MODULARITY SEMINAR: TAYLOR-WILES DEFORMATIONS

KENTA SUZUKI

ABSTRACT. We will closely follow [Gee22, §3], and go through some explicit com-
putations of local deformation rings, in the setting ¢ # p (i.e., p-adic representa-
tions of f-adic Galois groups).
Let p # ¢, let K/Qy be a finite extension, and let L/Q, be an algebraic extension.
Suppose p: G — GLy (k) is a representation, and let x be a character Gx — Of,

i.e., a character G?}’ ~ K*. Recall that our goal is to characterize R%,x’ which we
recall is the representing object of the functor

RE’X: Co, — Sets

(A, m) {continuous representations p: G — GLQ(A)}
) A

such that p = p mod m4 and det(p) = x

The full deformation ring has several irreducible components, and to extract each
component, we control what the p-adic representation Gx — GLQ(@p) looks like,
for each homomorphism A — Q,. Each Galois representation Gx — GL2(Q,)
can be described in a more combinatorial way, a Weil-Deligne representation, by
Grothendieck’s monodromy theorem.

More precisely, Grothendieck’s monodromy theorem defines a map

{continuous representations Gx — GL2(Q,)} — {inertial WD-type},
and for each inertial WD-type 7 we consider the deformation problem

Rlﬁj,x#: Co, — Sets

(A, my) continuous representations p: G —>§L2(A) such that p = p mod m4
A and det(p) = x, and for all ¢y: A — Q,, ¥ o p has inertial WD-type 7 [

These functors turn out to be representable closed sub-functors, and give rise to all
components of T\’%X.

1. GROTHENDIECK’S MONODROMY THEOREM

Let ¢ # p be two primes. Let K/Q, be a finite extension, with residue field of
size qx. We will consider /-adic representations of G, i.e., a representation into a
finite-dimensional L-vector space, where L/Qy is algebraic.

Definition 1.0.1. Let Wg be the Weil group of K. A Weil-Deligne represen-
tation of Wik on a finite-dimensional L-vector space V is a pair (r, N) where
1
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r: Wk — GL(V) is a continuous semisimple representation, and N: V. — V is
an endomorphism, such that for all o € W,

r(o)Nr(o)™! = qI_(UK(a)N.
A Weil-Deligne representation is bounded if for all o € Wy the operator r(o) is

bounded, i.e., the determinant is in O and the characteristic polynomial is in
OL[X] (equivalently, all of the eigenvalues are in (’)%)

Now recall Grothendieck’s monodromy theorem ([Gee22, Prop 2.18], [BH06, Thm 32.5],
[ST68)):

Proposition 1.0.2. Suppose { # p, let K/Qy be a finite extension, let L/Q, be an
algebraic extension, and let V' be a finite-dimensional L-vector space. Fix:

e ¢, a lift of Fri; and

e a compatible system ((m)(m,e)=1 of primitive roots of unity.
Then for any continuous representation p: Gxg — GL(V) there is a finite extension
K'/K and a uniquely determined nilpotent endomorphism N:V — V such that for
all o € Ik,

p(o) = exp(Ni¢p(0)),

where for all 0 € Wk, we have p(a)Np(o)™t = q[_(vK(J)N, where t¢ is an isomor-

phism I /Py =~ Hp# Lp.
Moreover, there is an equivalence of categories:

bounded Weil-Deligne representations
on finite dimensional L-vector spaces

~

continuous representations of G on
finite-dimensional L-vector spaces

p — (V7 7", N)7
where (1) := p(T) exp(—tg,p(go_”K(T)T)N).
Grothendieck’s theorem allows us to define the inertial WD-type of a representa-

tion p: Gx — GL2(Q,):

Definition 1.0.3. Let p: Gg — GLQ(@p) be a continuous representation, and let
(r, N) be the associated Weil-Deligne representation. The inertial WD-type of p is

(rlrps V).

Now, fix a p: Gxg — GLa(kr). Then we have the following general result on R%X
[Gee22, Thm 3.31]:

Theorem 1.0.4. RﬁD,x is equidimensional of Krull dimension 4, and the generic
fiber RPD»( has Krull dimension 3. Furthermore:
(a) The function which takes a Q,-points x: R%X[l/p] — Q, to WD(z 0 p7)|1,
(forgetting N ) is constant on the irreducible components of R%X[l/p]

(b) The irreducible components of R%X[l/p] are all reqular, and there are only
finitely many of them.

Now, we can define the deformation ring with fixed inertial WD type:
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Proposition-Definition 1. Let 7 be an inertial WD-type. Then R%l,x has a unique

reduced p-torsion free quotient RY . _ such that for a continuous homomorphism

- PXT -
Y R%x — Q,, i.e., a Galois representation 1 o o~ G — GL2(Q,), the following
are equivalent:

e ¢ o p has inertial WD-type 7

e the homomorphism 1 factors through R%X,T.

In other words,

R%X’T: Co, — Sets

(A my) continuous representations p: Gxg — GLa(A) such that p = p mod my
A and det(p) = x, and for all ¥: A — @p, 1 o p has inertial WD-type 7 [~

is a closed sub-functor of 7'\’%”X. When RY

T is nonzero it has Krull dimension 4.

Proof. We will prove that R%XJ is a closed sub-functor. It suffices to check the

following: let (A,m4) € Co, be geometrically irreducible, and let ¥,¢': A — Q,
be two homomorphisms. Then, 1) o p and 1)’ o p have isomorphic restrictions to I
(hence have the same inertial WD-type).

Now, the restriction of p to I factors through some finite group H, say of order m.
Then let E := A[l/p] ®1 L((m), which is still an integral domain. Now we see that
1o p and 1’ o p have the same trace, hence are isomorphic as H-representations. [

In the following sections, we will go through some particular examples of these
deformation rings.

2. TAYLOR-WILES DEFORMATIONS
Now, suppose p: Gxg — GL, (k) is unramified, that p(Frg) has distinct eigen-

values in kz,, that g = 1 (mod p), and let x be an unramified character G — O7,

—

i.e., a character of Gf}}) ~ KX. Our goal is to characterize RﬁDx’ which we recall is
the representing object of the functor

R%X: Co, — Sets
(A,mA) — {

The following is [Gee22, Lemma 3.33]:

continuous representations p: Gx — GLa(A)
such that p = p mod my4 and det(p) =x [~

Lemma 2.0.1. Let g — 1 be exactly divisible by p™, with m > 0. Then

Rgx ~ Or[[z,y,a,s]]/((1+ s)P" —1).

Furthermore, if o € Gg is a lift of Fri, then pP(p) is conjugate to a diagonal
matrix.

Proof. First of all, p™ is tamely ramified, i.e., p”(Px) = {1}, since p”(Pk) is a pro-
¢-subgroup of the pro-p-group ker(GLg(R%X) — GLa(kz)). Now let ¢ € Gi/Pxk
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be a fixed lift of Frg, and let o be a topological generator of I/ Pk, which can be
chosen so

go_lagp = oK,
Remark 2.0.2. The importance of ¢ and p come from the following: Gg /Py is
topologically generated by ¢ and p, with the only relation o~ lop = 0%,
Write
ply) = <a ﬁ)
for o, B € ki

Now, let (A,my) € Cop, and let p: Gg — GL2(A) be a lift of 5. Then by
Hensel’s lemma, there are a,b € my such that p(p) has characteristic polynomial
(X —(a+a))(X = (B+D)), ie., p(p) has eigenvalues o + a and 8 + b. Since the
determinant is x(¢), we have 5+ b = x(¢)/(a + a). Moreover, the eigenvectors ((1))
and ([1)) of p(¢) lift to eigenvectors:

o) (1) =ara (})
pl) (?) =(8+1) @ ,

Let p' be p but with a change of basis, i.e., by the conjugation of p by <; ‘?)

where z,y € my4.

a+a

Thus p'(¢) = . Now, since p(p) = 1 since p is unramified, so there

plo) = <1:s 1Jtrv)'

()10 ()0 () = /(o)
is a diagonal matrix, we see t = u = 0. Moreover, since the determinant of p'(o),
which is x(o), is 1, we have (1 + s)(1 +v) = 1.

The commutator relation further implies that (1 + s)% =1+ s. Since 1 + s is
invertible, we see that (1 + s)%~! = 1. Now recall that qx — 1 = p™j where j is
coprime to p. Since 1 + s € 1 + m4 where 1 + my4 is a pro-p group, the j-th power
map is invertible, and hence (1 + s)P" = 1.

All the above arguments have produced a bijection:

B+0b
are s,t,u,v € my such that

Since

continuous representations p: Gx — GLa(A)
such that p = p mod m4 and det(p) = x

P(z,y,a,s) «— (.’B, Yy, a, 3)7

R%X(A,mA) = {

} ~ {(z,y,a,s) € mjﬁ (1 —i—s)pm

1}
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p(«p)z(i Z{>1 <a+a X(@)/(am)) <310 g1/>
=) (T ) G )

3. TAYLOR’S Thara avoidance DEFORMATIONS

where

Now, a natural question is:
Question 3.0.1. What happens when p(Frg) has an eigenvalue with multiplicity?

Of course, it suffices to treat the case when p is trivial (since one can twist by a
central character). Thus, to recap, our assumptions now are:

K/Qy is a finite extension
e : G — GLa(kg) is the trivial representation
e q;, =1 (mod p)
e Y is unramified, and ¥ = 1.
Now, again p” is tamely ramified, so p™ is determined by pP(c) and p™(y), by
Remark 2.0.2.
Now, let us make the following definition:

Definition 3.0.2. (1) Let Py, be the minimal ideal of R%X such that p~ (o) = I

1+ Y

(mod Py;). In other words, writing p~ (o) = < Sl

> for z,y, z,w €

m%x, we let Py = (z,y,2,w) C m%x.

(2) For any root of unity ( € O, let P, be the minimal ideal of RﬁD,x modulo
which p”(o) has characteristic polynomial (X —¢)(X —¢~!). In other words,
P¢ = (trp™(o) = ¢ — (7 detp7(0) — 1).

(3) Let P, be the minimal ideal of RﬁD,x modulo which p~(c) has characteristic
polynomial (X —1)2, and qx (tr p~(0))? = (1 4 qx)? det p7 ().

Write RS, , for RG /P..

Remark 3.0.3. The relation in (3) holds in particular when p” (o) = (1 1)

The ideals defined above have nice ring-theoretic properties:

Proposition 3.0.4. The minimal primes of RﬁD,x are precisely \/Pur, VPm, and
\/P¢ for ¢ #1. Moreover, \/P1 = vV/Puw N VPnm.
Now, we have [Gee22, Theorem 3.38]:

Theorem 3.0.5. We have R%,x,l/)‘ = R%X:C/)\' Furthermore,

(1) If ¢ # 1 the R%,X,g[l/p] is geometrically irreducible of dimension 3
(2) R%X’ur is formally smooth over Op (and thus geometrically irreducible) of

relative dimension 3
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(3) R%X,m[l/p] is geometrically irreducible of dimension 3.

(4) SpecRpE%1 = SpecRpD’X’ur U SpecR%X,m and SpecRng/)\ = SpecRﬁD%ur/)\ U

SpecRnx’m/)\ are both a union of two irreducible components, and have rel-

atiwe dimension 3.
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