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Divisor Functions

Definition

Fix some ¢ € C. The divisor function o, : N — C associated to c is

given by
oe(n) =Y d.
dln

Remark: For this talk 0 ¢ N.
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Divisor Functions

Definition

Fix some ¢ € C. The divisor function o, : N — C associated to c is

given by

oe(n) =Y d.

dln

Remark: For this talk 0 ¢ N.

Example

Fix a prime p and pick some o« € N. Then,

oc(p) =1+p°

1 _p(a+1)c
oe(p®) =1+p°+-- - +p* = T1_p
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The Question

Theorem (Laatsch, 1986)
o0_1(N) is a dense subset of [1,00). That is,

o_1(N) = [1,00).
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The Question

Theorem (Laatsch, 1986)
o0_1(N) is a dense subset of [1,00). That is,

o_1(N) = [1,00).

Question

Is 0.(N) always connected?
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The Answer (and a new Question)

Answer: No

Example
Consider ¢ = —2. Then,

neven = o_3(n) > 1+2i2 = g

2

nodd = o_3(n) < Zm =
d>1

Hence, 0_2(N) has a gap (%2, %)
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The Answer (and a new Question)

Answer: No

Example
Consider ¢ = —2. Then,

neven => o.3(n) > 1+5 = 3

2
nodd = o_2(n) < > (Qd—il)g =
d>1

Hence, 0_2(N) has a gap (%2, %)
Question
Fix some r > 1 and let c = —r. What can we say about the number of
connected components of o_,(N)?¢
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Previous Results

Notation

Let C, denote the number of connected components of o_,(N)

Theorem (Defant, 2015)
There is a number n ~ 1.88779, now called the Defantstant, s.t

Cr=1 < re(0,n)
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Previous Results

Notation

Let C, denote the number of connected components of o_,(N)

Theorem (Defant, 2015)
There is a number n ~ 1.88779, now called the Defantstant, s.t.

Cr=1 < re(0,n)

Theorem (Defant, 2016)

C, — 00 as r — oo.
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Previous Results

Notation

Let C, denote the number of connected components of o_,(N).

Theorem (Defant, 2015)
There is a number n ~ 1.88779, now called the Defantstant, s.t.

Cr=1 < re(0,n)

Theorem (Defant, 2016)

C, — 00 as r — oo.

Theorem (Sanna, 2017)
C, < oo forallrT > 1.
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Known Results, Continued

Remark: We know that C) is always finite and can be arbitrarily large.
It seems reasonable to conjecture that it can take on all finite values.
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Remark: We know that C) is always finite and can be arbitrarily large.
It seems reasonable to conjecture that it can take on all finite values.

Theorem (Zubrilina, 2017)
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Known Results, Continued

Remark: We know that C) is always finite and can be arbitrarily large.
It seems reasonable to conjecture that it can take on all finite values.

Theorem (Zubrilina, 2017)
For allr > 1, C, # 4. J
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Known Results, Continued

Remark: We know that C) is always finite and can be arbitrarily large.
It seems reasonable to conjecture that it can take on all finite values.

Theorem (Zubrilina, 2017)

For allr > 1, C, # 4. J
Definition
We say m € N is a Zubrilina number if C; # m for all » > 1. J
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Known Results, Continued

Remark: We know that C) is always finite and can be arbitrarily large.
It seems reasonable to conjecture that it can take on all finite values.

Theorem (Zubrilina, 2017)
For allr > 1, C, # 4.

Definition

We say m € N is a Zubrilina number if C; # m for all » > 1.

Theorem (A., Berger)

6 is a Zubrilina number.
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A Simplification
Definition (Steinitz, 1910)

A Steinitz (or supernatural) number is a formal product

n= H P oy € Zxo U {oo}.

p prime

We write vp(n) = ap, and we let S denote the set of all Steinitz
numbers.
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A Simplification
Definition (Steinitz, 1910)

A Steinitz (or supernatural) number is a formal product

n= H P oy € Zxo U {oo}.

p prime

We write vp(n) = ap, and we let S denote the set of all Steinitz
numbers.

Theorem (A., Berger)

Given c € C with R(c) < —1, we can extend o to a function S — C by
preserving multiplicativity and setting

oc(p™) = lim o.(p") =

n—00 1—pc

When we do so, we get that o.(N) = 0.(S).

v
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Mighty Primes
Definition (Zubrilina, 2017)
Given r > 1, we say that a prime p is r-mighty if

a_r(p)=1+ir> H 7 L _ H o_r(¢™).

— g
p prime ¢>p q prime ¢>p

Niven Achenjang (Stanford) Gaps in Divisor Functions



Mighty Primes
Definition (Zubrilina, 2017)

Given r > 1, we say that a prime p is r-mighty if

o_(p) =1 +1% > H 1 ! = H o_r(q>).

— q_’l"

prime ¢>p prime ¢>p
Example (2 is 2-mighty)
For r = 2, we have that

5 w2 1

22)==->—=
-22)=7>73 H 1-q2
prime ¢>2
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Mighty Primes
Definition (Zubrilina, 2017)
Given r > 1, we say that a prime p is r-mighty if
1 1
o) =1+ 2> ]I === Il o

—q "
prime ¢>p prime ¢>p

Example (2 is 2-mighty)

For r = 2, we have that

5 72 1
022 =7 > 5= 11 :

B —
prime ¢>2 q
y
Notation
o Let p, denote the kth prime.
y
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Mighty Primes
Definition (Zubrilina, 2017)

Given r > 1, we say that a prime p is r-mighty if

G—T(p):l+%> 11 : LI I @)

— q—’l"

prime ¢>p prime ¢>p
Example (2 is 2-mighty)
For r = 2, we have that
5 w2 1
22)==->—= .
-22)=7>73 H 1-q2
prime ¢>2

Notation
o Let p, denote the kth prime.

o Let P, denote the smallest prime larger than all 7-mighty primes.
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r-mighty Primes — Gaps

Theorem (Zubrilina, 2017)
If pr is an r-mighty prime, then

( H O'—T(p?o)ao'—r(pk)

t=k+1

is a gap of o_r(S).

)
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r-mighty Primes — Gaps

Theorem (Zubrilina, 2017)
If pr is an r-mighty prime, then

( I1 a_r<p;>°),o—_r(pk>>

t=k+1

is a gap of o_r(S).

Theorem (A., Berger)
If q, pi. are r-mighty primes with ¢*> < p, then

<0'—T(Q) 11 a—r(pi’o),d—r(qpk)>

t=k+1

is a gap of o_(S).
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Gaps Coming From Other Places

Lemma
If1<d<r—1, then

1 =1
g > Z ﬁ
n=d+1
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Gaps Coming From Other Places

Lemma
If1<d<r—1, then

1 =1
E > Z F
n=d+1

Theorem (A., Berger)

If n is (r — 1)-smooth and square-free, then o_,(n) is the right endpoint
of a gap of o_,(S).
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Gaps Coming From Other Places

Lemma
If1<d<r—1, then

1 =1
g > Z F
n=d+1

Theorem (A., Berger)

If n is (r — 1)-smooth and square-free, then o_,(n) is the right endpoint
of a gap of o_,(S).

v

Corollary

Forr > 1, we have C, > om(r=1),
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Structure of General Gaps

Theorem (A., Berger)
Let (0_r(a),0_(b)) with a,b €S be a gap of o_,(S). Then,

o Ifp> P,, then
vp(a) = oo and vp(b) = 0.
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Structure of General Gaps

Theorem (A., Berger)

Let (0_r(a),0_(b)) with a,b €S be a gap of o_,(S). Then,
o Ifp> P,, then
vp(a) = oo and vp(b) = 0.

o Ifp < P, and vp(a) < oo, then

log P, _
log p

vp(a) < 1.

o Ifp < P, then
log P,

logp

vp(b) <
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Structure of General Gaps

Theorem (A., Berger)

Let (0_r(a),0_(b)) with a,b €S be a gap of o_,(S). Then,
o Ifp> P,, then
vp(a) = oo and vp(b) = 0.

o Ifp < P, and vp(a) < oo, then

log P, _
log p

vp(a) < 1.

o Ifp < Py, then
log P,

logp

vp(b) <

v

Remark: The above theorem implies that b must be a natural number.
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Open Problems

Conjecture (Defant, 2018) J

There are infinitely many Zubrilina numbers.
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Open Problems

Conjecture (Defant, 2018)

There are infinitely many Zubrilina numbers.

Conjecture (A., Berger)

C. is monotone in 7.
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