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Problem Statement: How can the robot update its reward Rθ from human 
input even when it doesn’t understand what the human input refers to? 

Feature Traces: A New Type of Human Input

Key Insight: Instead of learning about the missing feature(s) implicitly, 
the robot should ask for data that explicitly teaches it what is missing.
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Learning a Feature Function
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1. Monotonicity 2. Start/End Labels
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FERL for Feature Learning

FERL for Reward Learning

With enough data, FERL learns good features, and, with more data, it both 
learns increasingly better features, and becomes less input-sensitive.

FERL learns rewards that better generalize to the state space, are less input-
sensitive, and produce trajectories that are preferred over deep IRL rewards. 
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𝜉 = 𝑠*:,

ɸ 𝑠 ∶ ℝ. → [0,1]
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