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Abstract. We will closely follow [Gee22, §3], and go through some explicit com-
putations of local deformation rings, in the setting ℓ ̸= p (i.e., p-adic representa-
tions of ℓ-adic Galois groups).

Let p ̸= ℓ, let K/Qℓ be a finite extension, and let L/Qp be an algebraic extension.
Suppose ρ : GK → GLn(kL) is a representation, and let χ be a character GK → O×

L ,

i.e., a character Gab
K ≃ K̂×. Recall that our goal is to characterize R□

ρ,χ, which we
recall is the representing object of the functor

R□
ρ,χ : COL

→ Sets

(A,mA) 7→
{
continuous representations ρ : GK → GL2(A)

such that ρ = ρ mod mA and det(ρ) = χ

}
.

The full deformation ring has several irreducible components, and to extract each
component, we control what the p-adic representation GK → GL2(Qp) looks like,

for each homomorphism A → Qp. Each Galois representation GK → GL2(Qp)
can be described in a more combinatorial way, a Weil-Deligne representation, by
Grothendieck’s monodromy theorem.

More precisely, Grothendieck’s monodromy theorem defines a map

{continuous representations GK → GL2(Qp)} → {inertial WD-type},

and for each inertial WD-type τ we consider the deformation problem

R□
ρ,χ,τ : COL

→ Sets

(A,mA) 7→
{
continuous representations ρ : GK → GL2(A) such that ρ = ρ mod mA

and det(ρ) = χ, and for all ψ : A→ Qp, ψ ◦ ρ has inertial WD-type τ

}
.

These functors turn out to be representable closed sub-functors, and give rise to all
components of R□

ρ,χ.

1. Grothendieck’s monodromy theorem

Let ℓ ̸= p be two primes. Let K/Qp be a finite extension, with residue field of
size qK . We will consider ℓ-adic representations of GK , i.e., a representation into a
finite-dimensional L-vector space, where L/Qℓ is algebraic.

Definition 1.0.1. Let WK be the Weil group of K. A Weil-Deligne represen-
tation of WK on a finite-dimensional L-vector space V is a pair (r,N) where
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r : WK → GL(V ) is a continuous semisimple representation, and N : V → V is
an endomorphism, such that for all σ ∈WK ,

r(σ)Nr(σ)−1 = q
−vK(σ)
K N.

A Weil-Deligne representation is bounded if for all σ ∈ WK the operator r(σ) is
bounded, i.e., the determinant is in O×

L and the characteristic polynomial is in

OL[X] (equivalently, all of the eigenvalues are in O×
L
).

Now recall Grothendieck’s monodromy theorem ([Gee22, Prop 2.18], [BH06, Thm 32.5],
[ST68]):

Proposition 1.0.2. Suppose ℓ ̸= p, let K/Qℓ be a finite extension, let L/Qp be an
algebraic extension, and let V be a finite-dimensional L-vector space. Fix:

• φ, a lift of FrK ; and
• a compatible system (ζm)(m,ℓ)=1 of primitive roots of unity.

Then for any continuous representation ρ : GK → GL(V ) there is a finite extension
K ′/K and a uniquely determined nilpotent endomorphism N : V → V such that for
all σ ∈ IK′,

ρ(σ) = exp(Ntζ,p(σ)),

where for all σ ∈ WK , we have ρ(σ)Nρ(σ)−1 = q
−vK(σ)
K N , where tζ is an isomor-

phism IK/PK ≃
∏

p ̸=ℓ Zp.
Moreover, there is an equivalence of categories:{
continuous representations of GK on
finite-dimensional L-vector spaces

}
≃

{
bounded Weil-Deligne representations
on finite dimensional L-vector spaces

}
ρ 7→ (V, r,N),

where r(τ) := ρ(τ) exp(−tζ,p(φ−vK(τ)τ)N).

Grothendieck’s theorem allows us to define the inertial WD-type of a representa-
tion ρ : GK → GL2(Qp):

Definition 1.0.3. Let ρ : GK → GL2(Qp) be a continuous representation, and let
(r,N) be the associated Weil-Deligne representation. The inertial WD-type of ρ is
(r|IF , N).

Now, fix a ρ : GK → GL2(kL). Then we have the following general result on R□
ρ,χ

[Gee22, Thm 3.31]:

Theorem 1.0.4. R□
ρ,χ is equidimensional of Krull dimension 4, and the generic

fiber R□
ρ,χ has Krull dimension 3. Furthermore:

(a) The function which takes a Qp-points x : R
□
ρ,χ[1/p]→ Qp to WD(x ◦ ρ□)|IK

(forgetting N) is constant on the irreducible components of R□
ρ,χ[1/p]

(b) The irreducible components of R□
ρ,χ[1/p] are all regular, and there are only

finitely many of them.

Now, we can define the deformation ring with fixed inertial WD type:
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Proposition-Definition 1. Let τ be an inertial WD-type. Then R□
ρ,χ has a unique

reduced p-torsion free quotient R□
ρ,χ,τ such that for a continuous homomorphism

ψ : R□
ρ,χ → Qp, i.e., a Galois representation ψ ◦ ρ□ : GK → GL2(Qp), the following

are equivalent:

• ψ ◦ ρ□ has inertial WD-type τ
• the homomorphism ψ factors through R□

ρ,χ,τ .

In other words,

R□
ρ,χ,τ : COL

→ Sets

(A,mA) 7→
{
continuous representations ρ : GK → GL2(A) such that ρ = ρ mod mA

and det(ρ) = χ, and for all ψ : A→ Qp, ψ ◦ ρ has inertial WD-type τ

}
.

is a closed sub-functor of R□
ρ,χ. When R□

ρ,χ,τ is nonzero it has Krull dimension 4.

Proof. We will prove that R□
ρ,χ,τ is a closed sub-functor. It suffices to check the

following: let (A,mA) ∈ COL
be geometrically irreducible, and let ψ,ψ′ : A → Qp

be two homomorphisms. Then, ψ ◦ ρ and ψ′ ◦ ρ have isomorphic restrictions to IF
(hence have the same inertial WD-type).

Now, the restriction of ρ to IF factors through some finite groupH, say of orderm.
Then let E := A[1/p]⊗L L(ζm), which is still an integral domain. Now we see that
ψ ◦ρ and ψ′ ◦ρ have the same trace, hence are isomorphic as H-representations. □

In the following sections, we will go through some particular examples of these
deformation rings.

2. Taylor-Wiles deformations

Now, suppose ρ : GK → GLn(kL) is unramified, that ρ(FrK) has distinct eigen-
values in kL, that qK ≡ 1 (mod p), and let χ be an unramified character GK → O×

L ,

i.e., a character of Gab
K ≃ K̂×. Our goal is to characterize R□

ρ,χ, which we recall is
the representing object of the functor

R□
ρ,χ : COL

→ Sets

(A,mA) 7→
{
continuous representations ρ : GK → GL2(A)

such that ρ = ρ mod mA and det(ρ) = χ

}
.

The following is [Gee22, Lemma 3.33]:

Lemma 2.0.1. Let qK − 1 be exactly divisible by pm, with m > 0. Then

R□
ρ,χ ≃ OL[[x, y, a, s]]/((1 + s)p

m − 1).

Furthermore, if φ ∈ GK is a lift of FrK , then ρ□(φ) is conjugate to a diagonal
matrix.

Proof. First of all, ρ□ is tamely ramified, i.e., ρ□(PK) = {1}, since ρ□(PK) is a pro-
ℓ-subgroup of the pro-p-group ker(GL2(R

□
ρ,χ) → GL2(kL)). Now let φ ∈ GK/PK
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be a fixed lift of FrK , and let σ be a topological generator of IK/PK , which can be
chosen so

φ−1σφ = σqK .

Remark 2.0.2. The importance of φ and ρ come from the following: GK/PK is
topologically generated by φ and ρ, with the only relation φ−1σφ = σqK .

Write

ρ(φ) =

(
α

β

)
for α, β ∈ kK .

Now, let (A,mA) ∈ COL
and let ρ : GK → GL2(A) be a lift of ρ. Then by

Hensel’s lemma, there are a, b ∈ mA such that ρ(φ) has characteristic polynomial
(X − (α + a))(X − (β + b)), i.e., ρ(φ) has eigenvalues α + a and β + b. Since the

determinant is χ(φ), we have β + b = χ(φ)/(α+ a). Moreover, the eigenvectors
(
1
0

)
and

(
0
1

)
of ρ(φ) lift to eigenvectors:

ρ(φ)

(
1
x

)
= (α+ a)

(
1
x

)
ρ(φ)

(
y
1

)
= (β + b)

(
y
1

)
,

where x, y ∈ mA.

Let ρ′ be ρ but with a change of basis, i.e., by the conjugation of ρ by

(
1 y
x 1

)
.

Thus ρ′(φ) =

(
α+ a

β + b

)
. Now, since ρ(φ) = 1 since ρ is unramified, so there

are s, t, u, v ∈ mA such that

ρ′(σ) =

(
1 + s t
u 1 + v

)
.

Since

ρ′(φ)−1ρ′(σ)ρ′(φ) = ρ′(σ)qK

is a diagonal matrix, we see t = u = 0. Moreover, since the determinant of ρ′(σ),
which is χ(σ), is 1, we have (1 + s)(1 + v) = 1.

The commutator relation further implies that (1 + s)qK = 1 + s. Since 1 + s is
invertible, we see that (1 + s)qK−1 = 1. Now recall that qK − 1 = pmj where j is
coprime to p. Since 1 + s ∈ 1 + mA where 1 + mA is a pro-p group, the j-th power
map is invertible, and hence (1 + s)p

m
= 1.

All the above arguments have produced a bijection:

R□
ρ,χ(A,mA) :=

{
continuous representations ρ : GK → GL2(A)

such that ρ = ρ mod mA and det(ρ) = χ

}
≃ {(x, y, a, s) ∈ m4

A : (1 + s)p
m
= 1}

ρ(x,y,a,s) ← (x, y, a, s),
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where

ρ(φ) =

(
1 y
x 1

)−1(
α+ a

χ(φ)/(α+ a)

)(
1 y
x 1

)
ρ(σ) =

(
1 y
x 1

)−1(
1 + s

(1 + s)−1

)(
1 y
x 1

)
. □

3. Taylor’s Ihara avoidance deformations

Now, a natural question is:

Question 3.0.1. What happens when ρ(FrK) has an eigenvalue with multiplicity?

Of course, it suffices to treat the case when ρ is trivial (since one can twist by a
central character). Thus, to recap, our assumptions now are:

• K/Qℓ is a finite extension
• ρ : GK → GL2(kL) is the trivial representation
• qL ≡ 1 (mod p)
• χ is unramified, and χ = 1.

Now, again ρ□ is tamely ramified, so ρ□ is determined by ρ□(σ) and ρ□(φ), by
Remark 2.0.2.

Now, let us make the following definition:

Definition 3.0.2. (1) Let Pur be the minimal ideal of R□
ρ,χ such that ρ□(σ) = I2

(mod Pur). In other words, writing ρ□(σ) =

(
1 + x y
z 1 + w

)
for x, y, z, w ∈

m□
ρ,χ, we let Pur = (x, y, z, w) ⊂ m□

ρ,χ.

(2) For any root of unity ζ ∈ O×
K , let Pζ be the minimal ideal of R□

ρ,χ modulo

which ρ□(σ) has characteristic polynomial (X−ζ)(X−ζ−1). In other words,
Pζ = (tr ρ□(σ)− ζ − ζ−1, det ρ□(σ)− 1).

(3) Let Pm be the minimal ideal of R□
ρ,χ modulo which ρ□(σ) has characteristic

polynomial (X − 1)2, and qK(tr ρ□(σ))2 = (1 + qK)2 det ρ□(φ).
Write R□

ρ,χ,• for R□
ρ,χ/P•.

Remark 3.0.3. The relation in (3) holds in particular when ρ□(σ) =

(
1 1

1

)
.

The ideals defined above have nice ring-theoretic properties:

Proposition 3.0.4. The minimal primes of R□
ρ,χ are precisely

√
Pur,

√
Pm, and√

Pζ for ζ ̸= 1. Moreover,
√
P1 =

√
Pur ∩

√
Pm.

Now, we have [Gee22, Theorem 3.38]:

Theorem 3.0.5. We have R□
ρ,χ,1/λ = R□

ρ,χ,ζ/λ. Furthermore,

(1) If ζ ̸= 1 the R□
ρ,χ,ζ [1/p] is geometrically irreducible of dimension 3

(2) R□
ρ,χ,ur is formally smooth over OL (and thus geometrically irreducible) of

relative dimension 3
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(3) R□
ρ,χ,m[1/p] is geometrically irreducible of dimension 3.

(4) SpecR□
ρ,χ,1 = SpecR□

ρ,χ,ur ∪ SpecR□
ρ,χ,m and SpecR□

ρ,χ,1/λ = SpecR□
ρ,χ,ur/λ ∪

SpecR□
ρ,χ,m/λ are both a union of two irreducible components, and have rel-

ative dimension 3.
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