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Brauer groups

Definition
For a scheme or algebraic stack X, we define its Brauer group
to be

BrX := H%(X,G,).

If R is a ring, then we set Br R := Br(Spec R).

Example
Fix a prime/place p < co. Then,
invp: BrQ, — Q/Z
which is an isomorphism if p < oo and has image %Z/Z if
p =00 (Qx =R).
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BrY(1)s

Arithmetic motivation for studying Brauer groups
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There is an exact sequence

. Preliminaries
0— BrQ — (P Bro, =% Q/z — 0.

p<oo
Consequently, given X and o € Br X, one can define

X(Ag)® = {x € X(Ag) : z:inv,J a(xp) = 0} O X(Q)

X(Ag)® = (] X(Ag)" > X(Q).
a€eBr X
Note: X(Ag)®" =0 = X(Q) = 0.

Remark

X(Ag)Br gives an (often computable) obstruction to the
existence of rational points. Variants exist for integral points.
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Bry(1)s

Our star example
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Let Y(1) denote the moduli stack of elliptic curves. Achenjang
,Uz2 ,u/6 /1'4 Preliminaries
sy « o Al

0 1728
Figure: Artist’s rendition of Y(1)x (accurate only if 6 € k).

Theorem (A., '24)
Let S/7Z[1/2] be a regular, noetherian scheme. Then,
Bry(1)s ~ Br At @ HY(S,Z/12Z).
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BrY(1)s

Our star example

Niven

Let Y(1) denote the moduli stack of elliptic curves. Achenjang
,Uz2 /1/6 /1'4 Preliminaries
sy « o Al
0 1728

Figure: Artist’s rendition of Y(1)x (accurate only if 6 € k).

Theorem (A., '24)
Let S/7Z[1/2] be a regular, noetherian scheme. Then,
Bry(1)s ~ Br At @ HY(S,Z/12Z).

Note: Y(1) is everywhere wild in characteristic 2.

Note: Want this computation over S = Z,Z[1/2],Z[1/6], etc.
for computing integral Brauer obstructions.

Note: Previously computed for S a field (and a couple other

specific cases) by Antieau—Meier, Shin, Di Lorenzo—Pirisi.
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BrY(1)s

Strategy for computing BrY(1)s
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(1) Compute BrY(1)g over strictly henselian local rings R
(e.g. R = Q) via the coarse moduli space (cms)

c: Y(L)gr — Ak.

Preliminaries

Remark
“via the cms” here really means “via its Leray spectral

sequence’.

(2) Compute BrY(1)s via the structure map f: Y(1)s — S.
Remark
» We computed (the stalks of) R2£.G, in part (1).

» This amounts to the usual Hochschild—Serre/Galois
descent spectral sequence when S = Spec k is a field.
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BrY(1)s

Useful cohomological vanishing result
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Definition

A tame algebraic stack X is locally Brauerless if, 1
tep 1: via

for any of its geometric stabilizer groups G, one has coarse space

H3(G,Z) = 0.

Theorem (A. '24, generalizing Meier '18)
Let X be a locally Brauerless tame algebraic stack with coarse
space map c: X — X. Then, R?¢,G,, =

Example

H3(Z/n7Z,7) = 0 for all n, so stacks whose stabilizers are all of

the form p, are tame and locally Brauerless, e.g.
Y(1)s is tame and locally Brauerless (if S/Z[1/6]).

v
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BrY(1)s

Computing BrY(1)g, part | -

Achenjang

Let R be a regular, noetherian strictly henselian local Sep 1 v

Z[1/6]-algebra. Let c: Y(1)g — A} be the coarse space map. coarse space
» Y(1)g is tame and locally Brauerless = R2c.G,, = 0.
» Leray spectral sequence produces an exact sequence

0 --» H2(AL, Gm) <5 H2(Y(1)R, Gm) — HY(AL, R c,G ).

Remark
First map above is injective because there exists a dense open
U C A} admitting a section U — Y(1)g of c.

Goal: Compute H'(AL, R1c,Gp).
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Computing BrY(1)g, part Il

Have
0 — H2(AL, Gpm) <5 H2(Y(1)R, Gm) — HY(AL, Rc,Gp)
Goal: Compute Hl(A}?,Rlc*Gm). f;?:sels;\::e
n2 He Ha
e . . Al
0 1728

Figure: Artist’s rendition of Y(1)g.

» There is an exact sequence (of sheaves on Al)
PiC(Buz)

1
R'c,.Gnm — Z/27Z — 0.
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Computing BrY(1)g, part Il

Have
0 — H2(AL, Gpm) <5 H2(Y(1)R, Gm) — HY(AL, Rc,Gp)
Goal: Compute Hl(A}?,Rlc*Gm). f;?:sels;\::e
n2 He Ha
e . . Al
0 1728

Figure: Artist’s rendition of Y(1)g.

» There is an exact sequence (of sheaves on Al)
PiC(Buz)

—~ =
0 — 2/32, ®Z/2L . — R'¢c.Cy — Z/2Z — 0.

1728
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Computing BrY(1)g, part Il

Have
0 — HY(AL, Gp) < H2(Y(1)g, Gm) > HY(AL R ,Gpn) = 0.
Goal: Compute Hl(A}?,Rlc*Gm). f;?:sels;\::e
n2 He Ha
e . . Al
0 1728

Figure: Artist’s rendition of Y(1)g.

» There is an exact sequence (of sheaves on Al)
PiC(Buz)

—~ =
0 — 2/32, ®Z/2L . — R'¢c.Cy — Z/2Z — 0.

1728
» Taking cohomology — Hl(A,l?,Rlc*Gm) =0.
> Cc*: H2(A1 ,Gm) = H2(H(1)R7Gm)-
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Computing BrY(1)s, part |
Let S be a regular, noetherian Z[1/6]-scheme. Consider

f
/_\
Y(1)s —— As —— S

Lemma (previous slide)

R2?f,Gm <~ R%g.Gpy
(on stalks: H*(Y(1)r, Gm) =~ H*(Ak, Gp)).

BrY(1)s
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Step 2: via
Ragiadiic]
morphism

Lemma

RY.Gn = Z/12Z  (Fulton—Olsson, '10)
Rlg.G, =0 (on stalks: Pic R[x] =0)
Lemma

Gm = gGm=Gp.  (on stalks: R[x]* = R*)

v
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Computing BrY(1)s, part Il

s\—/> A

» Consider spectral sequences
E} =H(S,RIAGn) = H™Y(Y(1)s,Gnm)
F) =H(S,Rig.Gn) = H(AL, Gm)

» Compute that

Step 2: via
Ragiadiic]

morphism

ER2 ~F%2 and EX ~ FX®
but EX ~ HY(S,Z/12Z) £ 0 ~ F1
» Conclude existence of short exact sequence

0 — H2(AL, G ) <5 H2(Y(1)s, Gm) — HY(S,Z/12Z) — 0.
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BrY(1)s

Additional remarks
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» One can construct an explicit splitting of
0 — H2(AL, Gm) < H2(Y(1)s, Gm) — HY(S,Z/12Z) — 0.

» We needed S/Z[1/6] for Y(1)s to be tame. However, in
characteristic 3, it's tame away from j-invariant 0 so
passing from 6 ~~» 2 only requires carrying out an
additional computation “at a single point” (to ensure
vanishing of R%c.G,,).

» This strategy applies to other stacky curves and simplifies
if you work over a perfect field k. In the simplest case,

Theorem (A., '24, informally stated here)

If X is a tame, locally Brauerless stacky curve over k with
coarse space X and generic stabilizer G/k, then
BrX ~ HY(X, GY), GV := Cartier dual of G = Hom(G,G,).
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BrY(1)s

Summary

» We defined Brauer groups BrX = H?(X,G,). These give
rise to obstructions to points on varieties.
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» For future applications to computing such obstructions for
integral points, one would like to compute these for stacks
over Z and its localizations.

» Under some geometric assumptions (being tame and
locally Brauerless), we showed that one can carry out such
computations for stacky curves.

» We worked out the example of computing BrY(1)s, where
Y(1) is the moduli space of elliptic curves, over fairly
general S.

Thank you!
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