ) ∈ WN satisfies

aL(uN,M(µ), v;µ) +

∫
Ω

g
uN,M

M (x;µ)v = f(v), ∀ v ∈ WN . (7.13)

The parameter sample SN and associated reduced-basis space WN are constructed using

the adaptive sampling procedure described in Section 6.5.3.
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7.3.2 Offline/Online Computational Procedure

The most significant new issue is efficient calculation of the nonlinear term g
uN,M

M (x;µ).

Note that we can not directly solve (7.13) as in the linear case since g
uN,M

M (x;µ) is, in fact,

a nonlinear function of the uN,M j(µ), 1 ≤ j ≤ N . To see this more clearly, we expand

our reduced-basis approximation and coefficient-function approximation as

uN,M(µ) =
N∑

j=1

uN,M j(µ)ζj , g
uN,M

M (x;µ) =
M∑

m=1

ϕM m(µ)qm . (7.14)

Inserting these representations into (7.13) yields

N∑
j=1

AN
i juN,M j(µ) +

M∑
m=1

CN,M
i m ϕM m(µ) = FN i, 1 ≤ i ≤ N ; (7.15)

where AN ∈ RN×N , CN,M ∈ RN×M , FN ∈ RN are given by AN
i j = aL(ζj, ζi), 1 ≤ i, j ≤ N ,

CN,M
i m =

∫
Ω
qmζi, 1 ≤ i ≤ N, 1 ≤ m ≤ M , and FN i = f(ζi), 1 ≤ i ≤ N , respectively.

Furthermore, ϕM(µ) ∈ RM is given by

M∑
k=1

BM
m kϕM k(µ) = g(uN,M(tm;µ); tm;µ), 1 ≤ m ≤M

= g
( N∑

n=1

uN,M n(µ)ζn(tm); tm;µ
)
, 1 ≤ m ≤M . (7.16)

We then substitute ϕM(µ) from (7.16) into (7.15) to obtain the following nonlinear alge-

braic system

N∑
j=1

AN
i juN,M j(µ)+

M∑
m=1

DN,M
i m g

( N∑
n=1

ζn(tm)uN,M n(µ); tm;µ
)

= FN i, 1 ≤ i ≤ N , (7.17)

where DN,M = CN,M(BM)−1 ∈ RN×M .

To solve (7.17) for uN,M j(µ), 1 ≤ j ≤ N , we may again apply a Newton iterative

scheme: given a current iterate ūN,M j(µ), 1 ≤ j ≤ N, we must find an increment
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δuN,M j, 1 ≤ j ≤ N, such that

N∑
j=1

(
AN

i j + ĒN
i j

)
δuN,M j(µ) = FN i −

N∑
j=1

AN
i jūN,M j(µ)

−
M∑

m=1

DN,M
i m g

( N∑
n=1

ζn(tm)ūN,M n(µ); tm;µ
)
, 1 ≤ i ≤ N ; (7.18)

here ĒN ∈ RN×N must be calculated at every Newton iteration as

ĒN
i j =

M∑
m=1

DN,M
i m g1

( N∑
n=1

ζn(tm)ūN,M n(µ); tm;µ
)
ζj(tm), 1 ≤ i, j ≤ N . (7.19)

Finally, the output can be evaluated as

sN,M(µ) =
N∑

j=1

uN,M j(µ)LN j , (7.20)

where LN ∈ RN is the output vector with entries LN j = `(ζj), 1 ≤ j ≤ N . We observe

that we can now develop an efficient offline-online procedure for the rapid evaluation of

sN,M(µ) for each µ in D.

In the offline stage — performed once — we first generate nested reduced-basis approx-

imation spaces WN = {ζ1, . . . , ζN}, 1 ≤ N ≤ Nmax, nested approximation spaces W g
M =

{q1, . . . , qM}, 1 ≤ M ≤ Mmax, and nested sets of interpolation points TM = {t1, . . . , tM};

we then form and store AN , BM , DN,M , FN , and LN .

In the online stage — performed many times for each new µ — we solve (7.17) for

uN,M j(µ), 1 ≤ j ≤ N and evaluate sN,M(µ) from (7.20). The operation count of the

online stage is essentially the predominant Newton update component: at each Newton

iteration, we first assemble the right-hand side and compute ĒN at cost O(MN2) — note

we perform the sum in the parenthesis of (7.19) before performing the outer sum; we

then form and invert the left-hand side (Jacobian) at cost O(N3). The online complexity

depends only on N , M , and number of Newton iterations; we thus recover online N

independence.
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7.3.3 Implementation Issues

At this point we need to comment on an important issue concerning the actual numerical

implementation of our proposed method which, if not addressed properly, can lead to

erroneous results. To begin, we consider a Newton iterative scheme to solve the truth

finite element approximation (7.3) for u(µ): given a current iterate ū(µ), find an increment

δu(µ) ∈ X such that

aL(δu(µ), v) +

∫
Ω

gu(ū(µ);x;µ)δu(µ)v = f(v)− aL(ū(µ), v) +

∫
Ω

g(ū(µ);x;µ)v, ∀v ∈ X .

(7.21)

We must then require the numerical integration of terms of the form
∫

Ω
g(ū;x;µ)v (and∫

Ω
gu(ū(µ);x;µ)wv) — which (usually) have to be evaluated by Gaussian quadrature:

∫
Ω

v g(ū(x;µ);x;µ) ≈
NQP∑
j=1

ωj v(x
QP
j ) g(ū(xQP

j ;µ), xQP
j ;µ), (7.22)

where the ωj are the elemental Gauss-Legendre quadrature weights, xQP
j are the corre-

sponding elemental quadrature points, and NQP is the total number of quadrature points.

Similarly, the reduced-basis approximation procedure requires, during the offline stage,

the evaluation of (say)
∫

Ω
ζiqm. For consistency, the term should be evaluated using the

same quadrature rule that was used to develop the “truth” finite element approximation

∫
Ω

ζi qm ≈
NQP∑
j=1

ωj ζi(x
QP
j ) qm(xQP

j ); (7.23)

absent this consistency, uN,M(µ) will not converge to u(µ) as N,M →∞.

From the construction of the interpolation points ti, 1 ≤ i ≤ Mmax, we note that

the qm, 1 ≤ m ≤ Mmax, can be written as a linear combination of the basis function

ξi = g(u;x;µg
i ), 1 ≤ i ≤Mmax, which we obtained from our greedy adaptive procedure in

Section 7.2. It is easy to show that ξi = Timqm, 1 ≤ i,m ≤Mmax, where T ∈ RMmax×Mmax

is the corresponding transformation matrix . Unfortunately, it turns out that T is badly

conditioned and the resulting qm required in (7.23) susceptible to large round-off errors.

To avoid this problem we thus have to follow a different route: while generating the basis
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functions ξi = g(u(µg
i );x;µ

g
i ) ∈ RN , 1 ≤ i ≤ Mmax, we also generate a corresponding

set of functions ξQP
i evaluated at the quadrature points xQP

j , 1 ≤ j ≤ NQP, that is

ξQP
i = g(u(µg

i );x
QP
j ;µg

i ), 1 ≤ j ≤ NQP, 1 ≤ i ≤ Mmax. Next, we construct the set of

interpolation points ti and basis functions qi from the ξi according to Section 7.2. During

this procedure we also evaluate qQP
m by starting with qQP

1 = ξQP
1 (x)/ξQP

1 (t1) and then

setting rQP
M (x) = ξQP

M (x) −
∑M−1

i=1 σM−1
i qQP

i (x), qQP
M (x) = rQP

M (x)/rQP
M (tM), 2 ≤ M ≤

Mmax, where the σM−1
i are determined during the construction of the qi.

Note that qQP
m is simply the “basis” function corresponding to qm, but evaluated at

the quadrature points. Given the qQP
m , we can then directly evaluate the integral

∫
Ω
ζi qm

by Gauss Quadrature

∫
Ω

ζi qm ≈
NQP∑
j=1

ωj ζi(x
QP
j ) qQP

m (xQP
j ) . (7.24)

Using this approach during the numerical implementation we can avoid the round-off

errors that resulted from the conditioning problems of the transformation matrix T .

7.4 A Posteriori Error Estimation

7.4.1 Error Bounds

We first assume we are given α and ε̂M(µ) which are the coercivity parameter of aL and

the a posteriori error estimator for the error in our coefficient function approximation,

respectively.1 We may now introduce our error bound ∆N,M(µ) for ‖u(µ)− uN,M(µ)‖X ,

∆N,M(µ) =
1

α

(
sup
v∈X

r(v; g
uN,M

M (x;µ))

‖v‖X

+ ε̂M(µ) sup
v∈X

∫
Ω
qM+1v

‖v‖X

)
, (7.25)

where r(v; g
uN,M

M (x;µ)), the residual associated with uN,M(µ) and g
uN,M

M (x;µ), is given by

r(v; g
uN,M

M (x;µ)) = f(v)− aL(uN,M(µ), v)−
∫

Ω

g
uN,M

M (x;µ)v, ∀ v ∈ X . (7.26)

1Note if aL is parameter-dependent we will then require α̂(µ) — a lower bound for α(µ).
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We next define the error bound for the error in the output as

∆s
N,M(µ) = sup

v∈X

`(v)

‖v‖X

∆N,M(µ) . (7.27)

Proposition 12. Suppose that g(uN,M(µ);x;µ) ∈ W g
M+1, we then have

‖u(µ)− uN,M(µ)‖X ≤ ∆N,M(µ), |s(µ)− sN,M(µ)| ≤ ∆s
N,M(µ), ∀ µ ∈ D . (7.28)

Proof. We first note from (7.3) and (7.26) that eN,M(µ) ≡ u(µ)− uN,M(µ) satisfies

aL(eN,M(µ), v) +

∫
Ω

(
g(u(µ);x;µ)− g(uN,M(µ);x;µ)

)
v =

r(v; g
uN,M

M (x;µ)) +

∫
Ω

(
g

uN,M

M (x;µ)− g(uN,M(µ);x;µ)
)
v, ∀ v ∈ X.

We next choose v = e(µ) and invoke the monotonicity of g to obtain

aL(e(µ), e(µ)) ≤ r(e(µ); g
uN,M

M (x;µ)) +

∫
Ω

(
g

uN,M

M (x;µ)− g(uN,M(µ);x;µ)
)
e(µ) . (7.29)

It follows from (7.29), a-coercivity, and our assumption g(uN,M(µ);x;µ) ∈ W g
M+1 that

‖e(µ)‖X ≤ 1

α

(
r(e(µ); g

uN,M

M (x;µ)) +
∫

Ω

(
g

uN,M

M (x;µ)− g(uN,M(µ);x;µ)
)
e(µ)

‖e(µ)‖X

)

≤ 1

α

(
sup
v∈X

r(v; g
uN,M

M (x;µ))

‖v‖X

+ sup
v∈X

∫
Ω

(
g

uN,M

M (x;µ)− g(uN,M(µ);x;µ)
)
v

‖v‖X

)

=
1

α

(
sup
v∈X

r(v; g
uN,M

M (x;µ))

‖v‖X

+ ε̂M(µ) sup
v∈X

∫
Ω
qM+1(x)v

‖v‖X

)
.

Finally, it follows from the continuity of ` that |s(µ) − sN,M(µ)| ≤ ‖`‖X′ ‖eN,M(µ)‖X ≤

‖`‖X′ ∆N,M(µ). This concludes the proof.

Our hypothesis g(uN,M(µ);x;µ) ∈ W g
M+1 is obviously unlikely sinceW g

M is constructed

upon g(u;x;µ), and hence our error bound ∆N,M(µ) is not completely rigorous; however,

if uN,M(µ) → u(µ) very fast we expect that the effectivity ηN,M(µ) ≡ ∆N,M(µ)/‖u(µ)−

uN,M(µ)‖X is close to (and above) unity.
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7.4.2 Offline/Online Computational Procedure

It remains to develop the offline-online computational procedure for the efficient calcula-

tion of our error bounds ∆N,M(µ) and ∆s
N,M(µ). To begin, we note from standard duality

arguments that

sup
v∈X

r(v; g
uN,M

M (x;µ))

‖v‖X

= ‖êN,M(µ)‖X , (7.30)

where êN,M(µ) is given by

(êN,M(µ), v)X = r(v; g
uN,M

M (x;µ)), ∀ v ∈ X . (7.31)

We next substitute uN,M(µ) =
∑N

n=1 uN n(µ) ζn and g
uN,M

M (x;µ) =
∑M

m=1 ϕM m(µ) qm(x)

into (7.26) to expand r(v; g
uN,M

M (x;µ)) as

r(v; g
uN,M

M (x;µ)) = f(v)−
N∑

n=1

uN,M n(µ) aL(ζn, v)−
M∑

m=1

ϕM m(µ)

∫
Ω

qm(x)v, ∀ v ∈ X.

(7.32)

It then follows from (7.31)-(7.32) and linear superposition that we may express êN,M(µ) ∈

X as

êN,M(µ) = C +
N+M∑
j=1

σj(µ) Lj , (7.33)

where (C, v)X = f(v), ∀ v ∈ X; σn(µ) = uN,M n(µ), (Ln, v)X = −aL(ζn, v), ∀ v ∈ X, for

1 ≤ n ≤ N ; σm+N(µ) = ϕm(µ), (Lm+N , v)X = −
∫

Ω
qm(x)v, ∀ v ∈ X, for 1 ≤ m ≤ M . It

thus follows that

‖êN,M(µ)‖2
X = (C, C)X + 2

N+M∑
j=1

(C,Lj)X +
N+M∑
j=1

N+M∑
j′=1

σj(µ)σj′(µ)(Lj,Lj′)X . (7.34)

Finally, by invoking duality arguments we calculate supv∈X [
∫

Ω
qM+1(x)v/‖v‖X ] = ‖Z‖X ,

where (Z, v)X =
∫

Ω
qM+1(x)v, ∀ v ∈ X. The offline-online decomposition is now clear.

In the offline stage — performed only once — we first solve for C, Z, and Lj, 1 ≤ j ≤

N + M ; we then form and store the associated parameter-independent inner products

(Z,Z)X , (C, C)X , (C,Lj)X , (Lj,Lj′)X , 1 ≤ j, j′ ≤ N +M . Note that these inner products

computed offline are independent of the parameter µ.
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In the online stage — performed many times for each new µ — we simply evaluate

the sum (7.34) in terms of ϕM m(µ), uN,M n(µ) — at cost O((N + M)2). The online

cost is independent of N . We further note that unless M is very large, the online cost

associated with the calculation of the error bounds is much less expensive than the online

cost associated with the calculation of sN,M(µ).

7.5 Numerical Results

In this section, we apply our approach to the model problem described in Section 7.1.2 and

present associated numerical results. We first choose bound conditioner (w, v)X =
∫

Ω
∇w·

∇v and thus obtain α = 1. We then introduce Ξg — a regular grid of 144 parameter points

— up on which Sg
M , W g

M , TM , and BM , 1 ≤ M ≤ Mmax, are constructed for Mmax = 26

by the procedure of Section 7.2. We readily pursue the adaptive sampling procedure

described in Section 6.5.3 to construct the nested samples SN : for εtol,min = 10−5 and

nF = 1600, we obtain Nmax = 20. We present in Figure 7-2 the two samples Sg
Mmax

and SNmax . As expected from the form of nonlinearity, both the samples are distributed

mainly around the two “corners” (10, 0.01) and (0.01, 10). .
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Figure 7-2: Parameter sample set: (a) Sg
Mmax

and (b) SNmax .

We now introduce a parameter test sample ΞTest of size 225 (in fact, a regular
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15 × 15 grid over D), and define εN,M,max,rel = maxµ∈ΞTest
‖eN,M(µ)‖X/‖u(µ)‖X and

εs
N,M,max,rel = maxµ∈ΞTest

|sN,M(µ)|/|s(µ)|. We present in Figure 7-3 εN,M,max,rel and

εs
N,M,max,rel as a function of N and M . We observe very rapid convergence of the reduced-

basis approximations. Furthermore, the errors behave very similarly as in the linear

elliptic example of the previous chapter: the errors initially decrease, but then maintain

persistently plateau with N for a particular value of M ; increasing M effectively brings

the error curves down.
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Figure 7-3: Convergence of the reduced-basis approximations for the model problem.

N M ∆N,M,max,rel η̄N,M ∆s
N,M,max,rel η̄s

N,M

3 4 1.05E– 01 3.28 1.08E– 01 32.33
6 8 7.07E– 03 1.74 7.40E– 03 28.94
9 12 9.33E– 04 1.84 9.78E– 04 24.09
12 16 9.44E– 05 2.15 9.66E– 05 16.61
15 20 2.60E– 05 1.27 2.60E– 05 55.35
18 24 9.27E– 06 1.08 9.53E– 06 53.12

Table 7.1: Effectivities for the model problem.

We further show in Table 7.1 ∆N,M,max,rel, η̄N,M , ∆s
N,M,max,rel, and η̄s

N,M as a function

of N and M . Here ∆N,M,max,rel is the maximum over ΞTest of ∆N,M(µ)/‖uN,M(µ)‖X , η̄N,M

is the average over ΞTest of ∆N,M(µ)/‖eN,M(µ)‖, ∆s
N,M,max,rel is the maximum over ΞTest

of ∆s
N,M(µ)/|sN,M(µ)|, and η̄s

N,M is the average over ΞTest of ∆s
N,M(µ)/|s(µ) − sN,M(µ)|.

We observe that ∆N,M,max,rel converges very rapidly, and the associated effectivities are

O(1); hence our energy error bound is very close to the true error. However, the output
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bound does not perform that well as the output effectivities are quite high primarily due

to the relatively crude output bounds by using the dual norm of the output functional.

Next we look at the relative contribution of the rigorous and non-rigorous components

to the energy error bound ∆N,M(µ). We display in Figure 7-4 the ratio ∆N,M,ave,n/∆N,M,ave

as a function of N and M . Here ∆N,M,ave is the average over ΞTest of ∆N,M(µ); ∆N,M,ave,n

is the average over ΞTest of ε̂M (µ
)
α supv∈X [

∫
Ω
qM+1v/‖v‖X ] — note this quantity is nonrig-

orous due to the lower bound property of ε̂M(µ) as a surrogate for εM(µ). We see that

very similar as in the linear elliptic example of the previous chapter, the ratio tends to

increase with N , but decrease with M .

2 4 6 8 10 12 14 16 18 20

10
−4

10
−3

10
−2

10
−1

10
0

N

∆ N
,M

,a
ve

,n
  ∆

N
,M

,a
ve

M = 4
M = 8
M = 12
M = 16
M = 20

Figure 7-4: ∆N,M,ave,n/∆N,M,ave as a function of N and M .

Finally, we present in Table 7.2 the online computational times to calculate sN,M(µ)

and ∆s
N,M(µ) as a function of (N,M). The values are normalized with respect to

the computational time for the direct calculation of the truth approximation output

s(µ) = `(u(µ)). The computational savings are much larger in the nonlinear case: for an

accuracy of less than 0.1 percent (N = 9, M = 12) in the output bound, we observe the

online factor of improvement of O(5000). This is mainly because solution of the “truth”

approximation (7.3) involving the matrix assembly of the nonlinear terms and Newton

update iterates is computationally expensive. Note also that the time to calculate sN(µ)

considerably exceeds that of calculating ∆s
N,M(µ) — this is due to the higher computa-

tional cost, O(MN2 + N3) at each Newton iteration, to solve for uN,M(µ). The online

cost thus grows faster with N than with M , but can be controlled tightly by our online
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adaptive strategy.

N M sN,M(µ) ∆s
N,M(µ) s(µ)

3 4 5.83E– 05 6.07E– 06 1
6 8 1.33E– 04 1.09E– 05 1
9 12 2.31E– 04 1.21E– 05 1
12 16 3.72E– 04 1.33E– 05 1
15 20 5.48E– 04 1.58E– 05 1
18 24 7.40E– 04 2.32E– 05 1

Table 7.2: Online computational times (normalized with respect to the time to solve for
s(µ)) for the model problem.

However, the offline computations in the nonlinear case are also more extensive pri-

marily due to the sampling procedure for Sg
M . Nevertheless, at the present, the technique

can be gainfully employed in many practical applications that willingly accept the ex-

tensive offline cost in exchange for the real-time responses in the design, optimization,

control, characterization contexts.
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Chapter 8

A Real-Time Robust Parameter

Estimation Method

8.1 Introduction

Inverse problem has received enormous attention due to its practical importance in many

engineering and science areas such as nondestructive evaluation, computer tomography

and imaging, geophysics, biology, medicine and life science. Formally defined, inverse

problems are concerned with determining unknown causes from a desired or an observed

effect. In this thesis, we shall view inverse problems as follows: the forward problem is to

evaluate the PDE-induced input-output relationship (which in turn demands solution of

the underlying partial differential equation); in contrast, the inverse problem is concerned

with deducing the inputs from the measured-observable outputs.

In Chapters 3 through 7, we develop the method for rapid and reliable evaluation of

the PDE-induced input-output relationship for various classes of PDEs: linear coercive

and noncoercive equations, nonaffine elliptic equations, as well as highly nonlinear mono-

tonic elliptic equations. The three essential components are reduced-basis approximations,

a posteriori error estimation, and offline-online computational procedures. Thanks to the

rapid convergence of the reduced-basis approximation and the offline/online computa-

tional stratagem we can, in fact, enable real-time prediction of the outputs; and, thanks

to our a posteriori error estimators, we can associate rigorous certificates of fidelity to
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our (very fast) output predictions. The method is thus ideally suited to the inverse-

problem context in which thousands of output predictions are often required effectively

in real-time.

The wide range of applications has stimulated the development of various solution

techniques for inverse problems. However, the inverse problem is typically ill-posed; in

almost cases the techniques are quite expensive and do not well quantify uncertainty. Ill-

posedness is traditionally addressed by regularization. Unfortunately, though adaptive

regularization techniques are quite sophisticated, the ultimate prediction is nevertheless

affected by the a priori assumptions — in ways that are difficult to quantify in a robust

fashion.

Our approach promises significant improvements. In particular, based on the reduce-

basis method we develop a robust inverse computational method for very fast solution

region of inverse problems characterized by parametrized PDEs. The essential innova-

tions are threefold. First, we apply the reduce-basis method to the forward problem for

the rapid certified evaluation of PDE input-output relations and associated rigorous error

bounds. Second, we incorporate the reduced-basis approximation and error bounds into

the inverse problem formulation. Third, rather than regularize the goodness-of-fit objec-

tive, we may instead identify all (or almost all, in the probabilistic sense) inverse solutions

consistent with the available experimental data. Ill-posedness is captured in a bounded

“possibility region” that furthermore shrinks as the experimental error is decreased.

We further extend our inverse method to an “Analyze-Assess-Act” approach for the

adaptive design and robust optimization of engineering systems. In the Analyze stage we

analyze system characteristics to determine which ranges of experimental control variables

may produce sensitive data. In the Assess stage we pursue robust parameter estimation

procedures that map measured-observable outputs to (all) possible system-characteristic

inputs. In the subsequent Act stage we pursue adaptive design and robust optimization

procedures that map mission-objective outputs to best control-variable inputs. The essen-

tial mathematical ingredients of our approach are twofold. First, we employ reduced-basis

approximations and associated a posteriori error estimation to provide extremely rapid

output bounds for the output of interest. Second, we employ a combination of advanced

optimization procedures and less sophisticated probabilistic and enumerative techniques:
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techniques which incorporate our reduced-basis output bounds for efficient minimization

of objective functions with strict adherence to constraints.

8.2 Problem Definition

8.2.1 Forward Problems

A mathematical formulation of the PDE-induced input-output relationship is stated as:

For given µ ∈ D ⊂ RP , we evaluate se(µ) = `(ue(µ)), where the field variable ue(µ) satis-

fies a µ-parametrized partial differential equation that describes the underlying physics,

g(ue(µ), v;µ) = 0, ∀ v ∈ Xe. Here D is the parameter domain in which our P -tuple

input µ resides; Xe is an appropriate Hilbert space defined over spatial domain Ω ∈ Rd;

f(·), `(·) are Xe-continuous linear functionals; and g is the weak form of the underlying

partial differential equation. In the linear case, we typically have

g(w, v;µ) ≡ a(w, v;µ)− f(v) , (8.1)

where a(·, ·;µ) is a continuous bilinear form. In the nonlinear case, g typically includes

general nonlinear functions of the field variable ue(µ) and/or its partial derivatives. We

assume explicitly here that the forward problem is well-posed in the Hadamard sense.

This essentially requires the solution exist, be unique, and depend continuously on data.

Recall that the PDE may not be analytically solvable; rather classical numerical

approaches like the finite element analysis are used. In the finite element method, we

first introduce a piecewise-polynomial “truth” approximation subspace X (⊂ Xe) of

dimension N . The “truth” finite element approximation is then found by (say) Galerkin

projection: Given µ ∈ D ⊂ RP , we evaluate

s(µ) = `(u(µ)) ; (8.2)

where u(µ) ∈ X is the solution of

g(u(µ), v;µ) = 0, ∀ v ∈ X . (8.3)
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For accurate numerical solution of the underlying PDE, we shall assume — hence the ap-

pellation “truth” — that X is sufficiently rich that u(µ) (respectively, s(µ)) is sufficiently

close to ue(µ) (respectively, se(µ)) for all µ in the (closed) parameter domain D. Un-

fortunately, for any reasonable error tolerance, the dimension N required to satisfy this

condition — even with the application of appropriate (and even parameter-dependent)

adaptive mesh generation/refinement strategies — is typically extremely large, and in

particular much too large to provide real-time solution of inverse problems.

For clarification of the following discussion, let us denote the input-output relationship

by an explicit mapping F : µ ∈ D → s ∈ R, hence s(µ) = F (µ). The mapping F

encompassing the mathematical formulation of the forward problem is called forward

operator; and hence evaluating F is equivalent to solving (8.3) and (8.2).

8.2.2 Inverse Problems

As mentioned earlier, in inverse problems we are concerned with predicting the unknown

input parameters from the measured/observable outputs. In the inverse-problem context,

our input has two components, µ = (ν, σ). The first component ν = (ν1, . . . , νM) ∈ Dν ⊂

RM comprises system-characteristic parameters that must be identified; here Dν is the

associated domain of interest. The second component σ consists of experimental control

variables that are used to obtain the experimental data. Inverse problems may then

involve identifying the “exact” but unknown parameter ν∗ from

{ν ∈ Dν | F (ν, σk) = s(ν∗, σk), 1 ≤ k ≤ K}, (8.4)

where s(ν∗, σk), 1 ≤ k ≤ K are the “noise-free” data, and K is the number of mea-

surements. For convenience below, let us denote F(ν) = (F (ν, σ1), . . . , F (ν, σK)) and

s(ν∗) = (s(ν∗, σ1), . . . , s(ν
∗, σK)), and thus rewrite (8.4) as

F(ν) = s(ν∗) . (8.5)

Neither existence nor uniqueness of a solution to (8.5) are guaranteed. The notion of

parameter identifiability is important since parameter identifiability is concerned with
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the question whether the parameters can be uniquely identified from knowledge about

the outputs, assuming perfect data. The parameter ν∗ is called identifiable if F(ν) = s(ν∗)

implies ν = ν∗, if otherwise non-identifiable. A problem is called parameter identifiable

if every ν∗ ∈ Dν is identifiable, i.e., the mapping F is one-to-one. The identifiability of

ν∗ depends not only on the governing equation, but also on the outputs and the number

of observations/measurements. Furthermore, a problem may be parameter identifiable

when considering the analytic forward operator F e(µ) and analytic output data se(ν∗),

but loses this property for the discretized inverse problem (8.5). We refer to [12] for

detailed description of the identifiability concept in inverse problems.

Clearly, under assumptions that the exact data s(ν∗) is attainable and that the un-

derlying model is correct, solution of (8.5) does exist, but need not be necessarily unique.

Typically, solution of the problem (8.5) is found by solving the minimization problem

ν∗ = arg min
ν∈Dν

||F(ν)− s(ν∗)|| ; (8.6)

here ‖ · ‖ denotes the Euclidean norm. In actual practice, due to errors in the measure-

ment the exact data are not known precisely, and only the perturbed experimental data,

{sδ(ν∗, σk), 1 ≤ k ≤ K}, satisfying∣∣∣∣sδ(ν∗, σk)− s(ν∗, σk)

s(ν∗, σk)

∣∣∣∣ ≤ εexp, 1 ≤ k ≤ K , (8.7)

are available; here εexp is the experimental error in the data. Note from (8.7) that the

norm of noise in measurements is bounded by

‖sδ(ν∗)− s(ν∗)‖ ≤ δ(εexp) , (8.8)

where δ known as the noise level is a function of the experimental error εexp, and sδ(ν∗) =

(sδ(ν∗, σ1), . . . , s
δ(ν∗, σK)). The output least-squares formulation (8.6) is thus replaced

by the minimization problem

νδ = arg min
ν∈Dν

||F(ν)− sδ(ν∗)|| , (8.9)
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with the noise estimate (8.7) or more conveniently (8.8).

Our approach to treat inverse problems in the presence of uncertainty is different

from traditional approaches in the sense that: rather than strive for only one regularized

solution, we may identify all (or almost all, in the probabilistic sense) inverse solutions

consistent with the available experimental data. In particular, instead of the vector

sδ(ν∗), the experimental data is given in the form of intervals

I(εexp, σk) ≡ [s(ν∗, σk)− εexp |s(ν∗, σk)| , s(ν∗, σk) + εexp |s(ν∗, σk)|] , 1 ≤ k ≤ K. (8.10)

Our inverse problem formulation is thus proposed as: Given experimental data in the

form of intervals I(εexp, σk), 1 ≤ k ≤ K, we wish to determine a region P ∈ Dν in which

all possible inverse solutions must reside. Towards this end, we define

P ≡ {ν ∈ Dν |F (ν, σk) ∈ I(εexp, σk), 1 ≤ k ≤ K} . (8.11)

Here we use I(εexp, σk) defined by (8.10) in our numerical experiments. Of course, in

practice, we are not privy to s(ν∗, σk), 1 ≤ k ≤ K; in such cases, the experimental data

must be replaced with I(εexp, σk) ≡ [smin(σk), smax(σk)] ⊃ s(ν∗, σk), 1 ≤ k ≤ K, where

smin(σk) and smax(σk) are determined by manipulating the original experimental data set

by means of statistical and error analysis [3, 139].

The crucial observation is the following

Proposition 13. All possible solutions ν∗ of the problem (1.4) reside in P.

Proof. We first note from (8.10) that s(ν∗, σk) ∈ I(εexp, σk), 1 ≤ k ≤ K. The result

follows from (8.5) and the definition of P in (8.11).

Clearly, we have accommodated experimental error and model uncertainty. The size of

P depends on the level of noise in experimental data and the particular problem involved

and in turn reflects how severely ill-posed the inverse problem is. Also note importantly

that the optimization formulation (8.9) yields only one particular solution νδ ∈ P , since

sδ(ν∗, σk) ∈ I(εexp, σk), 1 ≤ k ≤ K.

Before proceeding with the development of the computational method for determining

P (more precisely, another region that includes P and can be constructed very inexpen-
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sively), we give in the next section a short discussion of computational approaches that

can treat inverse problems with uncertain data.

8.3 Computational Approaches for Inverse Problems

8.3.1 Regularization Methods

In inverse problems, one must address ill-posedness namely existence, uniqueness, and

continuous dependence of the solution on data. Under our assumptions of well-posedness

of the forward problem and of boundedness of the output functional, and if we consider

“zero” noise level (εexp = 0%), the solution of (8.9) does exist and depend continuously on

data provided that mathematical model agrees with physical phenomena. But the inverse

problem is still possibly ill-posed since multiplicity of solutions may exist. One practical

way to counter the problem of multiple solutions is to obtain more data. One can then

hope that fairly accurate results can be obtained by using “over-determined” data. In

practice, due to the presence of noise in data, the use of over-determined data often leads

to bad solutions. Consequently, in face of uncertainty, posing inverse problems as an

optimization problem in (8.9) may work for some problems, but may not for others. As

a result, a priori regularization hypotheses accommodating the uncertainty are usually

made, and iterative regularization algorithms are often pursued [137, 39, 63].

Before proceeding with our discussion, it is worthwhile to point out under what cir-

cumstances regularization methods are appropriate for solving inverse problems. To

begin, we note from (8.6) and (8.9) that

F(ν∗)− F(νδ) = s(ν∗)− sδ(ν∗) . (8.12)

If F is linear, we can then write (8.12) as

F(ν∗ − νδ) = s(ν∗)− sδ(ν∗) . (8.13)

Assuming F is invertible and if the inverse of F is bounded such that a small error in

data leads to small error in the solution, νδ can then be considered a good approximation
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for ν∗. However, if the inverse is unbounded, a very small error in data can be magnified

by the inverse itself so that the error in the solution is unacceptably large when solving

(8.9) directly for νδ.

In the nonlinear case, by replacing F(ν∗) and F(νδ) with a first-order approximation

around a point ν0, we can obtain

F′(ν0)(ν
∗ − νδ) = sδ(ν∗)− s(ν∗) ; (8.14)

here F′(ν) is the Fréchet derivative of F at ν. Although it is not always true, but ill-

posedness of a nonlinear problem is frequently characterized via its linearization [40].

Therefore, if a nonlinear inverse problem is solved by methods of linearization, its degree

of ill-posedness is typically represented by the unboundedness of the inverse of F′(ν).

Regularization methods prove very appropriate for inverse problems whose ill-posedness

comes from the unbounded property of the inverse of the operator or its Fréchet derivative.

In Tikhonov regularization, a regularization parameter α and associated regularization

operator R reflecting the uncertainty are added to the problem (8.9) as a way to ensure

fairly accurate solutions. This leads to the minimization problem

νδ = arg min
ν∈Dν

||F(ν)− sδ(ν∗)||+ α(δ) ‖R(ν)‖ . (8.15)

The basic idea is to replace the original ill-posed inverse problem with a family of well-

posed problems by taking explicitly the uncertainty into the optimization problem. For a

positive α, minimizers always exist under the well-posedness assumptions on the forward

problems but need not be unique. In [41], it was shown that νδ depends continuously on

the data and converges towards a solution ν∗ of (8.6) in a set-valued sense as α(δ) → 0

and δ2/α(δ) → 0 as δ tends to zero. The solution method for (8.15) and the choice of α

and R (by which the solution of inverse problems will be certainly affected) have inspired

the development of many regularization techniques. Typically [42, 40], R is set to either

ν or ν − νa, where νa is some a priori estimate of the desired solution ν∗ of (8.6). For

choosing the regularization parameter, there are two general rules of thumbs namely a

priori and a posteriori choice. In a priori choice [40], the parameter is defined a function

of only noise level δ such as α = O(δ
2

2ρ+1 ) for some ρ ∈ [1/2, 1]. Although simple and
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less computationally expensive, the a priori choice does not guarantee the best accuracy

for the solution of (8.15) since the optimal value of α at which the best accuracy is

obtained is generally unknown. As a consequence, several a posteriori strategies have

been introduced to provide the best possible solution. In the a posteriori choice, α is

decided by the generalized discrepancy principle [137, 112] such that

∥∥F(νδ)− sδ(ν∗)
∥∥ = δ(εexp) (8.16)

holds; see [133] for a posteriori strategy that yields optimal convergence rate.

Tikhonov regularization methods have been very successful in solving linear ill-posed

problems. However, in the nonlinear case, solving the problem (8.15) with adherence to

(8.16) is quite complicated and requires high computational efforts. Since furthermore the

nonlinearity and nonconvexity of the problem (8.15) could make gradient methods fail if

the problem is ill-posed, iterative regularization methods prove an attractive alternative.

A starting point for our discussion of iterative regularization methods is the Newton’s

method for solving (8.9)

νδ
n+1 = νδ

n + F′(νδ
n)−1

(
sδ(ν∗)− F(νδ

n)
)
; (8.17)

here F′(ν) is the Fréchet derivative of F at ν. The stability and convergence of the

Newton scheme (8.17) strongly depend on smoothness of F and invertibility of F′. Even

if F is well-posed and F′ is invertible, the inverse of F′ is usually unbounded for ill-posed

problems. Therefore, some regularization technique has to be applied since (8.17) means

to solve a linear ill-posed problem at every iteration. The idea is to replace the possibly

unbounded inverse F′(νδ
n)−1 in (8.17) with a bounded operator Gαn

νδ
n+1 = νδ

n + Gαn(F′(νδ
n))
(
sδ(ν∗)− F(νδ

n)
)
, (8.18)

where {αn} is a sequence of regularization parameters. There are several choices for

Gαn leading to several iterative regularization schemes (see [23] and references therein
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for detail). Typically, the Levenberg-Marquardt method [59] defines

Gαn = (F′(νδ
n)∗F′(νδ

n) + αnI)
−1F′(νδ

n)∗ ; (8.19)

here F′(ν)∗ is the adjoint of F′(ν). This method is essentially the Tikhonov regularization

applied to the linearized problem (8.17). The parameter αn is chosen from the Morozov’s

discrepancy principle

‖sδ(ν∗)− F(νδ
n)− F′(νδ

n)(νδ
n+1 − νδ

n)‖ = ρ‖sδ(ν∗)− F(νδ
n)‖ (8.20)

with some positive ρ < 1. The convergence and stability of the scheme was given in [59]

(Theorem 2.3) under the assumptions that F′ is locally bounded and that

‖F(ν)− F(ν̃)− F′(ν − ν̃)‖ ≤ C‖F(ν)− F(ν̃)‖‖ν − ν̃‖ , (8.21)

for all ν and ν̃ in a ball B around ν∗ and some fixed C > 0. However, the convergence

rate result has not been established.

The iteratively regularized Gauss-Newton method [8] suggested augmenting (8.18) with

additional stabilization term

νδ
n+1 = νδ

n + Gαn

(
sδ(ν∗)− F(νδ

n)
)
−
(
F′(νδ

n)∗F′(νδ
n) + αnI

)−1
αn

(
νδ

n − νa
)

; (8.22)

where αk is the a priori chosen sequence satisfying

αn > 0, 1 ≤ αn

αn+1

≤ r, lim
n→∞

αn = 0 (8.23)

for some constant r > 1. The convergence and convergence rate of this method have

been analyzed [20] under certain conditions on F and νa − ν∗. These conditions are in

fact quite restricted and difficult to verify for many important inverse problems arising

in medical imaging and nondetructive testing; see [67] for the improved scheme yielding

higher rates of convergence even under weaker conditions.

Alternatively, the methods of steepest descent are also used to solve nonlinear ill-posed
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problems. A typical scheme of this kind is the Landweber iteration

νδ
n+1 = νδ

n + F′(νδ
n)
(
sδ(ν∗)− F(νδ

n)
)
. (8.24)

In [60], the convergence analysis of the Landweber iteration is given under the following

assumptions: for a ball Bρ(ν0) of radius ρ around the initial guess ν0, F is required to

satisfy

‖F′(ν)‖ ≤ 1, ν ∈ Bρ(ν0), (8.25)

‖F(ν̃)− F(ν)− F′(ν̃ − ν)‖ ≤ η‖F(ν)− F(ν̃)‖, ν, ν̃ ∈ Bρ(ν0) (8.26)

for some positive η < 1/2; in addition to (8.25) and (8.26), there are other (even more

restricted) conditions that F and ν∗ must meet. Despite slower convergence, the much

simpler Landweber iteration are still useful in many situations (in which the evaluation

of Gαn is computationally prohibitive), since a single step in (8.26) is much less expen-

sive than in (8.18) and (8.22). Further discussion and other variants of the Landweber

iteration can be also found in [36, 132].

8.3.2 Statistical Methods

Bayesian statistical methods have been applied to both linear and nonlinear inverse

problems. In Bayesian approach [46, 147, 68, 16, 98], the experimental data, sδ(ν∗) =

(sδ(ν∗, σ1), . . . , s
δ(ν∗, σK)), is treated as a random variable with probability density func-

tion p(sδ(ν∗)|ν). Typically, the noise in measurement is normally distributed with zero

mean and standard deviation λ, the probability density for the data in this case is given

by

p(sδ(ν∗) | ν) =

(
1

2πλ2

)K/2

exp{−‖F(ν)− sδ(ν∗)‖2/2λ2} . (8.27)

Bayesian approach also treats the unknown parameter ν∗ as random variable; hence, a

prior distribution Π(ν∗) is needed to express initial uncertainty about the unknown model

parameter ν∗. For a simple Gaussian prior of mean νa and standard deviation τ , we have
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the a priori distribution of the form

Π(ν) = exp{−‖ν − νa‖2/2τ 2} . (8.28)

To infer the information about ν∗, we compute the posterior density function, Π(ν |sδ(ν∗)),

which is the probability distribution of ν on the given data sδ(ν∗). Bayes’s theorem states

that the posterior density function (PDF) is proportional to the product of the probability

density of the data and the a priori distribution

Π(ν | sδ(ν∗)) =
p(sδ(ν∗) | ν)Π(ν)∫

Dν p(sδ(ν∗) | ν)Π(ν)dν
. (8.29)

It thus follows that

Π(ν | sδ(ν∗)) =
exp{−‖F(ν)− sδ(ν∗)‖2/2λ2} exp{−‖ν − νa‖2/2τ 2}∫

Dν exp{−‖F(ν)− sδ(ν∗)‖2/2λ2} exp{−‖ν − νa‖2/2τ 2}dν
. (8.30)

We now maximize to obtain the maximum a posteriori (MAP) estimate for the unknown

parameter ν∗ as

νδ
MAP = arg max

νDν
Π(ν | sδ(ν∗)) . (8.31)

By noting that maximization of the PDF is equivalent to minimization of the negative

log of the PDE and that the denominator of (8.30) is constant, we arrive at

νδ
MAP = arg min

νDν
‖F(ν)− sδ(ν∗)‖2 +

λ2

τ 2
‖ν − νa‖2 . (8.32)

This expression reveals a connection between the Tikhonov regularization and Bayesian

approach; in particular, the regularization parameter α is related to the covariance scale

factor τ 2 by α = λ2/τ 2. See [46] for an excellent discussion of the relationship of the

Bayesian approach to Tikhonov regularization. Selection of the regularization param-

eter in Bayesian framework — more precisely, the covariance scale factor τ 2 — is also

a critical issue, as it substantially affects the quality of the MAP estimate. Bayesian

framework provides an automatic procedure to choose τ 2 based on the noise level and

priori distribution models. Specifically, by treating τ 2 as a random variable, an opti-

mal distribution of τ 2 can be obtained during iteration process [46, 144]. Nevertheless,
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the selection procedure often involving the Monte-Carlo simulation is computationally

extensive.

Generally, there are two solution methods in Bayesian estimation. The first one is

the Markov Chain Monte Carlo (MCMC) simulation to solve the maximization (8.31)

by exploring the posteriori density function Π(ν | sδ(ν∗)). The basic idea is to draw a

large set of samples {νδ
i }L

i=1 from Π(ν | sδ(ν∗)) based on an appropriate proposal distri-

bution q(ν|νi) that ensures the convergence of the irreducible Markov chain to the MAP

estimate νδ
MAP. The set {νδ

i }L
i=1 can then be used to construct the MAP estimate as

νδ
MAP = arg maxi∈{1,...,L} Π(νδ

i | sδ(ν∗)). The efficiency of an MCMC algorithm depends

on the proposal distribution; careful design of the proposal distribution can improve the

convergence speed. We refer to [97, 68] for details of this method. The second solu-

tion method is any optimization procedure to solve the minimization (8.32), which is

essentially the Tikhonov regularization in Bayesian framework.

While the expense of extensive computations (mostly due to the need of using Markov

Chain Monte Carlo for the expectation and the regularization parameters) is a major dis-

advantage of the Bayesian approach to inverse problems, there are few advantages of this

approach. First, the Bayesian approach provides a more robust and integrated analysis

of inverse problems by including the statistics of the measurement error, the maximum

likelihood of the unknown parameter, and the a priori distribution about the unknown

parameter into the statistical process. (Note however that, in the case of nonlinear in-

verse problems the single most likely solution νδ
MAP may not be a good estimate for the

true unknown parameter ν∗ [48].) Second, not only a point estimate of the unknown

parameter, but also summary statistics such as the probability distribution and variance

of the estimate which give a measure of uncertainty in the estimate can be obtained at

the same time.

8.3.3 Assess-Predict-Optimize Strategy

The idea of finding all possible inverse solutions consistent with the experimental data

is not new. In fact, it was proposed in [3, 139] as one of the three components of the

Assess-Predict-Optimize (APO) Strategy. The APO has been used in the design contexts
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for Assessment, Prediction, and Optimization of evolving systems (under design) under

changing environmental conditions and dynamic objectives.

In the Assess component, the experimental data is first given in the form of K intervals

Ik = [smin(σk), smax(σk)], k = 1, . . . , K , (8.33)

where smin(σk) and smax(σk) are determined by manipulating the original experimental

data set using statistical and error analysis. The set B of all possible parameter values ν

consistent with the experimental data is then defined as

B = {ν ∈ Dν | s(ν, σk) ∈ Ik, k = 1, . . . , K}. (8.34)

In the Predict component, by applying the reduced-basis output bounds a conservative

approximation to B, B̂, can be defined such that

B ⊂ B̂. (8.35)

Note that the definition of B̂ is identical that of the region R described in Section 8.4.1.

In the Optimize component, the goal is to find the optimal “design” parameter θ∗ that

minimizes a design objective f(θ) while strictly meeting a dynamic requirement, for

example, maxµ∈B̂ g(θ, µ) ≤ C. Mathematically, we look for

θ∗ = arg min
θ∈Dθ

f(θ) (8.36)

s.t. max
µ∈B̂

g(θ, µ) ≤ C ;

here g is a dynamic-constraint function, and constant C is an allowable limit. For rapid

and reliable solution of the optimization problem (8.36), we refer to the work of Oliveira

and Patera [103, 104] in which the authors developed the reduced-basis output bounds,

the derivative and Hessian of the output bounds and incorporated them into a trust-region

sequential quadratic programing implementation of interior-point methods to obtain very

fast global (at least local) minimizers.

Though, in fact, the technique has been intended for optimal parametric design, it
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can be efficiently used to solve the inverse problems with uncertainty: the method not

only addresses both experimental and numerical errors rigorously and effectively, but also

reduces the model complexity significantly by applying the reduced-basis approximation

and associated error bounds to the original model. However, no direct construction of

B̂ was proposed; instead, in the inner optimization problem, the feasible domain B̂ was

replaced with the parameter domain Dµ and associated set of relevant constraints. As a

consequence, the optimization procedure to solve the two-level optimization (8.36) was

very costly even with the incorporation of the reduced-basis output bounds. Our aim of

this chapter is to remedy this problem by providing an efficient construction of B̂ and

thus render the APO strategy more useful.

8.3.4 Remarks

We see that solution of inverse problems amounts to solving some kind of optimization

problems. Of course, optimization techniques for solution of optimization-based inverse

problems are rich. Global heuristic optimization strategies such as neural networks,

MCMC simulation, simulated annealing, and genetic algorithms have powerful ability

in finding globally optimal solutions for general nonconvex problems [79, 80, 151, 152,

58]. However, the problem with these methods is that they are heuristic by nature and

computationally expensive. Therefore, gradient methods like Newton’s method [8, 20, 19,

71], descent methods [60, 125], and current state-of-the-art interior-point method [24, 104]

have been employed to solve inverse problems in many cases. Unfortunately, the objective

is usually nonlinear and nonconvex, leading to the presence of multiple local minima which

can not easily be bypassed by local optimization strategies. Moreover, it is more much

difficult and expensive to obtain gradient F ′(ν) and Hessian F ′′(ν) of the forward operator

F , which could further restricts the use of gradient optimization procedures for inverse

problems. The choice of optimization methods for solving inverse problems depends on

many factors such as the convexity/nonconvexity of objective, the accessibility to the

gradient F ′(ν) and Hessian F ′′(ν), the particular problem involved, and the availability

of computational resources.

In summary, there are a wide variety of techniques for solving inverse problems. How-
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ever, in almost cases the inverse techniques are expensive due to the following reasons:

solution of the forward problem by classical numerical approaches is typically long; as-

sociated optimization problems are usually nonlinear and nonconvex; and most impor-

tantly, inverse problems are typically ill-posed. Ill-posedness is traditionally addressed

by regularization methods or Bayesian statistical approach. Though quite sophisticated,

regularization and Bayesian methods are quite expensive (often fail to achieve numerical

solutions in real-time) and often need additional information and thus lose algorithmic

generality (in many cases, do not well quantify uncertainty). Furthermore, in the presence

of uncertainty, solution of the inverse problem should never be unique at least in terms of

mathematical sense; there should be indefinite inverse solutions that are consistent with

model uncertainty. However, most inverse techniques provide only one inverse solution

among the universal; and hence they do not exhibit and characterize ill-posed structure

of the inverse problem.

8.4 A Robust Parameter Estimation Method

In this section, we aim to develop a robust inverse computational method for very fast

solution region of many inverse problems in PDEs. The essential components are: (i)

reduced-inverse model — application of the reduced-basis method to the forward problem

for effecting significant reduction in computational expense, and incorporation of very

fast output bounds into the inverse problem formulation for defining a possibility region

that contains (all) inverse solutions consistent with the available experimental data; (ii)

robust inverse algorithm — efficient construction of the possibility region by conducting

a binary chop at different angles to map out its boundary; (iii) ellipsoid of the possibility

region — introduction of the small ellipsoid containing the possibility region by solving

an appropriate convex quaratic minimization.

8.4.1 Reduced Inverse Problem Formulation

Identifying the very high dimensionality and complexity of the inverse problem formu-

lation (8.11) originated by the need for solving the forward problem, we first apply the

reduced-basis method to obtain the output approximation sN(ν, σ) and associated error
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bound ∆s
N(ν, σ). We then introduce s±N(ν, σ) ≡ sN(ν, σ) ± ∆s

N(ν, σ), and recall that —

thanks to our rigorous bounds — s(ν, σ) ∈ [s−N(ν, σ), s+
N(ν, σ)].1 We finally define

R ≡
{
ν ∈ Dν |

[
s−N(ν, σk), s

+
N(ν, σk)

]
∩ I(εexp, σk) 6= ∅, 1 ≤ k ≤ K

}
. (8.37)

The remarkable result is that

Proposition 14. The region R is a superset of P, i.e., P ⊂ R; and hence ν∗ ∈ R.

Proof. For any ν in P , we have F (ν, σk) ∈ I(εexp, σk); furthermore, we also have F (ν, σ) ∈

[s−N(ν, σ), s+
N(ν, σ)]. It thus follows that [s−N(ν, σk), s

+
N(ν, σk)]∩I(εexp, σk) 6= ∅, 1 ≤ k ≤ K;

and hence ν in R.

Let us now make a few important remarks: First, by introducing R we have not only

accommodated model uncertainty (within our model assumptions) but also numerical

error. Second, unlike the inverse problem formulation (8.11), the complexity of our

reduced inverse model (8.37) is independent of N — the dimension of the underlying

truth finite element approximation space. Third, R is almost indistinguishable from P

if the error bound ∆s
N(µ) is very small compared to the experimental error εexp — this

is typically observed given the rapid convergence of reduced-basis approximations and

the rigor and sharpness of error bounds as demonstrated in the earlier chapters. And

fourth, in the absence of measurement and numerical errors (εexp = ∆s
N(µ) = 0), the

possibility region for an “identifiable” inverse problem is just the unique parameter point

ν∗, i.e., R ≡ ν∗. In practice, it is unlikely to find such R due to the numerical error and

computational expense; however, we can numerically test and confirm this behavior. We

simply decrease the measurement error gradually and plot the possibility region for each

error level. We will use this as a regular test when discussing numerical results in the

next two chapters.

8.4.2 Construction of the Possibility Region

Of course, it is not possible to find all points in R, and hence the idea is to construct

the boundary of R. Towards this end, we first find one point νc in R which is called the

1We do note that in nonaffine and nonlinear case our a posteriori error estimators — though quite
sharp and efficient — are completely rigorous upper bounds only in certain restricted situations.
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initial center; next for a chosen direction dj from the initial center νc we conduct a binary

chop to find the associated boundary point, νj, of R; we repeat the second step for J

different directions to obtain a discrete set of J points RJ = {ν1, . . . , νJ} representing the

boundary of R. The algorithm is given below

1. Set RJ = and find νc ∈ R;
2. For j = 1 : J
3. Set νi = νc and choose a direction dj;
4. Find λ such that νo = νc + λdj /∈ R;
5. Repeat
6. Set νj = (νi + νo)/2;
7. If νj ∈ R Then νi = νj Else νo = νj;
8. Until {||νo − νi|| is sufficiently small.}
9. RJ = RJ ∪ {νj};
10. End For

Figure 8-1: Robust algorithm for constructing the solution region R.

In essence, we move from the center νc toward the boundary of R by subsequently

halving the distance between the inner point νi and the outer point νo. Note from (8.37)

that ν ∈ R if and only if ν resides in Dν and satisfies

sN(ν, σk) + ∆s
N(ν, σk) ≥ s(ν∗, σk)− εexp|s(ν∗, σk)|, k = 1, . . . , K

sN(ν, σk)−∆s
N(ν, σk) ≤ s(ν∗, σk) + εexp|s(ν∗, σk)|, k = 1, . . . , K .

To find the initial center, we propose to solve the following minimization

(ICP) minimizeν ‖sN(ν)− s(ν∗)‖

|sN(ν, σk)− s(ν∗, σk)| ≤ ∆s
N(ν, σk), k = 1, . . . , K

ν ∈ Dν ,

for the minimizer νmin, where sN(ν) = (sN(ν, σ1), . . . , sN(ν, σK)).2 We can demonstrate

Proposition 15. Minimizer of the ICP problem exists and resides in R.

2In practical contexts, since the exact data s(ν∗) is not accessible, we should replace s(ν∗) in the ICP
problem with sc(εexp) = (sc(εexp, σ1), . . . , sc(εexp, σK)), where sc(εexp, σk) is the midpoint of the interval
I(εexp, σk).
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Proof. It is clear that ν∗ satisfies the constraints; hence the feasible region is nonempty.

This shows the existence of νmin. We further note that if νmin ≡ ν∗ then νmin ∈ R

by Proposition 14; otherwise, we have s(ν∗, σk) ∈ [s−N(νmin, σk), s
+
N(νmin, σk)] by the

constraints on νmin and s(ν∗, σk) ∈ I(εexp, σk), and hence [s−N(νmin, σk), s
+
N(νmin, σk)] ∩

I(εexp, σk) 6= ∅, 1 ≤ k ≤ K. This proves νmin ∈ R.

Solution of the ICP problem is certainly not easy due to its constraints. In actual practice,

we solve the bound-constrained minimization problem instead

νb
min = arg min

ν∈Dν
‖sN(ν)− s(ν∗)‖ (8.38)

and see if νb
min is in R. Furthermore, it is not necessary to solve the problem for the

minimizer; rather than we make use of the search mechanism provided by optimization

procedures to obtain a necessary point νc ∈ R. The essential observation is that during

iterative optimization process, the current iterate ν̄b
min may satisfy ν̄b

min ∈ R at some early

stage even before the minimizer νb
min is actually found. Hence, instead of the minimizers

νmin or νb
min, νc is in fact any iterate ν̄b

min residing in R. If there is no such point found

by this “trickery”, we turn back to solve the ICP problem by the technique proposed in

[104].

There are a few issues facing by our construction algorithm. First, the solution region

R may not be completely constructed if it is not “star-shaped” with respect to νi.
3 To

remedy this problem, we may restart the algorithm with another or more initial centers

to map out the missing boundary of R. Second, R may be non-connected. We may need

to perform extensive search for multiple initial centers resided in different non-connected

subregions and construct the non-connected region R with these initial centers. Thirdly,

in high dimensional space, constructing R is numerically expensive and representing it

by a discrete set of points is geometrically difficult. A continuous region like the smallest

ellipsoid or more conservatively the smallest box containing R is needed. The advantages

are that the ellipsoid or box is geometrically visible in higher than three dimension and

is much less expensive to be formed.

3Note by definition that the region U is called star-shaped if there is a point p ∈ U such that line
segment pq is contained in U for all q ∈ U ; we then say U is star-shaped with respect to p.
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8.4.3 Bounding Ellipsoid of The Possibility Region

Now given a discrete set of J pointsRJ = {νj, . . . , νJ} representing the boundary ofR, the

smallest volume ellipsoid E(B, ν0) containing RJ is found from the following minimization

(MSE) minimizeB,ν0 − ln(det(B))

(νj − ν0)B(νj − ν0) ≤ 1, j = 1, . . . , J

B is SPD .

By factoring B = A2 and letting y = −Aν0, we can transform the MSE problem into a

simpler convex minimization

(CMP) minimizeA,y − ln(det(A))

‖Aνj + y‖ ≤ 1, j = 1, . . . , J

A is SPD .

This problem can be solved efficiently by methods of semi-definite programming. We

refer to [138] for a detailed description of the primal-dual path-following algorithm which

is used here for the solution of the CMP problem.

8.4.4 Bounding Box of the Possibility Region

The smallest ellipsoid E constructed on the finite set RJ is in some sense not conservative,

i.e., may not include entirely the continuous region R. To address this potential issue,

we introduce the smallest box bounding the solution region R as

B ≡
M∏

m=1

[
νmin

(m) , ν
max
(m)

]
=

M∏
m=1

[
νmin

(m) , ν
min
(m) + ∆ν(m)

]
, (8.39)

where for m = 1, . . . ,M , ∆ν(m) = νmax
(m) − νmin

(m) denotes the mth length of the bounding

box B and

νmin
(m) = min

ν∈R
ν(m), νmax

(m) = max
ν∈R

ν(m) ; (8.40)
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which can be expressed more explicitly as

(MIP) minimizeν ν(m)

sN(ν, σk) + ∆s
N(ν, σk) ≥ s(ν∗, σk)− εexp|s(ν∗, σk)|, k = 1, . . . , K

sN(ν, σk)−∆s
N(ν, σk) ≤ s(ν∗, σk) + εexp|s(ν∗, σk)|, k = 1, . . . , K

ν ∈ Dν ,

(MAP) maximizeν ν(m)

sN(ν, σk) + ∆s
N(ν, σk) ≥ s(ν∗, σk)− εexp|s(ν∗, σk)|, k = 1, . . . , K

sN(ν, σk)−∆s
N(ν, σk) ≤ s(ν∗, σk) + εexp|s(ν∗, σk)|, k = 1, . . . , K

ν ∈ Dν .

Solution method for these minimization and maximization problems have been discussed

in [104] in which the authors developed the gradient and Hessian of sN(ν, σ) and ∆s
N(ν, σ)

and incorporated them into a trust-region sequential quadratic programing implementa-

tion of interior-point methods to obtain global (at least local) optimizers. However,

the monotonicity of the objectives allows us to pursue a simple descent derivative-free

strategy for solution of these problems. The idea is to find and follow feasible descent

directions until there is no such direction found.4 The following algorithm guarantees (at

least local) optimal solutions for the mth MIP or MAP problem.

1. Starting with the center νi and a feasible descent direction d0 = (0, . . . , d0
(m), . . . , 0)

where d0
(m) = −1 for the mth MIP problem and d0

(m) = 1 for the mth MAP problem,

we conduct a binary chop to find the associated boundary point ν0
b .

2. If there is no feasible descent direction at ν0
b , then ν0

b solves the mth MIP/MAP

problem. Otherwise, we set k = 1.

3. Starting from the boundary point νk−1
b , we find a feasible descent direction dk and

conduct a binary chop along dk to find a new boundary point νk
b .

4. We set k = k + 1 and repeat step (3) until there is no feasible descent direction

4Note that a direction d is said to be feasible at a point ν ∈ R if there exists a small δ > 0 such
that ν + δd ∈ R and is said to be descent if the objective is decreased with respect to minimization or
increased with respect to maximization when traveling along that direction.
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found at the current boundary point νk
b . The point νk

b is thus the solution of the

mth MIP/MAP problem.

The algorithm correctly finds the global optima in the case of convex region R. Since

however R is usually nonconvex, multi-start strategy in which multiple-local optima are

sought from multiple initial centers should be effectively used to find the global optimizer.

We emphasize that any fast forward solver other than the reduced-basis output bound

methods can be used to construct the solution possibility region R, the bounding ellip-

soid E , or the bounding box B. However, the reliable fast evaluations provided by the

reduced-basis output bound methods permit us to conduct a much more extensive search

over parameter space. More importantly, R rigorously captures the uncertainty due

to both the numerical approximation and experimental measurement in our prediction

of the unknown parameter without a priori regularization hypotheses. Of course, our

search over possible parameters will never be truly exhaustive, and hence there may be

small undiscovered “pockets of possibility”; nevertheless, we have certainly reduced the

uncertainty relative to more conventional approaches. Needless to say, our procedure

can also only characterize the unknown parameters within our selected low-dimensional

parametrization; but, more general null hypotheses can be constructed to detect model

deviation.

8.5 Analyze-Asses-Act Approach

The inverse problem is to predict the true but “unknown” parameter ν∗ from experimental

measurements I(εexp, σk) (with experimental error εexp) corresponding to several values

of experimental control variable σk, 1 ≤ k ≤ K. In practice, more than just the inverse

problem, we often face the following questions: What values of experimental control

variable σ should be used to produce sensitive experimental data that are useful to the

prediction of all possible unknown parameters? Can we provide solutions of the inverse

problem effectively in real-time even with significant noise in experimental measurements

and how we deal with this uncertainty? How we use our inverse solutions meaningfully

and in particular how we act upon them to tackle engineering design and optimization
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problems? To address these questions in a reliable, robust, real-time fashion we employ

the Analyze-Assess-Act approach.

In particular, we extend our inverse computational method for the adaptive design

and robust optimization of critical components and systems. The essential innovations

are threefold. The first innovation addresses pre-experimental phase (the first question):

application of the reduced-basis approximation to analyze system characteristics to de-

termine which ranges of experimental control variable may produce sensitive data. The

second innovation addresses numerical efficiency and fidelity, as well as model uncertainty

(the second question): application of our robust parameter estimation method to identify

(all) system configurations consistent with the available experimental data. The third

innovation addresses real-time and uncertain decision problems (the third question): ef-

ficient and reliable minimization of mission objectives over the configuration possibility

region to provide an intermediate and fail-safe action.

Our discussion here is merely a proof of concept; many further improvements and

more efficient algorithmic implementation are possible and will leave for future work.

8.5.1 Analyze Stage

In the Analyze stage, we aim to address the first question. Poor choice of experimen-

tal control variable may lead to unacceptable (or even wrong) prediction, while careful

choice will substantially improve the result. To begin, we assume that we are given a

number of experimental control variable values ΠI = {σi, 1 ≤ i ≤ I}.5 Next we pick a

“nominal” point ν̄ and solve the forward problem to simulate the associated “numerical”

data I(εexp, σi) = [s(ν̄, σi) − εexp|s(ν̄, σi)|, s(ν̄, σi) + εexp|s(ν̄, σi)|], 1 ≤ i ≤ I. We then

apply the inverse algorithm to obtain a set of possibility regions Ri, 1 ≤ i ≤ I,

Ri =
{
ν ∈ Dν | sN(ν, σi) ⊂ I(εexp, σi)

}
, 1 ≤ i ≤ I . (8.41)

5In practice, the set ΠI can be obtained from many sources including knowledge of the problem,
pre-experimental analysis, modal analysis, and engineers’ experiences.
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We finally choose in ΠI a smallest subset, ΠK = {σk, 1 ≤ k ≤ K}, that satisfies an

“Intersection” Condition ⋂
{k | σk∈ΠK}

Rk =
I⋂

i=1

Ri , (8.42)

here the k-th element in ΠK may not necessarily be the k-th element in ΠI . It is important

to note that in constructing the above possibility regions, we require only the reduced-

basis approximation sN(µ), the associated offline is thus not computationally extensive.

Therefore, ΠI is allowed to be very large so that
⋂I

i=1Ri is suitably small.

We emphasize that since we use the synthetic numerical data associated with the

particular parameter ν̄ to perform the “pre-analysis”, our choice of experimental control

variable is thus particularly good to the prediction of unknown parameters near the

nominal point ν̄. More generally, our Analyze stage can accept synthetic numerical data

from many different nominal points so that the resulting set of experimental control

variable is useful to the prediction of not one but all possible unknown parameters.

8.5.2 Assess Stage

In our attempt to address the second question, we consider the Assess stage: Given ex-

perimental measurements, I(εexp, σk), 1 ≤ k ≤ K, we wish to determine a region P ∈ Dν

in which the true — but unknown — parameter, ν∗, must reside. Essentially, the Assess

stage is the inverse problem formulation (8.11) and can thus be addressed efficiently by

our inverse computational method in which a region R is constructed very inexpensively

such that ν∗ ∈ P ⊂ R.

8.5.3 Act Stage

We finally consider the Act stage as a way to address the last question. We presume here

that our objective is the “real-time” verification of a “safety” demand about whether

s(ν∗, σ̄) exceeds a specified value smax, where σ̄ is a specific value of the “design” variable.

(For simplicity, we use σ as both the design variable and the experimental control variable;

in actual practice, the design variable can be different from the experimental control

variable.) Of course, in practice, we will not be privy to ν∗. To address this difficulty we
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first define

s+
R = max

ν∈R
s+

N(ν, σ̄) , (8.43)

where s+
N(ν, σ̄) = sN(ν, σ̄) + ∆s

N(σ̄, ν); our corresponding “go/no-go” criterion is then

given by s+
R ≤ smax. It is readily observed that s+

R rigorously accommodates both exper-

imental and numerical uncertainty — s(ν∗, σ̄) ≤ s+
R — and that the associated go/no-go

discriminator is hence fail-safe.

Needless to say, depending on particular applications and specific targets, other opti-

mization statements (such as, in the APO strategy, bilevel optimization problems) over

the possibility region R (more precisely, the ellipsoid containing R) with additional con-

straints are also possible.
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Chapter 9

Nondestructive Evaluation

9.1 Introduction

Nondestructive evaluation has played a significant role in the structural health monitor-

ing of aeronautical, mechanical, and industrial systems (e.g., aging aircraft, oil and gas

pipelines, and nuclear power plant etc.). There are several theoretical, computational

and/or experimental techniques [49, 81, 83, 79, 82, 2, 136, 25] devoted to the assessment

and characterization of fatigue cracks and regions of material loss in manufactured com-

ponents. However, in almost all cases, the techniques are expensive due to the presence

of uncertainty and number of computational tasks required.

Our particular interest — or certainly the best way to motivate our approach — is in

“deployed” systems: components or processes that are in service, in operation, or in the

field. For example, we may be interested in assessment, evolution, and accommodation

of a crack in a critical component of an in-service jet engine. Typical computational

tasks include pre-experimental sensitivity analysis, robust parameter estimation (inverse

problems), and adaptive design (optimization problems): in the first task — for exam-

ple, selection of good exciting frequencies — we must determine appropriate values of

experimental control parameters used to obtain experimental data; in the second task —

for example, assessment of current crack length and location — we must deduce inputs

representing system characteristics based on outputs reflecting measured observables; in

the third task — for example, prescription of allowable load to meet safety demands

and economic/time constraints — we must deduce inputs representing control variables
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based on outputs reflecting current process objectives. These demanding activities must

support an action in the presence of continually evolving environmental and mission pa-

rameters. The computational requirements are thus formidable: the entire computation

must be real-time, since the action must be immediate; the entire computation must be

robust since the action must be safe and feasible.

In this chapter, we apply the robust real-time parameter estimation method developed

in the previous chapter for deployed components/systems arising in nondestructive test-

ing. In particular, the method is employed to permit rapid and reliable characterization

of crack and damage in a two-dimensional thin plate even in the presence of significant

experimental errors. Numerical results are also presented throughout to test the method

and confirm its advantages over traditional approaches.

9.2 Formulation of the Helmholtz-Elasticity

Inverse analysis based on the Helmholtz-elasticity PDE can gainfully serve in nonde-

structive evaluation, including crack characterization [64, 81, 83] and damage assessment

[79, 82]. In this section, we first introduce the governing equations of the linear Helmholtz-

Elasticity problem; we then reformulate the problem in terms of a reference (parameter-

independent) domain. In this and the following sections, our notation is that repeated

physical indices imply summation, and that, unless otherwise indicated, indices take on

the values 1 through d, where d is the dimensionality of the problem. Furthermore, we use

a tilde to indicate a general dependence on the parameter µ (e.g., Ω̃ ≡ Ω(µ), or ũ ≡ u(µ))

particularly when formulating the problem in an original (parameter-dependent) domain.

9.2.1 Governing Equations

We consider an elastic body Ω̃ ∈ Rd with (scaled) density unity subject to an oscillatory

force of frequency ω̃. We recall in Section 2.3 that under the assumption that the dis-

placement gradients are small compared to unity, the equations governing the dynamical

response of the linear elastic body are expressed as

∂σ̃ij

∂x̃j

+ b̃i + ω̃2ũi = 0 in Ω̃ , (9.1)
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σ̃ij = C̃ijklε̃kl , (9.2)

ε̃kl =
1

2

(
∂ũk

∂x̃l

+
∂ũl

∂x̃k

)
. (9.3)

For simplicity we consider isotropic materials, though our methods are in fact applicable

to general anisotropic and nonlinear materials, C̃ijkl(ũ; x̃;µ). The isotropic elasticity

tensor thus has the form

C̃ijkl = c̃1δijδkl + c̃2 (δikδjl + δilδjk) ; (9.4)

where c̃1 and c̃2 are the Lame elastic constants, related to Young’s modulus, Ẽ, and

Poisson’s ratio, ν̃, as follows

c̃1 =
Ẽν̃

(1 + ν̃)(1− 2ν̃)
, c̃2 =

Ẽ

2(1 + ν̃)
. (9.5)

Due to the symmetry of σ̃ij, ε̃kl and isotropy, the elasticity tensor satisfies

C̃ijkl = C̃jikl = C̃ijlk = C̃klij . (9.6)

It thus follows from (9.2), (9.3), and (9.6) that

σij = Cijkl
∂uk

∂xl

. (9.7)

Substituting (9.7) into (9.1) yields governing equations for the displacement ũ as

∂

∂x̃j

(
C̃ijkl

∂ũk

∂x̃l

)
+ b̃i + ω̃2ũi = 0 in Ω̃ . (9.8)

The displacement and traction boundary conditions are given by

ũi = 0 , on Γ̃D , (9.9)
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and

C̃ijkl
∂ũk

∂x̃l

ẽn
j = t̃i , on Γ̃N , (9.10)

where ẽn is the unit normal vector on the boundary Γ̃; Γ̃D and Γ̃N are (disjoint) portions of

the boundary; and t̃i are specified boundary stresses. Note that we consider homogeneous

Dirichlet conditions for the sake of simplicity.

9.2.2 Weak Formulation

To derive the weak form of the governing equations, we first introduce a function space

X̃ = {ṽ ∈
(
H1(Ω̃)

)d

| ṽi = 0 on Γ̃D} , (9.11)

and associated norm

||ṽ||X̃ =

(
d∑

i=1

||ṽi||2H1(Ω̃)

)1/2

. (9.12)

Next multiplying (9.8) by a test function ṽ ∈ X̃ and integrating by parts we obtain

∫
Ω̃

∂ṽi

∂x̃j

C̃ijkl
∂ũk

∂x̃l

− ω̃2

∫
Ω̃

ũiṽi −
∫

Γ̃

C̃ijkl
∂ũk

∂x̃l

ẽn
j ṽi −

∫
Ω̃

b̃iṽi = 0 . (9.13)

It thus follows from (9.10) and ṽ ∈ X̃ that the displacement field ũ ∈ X̃ satisfies

ã(ũ, ṽ) = f̃(ṽ) , ∀ ṽ ∈ X̃ , (9.14)

where

ã(w̃, ṽ) =

∫
Ω̃

∂ṽi

∂x̃j

C̃ijkl
∂w̃k

∂x̃l

− ω̃2w̃iṽi ; (9.15)

f̃(ṽ) =

∫
Ω̃

b̃iṽi +

∫
Γ̃N

ṽit̃i . (9.16)

Now we generalize the results to inhomogeneous bodies Ω̃ consisting of R̃ homogeneous

subdomains Ω̃r̃ such that

Ω̃ =
R̃⋃

r̃=1

Ω̃r̃ ; (9.17)
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here Ω̃ is the closure of Ω̃. By using similar arguments and taking into account additional

displacement and traction continuity conditions at the interfaces between the Ω̃r̃, 1 ≤

r̃ ≤ R̃, we arrive at the weak formluation (9.14) in which

ã(w̃, ṽ) =
R̃∑

r̃=1

∫
Ω̃r̃

∂ṽi

∂x̃j

C̃ r̃
ijkl

∂w̃k

∂x̃l

− ω̃2w̃iṽi , (9.18)

f̃(ṽ) =
R̃∑

r̃=1

∫
Ω̃r̃

b̃r̃i ṽi +

∫
Γ̃r̃

N

ṽit̃
r̃
i ; (9.19)

here C̃ r̃
ijkl is the elasticity tensor in Ω̃r̃, and Γ̃r̃

N is the section of Γ̃N in Ω̃r̃.

9.2.3 Reference Domain Formulation

We further partition the subdomains Ω̃r̃, r̃ = 1, . . . , R̃, into a total of R subdomains Ω̃r,

r = 1, . . . , R. We then map each subdomain Ω̃r to a pre-defined reference subdomain Ωr

via a one-to-one continuous (assumed to exist) transformation Gr(x̃;µ): for any x̃ ∈ Ω̃r,

its image x ∈ Ωr is given by

x = Gr(x̃;µ) . (9.20)

We further assume that the corresponding inverse mapping (Gr)−1 is also one-to-one and

continuous such that for any x ∈ Ωr, there is uniquely x̃ ∈ Ω̃r where

x̃ = (Gr)−1(x;µ) . (9.21)

A reference domain Ω can then be defined as Ω =
⋃R

r=1 Ωr; and hence for any x̃ ∈ Ω̃, its

image x ∈ Ω is given by

x = G(x̃;µ) . (9.22)

where G(x̃;µ) : Ω̃ → Ω, a compose of the Gr(x̃;µ), is also a one-to-one continuous

mapping. We can thus write for 1 ≤ r ≤ R,

∂

∂x̃i

=
∂xj

∂x̃i

∂

∂xj

=
∂Gr

j (x̃;µ)

∂x̃i

∂

∂xj

= Gr
ji(x;µ)

∂

∂xj

; (9.23)
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for x̃ ∈ Ω̃r, and

dΩ̃r = Jr(x;µ) dΩr, dΓ̃r = Jr
s (x;µ) dΓr . (9.24)

Here Gr
ji(x;µ) is obtained by substituting x̃ from (9.21) into ∂Gr

j (x̃;µ)/∂x̃i; J
r(x;µ) is

the Jacobian of the transformation Gr : Ω̃r → Ωr; and Jr
s (x;µ) is determined by

Jr
s (x;µ) =

∣∣∣∣∣∣
∂ỹr

∂yr
∂ỹr

∂zr

∂z̃r

∂yr
∂z̃r

∂zr

∣∣∣∣∣∣ , (9.25)

where (ỹr, z̃r) and (yr, zr) — functions of spatial coordinate x and the parameter µ —

are surface coordinates associated with Γ̃r and Γr, respectively. See Section 2.2 for the

definitions of the above quantities.

We now define a function space X in terms of the reference domain Ω as

X = {v ∈
(
H1(Ω)

)d | vi = 0 on ΓD} ; (9.26)

clearly, for any function w̃ ∈ X̃, there is a unique function w ∈ X such that w(x) =

w̃(G−1(x;µ)), and vice versa. It thus follows that the displacement field u ∈ X corre-

sponding to ũ ∈ X̃ satisfies

a(u, v) = f(v), ∀ v ∈ X , (9.27)

where

a(w, v) =
R∑

r=1

∫
Ωr

{
∂vi

∂xj

Cr
ijk`(x;µ)

∂wk

∂x`

− ω2wivi

}
Jr(x;µ), (9.28)

f(v) =
R∑

r=1

∫
Ωr

briviJ
r(x;µ) +

∫
Γr

N

vit
r
iJ

r
s (x;µ) ; (9.29)

here Cr
ijk`(x;µ), the elasticity tensor in the reference domain, is given by

Cr
ijk`(x;µ) = Gr

jj′(x;µ)C̃r
ijk`G

r
``′(x;µ) . (9.30)

Finally, we observe that when the geometric mappings Gr(x̃;µ), r = 1, . . . , R, are
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affine such that

Gr(x̃;µ) = Gr(µ)x̃+ gr(µ) ; (9.31)

our bilinear form a is affine in µ, since Gr and Jr depend only on µ, not on x.

9.3 The Inverse Crack Problem

9.3.1 Problem Description

We revisit the two-dimensional thin plate with a horizontal crack described thoroughly

in Sections 4.6.1 and 5.1.3. Recall that our input is µ ≡ (µ1, µ2, µ3) = (ω2, b, L), where

ω is the frequency of oscillatory uniform force applied at the right edge, b is the crack

location, and L is the crack length. The forward problem is that for any input parameter

µ, we evaluate the output s(µ) which is the (oscillatory) amplitude of the average vertical

displacement on the right edge of the plate. The inverse problem is to predict the true

but “unknown” crack parameter (b∗, L∗) ∈ Db,L from experimental data

I(εexp, ω
2
k) = [s(ω2

k, b
∗, L∗)−εexp|s(ω2

k, b
∗, L∗)|, s(ω2

k, b
∗, L∗)+εexp|s(ω2

k, b
∗, L∗)|], 1 ≤ k ≤ K .

Recall that εexp is experimental error, and K is number of measurements.

More broadly and practically, we shall focus our attention on the following questions:

What value of frequencies should be used to obtain sensitive experimental data that

yields good prediction of all possible unknown crack parameters in consideration? Can

we provide rapid predictions even in facing significant error in experimental measurements

and how we deal with this uncertainty? Can the cracked thin plate withstand an in-service

steady force such that the deflection does not exceed a specified value? To address these

questions in a real-time yet reliable and robust fashion, we employ the Analyze-Assess-Act

approach developed in the previous chapter.

9.3.2 Analyze Stage

We first perform modal analysis to select a set of candidate frequencies. In particular,

we display in Figure 9-1 natural frequencies in the first six modes as a function of b and
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L. We observe that the natural frequencies in the first three modes are invariant with b

and L, which indicates that frequencies in the range of these modes may not be a good

choice. We begin to see some variation from the fourth mode onward. We may hence

suggest ΠI = {2.8, 3.2, 4.8} which are a set of frequencies squared in the frequency region

between the third mode and the fifth mode.

We next consider a “nominal” point (b̄, L̄) = (1.0, 2.0) and present in Figure 9-2 possi-

bility regionsRi, 1 ≤ i ≤ I, associated with ΠI . We see that two subsets ΠK1 = {2.8, 4.8}

or ΠK2 = {3.2, 4.8} are equally good because their intersection regions
⋂
{k | ω2

k∈ΠK1
}Rk

and
⋂
{k | ω2

k∈ΠK2
}Rk are very small and almost coincide with

⋂3
i=1Ri which is the shaded

region. However, we will choose the second subset for illustrating the subsequent Assess

and Act stages.

As an additional note, we observe that no frequency alone can identify well the un-

known parameter (b∗, L∗); and that only good choice and good combination of frequencies

result in good prediction (for example, the subset ΠK3 = {2.8, 3.2} gives unacceptably

large possibility region, while its counterparts, ΠK1 and ΠK2 , produce reasonably small

regions).

9.3.3 Assess Stage

Having determined the appropriate frequencies, we employ the inverse algorithm intro-

duced in Chapter 8 to construct R defined by 8.37. Here we could develop two different

reduced-basis models for each of frequencies ω2
1 = 3.2 and ω2

1 = 4.8 over a smaller pa-

rameter domain Db,L ≡ [0.9, 1.1] × [0.15, 0.25] to achieve more economical online cost.

However, we shall reuse the reduced-basis model that was developed in Chapter 5 for

the problem with the parameter domain D ≡ (ω2 ∈ [3.2, 4.8]) × (b ∈ [0.9, 1.1]) × (L ∈

[0.15, 0.25]), because small error tolerance εtol can be satisfied with very small N (recall

that Nmax = 32). In Figure 9-3 we plot R and E for εexp = 0.5%, 1%, 5% for two test cases

(b∗, L∗) = (1.0, 0.2) and (b∗, L∗) = (1.05, 0.17). We furthermore tabulate in Table 9.1 the

half lengths of B relative to the exact (synthesis) value (b∗, L∗).

As expected, as εexp decreases, R shrinks towards the exact (synthetic) value, b∗, L∗.

We further observe that the half lengths of B relative to the exact value are about order
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Figure 9-1: Natural frequencies of the cracked thin plate as a function of b and L. The
vertical axis in the graphs is the natural frequency squared.
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Figure 9-3: Crack parameter regions R and E obtained with N = 24: (a) (b∗, L∗) =
(1.0, 0.2) and (b) (b∗, L∗) = (1.05, 0.17).

Test case (a) Test case (b)

εexp 0.5∆b/b∗ 0.5∆L/L∗ 0.5∆b/b∗ 0.5∆L/L∗

5.0% 3.70% 5.42% 3.95% 6.27%
1.0% 0.74% 1.09% 0.78% 1.26%
0.5% 0.37% 0.55% 0.39% 0.63%

Table 9.1: The half lengths of the bounding box B relative to b∗, L∗ for εexp =
5.0%, 1%, 0.5%.
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of εexp and increases linearly with εexp. The problem is thus linearly ill-posed for the

two test cases. The crucial capability here is reliable and fast evaluations that permit

us to conduct a much more extensive search over parameter space: for a given εexp, R

requires 2650 forward evaluations and is generated online in less than 38 seconds on a

Pentium 1.6 GHz, while B can be found less than 11 seconds for 740 forward evaluations.

More importantly, for any finite εexp, R rigorously captures both the model uncertainty and

numerical error in our assessment of the crack parameters without a priori regularization

hypotheses. Furthermore, since the relative output bound is much less than experimental

error of 0.5% (recall in Section 5.4 that for N = 24 our relative output bound is essentially

less than 5.0×10−5), the experimental error greatly dominates the numerical error in our

numerical results; we could hence even achieve faster parameter estimation response —

at little cost in precision — by decreasing N to balance the experimental and numerical

error. And R is almost indistinguishable from P ; however, the latter is about 350 times

more expensive than the former.

In addition, we present in Figure 9-4 E obtained with much coarser region R for the

same test cases. We observe that although RJ in Figure 9-4 is considerably fewer than

that in Figure 9-3, the ellipses in 9-4 are slightly smaller than those in Figure 9-3; hence,

they do not cover entirely the possibility region R and thus solution region P . Note

however that the number of forward evaluations and time to construct E now is dropped

by approximately a factor of 4 to 274 and 12.75 seconds, respectively.

We see that for this particular example that good results have been obtained for dif-

ferent unknown parameters even with only one nominal point used for the Analyze stage.

Nevertheless, our search over possible crack parameters will never be truly exhaustive, and

hence there may be small undiscovered “pockets of possibility” in Db,L; however, we have

certainly reduced the uncertainty relative to more conventional approaches. Needless to

say, the procedure can also only characterize cracks within our selected low-dimensional

parametrization; however, more general null hypotheses (for future work) can be con-

structed to detect model deviation.
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Figure 9-4: Crack parameter regions R and E obtained with N = 24: (a) (b∗, L∗) =
(1.0, 0.2) and (b) (b∗, L∗) = (1.05, 0.17).

9.3.4 Act Stage

Finally, we consider the Act stage. We presume here that the component must withstand

an in-service steady force (normalized to unity) such that the deflection s(0, b∗, L∗) in the

“next mission” does not exceed a specified value smax (= 0.95); of course, in practice, we

will not be privy to (b∗, L∗). To address this difficulty we first define

s+
R = max

(b,L)∈R
s+

N(0, b, L) , (9.32)

where s+
N(0, b, L) = sN(0, b, L) + ∆s

N(0, b, L); our corresponding “go/no-go” criterion is

then given by s+
R ≤ smax. It is readily observed that s+

R rigorously accommodates both

experimental (crack) and numerical uncertainty — s(0, b∗, L∗) ≤ s+
R — and that the

associated go/no-go discriminator is hence fail-safe.

Before presenting numerical results, we note that the Act stage is essentially steady

linear elasticity — ω2 = 0 — and the problem is thus coercive and relatively easy; we

shall thus omit the detail (indeed, for this coercive problem, we need only Nmax = 6 for

εtol,min = 10−4). To be clear in our notation, we shall rename N by N I in Assess stage

and by N II in Act stage. Our primary objective is to obtain s+
R defined by (9.32), which

is always an upper bound of s(0, b∗, L∗); and hence, even under significant uncertainty we
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can still provide real-time actions with some confidence. We tabulate in the Table 9.2 the

ratio, [s+
R − s(0, b∗, L∗)]/s(0, b∗, L∗), as a function of N I and εexp for (b∗, L∗) = (1.0, 0.2)

and N II = 6. We observe that as εexp tends to zero and N I increases, s+
R will tend to

s(0, b∗, L∗), and thus we may control the sub-optimality of our “Act” decision.

N I 5.0% 1.0% 0.5%

12 1.19× 10−3 4.44× 10−4 3.25× 10−4

18 4.20× 10−4 8.07× 10−5 4.16× 10−5

24 4.07× 10−4 7.40× 10−5 3.70× 10−5

Table 9.2: [s+
R − s(0, b∗, L∗)]/s(0, b∗, L∗) as a function of N I and εexp for (b∗, L∗) =

(1.0, 0.2).

In conclusion, we achieve very fast Analyze-Assess-Act calculation: ΠK may be ob-

tained from the set ΠI in less than 31 seconds, R may be generated online in less than

38 seconds, and s+
R may be computed online less than 0.93 seconds on a Pentium 1.6

GHz laptop. Hence, in real-time, we can Analyze the component to facilitate sensitive

experimental data, Assess the current state of the crack and subsequently Act to ensure

the safety (or optimality) of the next “sortie.”

9.4 Additional Application: Material Damage

In this section, we apply our Analyze-Assess-Act approach to the rapid and reliable char-

acterization of the location, size and type of damage in materials. The characteristics of

damage in structures play a key role in defining preemptive actions in order to improve

reliability and reduce life-cycle costs. It serves crucially in the structural health monitor-

ing of aeronautical, mechanical, civil, and electrical systems. Our particular example is

the prediction of the location, size and severity factor of damage in sandwich plates.

9.4.1 Problem Description

We revisit the two-dimensional thin plate with a rectangular damaged zone described

thoroughly in Section 5.5. Recall that our input is µ ≡ (ω2, b, L, δ) ∈ Dω ×Db,L,δ, where
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Db,L,δ ≡ [0.9, 1.1]×[0.5, 0.7]×[0.4, 0.6] ; and our output s(µ) is the (oscillatory) amplitude

of the average vertical displacement on the right edge of the plate. The forward problem

is that for any input parameter µ, we evaluate the output s(µ). The inverse problem is to

predict the true but “unknown” damage parameter (b∗, L∗, δ∗) ∈ Db,L,δ from experimental

measurements I(εexp, ω
2
k), 1 ≤ k ≤ K. with experimental error εexp. The primary goal

in this example is to demonstrate new capabilities (in dealing with inverse problems)

enabled by our robust parameter estimation method; and our focus is thus on the Assess

stage.

9.4.2 Numerical Results

We directly consider the Assess stage with the given set ΠK = {ω2
1 = 0.58, ω2

2 = 1.53, ω2
3 =

2.95} which is indeed obtained by pursuing the Analyze stage. We henceforth need three

different reduced-basis models for each of frequencies square: Model I for ω2
1 = 0.58,

Model II for ω2
2 = 1.53, and model III for ω2

3 = 2.95. Recall that these reduced-basis

models were already developed in Section 5.5 (see the section for details of the reduced-

basis formulation for these models and associated numerical results).

We present in Figure 9-5 the possibility regions for the location and length and damage

factor of the flaw — more precisely, ellipsoids that contain the possibility regions for the

location and length and damage factor — for experimental error of 2%, 1%, and 0.5% for

Case 1 (b∗ = 1.05, L∗ = 0.65, δ∗ = 0.55) and Case 2 (b∗ = 1.00, L∗ = 0.65, δ∗ = 0.46). We

observe that as εexp decreases, E shrinks towards the exact (synthetic) value (b∗, L∗, δ∗).

The bounding ellipsoid E constructed from 450 boundary points requires roughly 12150

forward evaluations and 336 seconds in online.

Test Case 1 Test Case 2

εexp 0.5∆b/b∗ 0.5∆L/L∗ 0.5∆δ/δ∗ 0.5∆b/b∗ 0.5∆L/L∗ 0.5∆δ/δ∗

2.0% 2.16% 5.80% 2.33% 2.37% 4.49% 2.54%
1.0% 1.07% 3.04% 1.41% 1.19% 2.44% 1.32%
0.5% 0.55% 1.39% 0.59% 0.60% 1.29% 0.71%

Table 9.3: The half lengths of the bounding box B relative to b∗, L∗, δ∗ as a function of
εexp for two test cases.
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(a) εexp = 2.0% (b) εexp = 2.0%

(c) εexp = 1.0% (d) εexp = 1.0%

(e) εexp = 0.5% (f) εexp = 0.5%

Figure 9-5: Ellipsoids containing possibility regions obtained with N = 40 for b∗ =
1.05, L∗ = 0.65, δ∗ = 0.55 in (a), (c), and (e) and for b∗ = 1.00, L∗ = 0.65, δ∗ = 0.46 in
(b), (d), and (f). Note the change in scale in the axes: E shrinks as the experimental
error decreases.
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We also show in Table 9.3 the half lengths of the box bounding the ellipsoid relative to

the exact value. Unlike E , B needs approximately 2980 forward evaluations. In both test

cases, the relative half lengths for b∗ and δ∗ are slightly larger than εexp while the relative

half length for L∗ is more than twice as εexp. Furthermore, the half-lengths of B appear

to increase linearly with εexp; hence, for these test cases, the problem is linearly ill-posed.

Note further that our relative output bound is much less than experimental error of 0.5%

(recall in Section 5.5 that for N = 40 the relative output bound is less than 2.56× 10−5

for model I, 1.71 × 10−4 for model II, 2.42 × 10−5 for model III). Therefore, the results

are largely indistinguishable from those based on the direct finite element calculation

of s(µ). However, the latter is much (280 times) more expensive than our method. In

short, B — obtained online in (less than) 78 seconds on a Pentium 1.6 GHz thanks to a

per forward evaluation of 0.0261 seconds – quantifies uncertainty in both the numerical

approximation and experimental data without a priori hypotheses; we can thus provide

appropriate real-time actions with some confidence.

Rather than a picture, another (or even better) way to see the possibility region is by

means of numbers. In particular, we tabulate in Table 9.4 the center, half-lengths, and

directions of the ellipsoids for different values of εexp. We see that the center is closer to

the exact unknown parameter (b∗, L∗, δ∗), the half-lengths get smaller, and the directions

change slightly as εexp decreases; indeed, these ellipsoids shrink toward the synthesis value

(1.00, 0.6, 0.5). The key point here is that we can see the possibility region and how it

changes very clearly even in higher than three-dimensional space where it is not possible

with picture.

Since our primary goal in this problem is the nondestructive assessment of material

damage in a sandwich, we shall not pursue the Act stage. However, we do identify that

there are two immediate situations that can be well tackled by our Act stage: (1) a

real-time query in which we verify whether the structure can withstand a steady static

force such that the deflection does not exceed a specific value (robust optimization); (2) a

design problem in which a shim is designed to have its weight minimized while effectively

strengthening the structure and maintaining the deflection at the desired level (adaptive

design) [139]. In parallel to Section 9.3.4, these subproblems can be formulated as ap-

224



εexp Center Half-lengths Directions

1.0006 0.0444 0.2826 0.3345 -0.8990
2.0% 0.5988 0.0202 0.9492 0.0373 0.3123

0.4966 0.0060 -0.1380 0.9417 0.3069
0.9998 0.0216 0.2817 0.3578 -0.8903

1.0% 0.5998 0.0098 0.9487 0.0353 0.3143
0.4999 0.0030 -0.1439 0.9331 0.3295
0.9999 0.0110 0.2790 0.3693 -0.8864

0.5% 0.5999 0.0048 0.9482 0.0400 0.3151
0.5000 0.0015 -0.1518 0.9284 0.3390

Table 9.4: The center, half-lengths, and directions of E for (b∗, L∗, δ∗) = (1.00, 0.60, 0.50)
as εexp decreases.

propriate optimization problems over the possibility region (or preferably the ellipsoid

containing it) constructed by the Assess stage.

9.5 Chapter Summary

In this chapter we have applied the “Analyze-Assess-Act” approach developed in the

previous chapter to the assessment of crack and damage in a two-dimensional thin plate.

Although characterized by simple physical model and geometry, these problems and re-

lated numerical results show strong advantages of our approach over traditional methods

in two key aspects. First, as regards the computational expense and uncertainty in the

model, our approach is more efficient and robust: (1) real-time and reliable evaluation

of functional outputs associated with the PDEs of continuum mechanics rather than

time-consuming calculation by use of classical numerical approaches; and (2) robust and

efficient identification of all (or almost all, in the probabilistic sense) inverse solutions

consistent with the available experimental data without a priori regularization hypothe-

ses rather than only one regularized inverse solution with a priori assumptions. Second,

as regards the practical application and implementation for real-life engineering prob-

lems, our approach is more practical and effective: (1) a systematic way rather than a

“trial and error” method to the selection of experimental control parameters; and (2)

use of many frequencies and single-sensor measurement rather than one frequency and

multiple-sensor measurements.

225



Chapter 10

Inverse Scattering Analysis

10.1 Introduction

Inverse scattering problem has attracted enormous interest due to its wide range of prac-

tical applications in engineering and science such as medicine, geophysics, defense science.

In particular, inverse scattering problems arise in medical imaging, detection of mines,

underwater surveillance, and target acquisition. In all of the abovementioned areas the

common goal is to recover characteristics (like geometric measures, material properties,

boundary conditions, etc.) of an interrogated object from experimental data (far-field

pattern measured at distributed sensor locations) obtained by sending incident waves at

the object.

The wide range of applications has stimulated the development of different solution

methods for inverse scattering problems. However, the task of solving inverse scattering

problems is admittedly difficult for two reasons. First, due to the incomplete and noisy

data the inverse scattering problems are typically ill-posed and numerically ill-conditioned

— the existence, uniqueness, and stability of the solution are not simultaneously ensured.

Uniqueness theorems [70, 61, 69, 30], which are crucial for both the theoretical study and

the implementation of numerical algorithms, have been long investigated often under

the assumption of complete and accurate data. Restoring stability is not less important

especially in practical contexts where error in measurements is intrinsically present. In

order to restore stability some kind of a priori information is needed and regularization

methods [31, 30, 62, 119, 44] making use of the available a priori information are often
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used. Though quite sophisticated, iterative regularization methods often need additional

information and thus lose algorithmic generality. Second, since the inverse scattering

problems are inherently nonlinear, most methods are computationally expensive and

often fail to have the numerical solution in real-time.

In this chapter we apply our robust inverse computational method developed in Chap-

ter 8 for rapid and reliable solution of inverse scattering problems. The key and unique

components of our method are reduced-basis approximations and associated a posteri-

ori error estimation procedures. As we shall see, the inverse scattering problems are

generally nonaffine and noncompliant. We thus need to develop a coefficient-function

approximation and integrate it into a “dual-primal” formulation as described thoroughly

in Section 6.6. The coefficient-function approximation and dual-primal consideration si-

multaneously ensure online N independence (efficiency), and more rapidly convergent

reduced-basis approximations and better error bounds (accuracy). These advantages are

further leveraged within the inverse scattering context: we can, in fact, achieve robust

but efficient construction of a bounded possibility region that captures all (or almost all,

in the probabilistic sense) model parametrizations consistent with the available experi-

mental data. Numerical results for a simple two-dimensional inverse scattering problem

are also presented to demonstrate these capabilities.

10.2 Formulation of the Inverse Scattering Problems

In this section we first introduce the governing equations of the inverse scattering prob-

lem. We then reformulate the problem in terms of a reference (parameter-independent)

domain. In this and the following sections, our notation is that repeated physical in-

dices imply summation, and that, unless otherwise indicated, indices take on the values

1 through n, where n is the dimensionality of the problem. Furthermore, we use a tilde

to indicate a general dependence on the parameter µ (e.g., Ω̃ ≡ Ω(µ), or ũ ≡ u(µ)) par-

ticularly when formulating the problem in an original (parameter-dependent) domain.
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10.2.1 Governing Equations

We consider the scattering of a time harmonic acoustic incident wave ũi of frequency ω

by a bounded object D̃ ∈ Rn (n = 2, 3) having constant density ρD and constant sound

speed cD. We assume that the object D̃ is situated in a homogeneous isotropic medium

with constant density ρ and constant sound speed c. The corresponding wave numbers

are given by kD = ω/cD and k = ω/c̃. Let ũ be the scattered wave, then the total field

ũt = ũi + ũ and the transmitted wave ṽ satisfy the acoustic transmission problem

∆ũt + k2ũt = 0 in Rn\D̃, (10.1a)

∆ṽ + k2
Dṽ = 0 in D̃, (10.1b)

ũt = ṽ on ∂D̃, (10.1c)

1

ρ̃

∂ũt

∂ν̃
=

1

ρ̃D

∂ṽ

∂ν̃
on ∂D̃, (10.1d)

lim
r̃→∞

r̃(n−1)/2

(
∂ũ

∂r̃
− ikũ

)
= 0, r̃ = |x̃| ; (10.1e)

where ν̃ denotes the unit outward normal to the boundary and the incident field ũi is a

plane wave moving in direction d̃, i.e.,

ũi(x̃) = eikx̃·d̃, |d̃| = 1 . (10.2)

Note that the continuity of the waves and the normal velocity across ∂D̃ leads to the

transmission conditions (10.1c) and (10.1d), and that the scattered field satisfies the Som-

merfeld radiation condition (10.1e). Mathematically, the Sommerfeld condition ensures

the well-posedness of the problem (10.1); physically it characterizes out-going waves [30].

We shall consider a special case of the above transmission problem. In particular, if the

object is sound-hard, i.e., ρD/ρ→∞, we are led to the exterior Neumann problem [29]

∆ũ+ k2ũ = 0 in Rn\D̃, (10.3a)

∂

∂ν̃

(
ũ+ ũi

)
= 0 on ∂D̃, (10.3b)

lim
r̃→∞

r̃(n−1)/2

(
∂ũ

∂r̃
− ikũ

)
= 0, r̃ = |x̃| . (10.3c)
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Equation (10.3c) implies that the scattered field behaves asymptotically like an outgoing

spherical wave

ũ(x̃) =
eikr̃

r̃(n−1)/2
ũ∞(D̃, d̃s, d̃, k) +O

(
1

r̃(n+1)/2

)
(10.4)

as |x̃| → ∞, where d̃s = x̃/|x̃|. The function ũ∞ defined on the unit sphere S̃ ⊂ Rn is

known as the scattering amplitude or the far-field pattern of the scattered wave. The

Green representation theorem and the asymptotic behavior of the fundamental solution

ensures a representation of the far-field pattern in the form

ũ∞(D̃, d̃s, d̃, k) = β̃n

∫
∂D̃

ũ(x̃)
∂e−ikd̃s·x̃

∂ν̃
− ∂ũ(x̃)

∂ν̃
e−ikd̃s·x̃ , (10.5)

with

β̃n =


i
4

√
2

πk
e−iπ/4 n = 2

1
4π

n = 3.

(10.6)

The proof of (10.4) and (10.5) can be found in Appendix A.

We can now be more explicit what we mean by the acoustic inverse scattering problem.

Given specific geometry D̃ of the object and the incident wave ũi, the forward problem

is to find the scattered wave ũ and in particular the far field pattern ũ∞. In contrast,

the inverse problem is to determine the unknown geometry D̃∗ from the knowledge of the

far field data I(εexp, d̃
s, d̃, k) measured on the unit sphere S̃ := {x̃ : |x̃| = 1} for one or

several directions d̃ and wave numbers k with measurement error εexp.

10.2.2 Radiation Boundary Conditions

Since the problem is posed over indefinite domain, before attempting to numerically

solve the problem, it is required to replace the indefinite domain with an artificial closed

boundary Γ̃ enclosing the object. A boundary condition is then introduced on Γ̃ in

such a way that the resulting boundary-value problem is well-posed and its solution

approximates well the restriction of ũ to the bounded domain Ω̃ limited by ∂D̃ and Γ̃.

From numerical point of view, there are two classes of such a boundary condition that can

be used: (1) exact conditions give exactly the restriction of ũ if no further approximation

is made; (2) approximate (also called radiation or absorbing) boundary conditions only
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yield an approximation of this restriction. Because exact conditions can only be derived

for certain special cases, several approximate conditions have been developed (See [5]

for generalized results on various radiation conditions including the most accurate one,

namely, the second-order Bayliss-Turkel radiation condition).

For simplicity, we consider simple first-order complex-valued Robin condition; higher

order approximation of the Sommerfeld radiation condition requires more sophisticated

implementation and will be considered in future research. As a result, we have the direct

acoustic scattering problem (10.3) being replaced with

∆ũ+ k2ũ = 0 in Ω̃, (10.7a)

∂ũ

∂ν̃
= −∂ũ

i

∂ν̃
on ∂D̃, (10.7b)

∂ũ

∂ν̃
− ikũ+ H̃ũ = 0, on Γ̃ ; (10.7c)

where H̃ is the mean curvature of Γ̃ (see Section 2.2 for the definition of mean curvature).

10.2.3 Weak Formulation

To derive the weak form of the problem (10.7), we first introduce a complex function

space

X̃ = {ṽ = ṽR + iṽI | ṽR ∈ H1(Ω̃), ṽI ∈ H1(Ω̃)} , (10.8)

and associated inner product

(w̃, ṽ)X̃ =

∫
Ω̃

∇w̃ · ∇¯̃v + w̃¯̃v . (10.9)

Here superscripts R and I denote the real and imaginary part, respectively; and ¯̃v denotes

the complex conjugate of ṽ, and |ṽ| the modulus of ṽ. Our weak formulation of the direct

scattering problem is then: find ũ ∈ X̃ such that

ã(ũ, ṽ) = f̃(ṽ), ∀ṽ ∈ X̃; (10.10)
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here the forms are given by

ã(w̃, ṽ) =

∫
Ω̃

∇w̃.∇¯̃v − k2w̃¯̃v −
∫

Γ̃

(
ik − H̃

)
w̃¯̃v , (10.11)

f̃(ṽ) =

∫
∂D̃

−ikd̃ · ν̃eikx̃·d̃ ¯̃v . (10.12)

Finally, it follows from (10.2), (10.7b), and (10.5) that the far field pattern is given by

ũ∞(D̃, d̃s, d̃, k) = βn

∫
∂D̃

−ũ(x̃)ikd̃s · ν̃e−ikd̃s·x̃ + ikd̃ · ν̃eikx̃·d̃e−ikd̃s·x̃ , (10.13)

10.2.4 Reference Domain Formulation

We now define a reference domain Ω. We then map Ω̃ → Ω by a one-to-one continuous

transformation G(x̃;µ): for any x̃ ∈ Ω̃, its image x ∈ Ω is given by

x = G(x̃;µ) . (10.14)

We further assume that the corresponding inverse mapping G−1 is also one-to-one and

continuous such that for any x ∈ Ω, there is uniquely x̃ ∈ Ω̃, where

x̃ = G−1(x;µ) . (10.15)

We can thus write

∂

∂x̃i

=
∂xj

∂x̃i

∂

∂xj

=
∂Gj(x̃;µ)

∂x̃i

∂

∂xj

= Gji(x;µ)
∂

∂xj

, (10.16)

dΩ̃ = J(x;µ) dΩ , (10.17)

d∂D̃ = Jd(x;µ) d∂D , (10.18)

dΓ̃ = Js(x;µ) dΓ . (10.19)
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Here Gji(x;µ) is obtained by substituting x̃ from (10.15) into ∂Gj(x̃;µ)/∂x̃i; J(x;µ) is

the Jacobian of the transformation; Jd(x;µ) is given by

Jd(x;µ) =

∣∣∣∣∣∣
∂ỹ
∂y

∂ỹ
∂z

∂z̃
∂y

∂z̃
∂z

∣∣∣∣∣∣ , (10.20)

where (ỹ, z̃) and (y, z) are surface coordinates associated with ∂D̃ and ∂D, respectively;

and Js(x;µ) is similarly determined. See Section 2.2 for the definitions and formulas of

these quantities.

Next we define the function space X in terms of the reference domain Ω as

X = {vR + ivI | vR ∈ H1(Ω), vI ∈ H1(Ω)} , (10.21)

in terms of which we introduce an appropriate bound conditioner

(w, v)X =

∫
Ω

∇w · ∇v̄ + wv̄ . (10.22)

It then follows that the scattered wave u ∈ X corresponding to ũ ∈ X̃ satisfies

a(u, v;x;µ) = f(v;x;µ), ∀ v ∈ X ; (10.23)

where

a(w, v;x;µ) =

∫
Ω

(
Gji(x;µ)

∂w

∂xj

·Gki(x;µ)
∂v̄

∂xk

− k2wv̄

)
J(x;µ)

−
∫

Γ

(
ik − H̃(x;µ)

)
wv̄Js(x;µ) , (10.24)

f(v;x;µ) = −
∫

∂D

v̄ikd̃ · ν̃eikx̃·d̃Jd(x;µ) . (10.25)

The far-field pattern is then calculated as

u∞(µ) = `(u(µ);x;µ) + `o(x;µ) ; (10.26)
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where ` takes ū(µ) ∈ X as its argument, but `o does not as shown below

`(v;x;µ) = −βn

∫
∂D

vikd̃s · ν̃e−ikd̃s·x̃Jd(x;µ), (10.27)

`o(x;µ) = βn

∫
∂D

ikd̃ · ν̃eikx̃·d̃e−ikd̃s·x̃Jd(x;µ) . (10.28)

Finally, we note that when the geometric mapping G(x̃;µ) is affine such that

G(x̃;µ) = G(µ)x̃+ g(µ) , (10.29)

and Js(x;µ) and H̃(x;µ) are all together affine, our bilinear form a is an affine operator.

10.2.5 Problems of Current Consideration

In this thesis, we shall only consider the inverse scattering problems in which D̃ is a

simple geometry such as an ellipsoid (in future work, we shall apply our robust parameter

estimation method to more complex curved geometries); and hence a is affine for an

appropriate consideration of the truncated domain Ω̃. In this case, the direct scattering

problem can be restated more generally as: given µ ≡ (D̃, d̃s, d̃, k) ∈ D, find u∞(µ) ≡

s(µ) + `o(x;µ) with

s(µ) = `(u(µ);h(x;µ)) , (10.30)

where u(µ) satisfies

a(u, v;µ) = f(v; g(x;µ)), ∀ v ∈ X . (10.31)

Here f(v; g(x;µ)) and `(v;h(x;µ)) are given by

f(v; g(x;µ)) ≡ −
∫

∂D

vg(x;µ), `(v;h(x;µ)) ≡ −βn

∫
∂D

vh(x;µ) , (10.32)

where g(x;µ) and h(x;µ) are nonaffine functions of coordinate x and parameter µ and

can be found by referring to (10.25) and (10.27)

g(x;µ) = ikd̃ · ν̃eikx̃·d̃Jd(x;µ) , h(x;µ) = ikd̃s · ν̃e−ikd̃s·x̃Jd(x;µ) . (10.33)
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Moreover, a is expressed as an affine sum of the form

a(w, v;µ) =

Q∑
q=1

Θq(µ)aq(w, v) , (10.34)

for Θq : D → R and aq : X ×X → R, 1 ≤ q ≤ Q.

We further assume that a satisfies a continuity and inf-sup condition

0 < β(µ) ≡ inf
w∈X

sup
v∈X

a(w, v;µ)

‖w‖X‖v‖X

, (10.35)

sup
w∈X

sup
v∈X

a(w, v;µ)

‖w‖X‖v‖X

≡ γ(µ) <∞ . (10.36)

Here β(µ) is the Babuška “inf-sup” constant and γ(µ) is the standard continuity constant.

Because f (respectively, `) depends on a general nonaffine function g (respectively, h)

of µ and x, and ` 6= f , such problem is nonaffine and noncompliant. Fortunately, effective

and efficient reduced-basis formulation has been developed in Section 6.6 to treat this

class of problems. In particular, by constructing the coefficient-function approximation

and incorporating it into the primal-dual reduced-basis formulation, we can recover online

independence and fast output convergence and better output effectivity.

10.3 A Simple Inverse Scattering Problem

10.3.1 Problem Description

We consider the scattering of a time harmonic acoustic incident wave ũi(x̃) = eikx̃·d̃

moving in direction d̃ by an infinite cylinder with bounded cross section D̃, where k is

the wave number of the incident plane wave ũi. As a simple demonstration we consider

an two-dimensional ellipse of unknown major semiaxis a (half length of the major axis),

unknown minor semiaxis b (half length of the minor axis), and unknown orientation α

for D̃. The input µ thus consists of k, d̃, d̃s, a, b, and α in which (a, b, α) ∈ Da,b,α ≡

×[0.5, 1.5]×[0.5, 1.5]×[0, π] are characteristic-system parameters and (k, d̃, d̃s) ∈ Dk,d̃,d̃s ≡

[π/8, π/8]×[0, 2π]×[0, 2π] are experimental control parameters; and the output of interest
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is the far-field pattern ũ∞. More specifically, we define µ ≡ (µ1, µ2, µ3, µ4, µ5, µ6) ∈

D ⊂ R6 as: µ1 = ka, µ2 = b/a, µ3 = α, µ4 is radian angle of incident wave (i.e.,

d̃ = (cosµ4, sinµ4)), µ5 is radian angle of the far-field pattern (i.e., d̃s = (cosµ5, sinµ5)),

and µ6 = k; note that the first five parameters are nondimensional.

In addition, the truncated domain Ω̃ is bounded by the elliptical boundary ∂D̃ and

an artificial boundary Γ̃. Here Γ̃ is an oblique rectangle of size 10a × 10b which has the

same orientation as the ellipse and is scaled with the major and minor semiaxes as shown

in Figure 10-1(a). We define a reference domain corresponding to the geometry bounded

by a unit circle ∂D and a square of size 10×10 as shown in Figure 10-1(b). We then map

Ω̃(a, b, α) → Ω via a continuous piecewise-affine transformation. The geometric mapping

is simply rotation and scaling as given below

G(µ) =

 cosα/a sinα/a

− sinα/b cosα/b

 , g(µ) =

 0

0

 . (10.37)

Furthermore, we have

J(x;µ) = detG−1(µ), Js(x;µ) = |G−1(µ)τ |, Jd(x;µ) = |G−1(µ)τ o| ; (10.38)

here τ = (τ1, τ2) and τ o = (τ o
1 , τ

o
2 ) are the unit vectors tangent to the boundary Γ and

∂D, respectively. Note further that the mean curvature H̃(x̃;µ) is zero for the chosen

boundary Γ̃ except for the corner points. We can thus ignore this term in our formulation

of the direct scattering problem.

The problem can now be recast precisely in the desired abstract form (10.31), in

which Ω, X defined in (10.21), and (w; v)X defined in (10.22) are independent of the

parameter µ; and our affine assumption (10.34) applies for Q = 5. We summarize the

Θq(µ), aq(w, v), 1 ≤ q ≤ Q, in Table 10.1.

To derive the explicit form for g(x;µ), h(x;µ), and `o(x;µ), we first need the unit

normal vector to the elliptic boundary ∂D̃ in the reference coordinate

ν̃1(x;µ) = (bx1 cosα− ax2 sinα) /
√
b2x2

1 + a2x2
2 , (10.39)
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(a) (b)

Figure 10-1: Two-dimensional scattering problem: (a) original (parameter-dependent)
domain and (b) reference domain.

q Θq(µ) aq(w, v)

1 µ2

∫
Ω

∂w
∂x1

∂v̄
∂x1

2 1
µ2

∫
Ω

∂w
∂x2

∂v̄
∂x2

3 −µ2
1µ2

∫
Ω
wv̄

4 −iµ1

∫
Γ1
wv̄ +

∫
Γ3
wv̄

5 −iµ1µ2

∫
Γ2
wv̄ +

∫
Γ4
wv̄

Table 10.1: Parametric functions Θq(µ) and parameter-independent bilinear forms
aq(w, v) for the two-dimensional inverse scattering problem.
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ν̃2(x;µ) = (bx1 sinα+ ax2 cosα) /
√
b2x2

1 + a2x2
2 . (10.40)

Since ∂D is the unit circle, from (10.38) we have

Jd(x;µ) =
√
b2x2

1 + a2x2
2 . (10.41)

It finally follows from (10.28), (10.33), and (10.37)-(10.41) that

g(x;µ) = iµ1 ((µ2x1 cosµ3 − x2 sinµ3) cosµ4 + (µ2x1 sinµ3 + x2 cosµ3) sinµ4)

eiµ1((x1 cos µ3−µ2x2 sin µ3) cos µ4+(x1 sin µ3+µ2x2 cos µ3) sin µ4) , (10.42)

h(x;µ) = iµ1 ((µ2x1 cosµ3 − x2 sinµ3) cosµ5 + (µ2x1 sinµ3 + x2 cosµ3) sinµ5)

e−iµ1((x1 cos µ3−µ2x2 sin µ3) cos µ5+(x1 sin µ3+µ2x2 cos µ3) sin µ5) , (10.43)

`o(x;µ) = βn

∫
∂D

iµ1 ((µ2x1 cosµ3 − x2 sinµ3) cosµ4 + (µ2x1 sinµ3 + x2 cosµ3) sinµ4)

eiµ1((x1 cos µ3−µ2x2 sin µ3) cos µ4+(x1 sin µ3+µ2x2 cos µ3) sin µ4)

e−iµ1((x1 cos µ3−µ2x2 sin µ3) cos µ5+(x1 sin µ3+µ2x2 cos µ3) sin µ5) . (10.44)

10.3.2 Numerical results

We first show in Figure (10-2) a few FEM solutions for slightly different parameters. We

observe that changing only one component of the parameter results in a dramatical change

in both solution structure and magnitude. This will create approximation difficulty in

the reduced-basis method, and thus it may require N large to achieve sufficient accuracy.

Recall that the reduced-basis approximation and associated a posteriori error estimators

for the direct scattering problem were developed in Section 6.6; also see the section for

related numerical results including the convergence and effectivities, rigorousness of our

error bounds, as well as computational savings relative to the finite element method.

We can now turn to the inverse problem that illustrates the new capabilities enabled

by rapid certified input-output evaluation. In particular, given limited aperture far-field

data in the form of intervals I(εexp, k, d̃, d̃
s) obtained at several angles d̃s for several

directions d̃ and fixed wave number k, we wish to determine a region R ∈ Da,b,α in which

the true but unknown parameter, (a∗, b∗, α∗), must reside; recall that εexp is experimental
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error. In our numerical experiments, we set the wave number fixed to k = π/8 and use

three different directions {0, π/4, π/2} for the incident wave. For each direction of the

incident wave, there are I angles, {(i− 1)π/2, 1 ≤ i ≤ I}, at which the far-field data are

obtained; hence, the number of measurements is K = 3 × I. We tabulate in Table 10.2

the half lengths of the bounding box B relative to the exact value as a function of the

experimental error and the number of measurements for a∗ = 1.35, b∗ = 1.15, α∗ = π/2.

εexp K = 3 K = 6 K = 9 K = 12

5.0 2.59 2.50 2.44 2.44
0.5∆a/a∗ 2.0 1.04 1.01 0.98 0.98

1.0 0.52 0.50 0.49 0.49
5.0 18.70 2.44 2.40 2.40

0.5∆b/b∗ 2.0 9.72 0.97 0.97 0.96
1.0 3.83 0.49 0.49 0.48
5.0 31.57 4.18 2.27 2.24

0.5∆α/α∗ 2.0 16.94 1.82 0.82 0.82
1.0 6.34 0.89 0.40 0.40

Table 10.2: The half lengths of B relative to a∗ = 1.35, b∗ = 1.15, α∗ = π/2 vary with εexp

and K. Note that the results shown in the table are percentage values.

We observe that as εexp decreases and K increases, B shrinks toward (a∗, b∗, α∗) and

that the number of measurements have strongly different impact on the identification of

the unknown parameters. For K = 3, the relative half-length of a∗ is smaller than the

experimental error, but those of b∗ and α∗ are significantly larger than the experimental

error. As K increases to 6, B shrinks very rapidly in the order of O(10) along the b-axis

and α-axis. Further increasing K to 9 leads to the improvement for only α∗. Meanwhile,

the bounding boxes for K = 9 and K = 12 are almost the same; this implies that the

experimental error dominates at K = 9 at which B no longer shrinks with K increasing.

Hence, for this particular instantiation, we should use K = 9 at which the relative half-

lengths are less than one-half of the experimental error.

We perform another test for the case of a∗ = 1.2, b∗ = 0.8, α∗ = 3π/4 and show the

results in Table 10.3. We see again that B begins to saturate at K = 9. The implication

is that the ill-posedness of the problem also depends on the number of measurements. In

both cases, the relative half-lengths are increasing linearly with the experimental error for
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sufficiently largeK (K ≥ 6); the problem is thus linearly ill-posed in both test cases. Most

importantly, these results not only quantify robustly uncertainty in both the numerical

approximation and measurements, but also are obtained within 9 × K seconds on a

Pentium 1.6 GHz laptop thanks to a per forward evaluation time of only 0.008 seconds

and yield significantly computational savings for our method compared to conventional

approaches.

εexp K = 3 K = 6 K = 9 K = 12

5.0 7.18 2.26 2.30 2.30
0.5∆a/a∗ 2.0 3.28 0.90 0.92 0.92

1.0 2.15 0.45 0.46 0.46
5.0 17.28 6.46 4.51 4.51

0.5∆b/b∗ 2.0 11.09 2.58 1.75 1.75
1.0 6.24 1.29 0.88 0.88
5.0 11.04 2.69 2.42 2.20

0.5∆α/α∗ 2.0 6.48 1.08 0.96 0.88
1.0 3.74 0.54 0.48 0.44

Table 10.3: The half lengths of B relative to a∗ = 1.2, b∗ = 0.8, α∗ = 3π/4 vary with εexp

and K. Note that the results shown in the table are percentage values.

In addition, we plot E in Figure 10-3 and tabulate B in Table 10.4 for a∗ = 0.85, b∗ =

0.65, α∗ = π/4 at values of εexp = 5%, 2%, 1% and K = 6, 9; note that E (constructed

from 450 points) and B require roughly 4150 × K and 1060 × K forward evaluations,

respectively. We see that E is not only more expensive, but also less conservative than B

since E does not include entirelyR. It should also be noted that these results are obtained

with N = 40 for which the largest relative output bounds are about than 1.0% (see

Table 6.6). Therefore, the results here are largely indistinguishable from those obtained

by using the finite element method, but yield a factor of O(100) in computational savings

for our method. Of course, our search over all possible parameters will never be truly

exhaustive, and hence there may be undiscovered “pockets of possibility” in Da,b,α if R is

non-connected. However, we have certainly been able to characterize ill-posed structure

of the inverse scattering problem and reduce the uncertainty to a certain degree. (All

uncertainty is eliminated only in the limit of exhaustive search of the parameter space to

confirm B.)
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(a) Real part (b) Imaginary part

(c) Real part (d) Imaginary part

(e) Real part (f) Imaginary part

Figure 10-2: FEM solutions for ka = π/8, b/a = 1, α = 0, and d̃ = (1, 0) in (a) and
(b); for ka = π/8, b/a = 1/2, α = 0, and d̃ = (1, 0) in (c) and (d); and for ka = π/8,
b/a = 1/2, α = 0, and d̃ = (0, 1) in (e) and (f). Note here that N = 6,863.
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(a) εexp = 5.0% (b) εexp = 5.0%

(c) εexp = 2.0% (d) εexp = 2.0%

(e) εexp = 1.0% (f) εexp = 1.0%

Figure 10-3: Ellipsoids containing possibility regions obtained with N = 50 for a∗ = 0.85,
b∗ = 0.65, α∗ = π/4 for: K = 6 in (a), (c), (e) and K = 9 in (b), (d), (f). Note the change
in scale in the axes: R shrinks as the experimental error decreases and the number of
measurements increases.
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εexp K = 6 K = 9

5.0%
[0.8288, 0.8706]×
[0.6343, 0.6653]×
[0.7200, 0.8509]

[0.8306, 0.8688]×
[0.6343, 0.6653]×
[0.7249, 0.8466]

2.0%
[0.8416, 0.8583]×
[0.6437, 0.6562]×
[0.7582, 0.8127]

[0.8422, 0.8577]×
[0.6437, 0.6562]×
[0.7593, 0.8109]

1.0%
[0.8458, 0.8542]×
[0.6468, 0.6532]×
[0.7715, 0.7994]

[0.8462, 0.8539]×
[0.6468, 0.6532]×
[0.7725, 0.7979]

Table 10.4: B for different values of εexp and K. The true parameters are a∗ = 0.85, b∗ =
0.65, α∗ = π/4.

10.4 Chapter Summary

In this chapter, by applying our inverse method for a simple two-dimensional inverse

scattering problem, we have once again demonstrated the robustness and efficiency of

the method. Even though the object geometry is simple and number of parameters O(5)

is quite small, this example shows that not only results can be obtained essentially in

real-time; but also numerical and experimental errors can be addressed rigorously and

robustly. Furthermore, our method favors the use of several incident waves and limited-

aperture far-field data more than one incident wave and full-aperture far-field data. Of

course, the former is of more practical use than the latter, since placement of sensors on

the entire unit sphere seems quite impractical.

Although this example is encouraging, it is not entirely satisfactory. Our vision for the

method is in three-dimensional inverse scattering problems with many more parameters.

Such problems bring new opportunities and exciting challenges. On one hand, the savings

will be even much greater for problems with more complex geometry and physical mod-

eling. In this regard, it is important to note that the online complexity is independent of

the dimension of the underlying truth approximation space; and hence approximations,

error bounds, and computational complexity are asymptotically invariant as the numer-

ical (or physical/engineering) fidelity of the models is increased. On the other hand,

these problems will often require very high dimension of the truth approximation space
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and large number of parameters. This leads to many numerical difficulties: (1) exploring

high-dimensional parameter space by greedy strategies and enumeration techniques might

be impossible; (2) although the online cost is low, the offline cost is prohibitively high;

(3) the inverse computational method is not yet sufficiently efficient since the associated

inverse algorithms are not very effective in high-dimensional parameter space. Several

recommendations to improve the efficiency and thus broaden the reach of our methods

will be given in the final (next) chapter.
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Chapter 11

Conclusions

In this final chapter, the theoretical developments and numerical results of the previous

ten chapters are summarized. Suggestions are also provided for further improvement and

extensions of the work in this thesis.

11.1 Summary

The central themes of this thesis have been the development of the reduced-basis ap-

proximations and a posteriori error bounds for different classes of parametrized partial

differential equations and their application to inverse analysis in engineering and science.

We began with introducing basic but very important concepts of the reduced-basis

approach, laying out a solid foundation for several subsequent chapters. The essential

components of the approach are (i) rapidly uniformly convergent reduced-basis approx-

imations — Galerkin projection onto the reduced-basis space WN spanned by solutions

of the governing partial differential equation at N (optimally) selected points in param-

eter space; (ii) a posteriori error estimation — relaxations of the residual equation that

provide inexpensive yet sharp and rigorous bounds for the error in the outputs; and

(iii) offline/online computational procedures — stratagems that exploit affine parameter

dependence to decouple the generation and projection stages of the approximation pro-

cess. The operation count for the online stage — in which, given a new parameter value,

we calculate the output and associated error bound — depends only on N (typically

small) and the parametric complexity of the problem. The method is thus ideally suited
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to robust parameter estimation and adaptive design, as well as system optimization and

real-time control. Furthermore, we also brought in additional ingredients: orthogonal-

ized basis to reduce greatly the condition number of the reduced-stiffness matrix, adaptive

online strategy to control tightly the growth of N while strictly satisfying the required

accuracy, and sampling procedure to select optimally the approximation basis.

We further developed a very promising method to the construction of rigorous and

efficient (online-inexpensive) lower bound for the critical stability factor — a generalized

minimum singular value — that appears in the denominator of our a posteriori error

bounds. The lower bound construction is applicable to linear coercive and noncoerive

problems, as well as nonlinear problems. The method exploits an intermediate first-order

approximation of the stability factor around a linearization point µ̄, which allows us

to construct piecewise constant or linear lower bounds for the stability factor. Several

numerical examples were presented to confirm the theoretical results and demonstrate

that our lower bound construction has worked well even for strongly noncoercive case.

Until recently, the reduced-basis methods could only treat partial differential equa-

tions g(w, v;µ) that are (i) affine — more generally, affine in functions of µ — in µ, and

(ii) at most quadratically nonlinear in the first argument. Both of these restrictions can

be addressed by the “empirical interpolation” method developed (in collaboration with

Professor Yvon Maday of University Paris VI) in this thesis. By replacing non-affine

functions of the parameter and spatial coordinate with collateral reduced-basis expan-

sions, we proposed an efficient reduced-basis technique that recovers online N indepen-

dent calculation of the reduced-basis approximations and a posteriori error estimators for

non-affine elliptic problems. The essential ingredients of the approach are (i) good collat-

eral reduced-basis samples and spaces, (ii) a stable and inexpensive online interpolation

procedure by which to determine the collateral reduced-basis coefficients (as a function

of the parameter), and (iii) an effective a posteriori error bounds to quantify the newly

introduced error terms. Numerical examples were presented along with the theoretical

developments to test and confirm the theoretical results and illustrate various aspects of

the method.

In addition, we extended the technique to treat nonlinear elliptic problems in which

g consists of general nonaffine nonlinear functions of the parameter µ, spatial coordinate
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x, and field variable u. By applying the empirical interpolation method to construct

a collateral reduced-basis expansion for a general non-affine nonlinear function and in-

corporating it into the reduced-basis approximation and a posteriori error estimation

procedure, we recovered online N independence even in the presence of highly nonlinear

terms. Our theoretical claim was numerically confirmed by a particular problem in which

the nonlinear term is an exponent function of the field variable.

Based on the reduced-basis approximation and a posteriori error estimation methods

developed (in this thesis) for coercive and noncoercive linear elliptic equations, nonaffine

elliptic equations, as well as nonlinear elliptic equations, we proposed a robust parameter

estimation method for very fast solution region of inverse problems characterized by

partial differential equations even in the presence of significant uncertainty. The essential

innovations are threefold. The first innovation is the application of the reduce-basis

techniques to the forward problem for obtaining reduced-basis approximation sN(µ) and

associated rigorous error bound ∆s
N(µ) of the PDE-induced output s(µ). The second

innovation is the incorporation of our (very fast) lower bounds and upper bounds for the

true output s(µ) — sN(µ)−∆s
N(µ) and sN(µ) + ∆s

N(µ), respectively — into the inverse

problem formulation. The third innovation is the identification of all (or almost all, in

the probabilistic sense) inverse solutions consistent with the available experimental data.

Ill-posedness is captured in a bounded “possibility region” that furthermore shrinks as

the experimental error is decreased. The configuration possibility region may then serve

in subsequent robust optimization and adaptive design studies.

Finally, we applied our robust parameter estimation method to two major areas in

inverse problems: nondestructive evaluation in which crack and damage of flawed ma-

terials are identified and inverse scattering problems in which unknown buried objects

(“mines”) are recovered. These inverse problems though characterized by simple physical

model and geometry present a promising prospect: not only numerical results can be

obtained merely in seconds on a serial computer with at least O(100) savings in compu-

tational time; but also numerical and (some) model uncertainties can be accommodated

rigorously and robustly. These examples also show strong advantages of our approach

over other computational approaches for inverse problems. First, as regards the com-

putational expense and numerical fidelity, our approach is more efficient and reliable:
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real-time and certified evaluation of functional outputs associated with the PDEs of con-

tinuum mechanics as opposed to time-consuming calculation by use of classical numerical

methods. Second, as regards the model uncertainty and ill-posedness, our approach is

more robust and able to exhibit/characterize ill-posed structure of the inverse problems:

efficient construction of the solution region containing (all) inverse solutions consistent

with the available experimental data without a priori regularization hypotheses as op-

posed to only one regularized inverse solution with a priori assumptions.

11.2 Suggestions for future work

There are still many aspects of this work which must still be investigated and improved.

We indicate here several suggestions for future work in the hope that ongoing algorithmic

and theoretical progresses to improve the efficiency and broaden the reach of the work in

this thesis will continue.

First suggestion related to parametric complexity: How many parameters P can we

consider — for P how large are our techniques still viable? It is undeniably the case that

ultimately we should anticipate exponential scaling (of both N and certainly J) as P

increases, with a concomitant unacceptable increase certainly in offline but also perhaps

in online computational effort. Fortunately, for smaller P , the growth in N is rather

modest, as (good) sampling procedures will automatically identify the more interesting

regions of parameter space. Unfortunately, the growth in J — the number of polytopes

required to cover the parameter domain of the differential operator — is more problematic:

the number of eigenproblem solves is proportional to J and the discrete eigenproblems

(4.50) and (4.52) can be very expensive to solve due to the generalized nature of the

singular value and the presence of a continuous component to the spectrum. It is thus

necessary to have more efficient construction and verification procedures for our inf-sup

lower bound samples: fewer polytope coverings, inexpensive construction of the polytopes

(lower cost per polytope), and more efficient eigenvalue techniques.

Second suggestion related to our empirical interpolation method and reduced-basis

treatment of nonaffine elliptic problems: the regularity requirements and the L∞(Ω)

norm used in the theoretical analysis are perhaps too strong and thus limit the scope
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of the method; the theoretical worst-case Lebesgue constant O(2M) is very pessimistic

relative to the numerically observed O(10) Lebesgue constant; and the error estimators

— though quite sharp and efficient (only one additional evaluation) — are completely

rigorous upper bounds only in very restricted situations. In [52], by simply replacing

the L∞-norm by the L2-norm in the coefficient-function procedure, we can avoid solving

the costly linear program and still obtain (equally) good approximation. But rigorous

theoretical framework for the weaker regularity and norm remains an open issue for

further investigation.

Third suggestion related to the reduced-basis treatment of nonlinear elliptic problems:

the greedy sample construction demanding solutions of the nonlinear PDEs over the sam-

ple Ξg is very expensive; the assumption of monotonicity is essential for the stability of

the reduced-basis approximation and critical to the current development of a posteriori

error estimation, but also restricts the application of our approach to a broader class of

PDEs. It is important to note that reduced-basis treatment of weakly nonlinear non-

monotonic equations has been considered [141, 140]. It can thus be hopeful that with

combination of the theory in [140] and ideas presented in the thesis, it is possible to

treat certain highly nonlinear nonmonotonic equations.

Fourth suggestion related to our inverse computational method, as the method is new

many improvements are possible and indeed necessary: exploration of the search space

using probabilistic and enumeration techniques is not effective in high-dimensional pa-

rameter space, hence advanced optimization procedures like interior point methods must

be considered; construction of the ellipsoid containing the possibility region with linear

program is still a heuristic approach, hence rigorous but equally efficient construction is

required; the method can only characterize the solution region within the selected low-

dimensional parametrization, hence more general null hypotheses are needed to detect

model deviation; sensor deployment and sensitivity analysis to facilitate better design and

optimized control of the system should be also considered. Furthermore, the proposed

“Analyze-Assess-Act” approach is merely a proof of concepts: the Analyze stage is still

heuristic not algorithmic yet; the Act stage requires to solve some optimization problems

over an ellipsoidal feasible region, hence optimization procedures exploiting this feature

should be developed to reduce computational time.
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Final suggestion related to application of this work to engineering design, optimiza-

tion, and analysis: to be of any practical value, our methods must be applied to solve

real-life problems, for example, in (1) nondestructive evaluation of materials and struc-

tures relevant to the structural health monitoring of aeronautical and mechanical systems

(e.g., aging aircraft, oil pipelines, and nuclear power plant), and in (2) inverse scattering

and tomography relevant to medical imaging (e.g., of tumor), unexploded ordnance de-

tection (e.g., of mines), underwater surveillance (e.g., of submarines), and tomographic

scans (e.g., of biological tissues). These practical large-scale applications bring many

new opportunities and exciting challenges. On one hand, the savings will be even much

greater for problems with more complex geometry and physical modeling. On the other

hand, these problems often require very high dimension of the “truth” approximation

space associated with the underlying PDE and large number of parameters. This leads

to many numerical difficulties: exploring high-dimensional parameter space by greedy

strategies and enumeration techniques might be impossible; although the online cost is

low, the offline cost is prohibitively high; and the inverse computational method is not

yet satisfactorily effective as mentioned earlier. The treatment of these challenging prob-

lems will certainly require both theoretical and algorithmic progress on our methods as

described above. To understand the implications more clearly, we consider a particular

application (our last example).

11.3 Three-Dimensional Inverse Scattering Problem

We apply our methods to the three-dimensional inverse problems described thoroughly

in Appendix D. Recall that the problem has the parameter input of 11 components

(a, b, c, α, β, γ, k, d̃, d̃s) and the piecewise-linear finite element approximation space of

dimension N = 10,839. However, for purpose of indicating specific directions in fu-

ture work, we shall not undertake the full-scale model, but consider a simpler model

in which b = c, β = γ = 0, and the incident direction and output in the plane, and

fixed wave number k = π/4. Our parameter is thus µ = (µ(1), . . . , µ(5)) ∈ D ⊂ R5,

where µ(1) = a, µ(2) = b, µ(3) = α, µ(4) such that d̃ = (cosµ(4), sinµ(4), 0), µ(5) such that

d̃s = (cosµ(5), sinµ(5), 0), and D × [0.5, 1.5]× [0.5, 1.5]× [0, π]× [0, π]× [0, π].
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We first note that since our first-order Robin condition is rather crude, the domain

is truncated at a large distance as shown in Figure 11-1 (and N is thus also large) to

ensure accuracy of the finite element solutions and outputs. Future research must consider

second-order radiation conditions [5] to reduce substantially the size of domain and the

dimension of the finite element approximation space.

Figure 11-1: Finite element mesh on the (truncated) reference domain Ω.

We next pursue the empirical interpolation procedure described in Section 6.2 to

construct Sg
Mg , W

g
Mg , T

g
Mg , 1 ≤ M g ≤ M g

max, for M g
max = 39, and Sh

Mh , W
h
Mh , T

h
Mh ,

1 ≤ Mh ≤ Mh
max, for Mh

max = 39. We next consider the piecewise-constant construction

for the inf-sup lower bounds: we can cover the parameter space of the bilinear form

with J = 36 polytopes for ε̄β = 0.5;1 here the P µ̄j , 1 ≤ j ≤ J, are quadrilaterals such

that |Vµj | = 4, 1 ≤ j ≤ J . Armed with the inf-sup lower bounds, we can pursue the

adaptive sampling strategy to arrive at Nmax = Ndu
max = 80 on a grid ΞF of nF = 84 =

4096. Would we use the full-scale model and sample along each dimension with eight

intervals, then nF = 89 = 134,217,728, since both the primal and dual problems have

parameter space of 9 dimensions. In this case, our adaptive sampling procedure would

take 1242 days to reach to Nmax = 80 for an average online evaluation time of 0.01

1Note that the bilinear form depends only on µ(1) and µ(2); hence its parameter space is two-
dimensional.
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seconds. Furthermore, our inf-sup lower bound construction would suffer as well due to

high-dimensional parameter space, very high dimension of the truth approximation space,

and expensive generalized eigenproblems (4.50) and (4.52). In any event, treatment of

many tens of truly independent parameters by the global methods described in this thesis

is not practicable; in such cases, more local approaches must be pursued.2

We now tabulate in Table 11.1 ∆N,max,rel, ηN,ave,∆
du
Ndu,max,rel

, ηdu
Ndu,ave

, ∆s
N,max,rel, and

ηs
N,ave as a function of N for M g = Mh = 38. Here ∆N,max,rel is the maximum over ΞTest of

∆N(µ)/‖u(µ)‖X , ηN,ave is the average over ΞTest of ∆N(µ)/‖u(µ)− uN(µ)‖X , ∆du
Ndu,max,rel

is the maximum over ΞTest of ∆du
Ndu(µ)/‖ψ(µ)‖X , ηdu

Ndu,ave
is the average over ΞTest of

∆du
Ndu(µ)/‖ψ(µ) − ψNdu(µ)‖X , ∆s

N,max,rel is the maximum over ΞTest of ∆s
N(µ)/|s(µ) −

sN(µ)|, and ηs
N,ave is the average over ΞTest of ∆s

N(µ)/|s(µ)−sN(µ)|, where ΞTest ⊂ (D)223

is a random parameter grid of size 223. We observe that the reduced-basis approximations

converge quite fast, but still slower than those in the two-dimensional inverse scattering

problem as shown in Section 6.6.6, although the two problems have the same parametric

dimension. However, we do realize online factors of improvement of O(1000): for an

accuracy close to 0.1 percent (N = 60), the total Online computational time on a Pentium

1.6GHz processor to compute sN(µ) and ∆s
N(µ) is less than 1/1517 times the Total Time

to directly calculate the truth output s(µ).

N ∆N,max,rel ηN,ave ∆du
Ndu,max,rel

ηdu
Ndu,ave

∆s
N,max,rel ηs

N,ave

10 1.86E– 00 12.72 1.42E– 00 10.87 1.44E– 00 16.76
20 9.66E– 01 12.80 6.13E– 01 11.21 3.18E– 01 18.38
30 3.68E– 01 13.34 3.42E– 01 12.33 7.33E– 02 20.69
40 1.83E– 01 13.97 1.78E– 01 12.78 2.07E– 02 17.41
50 1.23E– 01 15.15 1.10E– 01 13.91 7.40E– 03 16.68
60 5.68E– 02 17.41 4.75E– 02 16.82 2.04E– 03 22.90
70 3.70E– 02 19.19 3.07E– 02 17.71 6.79E– 04 21.19
80 1.81E– 02 19.71 1.38E– 02 19.27 1.77E– 04 27.44

Table 11.1: Relative error bounds and effectivities as a function of N for M g = Mh = 38.

Finally, we find a region R ∈ Da,b,α in which the true but unknown parameter,

(a∗, b∗, α∗), must reside from the far-field data superposed with the error εexp. To obtain

2We do note that at least some problems with ostensibly many parameters in fact involve highly
coupled or correlated parameters: certain classes of shape optimization certainly fall into this category.
In these situations, global progress can be made.
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the experimental data, we use three different directions µ(4) = {0, π/4, π/2} for the

incident wave. For each direction of the incident wave, there are I angles, µ(5) = {π(i−

1)/I, 1 ≤ i ≤ I}, at which the far-field data are obtained. We display in Figure 11-2 the

ellipsoids containing the possibility regions — for experimental error of 5%, 2%, and 1%

and number of measurements of 3 (I = 1), 6 (I = 2), and 9 (I = 3); here the ellipsoids

are constructed from the corresponding sets of 450 region boundary points obtained by

using our inverse algorithm described in Section 8.4.2. We also present in Table 11.2 the

half lengths of R — more precicely, the half lengths of the box containing R — relative

to the exact (synthetic) value a∗ = 1.1, b∗ = 0.9, α∗ = π/4.

εexp K = 3 K = 6 K = 9

5.0% 2.72% 1.99% 1.54%
0.5∆a/a∗ 2.0% 0.78% 0.81% 0.62%

1.0% 0.40% 0.41% 0.31%

5.0% 10.15% 2.35% 1.71%
0.5∆b/b∗ 2.0% 2.75% 0.95% 0.69%

1.0% 1.39% 0.47% 0.35%

5.0% 35.92% 6.11% 6.78%
0.5∆α/α∗ 2.0% 10.48% 2.45% 2.72%

1.0% 5.25% 1.25% 1.35%

Table 11.2: The half lengths of the box containing R relative to a∗, b∗, α∗ as a function
of experimental error εexp and number of measurements K.

We see that as εexp decreases and K increases, R shrinks toward (a∗, b∗, α∗). The

results are indeed largely indistinguishable from the finite element method, since the rel-

ative output bound for N = 60 is considerably less than 1.0%. More importantly, these

ellipsoids not only quantify robustly uncertainty in both the numerical approximation

and expermental error, but also are obtained online within 342 seconds on a Pentium

1.6 GHz thanks to a “per forward evaluation time” of only 0.0448 seconds. However, if

we consider the full-scale model, the construction of an ellipsoidal possibility region for

(a∗, b∗, c∗, α∗, β∗, γ∗) by our inverse computational method can be much more computa-

tionally extensive, but still viable. Of course, treatment of many more parameters by our

simple enumeration techniques is not practicable; in such cases, more rigorous inverse

techniques and efficient optimization procedures must be required.
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(a) εexp = 5.0% (b) εexp = 2.0% (c) εexp = 1.0%

(d) εexp = 5.0% (e) εexp = 2.0% (f) εexp = 1.0%

(g) εexp = 5.0% (h) εexp = 2.0% (i) εexp = 1.0%

Figure 11-2: Ellipsoids containing possibility regions obtained with N = 60 for a∗ = 1.1,
b∗ = 0.9, α∗ = π/4 for: K = 3 in (a), (b), (c); K = 6 in (d), (e), (f); and K = 9 in
(g), (h), (i). Note the change in scale in the axes: R shrinks as the experimental error
decreases and the number of measurements increases.
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Appendix A

Asymptotic Behavior of the

Scattered Field

We consider the Helmholtz equation with the Sommerfeld radiation condition

∆ũ+ k2ũ = 0 in Rn\D̃, (A.1a)

lim
r̃→∞

r̃(n−1)/2

(
∂ũ

∂r̃
− ikũ

)
= 0, r̃ = |x̃| . (A.1b)

We shall prove that solution ũ to the problem (A.1) has the asymptotic behavior of an

outgoing spherical wave

ũ(x̃) =
eikr̃

r̃(n−1)/2
ũ∞(D̃, d̃s, d̃, k) +O

(
1

r̃(n+1)/2

)
, |x̃| → ∞, (A.2)

uniformly in all directions d̃s = x̃/|x̃| where the function ũ∞ defined on the unit sphere

S̃ ⊂ Rn is known as the far-field pattern of the scattered wave ũ and is given by

ũ∞(D̃, d̃s, d̃, k) = β̃n

∫
∂D̃

ũ(x̃)
∂e−ikd̃s·x̃

∂ν̃
− ∂ũ(x̃)

∂ν̃
e−ikd̃s·x̃ , (A.3)

with

β̃n =


i
4

√
2

πk
e−iπ/4 n = 2

1
4π

n = 3.

(A.4)

Recall that ν̃ is the unit normal to the boundary ∂D̃ and directed into the exterior of D̃.
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We now introduce some relevant mathematics needed for our proof. First, we need

Green’s integral theorems: Let Ω̃ be a bounded domain of class C1 and let ν̃ denote the

unit normal vector to the boundary ∂Ω̃ directed into the exterior of Ω̃; then for ũ ∈ C1(Ω̃)

and ṽ ∈ C2(Ω̃), we have Green’s first theorem

∫
Ω̃

ũ∆ṽ +∇ũ∇ṽ =

∫
∂Ω̃

ũ
∂ṽ

∂ν̃
, (A.5)

and for ũ, ṽ ∈ C2(Ω̃) we have Green’s second theorem

∫
Ω̃

ũ∆ṽ − ṽ∆ũ =

∫
∂Ω̃

ũ
∂ṽ

∂ν̃
− ṽ

∂ũ

∂ν̃
. (A.6)

Second, we need the fundamental solution1 to the Helmholtz equation (A.1a) defined by

Φ(x̃, ỹ) =


i
4
H

(1)
0 (k|x̃− ỹ|) n = 2

1
4π

eik|x̃−ỹ|

|x̃−ỹ| n = 3

(A.7)

where H
(1)
0 is the Hankel function of first kind of zero order. We note that Φ(x̃, ỹ) has

the following asymptotic behavior

∂Φ(x̃, ỹ)

∂ν̃
− ikΦ(x̃, ỹ) = O

(
1

r̃(n+1)/2

)
, |x̃| → ∞ . (A.8)

This can be derived from

eik|x̃−ỹ|

|x̃− ỹ|
=
eik|x̃|

|x̃|

{
e−ikd̃s·ỹ +O

(
1

|x̃|

)}
(A.9)

∂

∂ν̃(ỹ)

eik|x̃−ỹ|

|x̃− ỹ|
=
eik|x̃|

|x̃|

{
∂e−ikd̃s·ỹ

∂ν̃(ỹ)
+O

(
1

|x̃|

)}
(A.10)

1The fundamental solution is in fact the Green function for the Helmholtz equation and plays an
important role in theoretical analysis and numerical computation of solutions to the direct scattering
problem (A.1).
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H
(1)
0 (k|x̃− ỹ|) =

√
2

πk|x̃− ỹ|
ei(k|x̃−ỹ|−π/4) =

√
2

πk
e−iπ/4 e

ik|x̃|√
|x̃|

{
e−ikd̃s·ỹ +O

(
1

|x̃|

)}
(A.11)

∂

∂ν̃(ỹ)
H

(1)
0 (k|x̃− ỹ|) =

√
2

πk
e−iπ/4 e

ik|x̃|√
|x̃|

{
∂e−ikd̃s·ỹ

∂ν̃(ỹ)
+O

(
1

|x̃|

)}
(A.12)

as |x̃| → ∞, since

|x̃− ỹ| =
√
x̃2 − 2x̃ · ỹ + ỹ2 = |x̃| − d̃s · ỹ .

We can readily prove the important result (A.2) and (A.3) as follows

Proof. We follow the proof given in [33] (Theorems 2.1, 2.4 and 2.5). Let S̃r̃ denote the

sphere of radius r̃ and center at the origin, we note from the radiation condition (A.1b)

that

∫
S̃r̃

∣∣∣∣∂ũ∂ν̃ − ikũ

∣∣∣∣2 =

∫
S̃r̃

{∣∣∣∣∂ũ∂ν̃
∣∣∣∣2 + k2|ũ|2 + 2k=

(
ũ
∂ ¯̃u

∂ν̃

)}
→ 0, r̃ →∞ , (A.13)

where ν̃ is the unit outward normal to S̃r̃. We next take r̃ large enough such that

D̃ is contained in S̃r̃ and apply the Green’s theorem (A.5) in the domain Ω̃r̃ ≡ {ỹ ∈

Rn\ ¯̃D | |ỹ| < r̃} to get

∫
S̃r̃

ũ
∂ ˜̄u

∂ν̃
=

∫
∂D̃

ũ
∂ ˜̄u

∂ν̃
+

∫
Ω̃r̃

ũ∆ũ+

∫
Ω̃r̃

|∇ũ|2 =

∫
∂D̃

ũ
∂ ˜̄u

∂ν̃
− k2

∫
Ω̃r̃

|ũ|2 +

∫
Ω̃r̃

|∇ũ|2. (A.14)

We then insert the imaginary part of the last equation into (A.13) to obtain

lim
r̃→∞

∫
S̃r̃

{∣∣∣∣∂ũ∂ν̃
∣∣∣∣2 + k2|ũ|2

}
= −2k=

(∫
∂D̃

ũ
∂ ¯̃u

∂ν̃

)
. (A.15)

Since both terms on the left hand side of are nonnegative and their sum tends to a finite

limit, they must be individually bounded as r̃ →∞, i.e., we have

∫
S̃r̃

|ũ|2 = O(1), r̃ →∞ . (A.16)
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It thus follows from (A.8), (A.16) and Cauchy-Schwarz inequality that

∫
S̃r̃

ũ(ỹ)

(
∂Φ(x̃, ỹ)

∂ν̃(ỹ)
− ikΦ(x̃, ỹ)

)
→ 0, r̃ →∞ . (A.17)

Furthermore, from the radiation condition (A.1b) for u and Φ(x̃, ỹ) = O(1/r̃(n−1)/2) for

ỹ ∈ S̃r̃, we have ∫
S̃r̃

Φ(x̃, ỹ)

(
∂ũ

∂ν̃
(ỹ)− ikũ(ỹ)

)
→ 0, r̃ →∞ . (A.18)

Subtracting (A.17) from (A.18) yields

∫
S̃r̃

(
ũ(ỹ)

∂Φ(x̃, ỹ)

∂ν̃(ỹ)
− ∂ũ

∂ν̃
(ỹ)Φ(x̃, ỹ)

)
→ 0, r̃ →∞ . (A.19)

We now circumscribe an arbitrary point x̃ ∈ Ω̃r̃ with an infinitesimal sphere S̃(x̃, ρ̃) ≡

{ỹ ∈ Rn | |x̃− ỹ| = ρ̃} and direct the normal ν̃ into the interior of S̃(x̃, ρ̃). We apply the

Green’s theorem (A.6) to the function ũ and Φ(x̃; ·) in the domain Ω̃ρ̃ ≡ {ỹ ∈ Ω̃r̃ ||x̃− ỹ| >

ρ̃} to obtain

∫
∂D̃

(
ũ(ỹ)

∂Φ(x̃, ỹ)

∂ν̃(ỹ)
− ∂ũ

∂ν̃
(ỹ)Φ(x̃, ỹ)

)
+

∫
S̃r̃∪S̃(x̃,ρ̃)

(
∂ũ

∂ν̃
(ỹ)Φ(x̃, ỹ)− ũ(ỹ)

∂Φ(x̃, ỹ)

∂ν̃(ỹ)

)
=

∫
Ω̃ρ̃

{Φ(x̃, ỹ)∆ũ− ũ∆Φ(x̃, ỹ)}

=

∫
Ω̃ρ̃

{∆ũ+ k2ũ}Φ(x̃, ỹ)

= 0 . (A.20)

Since on S̃(x̃, ρ̃) we have

Φ(x̃, ỹ) =
eikρ̃

4πρ̃
,

∂Φ(x̃, ỹ)

∂ỹ
=

(
1

ρ̃
− ik

)
eikρ̃

4πρ̃
ν̃(ỹ) ,

it then follows from the mean value theorem that

lim
ρ̃→0

∫
S̃(x̃,ρ̃)

(
ũ(ỹ)

∂Φ(x̃, ỹ)

∂ν̃(ỹ)
− ∂ũ

∂ν̃
(ỹ)Φ(x̃, ỹ)

)
= ũ(x̃) . (A.21)

257



We thus conclude from (A.19)-(A.21) by passing to the limit r̃ →∞ and ρ̃→ 0 that

ũ(x̃) =

∫
∂D̃

(
ũ(ỹ)

∂Φ(x̃, ỹ)

∂ν̃(ỹ)
− ∂ũ

∂ν̃
(ỹ)Φ(x̃, ỹ)

)
, x̃ = Rn\ ¯̃D . (A.22)

Finally, inserting the asymptotic representation of Φ(x̃, ỹ) and ∂Φ(x̃,ỹ)
∂ν̃(ỹ)

from (A.9)-(A.12)

into (A.22) yields the desired result (A.2) and (A.3).
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Appendix B

Lanczos Algorithm for Generalized

Hermitian Eigenvalue Problems

We consider a generalized Hermitian eigenvalue problem (GHEP)

Ax = λBx (B.1)

where A ∈ RN×N and B ∈ RN×N are Hermitian matrices, i.e., AH = A and BH = B.

Since we are interested in the minimum eigenmode (λmin, xmin) and the maximum

eigenmode (λmax, xmax) of the eigenproblem (B.1), Lanczos method is most suitable for

this task. Because these extreme eigenvalues are often (not always) isolated from the rest

in the spectrum, Lanczos method can give rapid convergence rate for these eigenvalues.

However, the convergence rate can be slow in some cases due to the generalized nature

of the eigenvalues and the presence of a continuous component (if any) to the spectrum.

We give in Figure B-1 the Lanczos algorithm and a short description as follows.

Step 4. is the computation of the mutual orthogonalized bases V` = {v1, . . . , v`} and

W` = {w1, . . . , w`}, WH
` V` = I. Steps 5., to 9., are the computation of the residual

vector r. In step 12. we update the tridiagonal matrix H` from H`−1. In steps 13. and

14. we compute the approximate eigenvalues Λ` and approximate eigenvectors X`. In

step 15. we check for convergence. We see that the Lanczos iteration works by replacing

the eigenproblem (B.1) with a much simpler eigenproblem (associated with H`) that

approximates well (certain part of) the spectrum.
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1. Start with normalized random vector q

2. Set w0 = 0, r = Bq, β0 =
√
|qHr|

3. for ` = 1, 2, . . . ,until convergence
4. w` = r/β`−1, v` = q/β`−1

5. r = Av`, α` = vH
` r

6. r = r − β`−1w`−1 − α`w`

7. for i = 1, . . . , `

8. r = r − vH
i r

wH
i vi

wi

9. end for
10. Solve system Bq = r for q

11. β` =
√
|qHr|

12. H` =


α1 β1

β1 α2 β2

. . . . . . . . .
. . . . . . β`−1

β`−1 α`


13. Compute approximate eigenvalues Λ` from H` = S`Λ`S

H
`

14. Compute approximate eigenvectors X` = V`S`

15. Test for convergence
16. end for

Figure B-1: Lanczos Algorithm for GHEP.
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Appendix C

Inf-Sup Lower Bound Formulation

for Complex Noncoercive Problems

C.1 Inf-Sup Parameter

We consider the lower bound construction for the inf-sup parameter

β(µ) ≡ inf
v∈X

sup
w∈X

|a(w, v;µ)|
‖w‖X‖v‖X

. (C.1)

Here a : X ×X ×D → C is a parametrized complex noncoercive bilinear form; D ∈ RP

is the parameter domain; and X is a complex function space over the complex field C.

We assume that for some finite integer Q, a may be expressed as an affine decomposition

of the form

a(w, v;µ) =

Q∑
q=1

Θq(µ)aq(w, v), ∀ w, v ∈ X, ∀ µ ∈ D , (C.2)

where for 1 ≤ q ≤ Q, Θq : D → R are differentiable complex parameter-dependent

functions and aq : X ×X → R are parameter-independent continuous forms.

Next we introduce the supremizing operator T µ : X → X, for any given µ ∈ D and

any w in X

(T µw, v) = a(w, v;µ), ∀ v ∈ X ; (C.3)
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it is readily shown by Riesz representation that

T µw = arg sup
v∈X

a(w, v;µ)

‖v‖
, ∀ v ∈ X . (C.4)

It follows from (C.1) and (C.4) that our inf-sup parameter β(µ) is expressed as

β(µ) = inf
v∈X

‖T µv‖
‖v‖

= inf
v∈X

√
b(v, v;µ)

‖v‖2
, (C.5)

where the bilinear form b(·, ·;µ) is given by

b(w, v;µ) = (T µw, T µv), ∀ w, v ∈ X . (C.6)

It is a simple matter to show that b(·, ·;µ) is symmetric positive-definite: b(w, v;µ) =

(T µw, T µv) = (T µv, T µw) = b(v, w;µ),∀ w, v ∈ X and b(v, v;µ) = (T µv, T µv) > 0,∀ v ∈

X, v 6= 0, from the symmetric positive-definiteness of (·, ·) and T µv 6= 0,∀ v 6= 0. Fur-

thermore, it follows from (C.2) and (C.3) that, for any w ∈ X, T µw can be expressed as

T µw =

Q∑
q=1

Θq(µ) T qw , (C.7)

where, for any w ∈ X, T qw, 1 ≤ q ≤ Q, are given by

(T qw, v)X = aq(w, v), ∀ v ∈ X . (C.8)

Note that the operators T q : X → X are independent of the parameter µ.

We now introduce the eigenproblem: Given µ ∈ Dµ, find the minimum eigenmode

χmin(µ) ∈ X, λmin(µ) ∈ R such that

b(χmin(µ), v;µ) = λmin(µ)(χmin(µ), v), ∀ v ∈ X , (C.9)

‖χmin(µ)‖ = 1 , (C.10)
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which can be rewritten as

a(χmin(µ), T µv;µ) = λmin(µ)(χmin(µ), v), ∀ v ∈ X , (C.11)

‖χmin(µ)‖ = 1 . (C.12)

It thus follows from (C.5) and (C.9) that β(µ) =
√
λmin(µ). Since furthermore b(·, ·;µ)

is symmetric positive-definite, β(µ) is real and positive.

C.2 Inf-Sup Lower Bound Formulation

We consider the construction of β̂(µ), a lower bound for β(µ). To begin, given µ ∈ D

and t = (t(1), . . . , t(P )) ∈ RP , we introduce the bilinear form

T (w, v; t;µ) = (T µw, T µv)X +
P∑

p=1

t(p) ×

{
Q∑

q=1

∂Θq

∂µ(p)

(µ)aq(w, T µv) +

Q∑
q=1

∂Θ
q

∂µ(p)

(µ)aq(v, T µw)

}
(C.13)

and associated Rayleigh quotient

F(t;µ) = min
v∈X

T (v, v; t;µ)

‖v‖2
X

. (C.14)

It is readily shown that F(t;µ) is concave in t; and henceDµ ≡
{
µ ∈ RP | F(µ− µ;µ) ≥ 0

}
is perforce convex. Note also that t(·, ·; t;µ) is symmetric since b(·, ·;µ) is symmetric and∑Q

q=1
∂Θq

∂µ(p)
(µ)aq(w, T µv) is a complex conjugate transpose of

∑Q
q=1

∂Θ
q

∂µ(p)
(µ)aq(v, T µw);

hence, F(µ − µ;µ) is real and positive for all µ ∈ Dµ. (In general F(µ − µ;µ) is real,

but negative for µ /∈ Dµ; the restriction of F(µ − µ;µ) on Dµ is thus necessary for our

inf-sup lower bound construction.)

We next assume that aq are continuous in the sense that there exist positive finite

constants Γq, 1 ≤ q ≤ Q, such that

|aq(w, v)| ≤ Γq |w|q |v|q , ∀w, v ∈ X . (C.15)
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Here |·|q : H1(Ω) → R+ are seminorms that satisfy

CX = sup
w∈X

Q∑
q=1

|w|2q

‖w‖2
X

, (C.16)

for some positive parameter-independent constant CX . We then define, for µ ∈ D, µ ∈ D,

Φ(µ, µ) ≡ CX max
q∈{1,...,Q}

(
Γq

∣∣∣∣∣Θq(µ)−Θq(µ)−
P∑

p=1

(µ(p) − µ(p))
∂Θq

∂µ(p)

(µ)

∣∣∣∣∣
)

. (C.17)

In short, T (w,w;µ − µ;µ)/‖w‖2
X and F(µ − µ;µ) represent the first-order terms in

parameter expansions about µ of σ2(w;µ) and β2(µ), respectively; and Φ(µ, µ) is a second-

order remainder term that bounds the effect of deviation (of the operator coefficients)

from linear parameter dependence.

We now require a parameter sample VJ ≡ {µ1 ∈ D, . . . , µJ ∈ D} and associated sets

of polytopes, PJ ≡ {Pµ1 ∈ Dµ1 , . . . ,PµJ ∈ DµJ} that satisfy a “Coverage Condition,”

D ⊂
J⋃

j=1

P µ̄j , (C.18)

and a “Positivity Condition,”

min
ν∈Vµ̄j

√
F(ν − µ̄j; µ̄j)− max

µ∈Pµ̄j
Φ(µ; µ̄j) ≥ εββ(µ̄j), 1 ≤ j ≤ J . (C.19)

Here V µ̄j is the set of vertices associated with the polytope P µ̄j ; and εβ ∈ ]0, 1[ is a

prescribed accuracy constant. Our lower bound is then given by

β̂PC(µ) ≡ max
j∈{1,...,J}|µ∈Pµ̄j

εββ(µj). (C.20)

which is a piecewise–constant approximation for β(µ). We finally introduce an index

mapping I : D → {1, . . . , J} such that for any µ ∈ D,

Iµ = arg max
j∈{1,...,J}

εββ(µj), (C.21)
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for piecewise–constant lower bound. We can readily demonstrate that

C.3 Bound Proof

Proposition 16. For any VJ and PJ such that the Coverage Condition (C.18) and Pos-

itivity Condition (C.19) are satisfied, we have εββ
(
µIµ

)
= β̂PC(µ) ≤ β(µ) , ∀ µ ∈ DµIµ .

Proof. We first note from (C.1), (C.2), (C.3), (C.13), (C.15), (C.16), (C.17) and Cauchy-

Schwarz inequality that

β(µ) ≥ inf
w∈X

|a(w, T µw;µ)|
‖w‖X‖T µw‖X

= inf
w∈X

|a(w, T µw; µ̄) + a(w, T µw;µ)− a(w, T µw; µ̄)|
‖w‖X‖T µw‖X

= inf
w∈X

∣∣∣∣∣∣
‖T µw‖2

X +
∑P

p=1

∑Q
q=1(µ(p) − µ̄(p))

∂Θq

∂µ(p)
(µ)aq(w, T µw)

‖w‖X‖T µw‖X

+

∑Q
q=1

(
Θq(µ)−Θq(µ)−

∑P
p=1(µ(p) − µ̄(p))

∂Θq(µ)
∂µ(p)

)
aq(w, T µw)

‖w‖X‖T µw‖X

∣∣∣∣∣∣
≥ inf

w∈X

∣∣∣‖T µw‖2
X +

∑P
p=1

∑Q
q=1(µ(p) − µ̄(p))

∂Θq

∂µ(p)
(µ)aq(w, T µw)

∣∣∣
‖w‖X‖T µw‖X

− sup
w∈X

∣∣∣∑Q
q=1

(
Θq(µ)−Θq(µ)−

∑P
p=1(µ(p) − µ̄(p))

∂Θq(µ)
∂µ(p)

)
aq(w, T µw)

∣∣∣
‖w‖X‖T µw‖X

≥

√√√√
inf

w∈X

∣∣∣‖T µw‖2
X +

∑P
p=1

∑Q
q=1(µ(p) − µ̄(p))

∂Θq

∂µ(p)
(µ)aq(w, T µw)

∣∣∣2
‖w‖2

X‖T µw‖2
X

− max
q∈{1,...,Q}

(
Γq

∣∣∣∣∣Θq(µ)−Θq(µ)−
P∑

p=1

(µ− µ)(p)
∂Θq(µ)

∂µ(p)

∣∣∣∣∣
)

sup
w∈X

∑Q
q=1 |w|q|T µw|q
‖w‖X‖T µw‖X

≥
[
T (w,w;µ− µ;µ)/‖w‖2

X

] 1
2 − Φ(µ, µ)

where the last inequality derives from the following inequality

|A+B|2 ≥ (A+ <(B))2 ≥ (A2 + 2A<(B))2 = A2 + A(B +B)

for A = ‖T µw‖2
X real and B =

∑P
p=1

∑Q
q=1(µ(p) − µ̄(p))

∂Θq

∂µ(p)
(µ)aq(w, T µw) complex.
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It thus follows that

β(µ) ≥
√
F(µ− µ;µ)− Φ(µ, µ) . (C.22)

The desired result finally follows from the construction of VJ and PJ , the definition of

β̂PC(µ) and β̂PL(µ), and the concavity of F(µ− µ;µ) in µ.

Of course, if −Φ(µ, µ) is a concave function of µ, we can develop a (better) piecewise-

linear lower bound β̂PL(µ).

C.4 Discrete Eigenvalue Problems

We give a short discussion of the numerical calculation of the inf-sup parameter β(µ) and

the Rayleigh quotient F(µ− µ̄; µ̄). To begin, we denote by A(µ), Aq, C the finite element

matrices associated with a(·, ·;µ), aq(·, ·), (·, ·)X , respectively. We introduce the discrete

eigenproblem: Given µ ∈ D, find the minimum eigenmode (χ
min

(µ), λmin(µ)) such that

(A(µ))HC−1A(µ)χ
min

(µ) = λmin(µ)Cχ
min

(µ) , (C.23)

(χ
min

(µ))HCχ
min

(µ) = 1 . (C.24)

The discrete value of β(µ) is then
√
λmin(µ). Note the notion of the “H” Hermitian

transpose in the complex case, the Hermitian transpose of a complex quantity (such as

a complex number, complex vector, or complex matrix) is in fact the complex conjugate

transpose of itself.

The computation of F involving a more complex eigenvalue problem is rather com-

plicated and more expensive. In particular, we first write the matrix form T (µ− µ̄; µ̄) of

the bilinear form T (·, ·;µ− µ̄; µ̄) in (C.13) as

T (µ− µ̄; µ̄) = (A(µ))HC−1A(µ) +
P∑

p=1

(µ− µ̄)(p)

{
Q∑

q=1

∂Θq(µ)

∂µ(p)

(Aq)HC−1A(µ) +

Q∑
q=1

∂Θ
q
(µ)

∂µ(p)

(A(µ))HC−1Aq

}
.
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Next we introduce the second discrete eigenproblem: Given a pair (µ ∈ D, µ̄ ∈ D), find

Ψmin(µ− µ̄; µ̄) ∈ RN , ρmin(µ− µ̄; µ̄) ∈ R such that

T (µ− µ̄; µ̄) Ψmin(µ− µ̄; µ̄) = ρmin(µ− µ̄; µ̄)C Ψmin(µ− µ̄; µ̄) , (C.25)

(Ψmin(µ− µ̄; µ̄))H C Ψmin(µ− µ̄; µ̄) = 1 . (C.26)

Note that the matrix T (µ − µ̄; µ̄) is symmetric (more precisely, conjugate symmetric)

and that Fmin(µ− µ̄; µ̄) is essentially the square root of the minimum eigenvalue, i.e., we

have Fmin(µ − µ̄; µ̄) =
√
ρmin(µ− µ̄; µ̄),∀ µ ∈ Dµ̄. The eigenproblem (C.25)-(C.26) can

be solved by using the Lanczos procedure without calculating C−1 explicitly. During the

Lanczos procedure we often compute w(µ) = T (µ; µ̄)v for some v and do this as follows:

first solve the linear algebraic systems

Cy0 = A(µ)v

and

Cyq = Aqv

for y0 and yq, 1 ≤ q ≤ Q, respectively, and then simply set

w(µ) = (A(µ))Hy0 −
P∑

p=1

(µ− µ̄)(p)

[
Q∑

q=1

∂Θq(µ)

∂µ(p)

(Aq)Hy0 +

Q∑
q=1

∂Θ
q
(µ)

∂µ(p)

(A(µ))Hyq

]
.
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Appendix D

Three-Dimensional Inverse

Scattering Example

D.1 Problem Description

In this example we seek to identify a three-dimensional ellipsoid D̃ of three unknown

semiaxes (a, b, c) and three unknown orientations (m,n,p) (which together describe the

size and shape of the ellipsoid) from the experimental data given in the form of intervals.

The experimental data is the far field pattern ũ∞ measured at several angles d̃s with

experimental error εexp for one or several incident directions d̃ and wave numbers k.

Hence, the input µ consists of (a, b, c,m,n,p, k, d̃, d̃s); and the output is ũ∞(µ).

D.2 Domain truncation and Mapping

The truncated domain Ω̃ is bounded by the ellipsoid and an artificial boundary Γ̃. Here Γ̃

is an oblique box of size 16a×16b×16c which has the same orientation as the ellipsoid and

is scaled with the three semiaxes as shown in Figure D-1(a). Hence, the mean curvature

H̃(·;µ) is zero for the chosen boundary Γ̃ except for the corner points and can thus be

ignored in our formulation of the direct scattering problem. Furthermore, we define a

reference domain Ω corresponding to the geometry bounded by the unit sphere and a

perpendicular box of size 16× 16× 16 as shown in Figure D-1(b).

We now map Ω̃(a, b, c,m,n,p) → Ω via a continuous piecewise-affine transformation.
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(a) (b)

Figure D-1: Three-dimensional scattering problem: (a) original (parameter-dependent)
domain and (b) reference domain.

This can be done in two steps. In the first step, we map the three orientations (m,n,p)

to the three Cartesian unit vectors (ix, iy, iz) by: first rotating (m,n,p) about the z-axis

an angle −α and about the y-axis an angle β so that m coincides with ix and n is in the

yz plan; and then rotating the resulting orientations (m,n,p) about x-axis an angle −γ

so that n coincides with iy. The rotation transformation is thus given by

R(µ) = Rx(−γ)Ry(β)Rz(−α) (D.1)

where

Rx(φ) =


1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 , Ry(φ) =


cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ

 , (D.2)

Rz(φ) =


cosφ − sinφ 0

sinφ cosφ 0

0 0 1

 . (D.3)

In essence, we have transformed the original domain with the orientated ellipsoid to

another domain with a perpendicular ellipsoid. In the second step, we map the resulting
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domain with the perpendicular ellipsoid to the reference domain with the unit sphere by

the stretching transformation

S(µ) =


1
a

0 0

0 1
b

0

0 0 1
c

 . (D.4)

It finally follows from (D.1)-(D.4) that the geometric transformation that map Ω̃ to Ω is

given by

G(µ) = S(µ)R(µ) =


cos α cos β

a
sin α cos β

a
sin β

a

− sin α cos γ−cos α sin β sin γ
b

cos α cos γ−sin α sin β sin γ
b

cos β sin γ
b

sin α sin γ−cos α sin β cos γ
c

− cos α sin γ−sin α sin β cos γ
c

cos β cos γ
c

 . (D.5)

We see that the orientations of the ellipsoid can be described more conveniently by

three angles (α, β, γ) than by three vectors (m,n,p). From now on, we shall thus use

(a, b, c, α, β, γ, k, d̃, d̃s) for the input.

D.3 Forms in Reference Domain

To begin, we note that the geometric transformation Ω̃ → Ω is affine, the problem can thus

be recast precisely in the desired abstract form (10.31), in which Ω, X defined in (10.21),

and (w; v)X defined in (10.22) are independent of the parameter µ; furthermore, our

affine assumption applies for Q = 7. We summarize the Θq(µ), aq(w, v), 1 ≤ q ≤ Q, in

Table D.3. We can then choose |v|2q = aq(v, v), 1 ≤ q ≤ Q, since the aq(·, ·) are positive

semi-definite; it thus follows that CX = 1.0000 and that Γq = 1, 1 ≤ q ≤ Q, by the

Cauchy-Schwarz inequality .

To derive the explicit form for g(x;µ), h(x;µ) and `o(x;µ), we first note from (10.20)

that

Jd(x;µ) =
√
b2c2x2

1 + a2c2x2
2 + a2b2x2

3 , (D.6)

since ∂D is the unit sphere. Furthermore, it can be easily shown that the unit normal
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q Θq(µ) aq(w, v)

1 bc
a

∫
Ω

∂w
∂x

∂v̄
∂x

2 ca
b

∫
Ω

∂w
∂y

∂v̄
∂x2

3 ab
c

∫
Ω

∂w
∂x3

∂v̄
∂x2

4 −k2abc
∫

Ω
wv̄

5 −ikab
∫

Γ1
wv̄ +

∫
Γ4
wv̄

6 −ikbc
∫

Γ2
wv̄ +

∫
Γ5
wv̄

7 −ikca
∫

Γ3
wv̄ +

∫
Γ6
wv̄

Table D.1: Parametric functions Θq(µ) and parameter-independent bilinear forms
aq(w, v) for the three-dimensional inverse scattering problem.

vector ν̃ to the boundary ∂D̃ can be expressed in terms of the reference coordinate as

ν̃(x;µ) =
υ̃(x;µ)

Jd(x;µ)
, (D.7)

where the three components of υ(x;µ) are given by

υ̃1(x;µ) = bcx1 cosα cos β − acx2 (sinα cos γ + cosα sin β sin γ) ,

+ abx3 (sinα sin γ − cosα sin β cos γ) (D.8)

υ̃2(x;µ) = bcx1 sinα cos β + acx2 (cosα cos γ − sinα sin β sin γ) ,

− abx3 (cosα sin γ + sinα sin β cos γ) (D.9)

υ̃3(x;µ) = bcx1 sin β + acx2 cos β sin γ + abx3 cos β cos γ . (D.10)

It finally follows from (10.28), (10.33), and (D.5)-(D.10) that

g(x;µ) = ikd̃ · υ̃eikd̃·(G−1(µ)x) , (D.11)

h(x;µ) = ikd̃s · υ̃e−ikd̃s·(G−1(µ)x) , (D.12)

`o(x;µ) = βn

∫
∂D

ikd̃ · υ̃eikd̃·(G−1(µ)x)e−ikd̃s·(G−1(µ)x) , (D.13)

which are functions of the coordinate x and the parameter µ.

271



Bibliography

[1] M. Ainsworth and J. T. Oden. A posteriori error estimation in finite element

analysis. Comp. Meth. Appl. Mech. Engrg., 142:1–88, 1997.

[2] G. Alessandrini and L. Rondi. Stable determination of a crack in a planar inhomo-

geneous conductor. SIAM J. MATH. ANAL., 30(2):326–340, 1998.

[3] S. Ali. Real-time Optimal Parametric Design using the Assess-Predict-Optimize

Strategy. PhD thesis, Singapore-MIT Alliance, Nanyang Technological University,

Singapore, 2003. In progress.

[4] B. O. Almroth, P. Stern, and F. A. Brogan. Automatic choice of global shape

functions in structural analysis. AIAA Journal, 16:525–528, May 1978.

[5] X. Antoine, H. Barucq, and A. Bendali. Bayliss-turkel-like radiation conditions on

surfaces of arbitrary shape. Journal of Mathematical Analysis and Applications,

229:184–221, 1999.
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Seminar Volume XIV, pages 533–569. Elsevier Science B.V., 2002.

[92] Y. Maday, A. T. Patera, and D.V. Rovas. Petrov-Galerkin reduced-basis approxi-

mations to noncoercive linear partial differential equations. In progress.

280



[93] Y. Maday, A. T. Patera, and G. Turinici. Global a priori convergence theory for

reduced-basis approximation of single-parameter symmetric coercive elliptic partial

differential equations. C. R. Acad. Sci. Paris, Série I, 335(3):289–294, 2002.

[94] Y. Maday, A. T. Patera, and G. Turinici. A priori convergence theory for reduced–

basis approximations of single-parameter elliptic partial differential equations. Jour-

nal of Scientific Computing, 17(1–4):437–446, December 2002.

[95] G. Meurant. Computer solution of large linear systems. Elsevier, 1999.

[96] M. Meyer and H.G. Matthies. Efficient model reduction in nonlinear dynamics using

the karhunen-love expansion and dual-weighted-residual methods. Computational

Mechanics, 31:179–191, 2003.

[97] K. Mosegaard and M. Sambridge. Monte carlo analysis of inverse problems. Inverse

Problems, 18:R29–R54, 2002.

[98] K. Mosegaard and A. Tarantola. Probabilistic approach to inverse problems. In-

ternational Handbook of Earthquake and Engineering Seismology, Part A, pages

237–265, 2002.

[99] N. C. Nguyen, K. Veroy, and A. T. Patera. Certified real-time solution of

parametrized partial differential equations. In Handbook of Materials Modeling.

Kluwer Academic Publishing, 2004. To appear.

[100] A. K. Noor, C. D. Balch, and M. A. Shibut. Reduction methods for non-linear

steady-state thermal analysis. Int. J. Num. Meth. Engrg., 20:1323–1348, 1984.

[101] A. K. Noor and J. M. Peters. Reduced basis technique for nonlinear analysis of

structures. AIAA Journal, 18(4):455–462, April 1980.

[102] A. K. Noor and J. M. Peters. Multiple-parameter reduced basis technique for

bifurcation and post-buckling analysis of composite plates. Int. J. Num. Meth.

Engrg., 19:1783–1803, 1983.

281



[103] I. B. Oliveira and A. T. Patera. Reliable real-time optimization of nonconvex

systems described by parametrized partial differential equations. In Proceedings

Singapore-MIT Alliance Symposium, January 2003.

[104] I. B. Oliveira and A. T. Patera. Reduced-basis techniques for rapid reliable opti-

mization of systems described by parametric partial differential equations. Opti-

mization and Engineering, 2004. To appear.

[105] M. Paraschivoiu and A. T. Patera. A hierarchical duality approach to bounds for

the outputs of partial differential equations. Comp. Meth. Appl. Mech. Engrg.,

158(3-4):389–407, June 1998.

[106] M. Paraschivoiu, J. Peraire, Y. Maday, and A. T. Patera. Fast bounds for outputs

of partial differential equations. In J. Borgaard, J. Burns, E. Cliff, and S. Schreck,

editors, Computational methods for optimal design and control, pages 323–360.
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