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Brauer groups

Definition
For a scheme of algebraic stack X, we define its Brauer group
to be

BrX := H2
ét(X,Gm).

If R is a ring, then we set BrR := Br(SpecR).

Example
Fix a prime/place p ≤ ∞. Then,

invp : BrQp ↪! Q/Z

which is an isomorphism if p < ∞ and has image 1
2Z/Z if

p = ∞ (Q∞ = R).
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Arithmetic motivation for studying Brauer groups

There is an exact sequence

0 −! BrQ −!
⊕
p≤∞

BrQp

∑
invp−−−−! Q/Z −! 0.

Consequently, given X and α ∈ BrX , one can define
X (AQ)

α :=
{

x ∈ X (AQ) :
∑

invp α(xp) = 0
}

⊃ X (Q)

X (AQ)
Br :=

⋂
α∈BrX

X (AQ)
α ⊃ X (Q).

Remark
X (AQ)

Br gives an (often computable) obstruction to the
existence of rational points. Variants exist for integral points.
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Stacky curves in nature

Definition (informal)
A stacky curve is a “reasonable” algebraic stack X whose
coarse space X is a curve and whose stabilizer groups are finite.

Example (modular curves)
For N ≥ 1, there is the stacky modular curve

Y0(N) =

{
(E ,C) :

E an elliptic curve
C ⊂ E a cyclic subgroup of order N

}

Example (generalized Fermat)
Consider S = V (xa + yb = zc) \ {(0, 0, 0)} ⊂ A3

Z. Set
X = [S/Gm] where λ · (x , y , z) = (λbcx , λacy , λabz).

X is a stacky curve and S(Z) ∼= X(Z)/{±1}.
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Br Y(1)

Set Y(1) := Y0(1).

Figure: Artist’s rendition of Y(1)k (accurate only if 6 ∈ k×).

Antieau–Meier (’20) and Di Lorenzo–Pirisi (’22) computed
that, if k is a perfect field and char k ̸= 2,
Br Y(1)k ∼= BrA1

k ⊕ H1(k,Z/12Z) ∼= Br k ⊕ H1(k,Z/12Z)

Br Y(1)k
∼= 0

Note: Tsen’s theorem implies that BrXk = 0 if X is a curve.
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Br Y0(2)

Figure: Artist’s rendition of Y0(2)k .

A.–Bhamidipati–Jha–Ji–Lopez (’24) computed that, if k is a
perfect field and char k ̸= 2,

Br Y0(2)k ∼= Br(A1
k \ {0})⊕ H1(k,Z/4Z)⊕ Z/2Z

Br Y0(2)k
∼= Z/2Z.

Question
Why is Br Y(1)k trivial, but Br Y0(2)k not?
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Prelude to the main result I: tameness
Goal: We want to generalize the previous computations.

Example (linearly reductive groups)
▶ µn is linearly reductive over any field F .
▶ If G is a finite étale F -group, then G is linearly reductive if

and only if char F ∤ #G .

Definition (slightly informal)
An algebraic stack X is tame if every point x ∈ X(F ) over any
field F has a finite linearly reductive stabilizer group
AutX(x)/F .

Example
▶ Y(1)k is tame iff char k ̸= 2, 3.
▶ Y0(2)k is tame iff char k ̸= 2.
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Prelude to the main result II: Brauerlessness

Definition
A tame algebraic stack X is locally Brauerless if,
for any of its geometric stabilizer groups G/F s ,
the group π0(G) of G ’s connected components satisfies

H3(π0(G),Z) = 0.

Theorem (A., in preparation)
Let X be a locally Brauerless tame algebraic stack with coarse
space map c : X ! X. Then, R2c∗Gm = 0.

Example
H3(Z/nZ,Z) = 0 for all n, so stacks whose stabilizers are all of
the form µn are tame and locally Brauerless.

Niven Achenjang (MIT) On Brauer groups of stacky curves October 6, 2024 8 / 12



On Brauer
groups of

stacky curves

Niven
Achenjang

Preliminaries

Examples

General Result

Statement of the main result
Notation
If G is a commutative, finite group scheme over a field k, we
write G∨ := Hom(G ,Gm) for its Cartier dual.

Theorem (A., in preparation)
Suppose we’re given

X Y X︸︷︷︸
smooth curve/k = k

G-gerbe root stack

for some finite, commutative linearly reductive group G/k.
If X is locally Brauerless, then BrX ≃ H1(X ,G∨).

Remark
The above isomorphism H1(X ,G∨)

∼
−! BrX is totally

non-explicit, but it would be interesting to remedy this.
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Some consequences
Example (our favorite modular curves)

▶ Take X = Y(1)k with 6 ∈ k×. Then, G = µ2 so
Br Y(1)k

∼= H1(A1,Z/2Z) = 0.
▶ Take X = Y0(2)k with 2 ∈ k×. Then, G = µ2 so

Br Y0(2)k
∼= H1(A1 \ {0},Z/2Z) = Z/2Z.

Remark (over a perfect field)
Say k is a perfect field. Then, there is a spectral sequence
relating Hi(X,Gm) to Hi(k,Hj(Xk ,Gm)). If X(k) ̸= ∅ and X is
both proper and geometrically integral, then it produces the
short exact sequence

0 −! Br k −! ker
(
H2(X,Gm) ! H1(Xk ,G

∨)
)

−! H1(k,PicXk) −! 0

Niven Achenjang (MIT) On Brauer groups of stacky curves October 6, 2024 10 / 12



On Brauer
groups of

stacky curves

Niven
Achenjang

Preliminaries

Examples

General Result

Proof sketch
Recall the coarse space c : X ! X factors as X

π
−!
G

Y
ρ

−−!
root

X .

(1) Use the Leray spectral sequence
Hi(X ,Rjc∗Gm) =⇒ Hi+j(X,Gm) to produce
H2(X ,Gm) = 0 −! ker

(
H2(X,Gm) ! H0(X ,R2c∗Gm)

)
−! H1(X ,R1c∗Gm) −! 0 = H3(X ,Gm)

(2) Since X is tame and locally Brauerless, we have
R2c∗Gm = 0 from which we deduce
H2(X,Gm)

∼
−! H1(X ,R1c∗Gm).

(3) Use the Grothendieck spectral sequence
Riρ∗Rjπ∗Gm =⇒ Ri+jc∗Gm to produce

0 −! R1ρ∗Gm −! R1c∗Gm −! G∨ −! 0 = R2ρ∗Gm

(4) Note that R1ρ∗Gm is supported on a finite k-scheme and
so is acyclic. We deduce H1(X ,R1c∗Gm)

∼
−! H1(X ,G∨).
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Summary
▶ We defined Brauer groups BrX = H2(X,Gm). These give

rise to obstructions to points on varieties.
▶ Stacky curves are essentially curves w/ finite stabilizer

groups attached to each point (e.g. modular curves,
generalized Fermat curves).

▶ A stack is tame if all its stabilizer groups are finite linearly
reductive groups (e.g. µn).

▶ We identified a condition (‘locally Brauerless’) which
guarantees that that a tame stacky curve X/k = k with
coarse space X and ‘generic stabilizer’ G/k has Brauer
group BrX ≃ H1(X ,G∨).

Thank you!
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