On Brauer groups of stacky curves

Niven Achenjang MIT

October 6, 2024

On Brauer groups of stacky curves

> Niven Achenjang

Preliminaries

Examples

Brauer groups

Definition

For a scheme of algebraic stack ${\mathfrak X},$ we define its ${\tt Brauer}\ {\tt group}$ to be

$$\mathsf{Br}\,\mathfrak{X} \coloneqq \mathsf{H}^2_{\mathrm{\acute{e}t}}(\mathfrak{X},\mathbb{G}_m).$$

If R is a ring, then we set Br R := Br(Spec R).

Example

Fix a prime/place $p \leq \infty$. Then,

$$\operatorname{inv}_{p}$$
: $\operatorname{Br} \mathbb{Q}_{p} \hookrightarrow \mathbb{Q}/\mathbb{Z}$

which is an isomorphism if $p < \infty$ and has image $\frac{1}{2}\mathbb{Z}/\mathbb{Z}$ if $p = \infty$ ($\mathbb{Q}_{\infty} = \mathbb{R}$).

On Brauer groups of stacky curves

> Niven Achenjang

Preliminaries Examples

Arithmetic motivation for studying Brauer groups

There is an exact sequence

$$0 \longrightarrow \mathsf{Br}\, \mathbb{Q} \longrightarrow \bigoplus_{p \leq \infty} \mathsf{Br}\, \mathbb{Q}_p \xrightarrow{\sum \mathsf{inv}_p} \mathbb{Q}/\mathbb{Z} \longrightarrow 0.$$

Consequently, given X and $\alpha \in \operatorname{Br} X$, one can define

$$\begin{split} X(\mathbb{A}_{\mathbb{Q}})^{\alpha} &\coloneqq \left\{ x \in X(\mathbb{A}_{\mathbb{Q}}) : \sum \operatorname{inv}_{p} \alpha(x_{p}) = 0 \right\} \quad \supset X(\mathbb{Q}) \\ X(\mathbb{A}_{\mathbb{Q}})^{\mathsf{Br}} &\coloneqq \bigcap_{\alpha \in \mathsf{Br} \, X} X(\mathbb{A}_{\mathbb{Q}})^{\alpha} \qquad \qquad \supset X(\mathbb{Q}). \end{split}$$

Remark

 $X(\mathbb{A}_{\mathbb{Q}})^{Br}$ gives an (often computable) obstruction to the existence of rational points. Variants exist for integral points.

On Brauer groups of stacky curves

> Niven Achenjang

Preliminaries

Examples

Stacky curves in nature

Definition (informal)

A stacky curve is a "reasonable" algebraic stack \mathcal{X} whose coarse space X is a curve and whose stabilizer groups are finite.

Example (modular curves)

For $N \ge 1$, there is the stacky modular curve $\mathcal{Y}_0(N) = \begin{cases}
(E, C) : & E \text{ an elliptic curve} \\
C \subset E \text{ a cyclic subgroup of order } N
\end{cases}$

Example (generalized Fermat)

Consider
$$S = V(x^a + y^b = z^c) \setminus \{(0,0,0)\} \subset \mathbb{A}^3_{\mathbb{Z}}$$
. Set
 $\mathfrak{X} = [S/\mathbb{G}_m]$ where $\lambda \cdot (x, y, z) = (\lambda^{bc}x, \lambda^{ac}y, \lambda^{ab}z)$

 \mathfrak{X} is a stacky curve and $S(\mathbb{Z}) \cong \mathfrak{X}(\mathbb{Z})/\{\pm 1\}.$

On Brauer groups of stacky curves

> Niven Achenjang

Preliminaries

Examples

 $\operatorname{Br} \mathcal{Y}(1)$

Set $\mathcal{Y}(1) \coloneqq \mathcal{Y}_0(1)$.

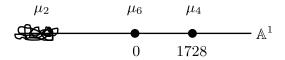


Figure: Artist's rendition of $\mathcal{Y}(1)_k$ (accurate only if $6 \in k^{\times}$).

Antieau–Meier ('20) and Di Lorenzo–Pirisi ('22) computed that, if k is a perfect field and char $k \neq 2$,

 $\operatorname{Br} \mathfrak{Y}(1)_k \cong \operatorname{Br} \mathbb{A}^1_k \oplus \operatorname{H}^1(k, \mathbb{Z}/12\mathbb{Z}) \cong \operatorname{Br} k \oplus \operatorname{H}^1(k, \mathbb{Z}/12\mathbb{Z})$

On Brauer groups of stacky curves

> Niven Achenjang

reliminaries

Examples

 $\operatorname{Br} \mathcal{Y}(1)$

Set $\mathcal{Y}(1) \coloneqq \mathcal{Y}_0(1)$.

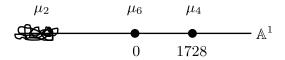


Figure: Artist's rendition of $\mathcal{Y}(1)_k$ (accurate only if $6 \in k^{\times}$).

Antieau–Meier ('20) and Di Lorenzo–Pirisi ('22) computed that, if k is a perfect field and char $k \neq 2$,

 $\begin{array}{rcl} \mathsf{Br}\, \mathfrak{Y}(1)_k &\cong & \mathsf{Br}\, \mathbb{A}^1_k \oplus \mathsf{H}^1(k, \mathbb{Z}/12\mathbb{Z}) \cong \mathsf{Br}\, k \oplus \mathsf{H}^1(k, \mathbb{Z}/12\mathbb{Z}) \\ \\ \mathsf{Br}\, \mathfrak{Y}(1)_{\overline{k}} &\cong & \mathbf{0} \end{array}$

<u>Note</u>: Tsen's theorem implies that Br $X_{\overline{k}} = 0$ if X is a curve.

Niven Achenjang

Preliminaries

Examples

Br $\mathcal{Y}_0(2)$

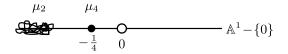


Figure: Artist's rendition of $\mathcal{Y}_0(2)_k$.

On Brauer groups of stacky curves

> Niven Achenjang

Preliminaries

Examples

Br $\mathcal{Y}_0(2)$

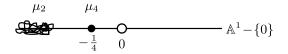


Figure: Artist's rendition of $\mathcal{Y}_0(2)_k$.

A.-Bhamidipati-Jha-Ji-Lopez ('24) computed that, if k is a perfect field and char $k \neq 2$,

$$\begin{array}{rcl} \mathsf{Br}\,\mathfrak{Y}_0(2)_k &\cong & \mathsf{Br}(\mathbb{A}^1_k\setminus\{0\})\oplus\mathsf{H}^1(k,\mathbb{Z}/4\mathbb{Z})\oplus\mathbb{Z}/2\mathbb{Z}\\\\ \mathsf{Br}\,\mathfrak{Y}_0(2)_{\overline{k}} &\cong & \mathbb{Z}/2\mathbb{Z}. \end{array}$$

Question

Why is $\operatorname{Br} \mathcal{Y}(1)_{\overline{k}}$ trivial, but $\operatorname{Br} \mathcal{Y}_0(2)_{\overline{k}}$ not?

Niven Achenjang

Preliminaries

Examples

Prelude to the main result I: tameness

<u>Goal</u>: We want to generalize the previous computations.

Example (linearly reductive groups)

- μ_n is linearly reductive over any field *F*.
- If G is a finite étale F-group, then G is linearly reductive if and only if char F ∤ #G.

Definition (slightly informal)

An algebraic stack \mathfrak{X} is tame if every point $x \in \mathfrak{X}(F)$ over any field F has a finite linearly reductive stabilizer group $\underline{\operatorname{Aut}}_{\mathfrak{X}}(x)/F$.

Example

- $\mathcal{Y}(1)_k$ is tame iff char $k \neq 2, 3$.
- $\mathcal{Y}_0(2)_k$ is tame iff char $k \neq 2$.

On Brauer groups of stacky curves

> Niven Achenjang

^Dreliminaries

Examples

Prelude to the main result II: Brauerlessness

Definition

A tame algebraic stack \mathcal{X} is locally Brauerless if, for any of its geometric stabilizer groups G/F^s , the group $\pi_0(G)$ of G's connected components satisfies $\mathrm{H}^3(\pi_0(G),\mathbb{Z})=0.$

Theorem (A., in preparation)

Let \mathfrak{X} be a locally Brauerless tame algebraic stack with coarse space map $c : \mathfrak{X} \to X$. Then, $\mathbb{R}^2 c_* \mathbb{G}_m = 0$.

Example

 $\mathrm{H}^{3}(\mathbb{Z}/n\mathbb{Z},\mathbb{Z})=0$ for all *n*, so stacks whose stabilizers are all of the form μ_{n} are tame and locally Brauerless.

On Brauer groups of stacky curves

> Niven Achenjang

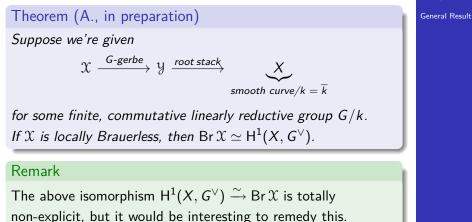
Preliminaries

Examples

Statement of the main result

Notation

If G is a commutative, finite group scheme over a field k, we write $G^{\vee} := \underline{Hom}(G, \mathbb{G}_m)$ for its Cartier dual.



Niven Achenjang (MIT)

On Brauer groups of stacky curves

On Brauer groups of stacky curves

> Niven Achenjang

Preliminaries

Examples

Some consequences

Example (our favorite modular curves)

- ► Take $\mathfrak{X} = \mathfrak{Y}(1)_k$ with $6 \in k^{\times}$. Then, $G = \mu_2$ so Br $\mathfrak{Y}(1)_{\overline{k}} \cong \mathrm{H}^1(\mathbb{A}^1, \mathbb{Z}/2\mathbb{Z}) = 0$.
- ► Take $\mathfrak{X} = \mathfrak{Y}_0(2)_k$ with $2 \in k^{\times}$. Then, $G = \mu_2$ so Br $\mathfrak{Y}_0(2)_{\overline{k}} \cong \mathrm{H}^1(\mathbb{A}^1 \setminus \{0\}, \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}$.

Remark (over a perfect field)

Say k is a perfect field. Then, there is a spectral sequence relating $H^{i}(\mathcal{X}, \mathbb{G}_{m})$ to $H^{i}(k, H^{j}(\mathcal{X}_{\overline{k}}, \mathbb{G}_{m}))$. If $\mathcal{X}(k) \neq \emptyset$ and X is both proper and geometrically integral, then it produces the short exact sequence

$$0 \longrightarrow \operatorname{Br} k \longrightarrow \operatorname{ker} \left(\operatorname{H}^{2}(\mathfrak{X}, \mathbb{G}_{m}) \to \operatorname{H}^{1}(X_{\overline{k}}, G^{\vee}) \right)$$
$$\longrightarrow \operatorname{H}^{1}(k, \operatorname{Pic} \mathfrak{X}_{\overline{k}}) \longrightarrow 0$$

On Brauer groups of stacky curves

> Niven Achenjang

Preliminaries

Examples

Proof sketch

Recall the coarse space $c : \mathfrak{X} \to X$ factors as $\mathfrak{X} \xrightarrow[]{\pi}{d} \mathfrak{Y} \xrightarrow[]{\rho}{} X$.

(1) Use the Leray spectral sequence

$$H^{i}(X, \mathbb{R}^{j}c_{*}\mathbb{G}_{m}) \implies H^{i+j}(\mathfrak{X}, \mathbb{G}_{m})$$
 to produce
 $H^{2}(X, \mathbb{G}_{m}) = 0 \longrightarrow \ker(H^{2}(\mathfrak{X}, \mathbb{G}_{m}) \rightarrow H^{0}(X, \mathbb{R}^{2}c_{*}\mathbb{G}_{m}))$
 $\longrightarrow H^{1}(X, \mathbb{R}^{1}c_{*}\mathbb{G}_{m}) \longrightarrow 0 = H^{3}(X, \mathbb{G}_{m})$

(2) Since \mathfrak{X} is tame and locally Brauerless, we have $\mathrm{R}^2 c_* \mathbb{G}_m = 0$ from which we deduce $\mathrm{H}^2(\mathfrak{X}, \mathbb{G}_m) \xrightarrow{\sim} \mathrm{H}^1(X, \mathrm{R}^1 c_* \mathbb{G}_m).$ On Brauer groups of stacky curves

> Niven Achenjang

Preliminaries

Examples

Proof sketch

Recall the coarse space $c : \mathcal{X} \to X$ factors as $\mathcal{X} \xrightarrow[]{\pi}{} \mathcal{Y} \xrightarrow[]{\rho}{} X$.

(1) Use the Leray spectral sequence

$$H^{i}(X, \mathbb{R}^{j}c_{*}\mathbb{G}_{m}) \implies H^{i+j}(\mathfrak{X}, \mathbb{G}_{m}) \text{ to produce}$$

 $H^{2}(X, \mathbb{G}_{m}) = 0 \longrightarrow \ker(H^{2}(\mathfrak{X}, \mathbb{G}_{m}) \rightarrow H^{0}(X, \mathbb{R}^{2}c_{*}\mathbb{G}_{m}))$
 $\longrightarrow H^{1}(X, \mathbb{R}^{1}c_{*}\mathbb{G}_{m}) \longrightarrow 0 = H^{3}(X, \mathbb{G}_{m})$

(2) Since
$$\mathfrak{X}$$
 is tame and locally Brauerless, we have
 $\mathrm{R}^2 c_* \mathbb{G}_m = 0$ from which we deduce
 $\mathrm{H}^2(\mathfrak{X}, \mathbb{G}_m) \xrightarrow{\sim} \mathrm{H}^1(X, \mathrm{R}^1 c_* \mathbb{G}_m).$

(3) Use the Grothendieck spectral sequence $R^{i}\rho_{*}R^{j}\pi_{*}\mathbb{G}_{m} \implies R^{i+j}c_{*}\mathbb{G}_{m}$ to produce $0 \longrightarrow R^{1}\rho_{*}\mathbb{G}_{m} \longrightarrow R^{1}c_{*}\mathbb{G}_{m} \longrightarrow G^{\vee} \longrightarrow 0 = R^{2}\rho_{*}\mathbb{G}_{m}$ (1) Note that $R^{1} = 0$

(4) Note that R¹ρ_{*}G_m is supported on a finite k-scheme and so is acyclic. We deduce H¹(X, R¹c_{*}G_m) → H¹(X, G[∨]). On Brauer groups of stacky curves

> Niven Achenjang

Preliminaries

Examples General Result

Summary

- ► We defined Brauer groups Br X = H²(X, G_m). These give rise to obstructions to points on varieties.
- Stacky curves are essentially curves w/ finite stabilizer groups attached to each point (e.g. modular curves, generalized Fermat curves).
- A stack is tame if all its stabilizer groups are finite linearly reductive groups (e.g. μ_n).
- We identified a condition ('locally Brauerless') which guarantees that that a tame stacky curve X/k = k with coarse space X and 'generic stabilizer' G/k has Brauer group Br X ≃ H¹(X, G[∨]).

Thank you!

Niven Achenjang

Preliminaries

Examples