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1 Lecture 1 (1/4/21): Motivation and History

“A lot more people than I expected are at a topics graduate course.” There are over 120 people and
counting. If we hit 200, this might (might) be the largest a UW math course has been.

1.1 Logistics

There is a website and an email list.
The goal of the course is to introduce the theory of algebraic spaces/stacks with moduli in mind. In

particular, with the moduli space of curves in mind. We would like to establish

Theorem 1.1. The moduli space Mg of stable curves of genus g ≥ 2 is a smooth, proper, and irreducible
Deligne-Mumford stack of dimension 3g − 3, which admits a projective course moduli space.

There is a lot to even define before saying something of the proof, and a lot of background material
that goes into it, so we will not give a complete proof.

Around 20 lectures (quarter system), each 80 minutes. They will be recorded and posted on Youtube.
Probably 60 minutes of real lecture and 20 minutes devoted to questions (though quotions in the middle
are fine too). Maybe a discord/zulip chat.

There are lecture notes on the site. We’ll do a little motivation today, and then really just dive into
the deep end starting next time. There are many references besides these notes which you can find on
the course website.

We’re currently at 150 participants.
For asking questions, preferred if you unmute and just ask.

1.1.1 Tips and advice

Learning the theory of stacks and moduli is hard, and requires active work. You need to simultaneously
absorb

• functorial approach in AG

• working with groupoids and stacks

• replacing the Zariski topology with étale topology

• systematic use of descent theory

• several advanced topics not usually covered in a first course in AG such as

– properties of flat, étale, smooth maps

– existence of Hilbert/Quot schemes

– algebraic groups and actions

– deformation theory

– Artin approximation

– birational geometry of surfaces

1



Here are some tips.

• Work through the material yourself. Work out your own examples, do exercises, and fill in details
in proofs.

• Don’t read the notes linearly. As a graduate student, one of the first books Jarod read was
Hartshorne, and he did read it linearly. However, this subject is a little different. There are
many independent parts, so you can black box certain results and different parts and move around
a bit.

• Accept that there are topics you don’t know and still won’t in 10 weeks, but try to use such results
anyways.

Try to find a balance between accepting/using advanced results and understanding why they hold. Only
need to balance accepting details vs. checking details. Have faith that either you could work out the
details or that at some point you will properly learn the material.

1.2 Moduli

What are moduli? Let ∗ be your favorite mathematical object.

Definition 1.2. A “moduli space of ∗” is a space M such that the points of M are in bijection with
isomorphism classes of ∗. ⋄

Example. If you take ∗ = smooth, connected, projective curves of genus g, then you get Mg as your
moduli space. △

Example. Can let ∗ =plane curves up to projective equivalence, so M =
{
C ⊂ P2 deg d

}
/ ∼ where

C ∼ C ′ if ∃ auto of P2 sending C to C ′. △

Note that to define a moduli space, in addition to the objects you want to parameterize, you also
need to specify equivalences between them. In previous example could have considered plane curves up
to abstract isomorphism, for example.

Example (Hurwitz moduli spaces). Instead of studying C in PN , can study branched covers C ! P1 of
degree d.

Hurd,g :=
{
C

d
−! P1 : C smooth, connected, projective, g(C) = g

}
.

Say [C ! P1] ∼ [C ′ ! P1] if they are isomorphic as P1-schemes. △

Example (Vector bundles on a curve). Fix C smooth, connected, projective curve. Can consider

MC,r,d =

{
vector bundles on C

of rank r, deg d

}
/ ∼

△

So far, we’ve really only defined these as sets. To call them “spaces” we need more structure. In fact,
these spaces are algebraic varieties. Jarod calls this the Moduli Miracle.
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1.3 History

Theorem 1.3 (Riemann, 1857). The “number of moduli” of smooth curves of genus g is 3g − 3.

(maybe this was more assertion than theorem. Whatever).
Riemann gave several arguments for this. Here’s one

Hurd,g Sym2d+2g−2 P1

Mg

The vertical map sends [C ! P1] 7! [C] while the horizontal map sends [C ! P1] 7! (branched points).
Riemann-Hurwitz gives

2g(C)− 2 = d(2g(P1)− 2) +R =⇒ R = 2d+ 2g − 2

where R is the number of branched points (counted properly). Can show the horizontal map has dense
image and finite fibers, so dimHurd,g = dimSym2d+2g−2 P1 = 2d + 2g − 2. For a fixed curve C, let
Hurd,C ⊂ Hurd,g be the fiber of the map Hurd,g ! Mg over [C] (i.e. its the moduli of degree d maps
C ! P1). Then, dimHurd,g = dimMg +dimHurd,C . A degree d map C ! P1 is defined by a line bundle
L of degree d along with 2 sections (mod scalars), so L ∈ Picd(C)  Symd C. The data of a point of
Symd C is a line bundle + a section (up to scaling), and a section up to scaling has h0(L) − 1 = d − g

degrees of freedom. The conclusion is2 that dimHurd,C = 2d − g + 1. Hence, dimMg = 3g − 3. We’ll
revisit this calculation later.

Riemann called Mg “mannigfaltigkeiten” (spelling) meanning “manifold-like.” Manifolds were not
introduced until 1940s.

• Weil 1958: “As for Mg, there is virtually no doubt that it can be provided the structure of an
algebraic variety.”

• Grothendieck 1960: Aware that Mg was not representable, he showed representability of the moduli
of smooth curves with level n structure (i.e. C + basis of H1(C,Z/nZ)). He struggled with
projectivity though.

• Mumford 1965: Mg is a variety

Mumford used GIT (Geometric Invariant Theory). The basic idea is to add additional data, and
then try to quotient out by it. There are other approaches, including analytic or topological ones. Our
approach will be entirely algebraic, integrating ideas from GIT with stack theory.

• We’ll show Mg is a proper Deligne-Mumford stack

• Use Keel-Mori theorem to show ∃ coarse moduli space Mg !Mg.

• Show a line bundle on Mg descends to an ample line bundle using a result of Kollár.

Note 1. His M ’s and M’s are hard to distinguish. In particular, I’m pretty sure I have M and M
backwards in the above 3 steps.

2He may have said something like dimPicd(C) = g at some point. I’m not sure...
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1.4 Functorial Worldview

Grothendieck: Spaces are functors
Let Sch be the category of schemes. We are interested in contravariant functors F : Sch! Set.

Example. If X is a scheme, then hX : Sch ! Set defined, on objects, by S 7! Mor(S,X) =: X(S) is a
functor. △

Remark 1.4. The k points of X are hX(Spec k), so as sets

X =
⊔

k field

hX(Spec k)/ ∼

for a suitable relation ∼. One can then imagine similarly recovering the topology on X as well as its
sheaf of rings by cleverly probing the functor hX . ◦

Lemma 1.5 (Yoneda’s Lemma, “hX determines X”). For any contravariant functor G : Sch ! Set,
the natural map

Mor(hX , G)
∼
−! G(X)

is bijective.

This result is completely formal and easy to prove.

Example. Projective space Pn represents the functor F : Sch! Set with

F (S) = {(L, s0, . . . , sn)}

where L is a line bundle on S and s0, . . . , sn ∈ Γ(S,L) are global sections generating L. Equivalently, the
map (s0, . . . , sn) : On+1

S ↠ L is surjective, so Pn represents the functor representing rank one quotients
of On+1

S . △

Example. More generally, the Grassmannian functor

Gr(k, n) : Sch! Set

sends S to
{
O⊕n
S ↠ V : V locally free of rank k

}
. This functor is represented by a scheme, which we also

denote as Gr(k, n), that is projective over Z. △

Warning 1.6. We will always conflate X with hX . •

Example. Can also consider functors AffSch! Set on affine schemes. △

Exercise. A schemeX can be equivalently defined as a functor F : AffSch! Set where ∃ open subfunctors
Fi ⊂ F such that This is miss-

ing the as-
sumption
that F be a
Zariski sheaf

• each Fi is represented by an affine scheme

•
⊔
i Fi ! F is surjective.
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Definition 1.7. We say Fi ↪! F is an open subfunctor if for all maps S ! F (S a scheme), the
basechange Fi ×F S ↪! S is an open immersions of schemes (in particular, Fi ×F S is a scheme). Here,
the fiber product of functors is simply

(Fi ×F S)(T ) = Fi(T )×F (T ) S(T ).

We say
⊔
i Fi ↠ F is surjective iff for all maps S ! F ,⊔

i

Fi ×F S ↠ S

is surjective as a map of schemes. ⋄

Note 2. For the exercise, things might be a little circular. If you want to be careful, should really say
affine scheme everywhere we’ve said scheme.3 Alternatively, given that we already know what a scheme
is, we can interpret this exercise as giving a criterion for knowing a functor is represenatble by a scheme.

Based off chat comments, it seems here is one solution. Running this plan with affine schemes
everywhere should result in describing “schemes with affine-diagonal” (since you’ll be requiring that the
intersections of any open affines are affine). These are slightly more general than separated schemes.
Running things once more starting with “schemes with affine diagonal” then results in all schemes, and
running them a third time starting with all schemes still only results in all schemes, so you’re done.

We will use the analogues of this exercise to define algebraic spaces/stacks.

Algebro-geometric space type of object obtained by gluing
Schemes sheaf affine schemes in the Zariski topology

Algebraic spaces sheaf affine schemes in the étale topology
Deligne-Mumford stack stack affine schemes in the étale topology

Algebraic stack stack affine schemes in the smooth topology

Table 1: Comparison between various kinds of spaces

How can we view, e.g. Mg, as a functor?

Example. Consider FMg
: Sch! Set sending S to the set of smooth maps C ! S whose geometric fibers

are smooth, connected, projective curves of genus g. △

Fact. FMg
is not representable!

Here’s a general principle. Let F : Sch /C! Set be a functor (working with C just for concreteness).
Let E ∈ F (S) be an object over a C-variety S. For s ∈ S(C), let Es ∈ F (C) be restriction SpecC s

−! S. If

• all Es are isomorphic

• E is not trivial

then F is not representable by a scheme. Suppose X represents F . Then, Es ∈ F (C) corresponds to a
point x ∈ X(C). The two maps E , x : S ⇒ X must be the same, so E would have to be the constant x
map.
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No Autos Finite Auts Infinite Auts
Type of space algebraic variety/space Deligne-Mumford stack algebraic stack
Defining property Zariski/étale locally

affine schemes
étale-locally an affine
scheme

smooth-locally an affine
scheme

Examples Pn,Gr(k, n),Hilb,Quot Mg, Mg,n MC,r,d

Quotient stacks [X/G] action is free finite stabilizers any action
Existence of moduli vari-
eties/spaces

already an algebraic va-
riety/space

coarse moduli space good moduli space

Table 2: Trichotomoy of Moduli

Automorphisms give non-trivial families where all fibers are isomorphic. He gave some other example,
but I did not follow....

Get more into details on Wednesday. Start seeing Grothendieck topologies, sites, and sheaves.

2 Lecture 2 (1/6): Sites and sheaves

Began by displaying Figure 1 in his notes. He then spoke a bit about various references for learning about
stacks. I did not write down any of what he said...

2.1 Motviation: étale topology

Definition 2.1. For a morphism f : X ! Y of schemes of finite type over C, the following are equivalent:

• f is étale

• f is smooth of relative dimension 0 (flat and all fibers Xy smooth of dimension 0).

• f is flat and unramified (fibers Xy = f−1(y) =
⊔

SpecC)

• f is flat and ΩX/Y = 0

• For all x ∈ X(C), the map ÔY,f(x)
∼
−! ÔX,x is an iso;

• for any A↠ A0 of artinian C-algebras, any commutative diagram

SpecA0 X

SpecA Y

f

of solid arrows can be uniquely filled in.

• (assuming in addition that X,Y are smooth) for all x ∈ X(C), the map TX,x ! TY,f(x) is an iso.

⋄

Example. For the lifting criterion above, can take A0 = C and A = C[ε]/ε2, so Y (A) consist of a point
+ a tangent vector. The unique lifting is saying that there is a unique lift of each tangent vector. △

3Maybe actually, say open subscheme of an affine scheme. Working out the kinks is part of the exercise, I guess
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Example. The map A1 ! A1, x 7! x2 is étale except at 0. △

Example. For a field extension K/L, SpecL! SpecK is étale ⇐⇒ K ! L is finite and separable. △

Question 2.2. Why do we care about the étale topology?

One reason is that it allows you to zoom in. “The étale topology is like putting on a new set of
magnifying lenses for you algebraic geometry glasses that allows you to see what you could already see
with your differential geometry glasses” (paraphrase).

Example (Nodes). Let C = V (y2 − x2(x − 1)) ⊂ A2 be a plane nodal cubic. This is irreducible in the
Zariski topology. Any Zariski open around the nodal point is still irreducible. However, in the analytic
topology, there are two branches near this point, so it is has reducible neighborhoods in the analytic
topology. What about the étale topology? We can adjoin t =

√
x− 1 so y2−x2(x−1) = (y−xt)(y+xt).

The map
C ′ = Spec k[x, y, t]t/(y

2 − x2(x− 1), t2 − x+ 1) −! C

is étale with C ′ reducible.
Observe that the completion

ÔC,c = kJx, yK /(y2 − x2(x+ 1)) = kJx, yK /(y − xt)(y + xt)

where t =
√
x+ 1 = 1+ 1

2x−
1
4x

2 + . . . exists as a power series. Hence, Spec ÔC,c is also irreducible. △

Slogan (Artin approximation). Algebraic properties that hold for the completion ÔX,x also hold in an
étale neighborhood of x ∈ X.

More formally...

Theorem 2.3 (Artin approximation).

• Let S be an excellent scheme (e.g. finite type / k or Z). Liu talks
about excel-
lent schemes
in his book

• Let F : Sch /S ! Set be a limit preserving contravariant functor.4

• Let ξ̂ ∈ F (Spec ÔS,s) where s ∈ S is a point.

For any integer N ≥ 0, there exist a residually-trivial étale morphism

(S′, s′)! (S, s) and ξ′ ∈ F (S′)

such that the restrictions of ξ̂ and ξ′ to Spec(OS,s/mN+1
s ) are equal. Question:

How does
this theorem
justify the
slogan?

Answer:
The choice
of ξ̂ ∈
F (Spec ÔS,s)

is like a wit-
ness to an
algebraic
property at
the comple-
tion. This is
then saying
that witness
has some
approxi-
mate (de-
pending on
N) counter-
part in some
(residually-
trivial) étale
neighbor-
hood. See
e.g. the
proof of
Theorem
12.19

Exercise. If X ! S is an S-scheme, then MorS(−, X) : Sch /S ! Set is limit preserving iff X ! S is
locally of finite presentation.

Example. In the nodal example from before, take F : Sch /C ! Set to be the functor

(C ′ ! C) 7!

{
decomps

C ′ = C ′
1 ∪ C ′

2

}
?
= {idempotents in Γ(C ′)} .

4colimF (SpecBλ) = F (Spec colimBλ). Recall, colim = lim
−!
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The completion being reducible gives an element ξ ∈ F (ÔC,c). Hence Artin approximation (with N = 1)
gives an étale cover. △

Example (Étale cohomology). When C is a smooth, connected, projective curve, one has H1(C,Z/nZ) =
0. However, H1(Cét,Z/nZ) = (Z/nZ)2g. △

Example (Descent). Recall that any good property P of morphisms of schemes satisfies

• stable under composition

• stable under base change

• Zariski-local on target, i.e. if {Yi} is an open cover

f−1(Yi) X

Yi Y

fi f

f has P ⇐⇒ each fi has P .

The miracle is that they also tend to be étale-local on the target. △

Remark 2.4. Can learn about descent theory from Néron Models (book), FGA explained, stacks project,
etc. ◦

2.2 Sites

Definition 2.5. A Grothendieck topology on a category S consists of the following data: for each
object U ∈ S there is a set Cov(U) consisting of coverings of U , i.e. collections {Ui ! U}i∈I of morphisms
in S. We require

• U ′ ∼
−! U iso =⇒ {U ′ ! U} ∈ Cov(U).

• For a map V ! U ,

{Ui ! U}i∈I ∈ Cov(U) =⇒ {Ui ×U V ! V }i∈I ∈ Cov(V )

(in particular, the necessary fiber products exist in S)

• {Ui ! U} ∈ Cov(U) and {Uij ! Ui}j∈Ji ∈ Cov(Ui) imply

{Uij ! Ui ! U}i∈I,j∈Ji ∈ Cov(U).

A site is a category S with a Grothendieck topology. ⋄

Example (small étale site). Let X be a scheme, and let Xét be the category of schemes étale over X
(so objects are étale maps U ! X). We set

Cov(U ! X) :=
{
{Ui ! U} :

⊔
Ui ↠ U

}
.

△
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Example (big étale site). The big étale site SchÉt is the category of all schemes Sch with coverings

Cov(X) =
{{

Xi
ét
−! X

}
:
⊔
Xi ↠ X

}
△

Could also define big Zariski site, big étale site relative to S (i.e. (Sch /S)Ét), and other sites one
cares above (smooth, fppf, fpqc, ...).

2.3 Sheaves

Definition 2.6. A presheaf on a category S is a contravariant functor S ! Set. ⋄ As a rule
of thumb,
assume all
functors in
this class are
contravari-
ant

Definition 2.7. A sheaf on a site S is a presheaf F : S ! Set such that for any covering {Si ! S} ∈
Cov(S) of an object S ∈ S, the sequence

F (S) −!
∏
i

F (Si) ⇒
∏
i,j

F (Si ×S Sj)

is exact. ⋄

Remark 2.8. The two maps on the right are induced by the two projections Si ×S Sj ⇒ Si, Sj . There
are two parts of this. One is that sections glue, and the other is that this gluing is unique. ◦

Warning 2.9. I believe the sheaf condition is nontrivial even in the case that your covering {T ! S}
only consists of a single object! •

Remark 2.10. If X is a topological space and Open(X) is the site of its open sets, then this recovers
usual notion of sheaf. ◦

Example. Let X be a scheme. Then hX : Sch! Set given by S 7! Mor(S,X) is a sheaf on SchÉt.
This comes from Descent theory. If {Si ! S} is an étale covering, consider

Si ×S Sj

Si

S X

gi

∃!

If each Si ↪! S is open, then this would be the usual fact that morphisms glue uniquely in the Zariski
topology. △

Consider G′ ! G F maps of presheaves on a category S.

Exercise. Show F ×G G′ defined as
S 7! F (S)×G(S) G

′(S)

is a fiber product in Pre(S), the category of presheaves.

Exercise. If F,G,G′ are sheaves (on some site), then F ×G G′ is also a sheaf.
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Theorem 2.11. Let S be a site. The forgetful functor Sh(S)! Pre(S) admits a left adjoint F 7! F sh,
called the sheafification.

Proof.

• Call a presheaf F separated if for every covering {Si ! S}, the map F (S)!
⋃
i F (Si) is injective.

Let Presep(S) ⊂ Pre(S) be the full subcat of separated presheaves.

• We will construct left adjoints

Sh(S) Presep(S) Pre(S)

sh2 sh1

• Define sh1(F ) by S 7! F (S)/ ∼ where a ∼ b if there’s a covering Si s.t. a|Si = b|Si for all i.

• Define sh2(F ) by
S 7!

{
({Si ! S} , {ai}) : ai|Sij = aj |Sij ∀i, j

}
/ ∼

where ({Si ! S}, {ai}) ∼ ({S′
j ! S}, {a′j}) if ai|Si×SS′

j
= a′j |Si|SS′

j
for all i, j.

■

3 Lecture 3 (1/11): Groupoids and prestacks

3.1 Logistics

Zulip chat set up, so use that instead of Zoom chat from now on.
Course notes have been updated.
Something asked a question about “points” for general sites. Apparently, Olsson talks about this in

section 2.5 (I think) of his book.

3.2 Last time

We defined sites as well as (pre)sheaves on a site.

Recall 3.1. A site is a category S and for each object U ∈ S, we have a set Cov(U) of coverings, i.e.
collections {Ui ! U}i∈I . We require that isomorphisms are covers, pullbacks of covers are covers, and
that covers can be refined. ⊙

Example. The big étale site SchÉt is the category of Sch where covers are collections {Ui
ét
−! U} of étale

maps such that
⊔
Ui ↠ U is surjective. A special covering is one consisting of a single surjective, étale

map {Ui
ét
↠ U}. △

Recall 3.2. A presheaf on S is just a contravariant functor F : S ! Set. A sheaf is a presheaf F such
that, for all covers {Ui ! U}i∈I , the sequence

F (U)!
∏
i

F (U) ⇒
∏
(i,j)

F (Uij)
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is exact, where as usual,
Uij := Ui ×U Uj .

⊙

Exercise. A presheaf F is a sheaf on SchÉt iff

• It is a sheaf on the big Zariski site SchZar; and

• for all étale surjections U ′ ↠ U of affine schemes, the sequence

F (U)! F (U ′)! F (U ′ ×U U ′)

is exact.

Proposition 3.3. If X is a scheme, then hX = Mor(−, X) : Sch! Set is a sheaf on SchÉt.

3.2.1 Moduli perspective

Let F : Sch ! Set be a moduli functor.5 Then, F is a sheaf ⇐⇒ families glue uniquely in the étale
topology.

Example. FMg : Sch! Set sending S to the set of smooth families C ! S of genus g curves. △

Recall 3.4. We saw previously that this is not representable. For a similar reason, it is not even a sheaf
(which also implies it is not representable since representable =⇒ sheaf). ⊙

I guess we never said why representability is a good thing.

Question 3.5. Why do we care about representable functors?

Suppose there was a scheme M representing FMg
, i.e. Mor(S,M) ≃ FMg

(S). Taking S = M, the
identity map idM would now correspond to some universal family U!M of genus g curves. That is, for
any family C! S over S, one gets a Cartesian diagram

C U

S M

.

The bottom map sends s ∈ S to the isomorphic class of the fiber [Cs] ∈ M.
Unfortunately though, FMg is not representable. Getting around this is why we’ll introduce groupoids

and stacks and whatnot.

3.3 Groupoids

Definition 3.6. A groupoid is a category C where every morphism is an isomorphism. ⋄
5By “moduli functor,” we just mean functor. The word moduli is purely psychological and meant to make us think of

viewing F (S) as some family of objects over S
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Example. Let Mg(C) be the category whose objects are smooth, connected, projective genus g curves
C over C. The morphisms are

Mor(C,C ′) := IsomSch /C(C,C
′),

so this is clearly a groupoid. △

Example. Let Σ be a set. Define the category CΣ to be the category whose objects are elements of Σ
and where the only morphisms are identity maps. △

Remark 3.7. A morphism of groupoids is a functor, and an equivalence of groupoids is an equivalence of
categories. ◦

Example. Say C has 2 objects x1, x2 with morphisms Mor(xi, xj) = {±1} for all i, j. Then C is equivalent
to the groupoid with one object x and Mor(x, x) = {±1}. △

Example. Let G be a group acting on a set Σ. We define the quotient groupoid [Σ/G] to be the cat-
egory whose objects are elements x ∈ Σ of the set, and whose morphisms Mor(x, x′) = {g ∈ G : x′ = gx}
are group elements sending x to x′. △

Exercise. Show [Σ/G] is equivalent to a set ⇐⇒ G↷ Σ freely.

Example. If Σ = ∗ in the above example, then we get the classifying groupoid BG = [∗/G]. This has
one object ∗ and Mor(∗, ∗) = G. △

Example. Let FB be the category of finite sets where morphisms are bijections. If you think about it,

FB =
⊔
n≥0

BSn.

△

3.3.1 Fiber products of groupoids

Consider C
f
−! D

g
 − D′, a diagram of groupoids. The fiber product is the category C ×D D′ of triples

(c, d′, α) with c ∈ C, d′ ∈ D′, and α : f(c)
∼
−! g(d′) whose morphisms are

Mor ((c1, d
′
1, α1), (c2, d

′
2, α2)) =


c1

β
−! c2

d′1
γ
−! d′2

∣∣∣∣∣∣
f(c1) f(c2)

g(d′1) g(d′2)

f(β)

α1 α2

g(γ)


(the diagram above is required to commute).

Question 3.8 (Exercise). What is the universal property?

Example.
G ∗

∗ BG

is Cartesian, i.e. G is the above fiber product. △ Remember:
G is the cat-
egory whose
objects are
g ∈ G and
whose mor-
phisms are
only identi-
ties. BG is
the category
with one ob-
ject ∗ and
morphisms
Mor(∗, ∗) =
G.
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Example. Say G acts on a set Σ, and choose some x ∈ Σ. We have the orbit Gx and the stabilizer Gx.
There is a natural map

BGx ! [Σ/G]

as long as the natural projection Σ! [Σ/G]. What is the fiber product? Exercise: it is the orbit, i.e.

Gx Σ

BGx [Σ/G]

is Cartesian. △

3.4 Prestacks

3.4.1 Motivation

Specifying a moduli functor prestack requires specifying

• families of objects

• when how two families of objects are isomorphic; and

• and how families pull back under morphisms.

Here’s a first attempt at making this formal. Consider maps

Sch
F
−! Groupoid.

Note that Groupoid is a category of categories, and is really a 2-category.
How can we write down such a map?

• For every scheme S, F (S) is a groupoid

• For all f : S ! T , we need a pullback f∗ : F (T )! F (S)

• Given composable S f
−! T

g
−! U , we want an isomorphism

ψf,g : f
∗ ◦ g∗ ∼

−! (g ◦ f)∗

of functors.

Is this enough? No, because of categorical issues. We need a compatibility of ψf,g for triple compositions
S ! T ! U ! V . This leads to the concept of “pseudofunctors” or “lax functors” or something like that.
We won’t go into this too deeply; we just wan to impress that there are extra difficulties/subtleties one
needs to take care of.

One can do this, but we won’t. Instead, we will build a massive category X with all of this data.
Our X will live over Sch and an object in X will be something like (S, a) with S ∈ Sch and a ∈ F (S).
Intuively, we set

X =
⊔

S∈Sch

F (S).
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3.4.2 Precise Definition

Let p : X! S be a functor of categories.

X a b

S S T

p

α

f

Above, a, b are objects of X and S, T are objects of S. We say a is over S and α is over f .

Definition 3.9. A functor p : X! S is a prestack over S if

(pullbacks exist) for any diagram
a b

S T

of solid arrows, there eixsts a! b over S ! T ; and

(universal property of pullbacks) for any diagram The verti-
cal 7!’s are
not arrows/-
morphisms.
They just
denote e.g.
that a lies
over R, i.e.
p(a) = R.

a b c

R S T.

of solid arrows, there exists unique arrow a! b over R! S filling in the diagram. ⋄

Remark 3.10. The second property above is secretly saying that every arrow in X is a pullback. ◦

Getting comfortable with prestacks is very important with keeping up with the course as we continue.

Warning 3.11. This is not standard terminology. These are usually called “categories fibered in
groupoids.” When other people say “prestack,” they usually mean one of these + an additional ax-
iom (one of the two stack axioms). Of note, the word “prestack” apparently does not appear in the stacks
project. •

Abuse of Notation 3.12.

• We often only write X, not X! S.

• We often do not spell out the composition law.

Notation 3.13.

• We write f∗b or b|S to denote a choice of pullback.

• For s ∈ S, the fiber category X(S) is the category of objects a ∈ X over S with morphisms over
idS .

Exercise. If X! S is a prestack, then X(S) is always a groupoid.

In below examples, S = Sch.
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Example. Let F : Sch! Set be a presheaf. We build XF as follows:

• objects are pairs (S, a) with a ∈ F (S) and S ∈ Sch

•
Mor((S, a), (T, b)) := {f : S ! T : a = f∗b} .

In this way, we can view any presheaf as a prestack. △

Example. Let X be a scheme. We can apply previous construction to hX = Mor(−, X) : Sch! Set to
get a prestack XX . Spelled out

• objects are maps S ! X for any S ∈ Sch

• morphisms (S ! X)! (T ! X) are X-morphisms α : S ! T .

That is, the prestack associated to a scheme X is simply SchX , the category of X-schemes. △

Example. Mg is the prestack whose objects are families C ! S of smooth curves of genus g (here,
S ∈ Sch). A morphism (C! S)! (C′ ! S′) is a Cartesian diagram

C C′

S S′.

Requiring morphisms to be Cartesian is what makes this a prestack (it gives the universal property of
pullbacks). △

Example. Let C be a smooth, connected, projective curve over k. The prestack Bun(C) has

• objects: pairs (S,F) where F is a vector bundle on C × S

•
Mor((S,F), (S′,F′)) =

{
S

f
−! S′ and (f × id)∗F′ ∼

−! F
}
.

Above requires a choice of pullback, so maybe less canonical than one would like. Alternatively,
could ask for a morphism F′ ! (f × id)∗F such that the adjoint map is an isomorphism.6 △

Example. Let G ! S be an S-group scheme acting on an S-scheme X. The quotient prestack
[X/G]pre (over Sch /S) has

• objects: maps T ! X over S

•
Mor(T ! X,T ′ ! X) = {(T ! T ′, g ∈ G(T )) : (T ! T ′ ! X) = g(T ! X)} .

Exercise. [X/G]pre(T ) = [X(T )/G(T )], i.e. the fiber categories are quotient groupoids. △
6The point of this alternative is that everyone agrees on what the pushforward is as a literal sheaf (i.e. up to equality,

not up to isomorphism)
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Definition 3.14. A morphisms of prestacks f : X! Y is a functor such that the diagram

X Y

S

f

pX
pY

strictly commutes, i.e. pX(a) = pY(f(a)) is an equality. ⋄

Definition 3.15. If f, g : X ! Y are morphisms of prestacks, a 2-morphism α : f ! g is a natural
transformation such that for every object a ∈ X, the morphism αa : f(a)! g(a) in Y is over the identity
in S. ⋄

Definition 3.16. The category MOR(X,Y) is the category whose objects are morphisms of prestacks
and whose morphisms are 2-morphisms. ⋄

Exercise. MOR(X,Y) is a groupoid.

Note 3. Jarod also defined the notion of a “2-commutative diagram,” but I didn’t type this since I don’t
know how to draw 2-morphisms in commutative diagrams... Basically a diagram 2-commutes if you
specify a 2-morphism between every composition of arrows starting and ending in the same place.

Definition 3.17. An isomorphism is a map f : X ! Y with an inverse, i.e. ∃g : Y ! X and 2-
isomorphisms g ◦ f ∼

−! idX and f ◦ g ∼
−! idY. ⋄

Exercise. X
f
−! Y is an iso ⇐⇒ X(S)! Y(S) is an iso (i.e. equiv of categories/groupoids) for all S.

Lemma 3.18 (The 2-Yoneda Lemma). Let X be a prestack over a category S, and choose S ∈ S. The
functor Note S is

a prestack
in the same
way schemes
are prestacks
(described
earlier)

Mor(S,X)! X(S)

sending f 7! fS(idS) is an equivalence of categories.

Exercise. Work through details of a proof of this.

4 Lecture 4 (1/13): Stacks

4.1 Audience Questions Before We Start

Question 4.1. If X,Y are schemes, are there more prestack morphisms X ! Y than scheme morphisms
X ! Y ?

Answer. No, there are not. This is a consequence of the 2-Yoneda lemma. ⋆

Question 4.2. If I have a Deligne-Mumford stack and a map to an affine scheme which induces an
equivalence on the étale topologies (in a universal way), then is the source also affine?

Answer. Answer not obvious off the top of the head. Maybe we’ll address this later after we talk about
Deligne-Mumford stacks and whatnot. ⋆
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4.2 Recap of Last Time

Let S be a category.

Recall 4.3. A prestack over S is a functor p : X! S such that

• for all diagrams
a b

S T

there exists a with a morphism a! b over s! T .

• for all diagrams

a b c

R S T.

there exists a morphism a! b over R! S.

The fiber category X(S) has objects a ∈ X over S and morphisms a! b over idS . ⊙

Example (Schemes are prestacks). If X is a scheme, we have Sch /X ! Sch where (S ! X) 7! S. △

Example. The moduli space of smooth curves Mg is a prestack. It’s objects are smooth families C! S

of genus g curves. Morphisms in this category are Cartesian diagrams. △

Note 4. There are 100 “participants” on the dot right now.7

Recall 4.4. A morphism f : X! Y of prestacks is a functor such that pY ◦ f = pX are strictly equal. A
2-morphism α : f ! g is a natural transformation such αx : f(x)! g(x) is over the identity. ⊙

Recall 4.5 (2-Yoneda). Let X be a prestack over a category S and S ∈ S. The functor

MOR(S,X)! X(S) f 7! fS(idS)

is an equivalence of categories. ⊙

4.3 Fiber products of prestacks

Consider morphisms over S

Y′

X Y

g

f

The fiber product X×Y Y′ is the prestack with

• objects = triples (x, y′, γ) with x ∈ X, y′ ∈ Y′, and γ : f(x)
∼
−! g(y′) over idS (in particular,

pX(x) = S = pY′(y′))
7Air quotes e.g. since Jarod and his ipad are 2 “participants”
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• A map (x1, y
′
1, γ1)! (x2, y

′
2, γ2) is a triple (q, χ, γ′) with χ : x1 ! x2, γ′ : y′1 ! y′2, and q : S1 ! S2

such that
f(x1) f(x2)

g(y′1) g(y′2)

f(χ)

γ1 γ2

g(γ′)

commutes.

Remark 4.6. The fiber categories above are fiber products of groupoids. ◦

Remark 4.7. There is a 2-commutative diagram

X×Y Y′ Y′

X Y

p2

p1 g

f

α .

Here, α : g ◦ p2 ! f ◦ p1 is the 2-morphism associating to (x, y′, γ) ∈ X×Y Y′ the map

α(x,y′,γ)f(x)
γ
−! g(y′). ◦

Theorem 4.8. We have the following universal property: for any 2-commutative diagram

T

X×Y Y′ Y′

X Y

q2

q1

p2

p1 g

f

τ

α

there exists a morphism h : T ! X ×Y Y′ and 2-isomorphisms β : q1 ! p1 ◦ h and γ : q2 ! p2 ◦ h such
that

f ◦ q1 f ◦ p1 ◦ h

g ◦ q2 g ◦ p2 ◦ h

f(β)

τ α◦h
g(γ)

commutes.

Exercise. Let Mg,1 be the prestack whose objects are

C

S

σ

smooth families of genus g curves with a section σ. The morphisms are again cartesian diagrams, but now
must be compatible with section. There’s a natural map Mg,1 ! Mg forgetting the section. Consider a
map S ! Mg from some scheme (i.e. by 2-Yoneda, a family C ! S of curves). Then, the fiber product

18



is this family, i.e.
C Mg,1

S Mg

is Cartesian. Hence, Mg,1 !Mg is the universal family.

Exercise. Let X be a prestack. Let a, b : T ! X be morphisms from a scheme T . Define the presheaf

IsomT (a, b) : Sch /T ! Set

sending (S
f
−! T ) 7! IsomX(S)(f

∗a, f∗b). Show

IsomT (a, b) T

X X× X

(a,b)

∆

is Cartesian.

4.4 Stacks

Definition 4.9. A stack over a site S is a prestack X ! S such that for all coverings {Si ! S} of
S ∈ S:

(1) (morphisms glue) For a, b ∈ X over S and maps φi : a|Si ! b such that φi|Sij = φj |Sij

a|Si

a|Sij
a b

a|Sj

φi

φj

over

Si

Sij S

Sj

there exists a unique map φ : a! b with φ|Si = φi.

(2) (objects glue) For ai ∈ X over Si and isos αij : ai|Sij

∼
−! aj |Sij

with αij |Sijk
◦ αjk|Sijk

= αik|Sijk

(cocycle condition), as displayed below

ai

ai|Sij

αij
−−! aj |Sij

a

aj

over

Si

Sij S

Sj

then there exists a ∈ X over S and isos φi : a|Si
! ai such that αij ◦ φi|Sij

= φj |Sij
. ⋄
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Remark 4.10. Axiom 1 above should be equivalent to IsomT (a, b) always being a sheaf8, not just a
presheaf. Further, being a stack means

X(S)
∏

X(Si)
∏

X(Sij)
∏

X(Sijk)

is “exact” (spelling out what this means will give above axioms9). ◦

Example (sheaves are stacks). Let F : S ! Set be a presheaf. Recall this gives rise to a prestack XF

with fiber categories XF (S) = F (S). Exercise: F sheaf ⇐⇒ XF is a stack. △

Example (Stack of qcoh sheaves over SchÉt). Let QCoh have

• objects: (S, F ) with S a scheme and F ∈ QCoh(S) a quasi-coherent sheaf on S.

• morphisms:
Mor((S, F ), (S′, F ′)) =

{
S

f
−! S′ and F ′ ! f∗F | f∗F ′ ∼

−! F
}
.

We know that QCoh is a stack over SchZar. This follows already from Hartshorne exercise II.1.{15,22}.
Étale descent for qcoh sheaves implies that QCoh is also a stack in SchÉt. △

Example (stack of families over SchZar). Define Fam! Sch to be the prestack whose objects are maps
X ! S of schemes, and whose morphisms are Cartesian diagrams.10

Proposition 4.11. Fam is a stack over the big Zariski site SchZar.

Axiom (1) is just that morphisms glue. Axiom (2) is that schemes glue (Hartshorne exercise II.2.12).
Note that Fam is not a stack over SchÉt. We cannot glue schemes in the étale topology. Later, we’ll

see that we can glue algebraic spaces in the étale topology though. △

Example (Mg). First recall that a family of smooth curves of genus g is a smooth proper morphism
C! S of schemes s.t. every geometric fiber C

κ(s)
is a connected curve of genus g.

Proposition 4.12. Let C ! S be a family of smooth curves of genus g ≥ 2. Then for k ≥ 3, Ω⊗k
C/S is

relatively very ample and π∗(Ω⊗k
C/S) is a vector bundle of rank (2k − 1)(g − 1).

This is a consequence of cohomology and base change. This will allow us the prove that Mg is a stack
over SchÉt. Morphisms glue (representable functors are étale sheaves), so only need to worry about the
second axiom. Say we have

Ci|Sij
Ci

Sij Si S

πi

8Someone made a comment to this effect in chat
9As a hint, this means the induced map

X(S) −! lim
( ∏

X(Si)
∏

X(Sij)
∏

X(Sijk)
)

is an equivalence of categories (the lim above is really a 2-limit since Cat is a 2-category). Gluing morphisms is encoded in
full faithfulness, and gluing objects is encoded in essential surjectivity.

10Note Mg is a substack of Fam
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Set Cij := Ci|Sij
and Ei := πi,∗Ω

⊗3
Ci/Si

. We know that

Ei|Sij
≃ π∗ΩCij/Sij

≃ Ej |Sij
.

Now Étale descent gives us a vector bundle E on S.

Proposition 4.13 (Étale descent for closed immersions). Let {Xi ! X} be an étale cover. Closed e.g. Think
of closed
subscheme
as an ideal
sheaf, and
apply (ef-
fective) de-
scent for
qcoh sheaves

subschemes Zi ⊂ Xi with11 Zi|Xij
= Zj |Xij

glue to a closed subscheme Z ⊂ X.

We have Ci ↪! P(Ei) and P(Ei) ! P(E) an étale map (I think?) with P(E) over S. The above
descent result gives now C ! S. More descent arguments shows that it is a smooth family, so we can
glue objects as desired. △

Let G ! S be a smooth, affine group scheme, let X ! S be an S-scheme, and suppose G ↷ X

(functorially, we have actions G(T ) ↷ X(T ) for all T ! S). Last time we defined [X/G]pre over Sch /S

with fiber categories
[X/G]pre(T ) = [X(T )/G(T )]

given by the quotient groupoid.

Exercise. This is not a stack on (Sch /S)Ét.

An object over Ti is a map Ti ! X. However, we can also think of this as a trivial G-torsor

G× Ti X

Ti

G-equiv

So, intuitively at least, the issue with this being a stack is that these trivial G-bundles won’t glue to a
trivial G-bundle.

Definition 4.14. A principle G-bundle over T is a scheme P along with a G-action such that P ! T

is G-invariant and there is an étale cover {Ti ! T} such that Ti ×T P ≃ G× Ti, G-equivariantly. ⋄

Example (Quotient stacks). The quotient stack [X/G] over Sch /S has

• objects:

P X

T

f

where f is G-equivariant.

• morphisms: Cartesian diagrams The map
P ! P ′

needs to
be G-
equivariant,
i.e. the in-
duced iso-
morphism
P

∼
−! P ′

T is
an iso of G-
torsors over
T

P P ′

T T ′

such that f : P ! X factors as P ! P ′ f ′

−! X.

This is a
Morphism
“from P to
P ′”

11Don’t need a triple overlap condition for some reason?
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Exercise: this is a stack over (Sch /S)Ét. △

4.5 Fiber products of stacks

Exercise. If X,Y,Y′ are stacks over a site S, then X×Y Y′ is also a stack over S.

Exercise.
G×X X

X [X/G]

p

is Cartesian.

Exercise.
G×X X ×X

[X/G] [X/G]× [X/G]∆

is Cartesian.

Exercise. For any G-bundle P ! T with G-equivariant map P f
−! X,

P X

T [X/G]

is Cartesian. This says that X ! [X/G] is the universal G-bundle, i.e. it classifies principle G-bundles
along with the data of an equivariant map to X.

If you take X = S, the terminal object, then get BG = [S/G] which really is the universal G-bundle, This is dif-
ferent from
BG the
groupoid
from before.

it classifies principle G-bundles full stop.

4.6 Stackification

Proposition 4.15 (Stackification). For a prestack X over a site S, there exists a morphism X ! Xst

to a stack such that for any stack Y over S, the functor

MOR(Xst,Y)! MOR(X,Y)

is an equivalence of categories.

Proof Sketch. A 2-step process12

• Construct X! X1 with X1 a prestack where morphisms glue uniquely.13 We say obX1 = obX and
a map a! b in X1 over S f

−! T is by definition an element of14

(IsomS(a, f
∗b))

sh
(S).

12Ravi says 3-step
13I think Ravi doesn’t want to get uniqueness in the first step
14A morphism a! b in X is, by definition, an element IsomS(a, f

∗b)
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(since this involves sheafification, this is secretly 2 steps).

• Construct X1 ! Xst. Formally define an object of Xst as a triple

(
{Si ! S} , ai 7! Si, αij : ai|Sij

! aj |Sij

)
with the αij ’s satisfying the cocycle condition. ■

Exercise.
([X/G]pre)

st ∼= [X/G].

Exercise. M0 ≃ B PGL(2)

5 Lecture 5 (1/20): Algebraic spaces and stacks

Admistrative stuff

• Zoom chat disabled. Use Zulip instead.

• No class next Monday either

“I’ve been talking over monumental moments in American history. In the last three Wednesdays we
went from an insurrection to an impeachment and now to an inauguration, and that sort of mirrors the
development in this class. We’ve went from prestacks to stacks, and now to algebraic spaces/stacks”
(paraphrase)

5.1 Recap

Let S be a site.

Recall 5.1. A prestack over S is a functor p : X! S such that pullbacks exist and any map in X satisfies
a universal property. ⊙

Recall 5.2. A prestack X over S is a stack if morphisms glue uniquely w.r.t to covers {Si ! S}, and if
objects glue with respect to covers. ⊙

Example. If X is a scheme, we get a stack XX (whose objects are maps S ! X). In fact any sheaf F

gives rise to a stack XF . △

Example. We saw the stack QCoh! Sch of quasi-coherent sheaves where objects are (S,F ) with S a
scheme and F qcoh. △

Example. We say Mg whose objects are smooth families C ! S of curves, and whose morphisms are
Cartesian diagrams. △

These are all stacks over SchZar. Étale descent implies that they are even stacks over SchÉt.
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5.2 Summary of descent

Everything relies on one key fact

Fact. If φ : A! B is a faithfully flat ring map, and M is an A-module, then the sequence

M !M ⊗A B ⇒M ⊗A B ⊗A B

is exact.

Let’s schemify this. Say S = SpecA, S′ = SpecB, and F = M̃ . We have the sequence

S′ ×S S′ ⇒ S′ ! S.

Let F ′ := FS′ = M̃ ⊗A B. This fact is saying that F is recoverable from F ′.
Fix an étale cover {Si ! S}. Descent on quasi-coh sheaves

• Morphisms: given F ,G ∈ QCoh(S),{
maps F |Si

φi−! G |Si

s.t. φi|Sij = φj |Sij

}
 !

{
F

φ
−! G

}
.

• Objects: {
Fi ∈ QCoh(Si) and Fi|Sij

∼
−−!
αij

Fj |Sij

s.t. αjk ◦ αij = αik

}
 ! {F ∈ QCoh(S)} .

These two say QCoh a stack over SchÉt.
Descending affine morphisms:Xi

aff
−−! Si and Xi|Sij

∼
−−!
αij

Xj |Sij

s.t. αjk ◦ αij = αik

 ! {
X

aff
−−! S

}
.

As a special cases of this, we see

• (closed immersions) We saw/used this when showing Mg is a stack (for g ≥ 2).

• (principal G-bundle) Fix G! T a smooth and affine group scheme. A G-bundle over T is a map
P ! T and a G-action on P over T so that there exists an étale cover {Ti ! T} of T so that
G× Ti ≃ P ×T Ti equivariantly. The corresponding descent statement isXi

G-bundle
−−−−−−! Si and Xi|Sij

∼
−−!
αij

Xj |Sij

s.t. αjk ◦ αij = αik

 ! {
X

G-bdl
−−−! S

}
.

The key point is that P ! T is necessarily affine since G! T is.

More generally, we have descent for quasi-affine morphisms (closed immersion gives open immersion, and
then use Zariski main theorem?). Even more generally, can descend morphisms which are only separated
and locally quasi-finite (i.e. locally of finite type with discrete fibers).

Consequences of descent:
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• Let P be a property of morphisms: open imm, closed imm, affine, quasi-affine, or sep and loc q.
finite

• Let S′ ét
↠ S be étale surjection of schemes

• Let F ! S be a map of sheaves (maybe presheaves enough?)

F ′ F

S′ S

Then, (
F ′ is a scheme and
F ′ ! S′ has P

)
=⇒

(
F is a scheme and
F ! S has P

)
.

5.3 Hilbert schemes

Theorem 5.3 (Grothendieck). Let X ! T be a projective morphism of noetherian schemes, and let
OX(1) be a relatively ample line bundle on X. Let P ∈ Q[z] be a polynomial. The functor

Sch /T −! Set

(S ! T ) 7−!


Z X ×T S

S

closed
flat of fin pres

∣∣∣∣∣∣∣∣∣∣
∀s ∈ S : Hilb poly(Zs) = P


is represented by a scheme HilbP (X/T ) which is projective over T .

5.4 Main definitions

Definition 5.4. A map F ! G of presheaves/prestacks over Sch is representable by schemes if for
all maps S ! G from a scheme, F ×G S is a scheme. Let P be a property of maps of schemes (e.g.
surjective or étale). A map F ! G representable by schemes has property P if for all S ! G from a
scheme, F ×G S ! S has P. ⋄

Definition 5.5. An algebraic space is a sheaf X on SchÉt such that there exists a scheme U and a
morphism U ! X which is representable by schemes, étale, and surjective. We call U ! X an étale
presentation. ⋄

We can generalize previous definitions now.

Definition 5.6. A map F ! G of presheaves/prestacks over Sch is representable if for all maps
S ! G from a scheme (equivalently, all from an alg. spaces), F ×G S is an algebraic space. Let P be

a property of maps of schemes which is étale local on the source, i.e. if X ′ ét
↠ X, then X ! Y has

P ⇐⇒ X ′ ! X ! Y has P . A map F ! G which is representable has property P if for all S ! G

from a scheme, and all étale presentations U ! F ×S G, the composition U ! F ×G S ! S has P. The
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relevant diagram here is
scheme algebraic space scheme

U F ×G S S

F G
repr

⋄

Remark 5.7. Not always, but usually, you can check this properties by checking on a single étale presen-
tation. ◦

Definition 5.8. A Deligne-Mumford stack is a stack X over SchÉt such that there exists a scheme
U , and a morphism U ! X which is representable, étale, and surjective. The map U ! X is called an
étale presentation. ⋄

This is almost like taking the definition of an algebraic space, and replacing the word sheaf with
stack. However, now we require our map to just be representable (by algebraic spaces), not necessarily
representable by schemes.

Definition 5.9. An algebraic stack is a stack X over SchÉt such that there exists a scheme U and a
smooth presentation U ! X, which is a map that is representable, smooth, and surjective. ⋄

History.

• Algebraic spaces were introduced by Artin and Knutson ca 1969,71. They had a qc assumption on
∆X.

• DM stacks were introduced by Deligne and Mumford ’69 (but called them algebraic stacks). They
assumed ∆ was representable by schemes.15

• Algebraic stacks were introduced by Artin ’74 (also called them algebraic stacks). He assumed
everything was locally of finite type over an excellent Dedekind domain.

Warning 5.10. Our definitions are not standard.

• Usually one requires that the diagonal ∆ : X ! X × X is representable. We will show this is
automatic from our definition.

• Different authors have different hypotheses on ∆. •

We follow Olsson and Stacks project.16

We never defined morphisms...

• Maps of algebraic spaces are maps of sheaves

• Maps of DM or algebraic stacks are maps of stacks over SchÉt

Exercise. Show that fiber products exist for algebraic spaces, DM stacks, and algebraic stacks.

Exercise. Show that any stack over (Sch /S)Ét can be viewed as a stack over SchÉt.

We’ve just seen many definitions. Our immediate goals are algebraicity of quotient stacks and of Mg.
15They pointed out this was not the ‘right’ general definition, but sufficed for their cases
16We use SchÉt, but stacks project uses fppf topology Schfppf
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5.5 Algebraicity of Quotient Stacks

Here’s the setup

• G! T smooth and affine group scheme.

• U an algebraic space with a G-action.

• [U/G] denotes the quotient stack over (Sch /T )Ét. Its objects are diagrams

P U

S

G-bundle

G-equiv

Theorem 5.11. [U/G] is an algebraic stack over T . Moreover, U ! [U/G] is a G-torsor, and in
particular, it is representable, surjective, smooth, and affine.

Proof. Set X = [U/G]. Let S ! X be a map from a scheme. Consider

US U

S X

where U ! X = [U/G] is the natural map. We need to show that US ! S is a G-torsor. In particular,
we will need to show US is a scheme.17 Since [U/G] = ([U/G]pre)st we know we have a 2-commutative
diagram

S′ U

S X

ét

with S′ ét
↠ S surjective. We now form a cube

US′ S′

G× U U

US S

U X

ét

whose top, bottom, back, and front are all Cartesian.
At the moment, we only know US is a sheaf. What else do we know? We know G × U ! U is a

G-bundle, so it’s pullback US′ ! S′ is also a G-bundle. Furthermore, S′ ! S is an étale surjection of
schemes! By étale descent for G-bundles, we get that US ! S is a G-bundle (so US a scheme), which is
exactly what we wanted to show. ■

17In general, the relevant fiber product will only need to be an algebraic space, but in the current setting, we’ll actually
get schemes
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Corollary 5.12. If G is a finite group acting freely on an algebraic space X, then the quotient sheaf
X/G is an algebraic space. Here, X ! X/G is an étale presentation (since G acts freely).

The upshot is that quotients by free, finite group actions (on schemes) always exist as an algebraic space. Remember:
Any finite
set of points
on a quasi-
projective
scheme is
contained
in an open
affine (some-
one said this
in chat once,
I think).
See also
this stack-
exchange

Further, algebraic spaces are closed under taking quotients by free actions of finite groups.

5.6 Algebraicity of Mg

Theorem 5.13. If g ≥ 2, then Mg is algebraic.

We know Mg is a stack over SchÉt. The strategy will be to show that

Mg
∼= [H/G]

where H ⊂ Hilb is locally closed, parameterizing 3-canonical embedded smooth curves.

Proof. Consider
C P(π∗Ω⊗3

C/S)

S

πsm fam

Over a fiber s ∈ S, this becomes
Cs P5g−6

Spec k(s)

By Riemann-Roch, the Hilbert polynomial is P (n) = (6n − 1)(g − 1). Define H := HilbP (P5g−6) which
is a scheme projective over Z. We have a universal family

C P5g−6 ×H

H.

univ fam

The idea now is to look at the locus in H of smooth curves tri-canonically embedded.

Claim 5.14. ∃! locally closed H ′ ↪! H = HilbP (P5g−6) containing the h ∈ H s.t.

(a) Ch is smooth and geometrically connected

(b) Setting C′ = C|H′ , Ω⊗3
C′/H′ and OC′(1) differ by the pullback of a line bundle on H ′. Over h ∈ H,

we have Ω⊗3
Ch

= OCh
(1).

(c) Ch ↪! P5g−6 is embedded via
∣∣Ω⊗3

Ch

∣∣, i.e.

Γ(P5g−6,O(1))
∼
−! Γ(Ch,OCh

(1)).

Proof of Claim. (a) For smoothness, just note that {h ∈ H : Ch smooth} ⊂ H is open. Use that the
map is proper (so sends closed non-smooth points to a closed set downstairs). For geom connected, have
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Stein factorization
C! Specπ∗OC ! H

with first map having geometrically connected fibers. Let λ : O? ! π∗OC. Then,

{h ∈ H : Ch geom conn} = {h ∈ H : λ iso at h} = H \ (supp kerλ ∪ supp cokerλ)

Note that λ is a map of coherent sheaves (C! H proper) so these supports are closed.
(b) We will need the following result.

Theorem 5.15. Let f : X ! Y be a flat, proper map of noeth schemes with geometrically integral fibers.
Let L be a line bundle on X, and assume f∗OX = OY holds after base change. Then, there exists a closed
subscheme Z ↪! Y s.t. T ! Y factors through Z if and only if L|XT

is the pullback of a line bundle on
T . Question: Is

this (related
to) Seesaw
theorem?

We won’t prove this18, but it follows mostly from cohomology and basechange. This theorem gives
us (b).

(c) Want to consider
H0(P5g−6,O(1))! π∗Ω

⊗3
C/S .

Look at locus in H where this is an isomorphism (throw out kernel and cokernel). ■

Given that claim, note that there exists a functorial action of PGL5g−5 = Aut(P5g−6) on H, and
H ′ ⊂ H is invariant. Our goal is Remember:

4 step strat-
egy to show-
ing a stack
is isomor-
phic to a
quotient
stack

Mg
∼= [H ′/PGL5g−5].

Do it in a few steps

• First construct a map
[H ′/PGL5g−6]

pre !Mg.

Since H ′ lives in the Hilbert scheme, we can send (S ! H ′) to the family C ! S it naturally
corresponds to.

• This map is fully faithful. This is because an automorphism of C! S induces an automorphism of
ΩC/S (since its canonical), and therefore induces an automorphism of projective space.

• By univ property of stackification, there exists an induced map [H ′/PGL5g−6]!Mg which is also
fully faithful.

• Now just need to show essential surjectivity. Suffices to show that for all families C! S of smooth
curves, there exists an étale cover {Si ! S} s.t. CSi

! Si is in the image.19 Have π : C ! S.
Always get an embedding C ↪! P(π∗Ω⊗3

C/S). To get map into honest projective space, choose a
Zariski cover where π∗Ω⊗3

C/S trivializes. ■
18Not necessary to know, but this theorem is equivalent to the separatedness of the Picard functor PicX/Y : Sch /Y ! Set

sending (S ! Y ) 7! Pic(X ×Y X)/PicS
19Know things locally lift and then can glue together using fully faithfulness
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6 Lecture 6 (1/27): First properties of algebraic spaces and stacks

6.1 Admistrative Stuff

Next week we’ll meet both Monday and Wednesday. There will be another holiday in February (president’s
day), so there’ll be another half-week later. Hoping to give 20 lectures total, so may end up going past
week 10.

(Down to 75 participants)

6.2 Goal of Coarse

Remember that we are after the following theorem.

Theorem 6.1. The moduli space Mg of stable curves of genus g ≥ 2 is a smooth, proper and irreducible
Deligne-Mumford stack of dimension 3g − 3 which admits a projective coarse moduli space.

We are still working on making sense of the terms in this theorem.
Where are we?

• Defined Mg (but not Mg)

• We’ve shown Mg is an algebraic stack.20

How do we get from here to the theorem? Let’s take a second to go over the outline for this course.

(1) Sites, sheaves and stacks

(2) algebraic spaces and stacks (you are here)

(3) geometry of DM stacks (e.g. get to Keel-Mori theorem)

(4) Moduli of stable curves

Question 6.2 (Audience). Is Mg an algebraic space?

Answer. No. But when we show Keel-Mori, we’ll see that there is an algebraic space closely related to
Mg, but which no longer has a universal family. ⋆

6.3 Review

Definition 6.3. Let F ! G be a map of presheaves/prestacks over SchÉt.

• We say F ! G is represented by schemes if for all S ! G from a scheme S, F ×G S is a scheme.

• We say F ! G is representable if for all S ! G from a scheme S, F ×G S is an algebraic space ⋄

Recall 6.4. We can discuss properties of maps which are representable or representable by schemes. ⊙

Definition 6.5. Here are some of the key definitions of this class:
20It is Deligne-Mumford, but we have not shown that
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• An algebraic space is a sheaf X on SchÉt such that ∃ a scheme U and a map U ! X which is
representable by schemes, étale and surjective.

• A DM stack is a stack X on SchÉt s.t. there exists a scheme U , and a map U ! X which is
representable, étale and surjective.

• An algebraic stack is a stack X on SchÉt s.t. there exists a scheme U , and a map U ! X which is
representable, smooth and surjective. ⋄

6.4 Examples

Last time, we showed that quotient stacks [X/G] as well as Mg (for g ≥ 2) are algebraic.

Exercise. Show that the stack Bunr,d(C) of vector bundles on C of rank r and degree d is algebraic
(should be easier than the Mg case).

Remark 6.6. You’ll want to get a smooth presentation using the Quot scheme. Secretly, Bunr,d(C) is not
quasi-compact, so you’ll need infinitely many copies of Quot schemes. ◦

Example. Let G = Z/2Z acts on A2 via −1 · (x, y) = (−x,−y). Then, [A2/G] is a DM stack (since G
finite) and comes with a natural map

[A2/G]! A2/G = Spec k[x2, xy, y2]

where A2/G is a (singular) cone over a quadric in P2. We’ll see later that [A2/G] is a smooth DM
stack, and A2/G is its coarse moduli space (note that A2/G is not smooth at the origin). The map
[A2/G]! A2/G is birational, so can think of this as a sort of stacky resolution of singularities. △

Example. Gm ↷ A1, so can take [A1/Gm]. This is an algebraic stack, but it is not DM (it has an
infinite stabilizer group). In this case, A1 ! [A1/Gm] is a smooth presentation. △

Example (Hironaka). There exists a smooth, proper 3-fold X (say, over C) with a free Z/2Z action s.t.
there exists an orbit not contained in any affine open (hence, X proper but not quasiprojective). Since
this action is free, the quotient X/(Z/2Z) is an algebraic space. We have a finite map X ! X/(Z/2Z),
so X/(Z/2Z) is an algebraic space, but not a scheme.21 △

Example. G = Z/2Z ↷ X where X is “the line with two origins” (or the “non-sepearated affine line”).
Away from the origins, −1 : x 7! −x. Furthermore, −1 swaps the two origins. Now, Y := X/G is an
algebraic space, but not a scheme. Here are two reasons it is not a scheme

• The two origins are not contained in any affine.

• The diagonal Y ! Y × Y is not a locally closed immersion.

Consider the Cartesian diagram
G×X X ×X

Y Y × Y

.

21If it were, any point would be contained in an affine open whose preimage (since finite maps are affine!) would be an
affine open containing the corresponding orbit.
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We now basechange further using the map A1 ! X × X sending x 7! (x,−x). The base-change
A1 ×X×X (G×X) is something like {(−1, x) | x ̸= 0} ⊔ {(1, 0)} so we do not have a locally closed
immersion. △

6.5 Summary of Important results

(all to be proven later)

Recall 6.7. Recall that for all a, b : T ! X, there is a commutative diagram

IsomT (a, b) T

X X× X

(a,b)

∆

⊙

Slogan. Diagonal encodes “stackiness.”

Definition 6.8. For a “point” x : Spec k ! X for k a field, we define the stabilizer of x via

Gx Spec k

X X× X,

(x,x)

i.e. Gx = IsomSpec k(x, x). ⋄ If x ∈
[X/G](k),
then (I
think) Gx =

StabG(X)

Theorem 6.9. If X is an algebraic space, then X ! X ×X is represented by schemes.
If X is an algebraic stack, then X! X× X is representable.

Hence, the stabilizer Gx is always an algebraic space. In fact, it is usually a scheme (a group scheme).
Often, we will impose further conditions on X! X× X, e.g. that it be affine or finite.

Type of Space Property of the diagonal Property of stabilizers
algebraic space monomorphism trivial

DM stack unramified discrete and reduced groups
algebraic stack arbitrary arbitrary

Table 3: Characterization of algebraic spaces and DM stacks

For the rest of these properties, assume everything noetherian (don’t wanna worry about technical
quasi-compactess, quasi-separatedness, etc. hypotheses).

Properties of algebraic spaces

• R⇒ X étale equivalence relation of schemes =⇒ the quotient sheaf X/R is an algebraic space.

• X algebraic space =⇒ ∃ dense open scheme U ⊂ X

• X ! Y separated and quasi-finite morphism of algebraic spaces =⇒ X ! Y quasi-affine
(Zariski’s Main Theorem)

Properties of Deligne-Mumford stacks
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• R⇒ X is an étale groupoid of scheme =⇒ the quotient stack [X/R] is a DM stack

• X a DM stack =⇒ ∃ scheme U and finite morphism U ! X (Global structure of DM stacks)

• X a DM stack + x ∈ X(k) =⇒ ∃ étale nbdh of x

[Spec(A)/Gx]! X

(Local structure of DM stacks)

• X separated DM stack =⇒ ∃ a coarse moduli space X ! X where X is a separated algebraic
space (Keel-Mori theorem)

6.6 Properties of algebraic spaces/stacks

6.6.1 Properties of morphisms

Definition 6.10. Let P be a property of maps of schemes.

• P is étale-local on the source if for any X ′ ét
↠ X, then X ! Y has P ⇐⇒ X ′ ! X ! Y has P

Example. étale, surjective △

• P is étale-local on the target if for any Y ′ ét
↠ Y, then X ! Y has P ⇐⇒ X ×Y Y ′ ! Y ′ has P.

Example. almost everything (except projectivity). △

Same definition works for smooth-local. ⋄

The following are all smooth-local on the source

• étale

• surjectivity

• smooth

• flat

• locally of finite type/presentation

Definition 6.11. Assume P is stable under composition and base change.

• If P is étale-local on the source and target, a map X! Y of DM stacks has property P if for all
étale presentations V ! Y and U ! X×Y V , the composition U ! X×Y V ! V has P.

• If P is smooth-local (on both source/target), can define property P for maps X ! Y of algebraic
stacks

• A map X! Y of algebraic stacks which is representable by schemes has property P if for every map
T ! Y from a scheme, the base change X×Y T ! T has P. ⋄

When X! Y is representable by schemes, we can define basically any property for it.
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6.6.2 Properties of stacks

Definition 6.12. Let P be a property of schemes.

• P is étale-local if for any X ′ ét
↠ X, then X has P ⇐⇒ X ′ has P.

Let P be étale-local. We say a DM stack X has P ⇐⇒ ∀ étale presentations U ! X, U has P (equivalent
to change ∀ to ∃). ⋄

Can make the same definition for smooth-local and properties of algebraic stacks.

Example. locally noetherian, regular, reduced are all three smooth-local. △

6.6.3 Topolgical properties

Definition 6.13. The topological space of an algebraic stack X is

|X| :=
{
SpecK

x
−! X : K a field

}
/ ∼,

where (SpecK1
x1−! X) ∼ (SpecK2

x2−! X) if there exists K1 ! K3 and K2 ! K3 s.t. x1|SpecK3

∼
−!

x2|SpecK3
.

SpecK3 SpecK1

SpecK2 X

This gives a set. To get a topology, we say U ⊂ |X| is open if there exists an open immersion U ↪! X

such that U is the image of |U|! |X|. ⋄

Example. Say G = Z/2Z ↷ A1 via negation −1 · x = −x. We have

A1 [A1/G]

A1/G

where A1/G = Spec k[x2] and the map A1 ! A1/G is x 7! x2. In this case,
∣∣[A1/G]

∣∣ = ∣∣A1
∣∣. △

Example. Gm ↷ A1. Then,
∣∣[A1/Gm]

∣∣ consists of two points, a closed point with stabilizer Gm, and an
open point. △

Example. Take Gm ↷ A2 via t · (x, y) = (tx, ty). So the origin is fixed, and the other orbits are just
lines through the origin. We have P1 ⊂ [A2/Gm], and

∣∣[A2/Gm]
∣∣ = ∣∣P1

∣∣ ⊔ {0}.22 △

Definition 6.14. We use this to define topological properties.

• An algebraic stack is quasi-compact, connected, or irreducible if |X| is.

• A morphism X! Y is quasi-compact if |X|! |Y| is.
22And I think he said 0 is in the closure of every point?
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• A morphism X! Y is finite type if it is locally of finite type and quasi compact. ⋄

Exercise. Show that X is quasi-compact ⇐⇒ ∃ a smooth presentation SpecA↠ X.

Exercise (Harder). If X ! X × X is quasi-compact, then |X| is a sober topological space, i.e. every
irreducible closed subset has a generic point.

6.7 Equivalence Relations and Groupoids

Definition 6.15. An étale groupoid of schemes if a pair of étale maps s, t : R ⇒ U of schemes call
the source and target, along with a composition morphism c : R×t,U,s R! R satisfying

(associativity)

R×t,U,s R×t,U,s R R×t,U,s ×R

R×r,U,s R R

c×id

id×c c

c

(identity) ∃e : U ! R such that

U R R×t,U,s R R

U R U R

id
e id

e◦s,id

id
c

e◦t,id

id

s
t

(inverse) ∃i : R! R such that

R R R R U R U

U R×t,U,s R R R×t,U,s R U

s

i

t

i

s

s

(id,i) e

t

(i,id) e

c c

If (s, t) : R! U×U is a monomorphism, then we say s, t : R⇒ U is an étale equivalence relation. ⋄

We think of R as a “scheme of relations,” i.e. r ∈ R “determines a relation s(r) r
−! t(r).”

If R⇒ U is an equivalence relation, then there exists at most one relation between any two points of
U .

Example. Let G be a smooth algebraic group over a field k, and let U be a k-scheme on which G acts.
Define R := G × U with source s = σ : G × U ! U (multiplication) and target t = p2 : G × U ! U

(projection). So g ∈ G gives a relation u
g
−! g · u for any u ∈ U . This gives a smooth groupoid (étale if

G finite, for example). This is an equivalence relation ⇐⇒ G ↷ U freely ⇐⇒ G × U ! U × U is a
monomorphism. △

Example. Let X be a DM stack with étale presentation U ! X. Let R = U ×X U with source/target
(s, t) = (p1, p2) : U ×X U ⇒ U the projections. This is an equivalence relation ⇐⇒ X is an algebraic
space. △
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Definition 6.16. Let s, t : R ⇒ U be a smooth groupoid of schemes (abusing notation by leaving out
composition law). We define the prestack [U/R]pre whose fiber categories are [U/T ]pre(S) := [U(S)/R(S)]

where this is the groupoid quotient of an equivalence relation on sets. One also needs to say what
morphisms between objects over different schemes are, but this is easy to do.

We define [U/R] to be the stackification of [U/R]pre. ⋄

Exercise. There exists a Cartesian diagram

R U

U [U/R]

s

t p

p

as well as one
R U × U

[U/R] [U/R]× [U/R]

p×p

∆

Theorem 6.17. If R ⇒ U is an étale (resp. smooth) groupoid, then [U/R] is a DM (resp. algebraic)
stack.

We’ll prove this on Monday.

Remark 6.18. If you start with a presentation U ! X of a (DM or algebraic) stack, then you can form
the (étale or smooth) groupoid U ×X U ⇒ U and the quotient [U/(U ×X U)] is isomorphic to the stack
X you started with. Hence, you can consider an (étale or smooth) groupoid as being the data of a (DM
or algebraic) stack along with a presentation. ◦

Someone asked a question about group actions on stacks. I was distracted typing above remark, so
I did not quite get what all was said... seems like one can make sense of a group scheme G acting on a
stack X, and the quotient [X/G] will still be a stack. However, if you have a group stack G acting on a
stack X (and you figure out how to make sense of this), then the quotient object is no longer a stack; it
is now a higher (categorical) stack and Lurie probably makes sense of things in this case.

Question 6.19 (Audience). Mentioned earlier that projectivity is not étale-local on the source. I guess be-
ing representable by schemes is also not étale-local (Raynaud or someone has some complicated example).
Is there a simple example of this phenomenon?

Answer. We’ll give an example next time. To be clear, we want a diagram like

X ′ X

Y ′ Y

rep

ét

with X an algebraic space, and X ′, Y ′, Y all schemes (so X ′ ! Y ′ certainly representable by schemes).
The mapX ! Y won’t be representable by schemes since the basechange along Y = Y is not a scheme. ⋆
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7 Lecture 7 (2/1): Representability of the diagonal

7.1 Review

Definition 7.1. An algebraic space is a sheaf X on SchÉt such that there exists a scheme U and a
surjective, étale morphism U ! X representable by schemes. A Deligne-Mumford stack is a stack X over
SchÉt such that there exist a scheme U and a surjective, étale and representable morphism U ! X. An
algebraic stack is a stack X over SchÉt such that there exist a scheme U and a surjective, smooth and
representable morphism U ! X. ⋄

Remark 7.2. In the literature, one usually adds a hypothesis that the diagonal is representable. We will
see today that this is automatic from the above definition. ◦

Definition 7.3. An étale groupoid of schemes is a groupoid object s, t : R⇒ U in the category of schemes
where s, t are both étale maps. Can given analogous definition for smooth groupoid of schemes. ⋄

Example. If G↷ U a scheme, then have σ, p2 : R = G× U ⇒ U . △

Definition 7.4. The quotient stack [U/R] of a smooth groupoid R⇒ U is the stackification of [U/R]pre

where [U/R]pre(S) = [U(S)/R(S)] with the RHS denoting the groupoid quotient of set-theoretic groupoid
R(S) ⇒ U(S). ⋄

Warning 7.5. It seems that if you want to make sense of these quotient stacks in the fppf topology, for
example, then stackifying this naive prestack is not the “right” construction. •

Fact. There exists a Cartesian diagram

R U

U [U/R]

s

t p

p

as well as one
R U × U

[U/R] [U/R]× [U/R]

p×p

∆

We left off last time showing that the quotient stack is algebraic.

Proposition 7.6. Let R⇒ U be an étale (resp. smooth) groupoid. Then, [U/R] is a DM (resp. algebraic)
stack.

Proof. We claim that U ! [U/R] is representable. Let T ! [U/R] be a map from a scheme. We need
to show that the fiber product UT := U ×[U/R] T is an algebraic space, and that UT ! T is étale (resp.
smooth) and surjective. We know that exists an étale cover T ′ ↠ T fitting into a 2-commutative diagram

T ′ U

T [U/R]
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Now consider the cube
UT ′ T ′

R U

UT T

U [U/R]

ét

where every face is Cartesian except the left and right.
We know that T, T ′ and UT ′ are schemes, while UT is so far only a sheaf. Since T ′ ↠ T is representable

by schemes and étale, the same is true for UT ′ ↠ UT . Since UT ′ is a scheme, this is exactly what we need
to show that UT is an algebraic space. ■

Remark 7.7. A similar argument shows that if s, t : R ⇒ U is an étale equivalence relation and s, t are
quasi-compact and separated, then U/R is an algebraic space.23 ◦

7.2 Examples

We’ll give three descriptions of the “bug-eyed cover”.

• Z/2Z ↷ A1 ∪A1\0 A1, the non-separated affine line, by swapping the origins and by the involution
x 7! −x. Let X = U/(Z/2Z). We saw this previously24 as an example of an algebraic space which
is not a scheme.

• Z/2Z ↷ A1 via x 7! −x. Consider the corresponding étale groupoid σ, p2 : Z/2Z× A1 ⇒ A1. This
is not an equiv relation since the origin is fixed by −1, so let R ⊂ Z/2Z × A1 be the complement
of (−1, 0). Then, R ⇒ A1 is an étale equivalence relation. Then, X = A1/R is the same space as
above.

Remark 7.8. Let X be the space above. The map A1 ! A1, x 7! x2 factors through X, and the
map X ! A1 is an isomorphism away from the origin, but something fishy happens at 0. Recall X
is not a scheme, e.g. by considering the Cartesian squares

{(−1, z) | z ̸= 0} ⊔ {(1, 0)} A1

R A1 × A1

X X ×X

where the map A1 ! A1 × A1 above is z 7! (z,−z). So the Diagonal is not locally closed which
means X is not a scheme. ◦

23Something like use Zariski main to get R! U to be quasi-affine, and then effective descent for quasi-affine morphisms
to show that UT is a scheme

24See section 6.4
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Maybe you think this is contrived since we have a group acting on some non-separated space.
However, consider the next description.

• This last description due to Mumford. Consider SL2 ↷ Vd := Symd k2. Let

W =
{
(L,F ) : L ̸= 0 and F = Q2 where Q quad with disc = 1

}
⊂ V1 × V4.

Exercise. X =W/SL2. Note that W here is quasi-affine.

We have even more pathological examples.

Example. Z/2Z ↷ A1
C via conjugation z 7! z. Let R = Z/2Z × A1

C \ {(−1, 0)}. Then R ⇒ A1
C is an

étale equivalence relation. Let X = A1
C/R, defined over R. Question:

Do we not
need to re-
move all real
numbers?

Exercise. The basechange XC is the non-separated affine line over C. So

XC X

SpecC SpecR

we have a Z/2Z-torsor of an algebraic space with total space a scheme. △

Example. Z/2Z ↷ Spec k[x, y]/xy = U via −1 · (x, y) = (y, x). Let X = U/R with R = Z/2Z × U \
{(−1, 0)}. There are not two tangent directions at the origin in the quotient? △

Example. char k = 0. Consider Z as a group scheme over k (e.g. Z =
⊔
n∈Z Spec k). Now, Z ↷ A1

k via If char k = p,
then the Z-
action fac-
tors through
Fp and (I’m
pretty sure)
X ≃ A1

k via
A1
k ! X

the Artin-
Schreier map
x 7! xp − x

translation n · x = x+n. Then, X = A1
k/Z is an algebraic space which turns out to not be a scheme and

I think, for
example,
you can
show that
X has no
closed points
(exercise:
any quasi-
compact
scheme has
a closed
point). If
SpecL ! X

is a closed
immersion,
then so is
SpecL ×X
A1
k ! A1

k,
but the lat-
ter is infinite
and so not
the zero set
of a polyno-
mial in one
variable

to not be quasi-separated. △

Example. Z is a group scheme over k which is discrete, reduced, but not quasi-compact. Let X = BZ,
a DM stack. X is even quasi-compact, but its diagonal ∆X is not quasi-compact. △

Warning 7.9. We did not define BZ is this context. We were always working with smooth, affine group
schemes before. But without too much effort, you can show BZ here is a DM stack. •

Example. Let G = A1
k/Z a group algebraic space over k. Then, G is quasi-compact, but ∆G/k is not.

Let Z ⊂ Ga = A1. Then, X = BG quasi-compact, ∆X quasi-compact and local noetherian, but ∆∆X
is

not quasi compacted. △

Example. Take G = A∞ ∪A∞\0 A∞, a scheme that’s not quasi-separated. Let X = BG. Then, X is qc;
∆X is qc, but not loc noeth; and ∆∆X

is not qc. △

Example. Let G = A1 ∪A1\0 A1. This is a non-separated, relative group scheme over A1. Let X =

BA1G! A1. This is in fact a DM stack, and X,∆X,∆∆X
are all qc, but ∆X is not separated (here, ∆X

is representable by schemes).

Fact. If X is DM with qc and sep. diagonal, then ∆X is quasi-affine (in particular, representable by
schemes). △
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Example. Consider two group schemes over SpecZp: Z/pZ ! SpecZp and µp ! SpecZp. These are
isomorphic over Qp, but the fibers over 0 = (p) are different (p distinct points vs. this non-reduced
scheme µp). Let H := (Z/pZ) \ {non-id elements over 0}. We now have a map H ! µp (over Zp) which
is a bijective monomorphism (and an iso over Qp), but not a locally closed immersion. The quotient
Q := µp/H is a group algebraic space which is not a scheme. Now X = BZp

Q is a DM stack. It turns
out that ∆X is quasi-compact, but neither separable nor representable by schemes. △

Warning 7.10. For above example to work, need a pth root of unity. So either p = 2 or actually work
over Zp(ζp). •

7.3 The diagonal X! X× X

Our goal is the following.

Theorem 7.11 (Representability of the Diagonal).

(1) The diagonal of an algebraic space is representable by schemes.

(2) The diagonal of an algebraic stack is representable.

Proof. (1) Let X be an algebraic space. Let T ! X ×X be a map from a scheme. Consider

QT T

X X ×X.

We need to show that QT is a scheme. Choose an étale presentation U ↠ X with U a scheme. This is
an epimorphism of sheaves25, so there exists an étale cover T ′ ! T fitting into a square U × U !

X×X is rep-
resentable
by schemes,
so you can
take T ′ to
be the fiber
product if
you want
(though I
don’t think
this is neces-
sary)

T ′ U × U

T X ×X.

Now, we once again form a cube (Below, R ≃ U ×X U is a scheme since U ! X is representable by
schemes)

QT ′ T ′

R U × U

QT T

X X ×X

ét

Above, all faces except the left and right are Cartesian. We know that T, T ′, QT ′ are schemes, that QT is
a sheaf, and that R! U ×U is separated (since its a monomorphism) and locally quasi finite (since the
compositions R ! U × U ⇒ U are étale). Hence, QT ′ ! T ′ is itself separated and locally quasi finite.

25Being an epimorphism of sheaves just means that locally you can lift sections
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Consider the back square. Effective descent for separated and locally quasi finite maps implies that QT
is a scheme.26

(2) The argument here is largely the same. Let X be an algebraic stack and consider a map T ! X×X

from a scheme. We want to show that the basechange QT is an algebraic space. Choose a smooth
presentation U ! X with U a scheme.

Exercise. Maps can be lifted étale locally.

Hence, we get an étale cover T ′ ! T with T ′ ! U × U over T ! X×X. Once again consider a cube

QT ′ T ′

R U × U

QT T

X X× X

ét

Above, all faces except the left and right are Cartesian. T ′ ! T is étale and representable by schemes,
so QT ′ ! QT is as well. Hence, QT ′ ! QT is an étale presentation, so QT is an algebraic space. ■

Corollary 7.12.

(1) Any map from a scheme to an algebraic space is representable by schemes.

(2) Any map from a scheme to an algebraic stack is representable.

Proof. Let T ! X be a map from a scheme to an algebraic space. Say S ! X is another map from a
scheme. We want to show T ×X S is a scheme. We know that we have a Cartesian diagram

T ×X S T × S

X X× X

so we win since the diagonal is representable. ■

Exercise. If X! Y is a morphism of algebraic spaces (resp. algebraic stacks), the diagonal X! X×Y X

is representable by schemes (resp. representable).

Corollary 7.13. If R ⇒ U is an étale equivalence relation of schemes, then U/R is an algebraic space,
and U ! U/R is an étale presentation.

Proof. Suffices to show that the diagonal of X = U/R is representable by schemes. This would then
imply that U ! X is representable by schemes, and you get étale/surjectivity by descent. Consider once

26Descent gives you a scheme over T whose pullback is QT ′ . One still needs to show that the thing given by descent is
(the sheaf) QT . This is because the starting sheaf QT and the sheaf given by descent have isomorphic descent data (by
construction), and so must be isomorphic themselves.
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more a cube
QT ′ T ′

R U × U

QT T

X X ×X

ét

Above, all faces except the left and right are Cartesian. The upshot is that R! U ×U is separated and
locally quasi finite, so QT ′ ! T ′ is the same, so effect descent shows that QT is as well. ■

Remark 7.14. When R⇒ U is an equivalence relation, one can show that [U/R] is equivalent to a sheaf,
and the above argument shows that that sheaf is an algebraic space. ◦

Warning 7.15. Here are some things we don’t know (yet):

• Sheaf + algebraic stack =⇒ algebraic space.

Remark 7.16. We do know that sheaf + DM stack =⇒ algebraic space. Once we know this
stronger statement, we’ll also know that the quotient by a smooth equivalence relation of schemes
is also an algebraic space. ◦

• The diagonal of a quasi-separated algebraic space is quasi-affine. •

7.4 Properties of the diagonal

Recall 7.17. The stabilizer of x ∈ X(k) is Gx := Autk(x). We have a Cartesian diagram

Gx Spec k

X X× X.

(x,x)

∆

Since ∆ is representable, Gx is a group algebraic space. ⊙

Fact. If G is a qcqs group algebraic space over field k = k, then G is actually an algebraic group over k
(in particular, it is a scheme). Show that

there is an
open, dense
locus which
is a scheme,
then use
group op-
eration to
translate
this open
around to
show the
whole space
is a scheme

Definition 7.18. An algebraic group is a finite type group scheme over a field k. ⋄

Exercise. If X is an algebraic stack then X! X× X is locally of finite type.

Definition 7.19. The inertia stack of X is the fiber product

Remember:
The inertia
stack is the
pullback of
the diagonal
along the
diagonal

IX X

X X× X

⌜
∆

∆
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Note that IX ! X is representable since X! X× X is. Furthermore, for x ∈ X(k), one has a Cartesian
diagram

Gx Spec k

IX X

x ⋄

Exercise. Let G be a finite abelian group acting on a scheme U . Then,

I[U/G] =
⊔
g∈G

[Ug/G]

where Ug = {u ∈ U : gu = u}.

7.5 Separation properties

Definition 7.20. A map X! Y of algebraic stacks is quasi-separated if X! X×Y X is quasi-compact
and quasi-separated (i.e. diagonal and second diagonal both quasi-compact). ⋄

Definition 7.21. Say X is noetherian if it is locally noetherian, quasi-compact, and quasi-separated. ⋄

Exercise. Let G be a smooth, affine algebraic group over a field k, and say G acts on a scheme U/k.

(1) If x ∈ U(k), then the stabilizer of Spec k ! [U/G] is the usual stabilizer Gx.

(2) Assume U is quasi-separated. Then, [U/G] is quasi-affine.

(3) Assume U has affine diagonal (e.g. U separated). Then, [U/G] has affine diagonal.

Example. We showed already that Mg = [H ′/PGLn] (when g ≥ 2). This H ′ is quasi-projective since
its some locally closed subspace of a Hilbert scheme, so Mg has affine diagonal. We will later show it has
finite diagonal. △

8 Lecture 8 (2/3): Dimension, tangent spaces, and residual gerbes

8.1 Last time

Theorem 8.1 (Representability of the Diagonal). The diagonal of an algebraic space (resp. algebraic
stack) is representable by schemes (resp. representable).

Theorem 8.2 (Algebraicity of quotients).

(1) R⇒ U smooth groupoid of schemes =⇒ [U/R] is an alg stack

(2) R⇒ U étale groupoid of schemes =⇒ [U/R] is a DM stack

(3) R⇒ U étale equiv relations of schemes =⇒ U/R is an alg space

Today, we want to talk about dimension, tangent spaces, and residual gerbes.
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8.2 Dimension

Recall 8.3. If X is a scheme, then dimX is the Krull dimension of the topological space |X|. Given
x ∈ X, we set dimxX = minU∋x dimU , the local dimension at x. ⊙

Warning 8.4. It is not true in general that, for a scheme X, one has dimxX = dimOX,x. •

Example. Imagine a plane union a line, e.g. V (z) ∪ V (x, y) ⊂ A3. Most points on the line have local
dimension 1, but the whole space has dimension 2. △

For stacks, we will want to define dimX using a smooth presentation U ↠ X. We’ll basically set
dimX = dimU − reldim(U ! X).

Definition 8.5. Let X be a noetherian algebraic space, and choose x ∈ |X|. Choose an étale presentation
(U, u)! (X,x), and define

dimxX := dimu U ∈ Z≥0 ∪ {∞}.

This is well-defined since étale maps preserve dimension (have rel dim 0). ⋄

Definition 8.6. Let X be an algebraic stack and choose x ∈ |X|. Choose a smooth presentation (U, u)!

(X, x), and let s, t : R ⇒ U be the smooth groupoid associated to this presentation, so R = U ×X U .
Define

dimx X := dimu U − dime(u)Ru ∈ Z ∪∞,

where Ru is the fiber of s : R ! U over u and e : U ! R denotes the identity morphism in the
groupoid. ⋄

Definition 8.7. If X is a noetherian algebraic space of stack, we define

dimX = sup
x∈|X|

dimx X ∈ Z ∪ {∞}.

⋄

Checking that things are well-defined is best done on one’s own.

Proposition 8.8. dimx X is well-defined.

We will use

Fact. Let X f
−! Y be a smooth map of noetherian schemes, and say f(x) = y. Then,

dimxX = dimy Y + dimxXy.

Proof Sketch of Proposition 8.8.

• Let U ′ ! X be another presentation with groupoid R′ ⇒ U ′

• Consider U ′′ = U ×X U
′ ∋ u′′ 7! u′, u.

• By symmetry, suffices to show

dimu U − dime(u)RU = dimu′′ U ′′ − dime′′(u′′)R
′′
U ′′ .
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• Consider the picture
R′
U ′ U ′′

U U ′′ U ′

Spec k(u) U X

• Apply fact to U ′′ ! U to see

dimu′′ U ′′ = dimu U + dimu′′ U ′′
u = dimu U + dime′(u′)R

′
U ′ .

• Now that we know this, we only need show

dime′′(u′′)R
′′
U ′′ = dime(u)RU + dime′(u′)R

′
U ′ .

• For simplicity assume u, u′, u′′ have same residue field k (dimension insensitive to field extension).
Consider the Cartesian cube

R′′
U ′′ R′

U ′

U ′′ U ′

RU Spec k

U X
x

Finally, use additivity of dimension.

■

Example. Let G be a smooth, affine algebraic group over k, and let U be a k-scheme with G-action.
Then,

dim[U/G] = dimU − dimG.

In particular,

• dimBG = −dimG

• dim[A1/Gm] = 0

• dim[A2/Gm] = 1. Note P1 ⊂ [A2/Gm]. Also have BGm ↪! [A2/Gm] of codimension 2.

• Mg = [H ′/PGLn] with H ′ locally closed in Hilbert scheme, so dimMg = dimH ′ − dimPGLn.
Could try using deformation theory to compute these things, but we won’t. We’ll later show Mg is
smooth and then compute the dimension of its tangent space instead.

△
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8.3 Tangent spaces

Definition 8.9. Let X be an algebraic stack, and fix x ∈ X(k). The Zariski tangent space is defined
as the set

TX,x :=


Spec k

Spec k[ε] X

x

τ

α


/

∼

where (τ, α) ∼ (τ′, α′) if ∃ iso β : τ
∼
−! τ′ in X(k[ε]) compatible with α, α′, i.e. α′ = β|Spec k ◦ α. ⋄

Why is this a vector space?

(Scalar multiplication) For c ∈ k on (τ, α) ∈ TX,x, c · (τ, α) is defined as the composition

Spec k[ε]
ε 7!cε
−−−! Spec k[ε]

τ
−! X

with same 2-iso α.

(Addition) There is a non-obvious equivalence27

X(k[ε1]×k k[ε2])! X(k[ε1])×X(k) X(k[ε2]).

Define (τ1, α1) + (τ2, α2) as the composition

Spec k[ε]! Spec(k[ε1]×k k[ε2])! X.

Proposition 8.10. If X is an algebraic stack with affine diagonal, and x ∈ X(k), then TX,x is naturally
a k-vector space.

This is true more generally with affine diagonal hypothesis, but the proof (of the pushout property) is
easier with this hypothesis.

Exercise. TX,x is a Gx-representation. Set-theoretically, given g ∈ Gx(k) and (T, α) ∈ TX,x, we set
g · (τ, α) = (τ, g ◦ α).

Example. Take G a smooth and affine algebraic group. Take Spec k
x
−! BG be the canonical cover.

Since G is smooth, TBG,x = 0. △ If k = k,
this maps
corresponds
to the triv-
ial G-torsor
and every G-
torsor over
the dual
numbers is
also trivial,
or something

Example. Consider X = [A1/Gm]. Recall |X| consists of two points, one open and one closed. The open
point is Spec k

1
↪! [A1/Gm] and the closed point is BGm ↪! [A1/Gm]. Consider the composition

Spec k BGm [A1/Gm].

0

One has TX,1 = 0 with G1 = {1} acting trivially, while TX,0 is 1-dimensional with action of G0 = Gm.
This X will be an example of a smooth stack. Note that dimTX,x − dimGx is constant. △

27Amounts to showing that Spec k[ε1] ×k k[ε2] is a pushout of Spec k[ε2]  Spec k ! Spec k[ε1] in the category of
algebraic stacks
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Example. Bµp over k of characteristic p. We have Spec k
x
−! Bµp. Note we don’t yet know Bµp is

algebraic, since we’ve focused on quotients of flat group schemes. In this case, one gets TBµp,x = 1. One
way to think about this is to consider the exact sequence

1! µp ! Gm
t7!tp
−−−! Gm ! 1,

and use this to view Bµp = [Gm/Gm] via the map t 7! tp. This shows that Bµp is a (smooth) algebraic
stack, and that it has dimension 0, even though it has this 1-dimensional tangent space. △

Example. Fix g ≥ 2 and consider Mg. Fix Spec k
[C]
−−! Mg, where C smooth, projective curve of genus

g. By definition,

TMg,[C] =




Spec k

Spec k[ε] Mg

[C]

τ


/

∼

 = {C! Spec k[ε] ∋ 0 and C0
∼= C}/ ∼

It is a fact from infinitesimal deformation theory that this latter set can be identified with H1(C, TC).
We now compute

h1(C, TC) = h1(C,Ω∨
C) = h0(C,Ω⊗2

C ) = 2(2g − 2)− (g − 1) = 3(g − 1).

△

8.4 Residual gerbes

Recall 8.11. If X is a scheme and x ∈ X, then there exists a residue field k(x), along with a monomor-
phism Spec k(x) ↪! X. ⊙

Goal. We want an analogous construction. Given x ∈ |X|, we want to consider the smallest substack of
X containing x.

Definition 8.12. We say x ∈ |X| is a point (locally) of finite type if there exists a representative
Spec k ! X such that this morphism is (locally) of finite type. ⋄

Warning 8.13. We previously said that a map X! Y of algebraic stacks is quasi-compact if |X|! |Y|
is. This not the right definition. Really, X! Y is quasi-compact if for every affine scheme T and map
T ! Y, the fiber product T ×Y X is a quasi-compact algebraic space (i.e. |T ×Y X| is a qc top space). •

Fact. For X a scheme, x ∈ X if of finite type ⇐⇒ it is locally closed (i.e. closed in some open set).
As an example, if R is a dvr with K = FracR, then SpecK ↪! SpecR is an open immersion, so of finite
type.

For schemes of finite type over k, any k-point is closed. This will not be true for algebraic stacks, e.g.
SpecC 1

−! [A1
C/Gm] is not closed.

Definition 8.14. Let X be an algebraic stack and fix x ∈ |X|. Choose a smooth presentation (U, u) ↠

(X, x). The residual gerbe of x is the substack Gx ⊂ X defined as the stackification of the full subcategory
Gprex ⊂ X of objects a ∈ X over S which factor as a : S ! Spec k(u)! X. ⋄
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Fact. If X is noetherian, then Gx is independent of the presentation.

Theorem 8.15. Let X be a noetherian algebraic stack. Let x ∈ |X| be a finite type point with smooth
and affine stabilizer. Then, Gx is an algebraic stack and Gx ↪! X is a locally closed immersion.

Moreover, if (U, u) ! (X, x) is a smooth morphism from a scheme U , then we have a Cartesian
diagram

O(u) U

Gx X

where O(u) is the orbit s(t−1(u)) of the induced groupoid s, t : R := U ×X U ⇒ U . That is,

O(u) = s(t−1(u)) =
{
v : ∃v ρ

−! u in R
}

as a set.

Remark 8.16. We can give O(u) the reduced scheme structure. ◦

*Missed stuff because zulipping*

Fact. Say G↷ U finite type over a field. Any G-orbit of u ∈ U(k) is locally closed.

Example. He drew the diagram

A1 \ 0 A1 Spec k

G1 Spec k
[
A1/Gm

]
BGm G0

0

1

0

△

Fact (I didn’t really understand this). In general, Gx is a gerbe over the residue field k(x).

BGx′ Gx X

Spec k′ Spec k

Let’s sketch a proof of a special case of the theorem.

Proof of special case of Theorem. Let’s suppose X is of finite type over a field, and that x ∈ X(k).

(step 1) There exists BGx ! X which is a finite type monomorphism. Recall BGprex is the prestack
whose fiber category BGprex (S) has one object with morphisms Gx(S). Hence, we get a morphism
of prestacks BGprex (X) where

BGprex (S) −! X(S)

∗ 7−! (S ! Spec k
x
−! X)
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and morphisms are dealt with in the obvious way. This map then factors through a map BGx ! X

from the stackification. The original map BGprex ! X was a mono of prestacks, so BGx ! X is a
monomorphism of stacks. We also have a factorization

Spec k BGx X

x

with x assumed of finite type, so BGx ! X is also of finite type.

(step 2) Reduce to case where BGx ! X is also flat and surjective. Can assume it has dense image
by simply replacing X with the smallest closed substack containing BGx. Since Spec k ! BGx ! X

has dense image, ???? implies that Spec k ! X is flat so BGx ! X is flat. Flat and finite type Question:
generic flat-
ness?

morphisms are open, so image is open, so we can use that to assume that the map is surjective.

(step 3) With reductions made, we now want to show that BGx
∼
−! X is an isomorphism. Consider

the fiber product
O U

BGx X

By construction, O is an algebraic stack and also a sheaf (we don’t know yet it is an algebraic
space). Also recall that BGx ! X is finite type, flat, surjective, and a monomorphism. We can and
do assume that U is affine. From this, we know that ∆O is affine.

Let’s assume for a moment that we know that O,U are sheaves in Schfppf. A priori, we only know
they are sheaves in the (big) étale topology. In this case, it suffices to show that for all T ! U ,
there is some fppf cover T ′ ↠ T so that we get a square

T ′ T

O U

Let Õ ! O be a smooth cover of O by a scheme. Consider the Cartesian squares

ÕT OT T

Õ O U

We can take T ′ = ÕT since the composition ÕT ! T is fppf (ÕT ! OT is smooth). ■

What about the missing ingredient?

Theorem 8.17. Any algebraic space X is a sheaf in Schfppf .

Fact. In fact, same proof shows that if X is an algebraic stack and a sheaf with diagonal representable
by schemes, then X is a sheaf on Schfppf .
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9 Lecture 9 (2/8): Characterization of DM stacks

Recall that our overall goal of the course is to prove the following.

Goal. The moduli space Mg of stable curves of genus g ≥ 2 is a smooth, proper and irreducible Deligne-
Mumford stack of dimension 3g − 3 which admits a projective coarse moduli space.

After today, we will know that Mg is a DM stack which is smooth over SpecZ of relative dimension
3g − 3. On Wednesday, we’ll move onto the geometry of DM stacks, with 2 lectures working towards to
existence of coarse moduli spaces. After that, onto stable curves.

9.1 Recap

Dimension Let X be an algebraic stack with x ∈ |X|. Choose a smooth presentation (U, u) ! (X, x),
and let s, t : R⇒ U be the associated smooth groupoid. Then,

dimx X := dimu U − dime(u)Ru ∈ Z ∪ {∞},

where Ru is the fiber of s : R! U over u, and e : U ! R denotes the identity morphism in the groupoid.
This is well-defined ultimately because dim is well-behaved (read: additive) for smooth morphisms.

Tangent space Let X be an algebraic stack and choose x ∈ X(k). The Zariski tangent space is defined
as the set

TX,x :=
{
τ ∈ X(k[ε]) with α : τ|Spec k

∼
−! x

}
/ ∼,

where (τ, α) ∼ (τ′, α′) if ∃βτ ∼
−! τ′ in X(k[ε]) compatible with α, α′.

Fact. This is a k-vector space.

Example. If [C] : Spec k ! Mg, then infinitesimal deformation theory gives TMg,[C] = H1(C,ΩC) or
something. I missed it. △

Residual gerbes First some clarifications.

Definition 9.1. An algebraic stack X is quasi-compact if |X| is. Equivalently, ∃SpecA↠ X a smooth
presentation.

A map X! Y is quasi-compact if for all SpecA! Y, the fiber product X×YSpecA is quasi-compact.
We say X is noetherian if X is locally noetherian, and X,∆X,∆∆X

are all quasi-compact (i.e. X qc
and ∆X both qc and separated).

A point x ∈ |X| is finite type if there exists a representative Spec k ! X of x which is locally of finite
type. ⋄

Remark 9.2. If X is noetherian, then Spec k ! X is locally of finite type iff it is of finite type. ◦
We introduced residual gerbes last time. Essentially, the residual gerbe Gx ⊂ X is the “smallest”

substack containing x. In other words, we can always factor

Spec k X

Gx

x
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and this is universal (final?) among objects fitting into the above diagram. We showed last time that

Theorem 9.3. Let X be a noetherian algebraic stack. Let x ∈ |X| be a finite type point with smooth
stabilizer. Then Gx is an algebraic stack, and the inclusion Gx ↪! X is a locally closed immersion.

Remark 9.4. It is possible to relax the finite type and smooth stabilizer hypotheses above. If you remove
finite type, the inclusion is a monomorphism but not necessarily a locally closed immersion. To remove
the smooth stabilizer hypothesis, one would need to be able to take quotients by non-smooth group
schemes (e.g. by flat group schemes/flat equivalence relations). We do not with to develop quotients by
flat equivalence relations here. ◦

Remark 9.5. In proof of this last time, we used that algebraic spaces are sheaves for the fppf topology,
but this is not necessary for the proof since we have the smooth stabilizer assumption. ◦

Remark 9.6. If X is finite type over a field k, and x ∈ X(k) (in context of above theorem), then Gx =

BGx ! X. ◦

9.2 Miniversal presentations

Theorem 9.7 (Existence of Miniversal Presentations). Let X be a noetherian algebraic stack, and
let x ∈ |X| be a finite type point with smooth stabilizer Gx. Then, there exists a smooth morphism
(U, u)! (X, x) from a scheme of relative dimension dimGx s.t.

Spec k(u) U

Gx X

is Cartesian. In particular, if Gx is finite and reduced, there is an étale morphism (U, u) ! (X, x) from
a scheme.

Definition 9.8. We say a smooth map (U, u)! (X, x) is miniversal at u if it induces an isomorphism
TU,u

∼
−! TX,x on tangent spaces. ⋄

“It is a smooth presentation of the smallest possible dimension.”
We will later see that the map U ! X in the theorem is miniversal. We could do it now, but it’ll be

more convienent to wait until we have the lifting property of smoothness.

Example. Gm ↷ A2 diagonally, t · (x, y) = (tx, ty).

Spec k A2

BGm
[
A2/Gm

]
0

0

Above G0 = BGm, and the map A2 ! [A2/Gm] is miniversal at 0. However, it is not miniversal
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everywhere, e.g. it is not at (0, 1).

{(0, y) : y ̸= 0} A2

Spec k
[
A2/Gm

](0,1)

This point has no stabilzer, so the residual gerbe is just Spec k, and the fiber product is the orbit of this
point. This orbit is 1-dimensional. To get something miniversal, can take a slace transversal to the orbit,
e.g.

Spec k[x] = A1 y=1
−−! A2 ! [A2/Gm]

is miniversal at 1. △

Let’s do the proof now, theorem restate for convenience.

Theorem 9.9 (Existence of Miniversal Presentations). Let X be a noetherian algebraic stack, and
let x ∈ |X| be a finite type point with smooth stabilizer Gx. Then, there exists a smooth morphism
(U, u)! (X, x) from a scheme of relative dimension dimGx s.t.

Spec k(u) U

Gx X

is Cartesian. In particular, if Gx is finite and reduced, there is an étale morphism (U, u) ! (X, x) from
a scheme.

Proof. Choose (U, u)! (X, x) a smooth presentation. Consider the fiber product

O(u) U

Gx X

Note that dimGx = −dimGx, so dimO(u) = c := n − dimGx where n = reldim(U ! X). If c = 0, we
win. In general, we want to find a slice transverse to the orbit.

First observe that O(u) is a smooth scheme of dimension c. Thus, there exists a regular sequence
f1, . . . , fc ∈ mu ⊂ OO(u),u generating the maximal ideal mu at u. We know O(u) ↪! U is a locally
closed immersion. After shrinking, we can make this a closed immersion (even one with U affine), and
then lift these to global sections f1, . . . , fc ∈ Γ(U). Now define W = V (f1, . . . , fc) ⊂ U . By design,
W ∩O(u) = {u}. Question:

Do we need
u to be a
closed point
for this?

We want to show that W is flat over X. We inductively apply

Fact (local criterion of flatness). Let (A,mA)! (B,mB) be a flat local ring homomorphism of local
noetherian rings. Let f ∈ mB s.t. f ⊗ 1 in B ⊗A A/mA is not a zero divisor. Then, A ! B ! B/f is
flat.
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We are in a situation to apply this since we have a regular sequence. We now have

Spec k(u) W U

Gx X

sm flat

We now have a flat morphism which is smooth at a point, so it is smooth in a neighborhood (?). We can
shrink W further in order to have W ! X smooth, and so we win. ■

Remark 9.10. There are details not worked out above. e.g. we’ve maybe not yet quite shown that
dimGx = − dimGx always. ◦

Note that the above theorem is actually false without the smooth stabilizer assumption.

Corollary 9.11 (characterizations of DM stacks). Let X be a noetherian algebraic stack. Then,
TFAE

(1) X is DM

(2) every point of X has a finite, reduced stabilizer

(3) the diagonal X! X× X is unramified.

(2) ⇐⇒ (3) above is formal.

Definition 9.12. A map X ! Y of schemes is unramified if it is locally of finite type, and all fibers
are discrete and reduced. This property is étale local on the source and target, so it naturally extends to
morphisms of DM stacks. ⋄

The miniversal presentation theorem gives (2) =⇒ (1). This leaves (1) =⇒ (2).

Proof of (1) =⇒ (2) in Corollary. Say X is DM, so there exists an étale presentation U
ét
↠ X. Consider

the diagram

R U × U U

X X× X

pr1

The composition R! U is étale, so R! U × U is unramified (condition on fibers). ■

Corollary 9.13. Let X be a noetherian DM stack. Assume ∆X is representable by schemes. Then,
TFAE

(1) X algebraic space

(2) every point has trivial stabilizer

(3) X! X× X is a monomorphism.

Note that (3) above is easily equivalent to X being a sheaf.
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Fact. A finite type group scheme G! S is trivial ⇐⇒ fibers are trivial.

Remark 9.14. By “every point” we mean “every field valued point” or even “every geometric point.” ◦

Remark 9.15. The diagonal being representable by schemes is not a necessary hypothesis above, but
proving the corollary without this requires more work. That hypothesis not being necessary is basically
telling us that quotients of (étale) equivalence relations of algebraic spaces are still algebraic spaces. ◦

Fact. The finite type points form a dense subset of a noetherian stack.

Fact. If C is a smooth, projective curve over k (of genus g ≥ 2), then Aut(C) is finite and reduced.

Proof Sketch. Two parts

(1) Aut(C) is an algebraic group.

Use Hilbert scheme to relate α : C
∼
−! C to its graph Γα : C ↪! C × C.

(2) Infinitesimal deformation theory identifies Lie algebra

TeAut(C) = H0(C, TC) = 0.

Have an algebraic group with trivial Lie algebra, so it must be finite and reduced. ■

Corollary 9.16. Mg is a DM stack of finite type over Z with affine diagonal. Question:
When did
we show
that the
diagonal is
affine?

Answer: We
showed Mg

is the quo-
tient stack
of some-
thing quasi-
projective
mod the
(affine)
group PGLn

9.3 Smoothness

We know what it means for a morphism of algebraic stacks to be smooth, since smoothness is smooth-local
on both the source and target. We want a criterion for checking smoothness more easily.

Theorem 9.17 (Formal lifting Criterion for smoothness). Let f : X! Y be a morphism of algebraic
stacks. Then, f is smooth if and only if f is locally of finite presentation, and for every diagram

SpecA0 X

SpecA Y

f

of solid arrows where A↠ A0 is a surjection of rings with nilpotent kernel, there exists a lifting.
If X,Y are notherian, then it suffices to consider diagrams where A and A0 are local artinian rings.

Remark 9.18. To be explicit, a lifting of

SpecA0 X

SpecA Y

x

g f

y

α
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is a map x̃ : SpecA! X and 2-isomorphisms β, γ

SpecA0 X

SpecA Y,

x

g f

x̃

y

β

γ

such that
f ◦ x

y ◦ g f ◦ x̃ ◦ g
α

g∗γ

f(β)

commutes ◦

Remark 9.19. X ! Y is smooth ⇐⇒ for all such diagrams, X(A) ! X(A0) ×Y(A0) Y(A) is essentially
surjective. ◦

We skip the proof of this criterion. We do mention that there are similar criteria for étale (unique
lift) and unramified (at most one lift) morphisms.

Proposition 9.20. Let X be a noetherian algebraic stack. Let x ∈ |X| be a finite type point with smooth
stabilizer. Suppose we have

Spec k(u) U

Gx X

a Cartesian diagram. Then U ! X is miniversal at u, i.e.

TU,u
∼
−! TX,f(u)

as k(u)-vector spaces.

Proof. Formal lifting criterion applied to tangent vectors (k = k(u))

Spec k U

Spec k[ε] X

u

exactly says that we can lift tangent vectors, we have a surjection TU,u ↠ TX,f(u).
We still need injectivity. Say we have a tangent vector τ : Spec k[ε]! U in TU,u which maps to 0. The

map to X factors through Spec k. By definition of the residual gerbe, this means that Spec k[ε] τ
−! U ! X

factors through Gx ↪! X. Thus, τ factors through the fiber product Gx ×X U = Spec k(u), so τ is itself
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trivial.

Spec k[ε]

Spec k(u) U

Gx X

τ

■

Example. A1 ! [A1/Gm] is smooth of relative dimension 1, but nevertheless induces an iso on tangent
spaces at the origin. △

Corollary 9.21. Let X be a noetherian algebraic stack which is smooth over a field k. Let x ∈ X(k) (in
particular, x is finite type?) have smooth stabilizer. Then,

dimx X = dimTX,x − dimGx.

Proof. Take a miniversal presentation

Spec k(u) U

Gx X.

We know the relative dimension of Spec k(u)! Gx is dimGx, so

dimx X = dimu U − reldim(Spec k(u)! Gx) = dimTU,u − dimGx = dimTX,x − dimGx

where we used above that U is smooth over Spec k (so dimu U = dimTU,u). ■

Example. We can now show that Mg ! SpecZ is smooth of relative dimension 3g − 3, when g ≥ 2.

(smoothness) Say we have a diagram

SpecA0 Mg

SpecA SpecZ.

In the formal lifting criterion, it suffices to assume that A,A0 are local, artinian rings (so have
Spec k ↪! SpecA0) with ker(A ↠ A0) = k. Let [C] : Spec k ↪! SpecA0 ! Mg. We know want to
fill in the diagram

C C0 C

Spec k SpecA0 SpecA

Infitesimal deformation theory gives a cohomology class ob ∈ H2(C, TC) s.t. ob = 0 ⇐⇒ ∃C !
SpecA extension. We’re on a curve so H2(C, TC) = 0 and we win.
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(dimension) For a field k, we know dim[C] Mg,k = dimH1(C, TC) = 3g − 3.

△

9.4 Properness

Many definitions...

Definition 9.22. For algebraic stacks X,Y, we define

• A morphism X! Y is universally closed if for every morphism Y′ ! Y, the morphism X×YY
′ ! Y′

induces a closed map on topological spaces.

• A representable morphism X! Y is separated if the diagonal X! X×YX (which is representable
by schemes) is proper.

• A representable morphism X! Y is proper if it is universally closed, separated and of finite type.

• A morphism X ! Y of algebraic stacks is separated if the diagonal X ! X ×Y X (which is
representable) is proper.

• A morphism X! Y is algebraic stacks is proper if it is universally closed, separated and of finite
type.

⋄

Remark 9.23. If X is a scheme, the diagonal is a monomorphism so ∆X is a closed immersion ⇐⇒ ∆X

is proper. ◦

Example. BG for G finite group is proper, but its diagonal is not a closed immersion. △

Theorem 9.24 (Valuative Criteria for Univ. Closed/Proper/Separated). Let f : X ! Y be a
finite type morphism of algebraic stacks, and consider a 2-commutative diagram

SpecK X

SpecR Y

f
α

where R is a valuation ring with fraction field K. Then,

(1) f is universally closed ⇐⇒ for all such diagrams, there exists an extension R ! R′ of valuation
rings and K ! K ′ of fraction fields together with a lifting

SpecK ′ SpecK X

SpecR′ SpecR Y.

f

(2) f is separated ⇐⇒ any 2 liftings are isomorphic
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(3) f is proper ⇐⇒ every diagram has a lifting after an extension R ! R′ and any 2 liftings are
isomorphic.

Moreover, if f : X! Y is a finite type morphism of noetherian algebraic stacks, then it suffices to consider
DVRs R and extensions such that K ! K ′ is of finite transcendence degree.

10 Lecture 10 (2/10): Geometry of DM stacks

10.1 Where are we?

Today begins the third part of the course: geometry of DM stacks (∼ 2 lectures). After this is the part
of stable curves and their moduli (∼ 6−−7 lectures). The first part was sites, sheaves and stacks, while
the second part was algebraic spaces and stacks.

Note 5. There are ∼ 50 people here today.

10.2 Recap

Miniversal presentations Our first theorem last time was the existence of miniversal presentations.

Theorem 10.1 (Existence of Miniversal Presentations). Let X be a noetherian algebraic stack,
and let x ∈ |X| be a finite type point with smooth stabilizer Gx. Then, there exists a smooth morphism
(U, u)! (X, x) from a scheme of relative dimension dimGx s.t.

Spec k(u) U

Gx X

is Cartesian. In particular, if Gx is finite and reduced, there is an étale morphism (U, u) ! (X, x) from
a scheme.

We showed that the induced map TU,u
∼
−! TX,f(u) on tangent spaces, at u, was an isomorphism, in

the above situation. We used this to show that if X is finite type over a field k, and X is smooth at x,
then

dimx X = dimTX,x − dimGx.

We also obtained the below corollay, which we used to show that Mg is DM.

Corollary 10.2 (characterizations of DM stacks). Let X be a noetherian algebraic stack. Then,
TFAE

(1) X is DM

(2) every point of X has a finite, reduced stabilizer

(3) the diagonal X! X× X is unramified.
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Smoothness We then talked about smoothness, and gave the following lifting criteria for smoothness.

Theorem 10.3 (Formal lifting Criterion for smoothness). Let f : X! Y be a morphism of algebraic
stacks. Then, f is smooth if and only if f is locally of finite presentation, and for every diagram

SpecA0 X

SpecA Y

f

of solid arrows where A↠ A0 is a surjection of rings with nilpotent kernel, there exists a lifting.
If X,Y are noetherian, then it suffices to consider diagrams where A and A0 are local artinian rings.

There is often (read: always) an “obstruction” to the existence of such a lift SpecA ! X which is
given by the element of some cohomology group.

For Mg, it sufficed to check the lifting criterion on local Artinian rings, where we would restrict to
the residue field and ultimately obtain an obstruction class in H2(C, TC) = 0. We used this to conclude
that Mg is smooth.

10.2.1 Separated and Properness

We talked about properness/separatedness last time, but we were kinda rushed, so let’s say a little more
this time.

Definition 10.4. We say X! Y is

(1) separated if ∆ : X! X×Y X is proper

(2) proper if X! Y is finite type, universally closed, and separated.

⋄

Remark 10.5. This is not circular since the diagonal is representable, so has a notion of properness coming
from properness of maps of schemes. ◦

Example. If X is a scheme, then ∆X is always a locally closed immersion. Hence, X separated ⇐⇒ ∆X

closed immersion ⇐⇒ ∆X finite ⇐⇒ ∆X proper. △

Example. Let G be a finite group. Then, BG is separated since we have a Cartesian diagram

G Spec k

BG BG×BG

fin

ét ét

∆

△

Example. Consider Z/2Z ↷ U with U the non-separated affine line. Consider the action which swaps
the two origins, but fixes everything else, and let X = [U/(Z/2Z)]. This looks like the affine line, except
there’s a generic Z/2Z stabilizer away from the origin (and the stabilizer at the origin is trivial). We have
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a map U ! X, and can choose an affine line A1 ! U over U . Let f : A1 ! U ! X be the composition.
What is AutA1(f)?

It is not finite over A1 (look at the origin), so X is not separated. One can show that G = AutA1(f)

is a group scheme over A1, and X = BA1G. △

Example. BGm is not separated. The reason is that Gm ! Spec k is an affine group scheme, but not
proper. This is the basechange of the diagonal along Spec k ! BGm ×BGm. △

Fact. If X has affine diagonal, then X is separated ⇐⇒ ∆X is finite.

This is because proper + affine = finite. As a consequence, algebraic stacks with affine diagonal and
positive dimensional stabilizers are never separated.

Example. [A1/Gm], Bunr,d(C) are not separated. △

We will show that Mg is separated. We do not know this yet.
Recall the valuative criterion.

Theorem 10.6 (Valuative Criteria for Univ. Closed/Proper/Separated). Let f : X ! Y be a
finite type morphism of algebraic stacks, and consider a 2-commutative diagram

SpecK X

SpecR Y

f
α

where R is a valuation ring with fraction field K. Then,

(1) f is universally closed ⇐⇒ for all such diagrams, there exists an extension R ! R′ of valuation
rings and k ! K ′ of fraction fields together with a lifting

SpecK ′ SpecK X

SpecR′ SpecR Y.

f

(2) f is separated ⇐⇒ any 2 liftings are isomorphic

(3) f is proper ⇐⇒ every diagram has a lifting after an extension R ! R′ and any 2 liftings are
isomorphic.

Moreover, if f : X! Y is a finite type morphism of noetherian algebraic stacks, then it suffices to consider
DVRs R and extensions such that K ! K ′ is of finite transcendence degree.

Note 6. Got distracted for a minute. He said something about later showing Mg is proper, but I missed
it.

Example. We can use this criterion to show BGm is not separated. Let R be a valuation ring with
fraction field K. Any Gm-torsor over SpecK is trivial. Say we have two trivial torsors h1, h2 : SpecR⇒

BGm over R, along with an isom (h1|SpecK
∼
−! h2|SpecK) ∈ Gm(K). Properness (the uniqueness of
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lifts) requires this isomorphism to lift to one over R (i.e. to lift to an element of Gm(R)). However,
Gm(R)! Gm(K) is not surjective (e.g. if R is a dvr, let π be a uniformize and let 1/π ∈ Gm(K) be the
iso you start with), so BGm is not proper. △

10.3 Quasi-coherent sheaves

We won’t need much of the theory of quasi-coherent sheaves for a while, but we introduce them now.
For DM stacks, this theory works just like it does for schemes, so we want give a taste of it. Extending
things to algebraic stacks is harder, and we do not do that.

Let X be a Deligne-Mumford stack.

Definition 10.7. The small étale site of X is the category Xét of schemes étale over X. A covering is
a collection {Ui

ét
−! U} such that

⊔
Ui ↠ U . ⋄

This gives a notion of sheaves on Xét, so let Sh(Xét) denote the category of sheaves on Xét. Spelled
out a bit, given F ∈ Sh(Xét), for any U ét

−! X, we get a set of sections F (U ! X). In fact, can extend
this to étale maps U! X of DM stacks; the idea is to choose a presentation U ! U with corresponding
groupoid R⇒ U , and then define

F (U
ét
−! X) := Eq (F (U ! X) ⇒ F (R! X))

(Eq for equalizer). If you want, you could enlarge your site to consist of all étale coverings by DM stacks,
and then what we’re calling Xét would be like a basis for this larger site. We don’t do this, but we
introduced this in order to make sense of global sections I think, in

general, if
you want to
make sense
of “global
sections” of
a functor
F on a
category C

(w/o a final
object), you
can define it
to be com-
patible local
sections
Γ(C,F ) :={
(sU ∈ F (U))U∈C | ∀V ! U : sU |V= sV

}
.

Alterna-
tively, if F

is an abelian
sheaf on a
cite C, you
could define
Γ(C,F ) :=

HomAb(C)(Z,F ).

Γ(X,F ) := F (X
id
−! X).

Fact. For any map f : X! Y of DM stacks, there are adjoint functors

f∗ : Sh(Xét) ⇄ Sh(Yét) : f
−1.

The pushforward above is
(f∗F )(V

ét
−! Y) = F (V ×Y X! X).

The inverse image is trickier (as usual); it is

(f−1G)(U
ét
−! X) = limG(V ! Y)

where the limit is over diagrams

This should
be some-
thing like
limit over
sections
of the
V ⊃ f(U)

U V

X Y

ét ét

f

Definition 10.8. Let X be a DM stack. Its structure sheaf is

OX(U
ét
−! X) := Γ(U,OU ),
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a sheaf of rings. This gives rise to a notion of OX-modules. ⋄

Fact. If f : X! Y is a map of DM stacks, we get adjoint functors

f∗ : Mod(OX) ⇄: Mod(OY) : f
∗

with f∗ as before, and
f∗(−) := f−1(−)⊗f−1OY

OX.

Definition 10.9. We say an OX-module F is quasi-coherent if for all U ét
−! X (U a scheme), the See warning

at end of
lecture

restriction F |U to Uzar (small Zariski site on U) is quasi-coherent. ⋄

Fact. Let X
f
−! Y be any map of DM stacks. Then,

(1) f∗ preserves quasi-coherence

(2) If f is qcqs, f∗ also preserves quasi-coherence

These facts “take work, but are manageable.”

Example. Let G be a finite group. Then,

QCoh(BG) = Rep(G).

Let V ∈ Rep(G) be a G-rep. Consider

Spec k
p
−! BG

π
−! Spec k

with p the natural projection and π the structure map. Then,

p∗V = V and π∗V = V G.

If you have W on Spec k, then π∗W is the trivial G-rep while p∗W = W ⊗ p∗k with p∗k the regular This is
IndG1 W , I’m
pretty sure

representation Γ(G). △

10.3.1 Another perspective

Say F ∈ QCoh(X). This can equivalently viewed as a qcoh sheaf FS on S (a scheme) for each S ! X

(not nec. étale) such that for any diagram

S T

X

f

there si a canonical iso f∗FT
∼= FS .

Example. Define H ∈ QCoh(Mg) for S ! Mg (i.e. C
π
−! S smooth) via HS := π∗ΩC/S . This is called

the Hodge bundle. △

Other notions...
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• A vector bundle is a locally free sheaf of finite rank, and a rank 1 vector bundle is a line bundle.

• Can discuss coherent sheaves (at least when X noetherian)

• Can make sense of OX-algebras A

• There exists relative spectra SpecA ! X (so the map is affine)

10.4 Local structure of DM stacks

Theorem 10.10 (Local Structure of DM Stacks). Let X be a separated DM stack, and x ∈ X(k) a
geometric point (i.e. k = k) with stabilizer Gx. Then there exists an affine, étale map

f : ([SpecA/Gx], w)
ét
−! (X, x)

such that f induces an isomorphism of stabilizer groups at w. Something
something
DM stacks
are like al-
gebraic orb-
ifolds some-
thing some-
thing

Above, we can choose some w : Spec k ! SpecA.

Remark 10.11. This tells us that we can view DM stacks as quotients [SpecA/G] of affine schemes by
finite groups, glued étale locally. ◦

Let’s prove this. We first fix some notation

Notation 10.12. Let U ét
−! X with U a scheme, and let

(U/X)d = U ×X . . .×X U

with d factors. Note that a map S ! (U/X)d is the same as the data of an object S x
−! X along with d

sections s1, . . . , sd : S ! US of the fiber product

US U

S X

We set (U/X)d0 ⊂ (U/X)d the open substack which is the complement of all diagonals. Hence, a map
S ! (U/X)d0 is the same as the data of an object S x

−! X along with d disjoint sections s1, . . . , sd : S ! US

of the fiber product.

Proof of Theorem 10.10. Choose
Spec k U

BGx X

u

ét

with U an affine scheme. We’ve assumed X is separated, so the diagonal is affine, which means U ! X Question:
Diagonal of
a DM stack
is always
unrami-
fied. finite
= proper +
quasi-finite.
Does this do
it?

Answer: I
think so
(since un-
ramified
morphisms
are quasi-
finite)
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is also affine.28 We can extend the above diagram to (d = |Gx|)

Gx Spec k U

Spec k BGx X

u

fin, ét
deg=d

affine
ét

Note that (U/X)d = U×X. . .×XU is an affine scheme, soW := (U/X)d0 is quasi-affine. Given S ! (U/X)d0,
let s1, . . . , sd : S ! US be the corresponding (disjoint) sections. We can consider

⊔
si(U) ↪! US , and the

composition
⊔
si(U) ! S is finite étale of degree d. There’s an action Sd ↷ (U/X)d0 = W , and so we

form [W/Sd]. A map S ! [W/Sd] is the same as Z ↪! US s.t. Z ↪! US ! S is finite, étale of degree d,
so we earlier created an object w : Spec k ! [W/Sd] (or something). Let Z = Gx. A choice of ordering
elements in Gx gives a lift w̃ : Spec k !W .

Exercise. Under the Sd-action, the stabilizer of w̃ is precisely Gx ⊂ Sd.

The picture is something like

W

Sd (U/X)d0 (U/X)d

U

[W/Sd] X

↷ ⊂

ét

ét

ét

f

ét

Need to check that f is representable and étale (note everything in this diagram is étale). The exercise
implies that f induces an iso on stabilizers at w. We still have more work. We have W which is quasi-
affine, but not yet affine. We have an action of Sd, not of the stabilizer. Finally, we don’t know the map
is affine.

To fix the action issue (the second one), just consider [W/Gx] ! [W/Sd] ! X which is étale and
preserves the stabilizer at w. For the affine issue, choose an affine open W ′ ⊂ W containing w, and let
W ′′ =

⋂
g∈G gW

′ ∋ w. This is now affine and Gx-invariant, so this is out SpecA. Finally, why is the
map affine? We now have

SpecA! [SpecA/Gx]! reprX.

Since X has affine diagonal, this composition is affine. Serre’s criterion for affineness implies that affineness
descends under finite morphisms, so this suffices to show that [SpecA/Gx]! X is affine. ■

Remark 10.13. This argument actually works with separatedness replace with “affine diagonal.”
Can do this proof when the diagonal is quasi-affine (the resulting map is no longer affine). It is true

(but we don’t know this yet) that under mild hypotheses (e.g. the diagonal being separated + something
else?), the diagonal of a DM stack is always quasi-affine. ◦

28To get the pullback to be a point, just start with some affine U and then remove points of the fiber if there are more
than one, or something
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Warning 10.14. There’s maybe an issue in our definition of quasi-coherence (unclear if there is or not).
Let F be an OX-module.

• We said that F is quasi-coherent if F |U is quasi-coherent on Uzar for all étale maps U ! X from
a scheme.

• One usually requires that F |U be quasi-coherent on Uét for all étale maps U ! X. Here (assuming
I’m understanding the discussion correctly), F is étale on Uét if there exists a qcoh sheaf G on Uzar
s.t.

F (V
f
−! U) = Γ(V, f∗G )

for all V ! U in Uét.

It sounds like, using étale descent for qcoh sheaves, one can show that this is equivalent to requiring
F |U being qcoh on Uzar (what we said) plus requiring that for any f : V ! U (unclear to me if this
necessary étale), the restrictions F |V and f∗ (F |U ) are isomorphic (via the natural map between
them). •

11 Lecture 11 (2/17): Existence of coarse moduli spaces

The goal for today is

Theorem 11.1 (Keel-Mori Theorem). A separated DM stack X admits a coarse moduli space π : X!

X where X is a separated algebraic space.

Last time we talked about

• Quasi-coherent sheaves on DM stacks

• local structure of DM stacks

There were a couple of audience questions I didn’t write down, but maybe should have since they
were not bad questions... Oh well

11.1 Review

11.1.1 Local Structure of DM Stacks

Theorem 11.2. Let X be a separated DM stack and let x ∈ X(k) be a geometric point with stabilizer Gx.
Then there is an affine, étale map

f : ([SpecA/Gx], w)! (X, x)

inducing an isomorphism of stabilizer groups at w.

This ends our review. Onto the new stuff.

65



11.2 Definition

Definition 11.3. A map X
π
−! X (with X an algebraic stack and X an algebraic space) is a coarse

module space (or cms) if both of the following hold

(1) For all k = k, the map X(k)/ ∼! X(k) from iso classes of objects of the groupoid X(k) to the set
X(k) is a bijection.

(2) π is universal (initial) for maps to algebraic spaces, i.e. if X ! Y is a map to an algebraic space,
then it uniquely factors as

X X Yπ ∃! ⋄

We view the coarse moduli space X as the closest approximation to X which is an algebraic space.
There’s a tradeoff here. X has universal properties (e.g. supports a universal family), but X is a more
familiar sort of space (ideally, it’s projective).

Note 7. Got distracted for a minute.

Strategy to show existence of cms

• special case: if X = [SpecA/G], then

X = [SpecA/G]
cms
−−! SpecAG.

• Use local structure theorem to glue these in étale topology to construct X.

[SpecA/Gx] X

SpecAGx X

ét

cms

In practice, we desire stronger properties than what are guaranteed by the definition. For us, if X is
a separated DM stack, we sill construct a coarse module space X

π
−! X satisfying additional properties

• stable under flat base change

• π∗OX = OX

• π is proper (in particular, separated)

• π is a universal homeomorphism (in particular, |X| ∼
−! |X|)

Remark 11.4. The first condition above implies the second one. Consider maps to A1, the fact that we
have

X X A1

∃!

tells us that Γ(X,OX) = Γ(X,OX). If X ′ ! X is étale (even just flat) then the basechange X′ ! X ′ is a
coarse moduli space, so also Γ(X ′ ! X,π∗OX) = Γ(X′,OX′) = Γ(X ′,OX′). Hence, OX

∼
−! π∗OX. ◦
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Lemma 11.5 (descent lemma). Let X π
−! X be a map. If {Xi

ét
−! X} is an étale cover (even fppf) s.t.

X×X Xi ! Xi is a cms, then X! X is.

Exercise. Prove this lemma.

11.3 Quotients by finite groups

Let G be a finite group acting on SpecA. Define

AG = {a ∈ A : ga = a∀g} .

Lemma 11.6. Let R be a noetherian ring. If A is a finitely generated R-algebra, then AG ! A is finite Note G
acts via
R-algebra
homomor-
phisms

and AG is a finitely generated R-algebra.

Proof. First note that AG ! A is integral since any a ∈ A is a root of the monic poly∏
g∈G

(x− ga) ∈ AG[x].

Now, AG ! A is finitely generated and integral, so AG ! A is actually finite. Since R is noetherian, this
implies AG is finitely generated as an R-algebra. ■ An R-

subalgebra
of A which
A is finite
over is au-
tomatically
finitely
gener-
ated (when
R=noetherian
and
A =f.g.).
See Atiyah-
MacDonald
Proposition
7.8

Lemma 11.7. Let AG ! B be a ring map, so G acts on Spec(B ⊗AG A). Consider

Spec(B ⊗AG A) SpecA

Spec(B ⊗AG A)G SpecB SpecAG
ψ

(1) AG ! B flat =⇒ ψ∗ : B
∼
−! (B ⊗AG A)G.

(2) In general, ψ is integral, and is a universal homeomorphism.

Proof. (1) We have an equalizer diagram

AG ! A⇒
∏
g∈G

A

with one map the diagonal and one map multiplication by elements of G. Since − ⊗AG B is exact, we
then get an equalizer diagram

B ! (A⊗AG B) ⇒
∏
g∈G

(A⊗AG B)

which exactly says B ∼
−! (A⊗AG B)G.

(2) Exercise. ■

Theorem 11.8. Let G be a finite group acting on an affine scheme SpecA of finite type over a noetherian
ring R. Then,

π : [SpecA/G]! SpecAG
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is a coarse moduli space such that

(1) AG is finitely generated over R;

(2) π is a proper universal homeomorphism; and

(3) the base change of π along any flat map of noetherian algebraic spaces is a coarse moduli space

Proof. (Step 1) π is a proper universal homeo ( =⇒ π bijective on geometric points). Consider

SpecA

[SpecA/G] SpecAG

πfinite
finite

dominant

and see that bottom map is proper. We claim that π is injective on geometric points. Assume R = k = k.
Let x, x′ ∈ SpecA be closed points with Gx ̸= Gx′ (distinct orbits). Since Gx ∩ Gx′ = ∅, there exists
some f ∈ A such that f |Gx = 1 and f |Gx′ = 0. Then, f ′ =

∏
g∈G gf ∈ AG is an invariant function with Question:

Prime avoid-
ance lemma?

f ′|Gx = 1 and f ′|Gx′ = 0. Hence, π(x) ̸= π(x′) since f ′ separated them. Therefore, π is bijective on
geometric points. Since π is proper, it is closed, so it is a homeomorphism.

We still need to show that it is a universal homeomorphism. For AG ! B, we have

Spec(B ⊗AG A) SpecA

Spec(B ⊗AG A)G SpecB SpecAG
ψ

some diagram chase shows that SpecA! SpecAG is a universal homeomorphism.
(Step 2) We wish to show π is universal for maps to algebraic spaces. Let f : X = [SpecA/G]! Y

be a map to an algebraic space. We want a factorization

X X Y

f

∃!

Remark 11.9. If Y is affine, then f gives Γ(Y,OY ) ! Γ(X,OX) = Γ(X,OX), and so gives a map
X = SpecAG ! Y . Hence, the affine case is easy. ◦

Let’s first show uniqueness. Suppose we have two maps h1, h2 : X ! Y through which f factors. Let
E be the equalizer of X ⇒ Y , i.e. the pullback

E X

Y Y × Y.

(h1,h2)
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By definition of the equalizer, we have a diagram

X

E X Y

f

h1

h2

Since Y is an algebraic space, the diagonal is a monomorphism locally of finite type, so the same is true
for E ! X. We know X ! X is proper and schematically dominant, so the same are true for E ! X.
That is, E ! X is a monomorphism, it is locally of finite type, it is proper, and it is schematically
dominant. The first three imply that it is a closed immersion, and then the last one implies that it is
actually an isomorphism E

∼
−! X, so h1 = h2.

We now do existence. We claim that existence is étale-local on X. This is a combination of étale
descent and the universal property (+ uniqueness). Hence, we may assume that AG is strictly henselian,
and we may also assume that Y is quasi-compact (since X is). Since Y is quasi-compact, we can choose

an étale presentation Y ′ ét
↠ Y with Y ′ affine. Consider the diagram with leftmost squares Cartesian

Y ′ ×Y SpecA SpecA

X′ X X = SpecAG

Y ′ Y

ét

f
?

ét

Since SpecA is (strictly) henselian, we get a section s : SpecA ! Y ′ ×Y SpecA which then descends to I think this
is not obvi-
ous. Need
G-invariance
or something

a section X! X′ of X′ ! X. This gives us a map X! X′ ! Y ′ = affine, so since the affine case is easy,
we know there’s a unique map X ! Y ′ through which this factors. Hence, we get X ! Y ′ ! Y which
is the factorization we wanted, proving existence. ■

11.4 Reducing to Quotient Stacks

Let’s recall our strategy. We’re after a coarse moduli space for a general separated DM stack X. We
have the local structure map W = [SpecA/Gx]

ét
−−!
aff

X. Since this map is affine, we’ll have W ×X W =

[SpecB/Gx]. By the finite group quotient case, we have coarse moduli spaces SpecBGx and SpecAGx ,
and the two maps W ×XW = [SpecB/Gx] ⇒ [SpecA/Gx] =W give rise to maps SpecBGx ⇒ SpecAGx .
We want this to give an étale equivalence relation, and then argue that the quotient is the coarse moduli
space for X.

Question 11.10. If f : SpecA! SpecB is G-equiv and étale, when is f : SpecAG ! SpecBG étale?

Heuristically, say R = k = k, and let x ∈ SpecA.

Fact.
(
Â
)Gx

= ÂG where we’re taking completions at x.

If f is étale at x, then Â
∼
−! B̂. f is étale at πA(x) ⇐⇒ ÂG

∼
−! B̂G ⇐⇒ ÂGx

∼
−! B̂Gf(x) . The

upshot here is that if Gx = Gf(x), then we win.
More formally,
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Proposition 11.11. Let G be a finite group. Let f : SpecA ! SpecB be a G-equivariant map of
schemes of finite type over a noetherian ring R. Let x ∈ SpecA be a closed point. Assume that

(a) f is étale at x; and

(b) the map Gx
∼
−! Gf(x) of stab groups is bijective.

Then there is an open affine neighborhood W ⊂ SpecAG of πA(x) such that W ! SpecAG ! SpecBG

is étale and the outer square in

π−1
A (W ) [SpecA/G] [SpecB/G]

W SpecAG SpecBG

f

πA πB

ét

is Cartesian.

Proof. Question is étale local around πB(y)

[SpecA/G] [SpecB/G]

SpecAG SpecBG

Showing the question is étale local is left as an exercise.
Now we may assume that BG is strictly Henselian. Consider

SpecA SpecB

[SpecA/G] [SpecB/G]

SpecAG SpecBG

ét

We now B is Henselian, so there’s a section SpecB ! SpecA (which is an open and closed immersion?).
One show this is G-invariant, so descends to a section s : [SpecB/G] ! [SpecA/G] (which is open and
closed immersion). Then shrink to im(s) in order to get im(s)! SpecBG to be étale or something. ■

Corollary 11.12. If in addition, (a) and (b) hold at all points, then

[SpecA/G] [SpecB/G]

SpecAG SpecBGét

is Cartesian.
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11.5 Keel-Mori

Theorem 11.13 (Keel-Mori Theorem). Let X be a DM stack which is separated of finite type over a
noetherian algebraic space S. Then there exists a coarse moduli space π : X! X with OX = π∗OX such
that

(1) X is separated and of finite type over S

(2) π is a proper universal homeomorphism, and

(3) for any flat map X ′ ! X of noetherian algebraic spaces, X×X X ′ ! X ′ is a coarse moduli space.

Proof. Assume S = SpecR is affine.29 Then argue that the question is Zariski-local on X. Hence it
suffices to show that for a closed point x ∈ |X|, there exists an open neighborhood of X with a coarse
moduli space.

Let Spec k ! X be a representative of x with k = k, and set G = Gx to be the stabilizer. The local
structure theorem gives us [SpecA/Gx] ! X both étale and affine coming with a point w 7! x. We
know that Aut(w)

∼
−! Aut(x). We need this to hold also in a neighborhood of w. Since X is separated,

X! X× X is finite, so the Inertia map IX ! X is finite too. Consider

IW W ×X IX IX

W X

The right square is Cartesian, so W ×X IX !W is finite. Furthermore,

IW W ×X IX

W W ×X W

is also Cartesian. Note that the top arrow is a map of group schemes over W s.t. for a w ∈W (k), the fiber
is Aut(w)! Aut(f(w)), so it is the ‘right’ map to study. Since W ! X is affine, W !W×XW is a closed
immersion. Since W ! X is étale, W !W ×XW is an open immersion. Hence, IW !W ×X IX is also a
closed an open immersion (union of connected components). Let p1 be the projection p1 :W ×X IX !W .
Then, p1(|W ×X IX | \ IW ) ⊂ W is precisely where W ! X is not stabilzer preserving, and is closed!
Thus, it’s complement (which is nonempty since it contains w!) is an open on which our map is stabilizer
preserving. Hence, we can arrange that W ! X be stabilizer preserving (and even surjective if we want).

Now we have

[SpecB/G] = R =W ×X W W = [SpecA/G] X

R W = SpecAG

cms

ét
aff

cms

Since W ! X is stabilizer preserving, so is R ⇒ W . Both squares are Cartesian (previous lemma?), so
R ⇒ W is an étale groupoid of affine schemes30 Check that R! W ×W is a monomorphism. Then we

29Can reduce to this case. Reduction argument similar to proof we’re about to give
30Need to worry about inverse and composition and whatnot, but that’s more annoying than difficult it sounds.
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can take X = W/R to be the algebraic space quotient. Finally, étale descent gives a morphism X! X,
shows that the resulting square is Cartesian, and is used to show that X is a coarse moduli space and
satisfies all additional properties. ■

Remark 11.14. Above, why is X separated? Because X is separated and X! X is proper. ◦

Question 11.15 (Audience). Why is R of the form [SpecB/G]?

Answer. The map R ! W is itself affine. Since SpecA ! W is a G-torsor, we see that the pullback
SpecA×W R! R is a G-torsor and is affine, so SpecA×W R = SpecB and R = [SpecB/G]. ⋆

Remark 11.16. The Keel-Mori theorem is actually more general than what we stated. In particular, you
don’t need a DM stack. The important thing is that inertia is finite. ◦

12 Lecture 12 (2/22): Nodal Curves

Today marks the start of part IV of the course: moduli of stable curves. The plan for today is

• Recap of Keel-Mori

• Refresher on smooth curves

• Nodal curves

12.1 Recap

Recall 12.1. A map π : X! X from an algebraic stack to an algebraic space is a coarse moduli space if

(1) for all k = k, X(k)/ ∼ ∼
−! X(k)

(2) π is initial for maps to algebraic spaces. ⊙

Theorem 12.2 (Keel-Mori). Let X be a DM stack with is separated and of finite type over a noetherian
algebraic space S. Then there exists a coarse moduli space π : X! X with OX = π∗OX such that

(1) X is separated and of finte type over S;

(2) π is a proper universal homeomorphism; and

(3) for any flat map X ′ ! X of noetherian algebraic spaces, X×X X ′ ! X ′ is a coarse moduli space.

Remark 12.3. Recall that an algebraic stack is separated iff its diagonal is proper. Also recall that the
diagonal of a DM stack is quasi-finite. Thus, for a DM stack X,

X is separated ⇐⇒ X! X× X is finite. ◦

We will later show that Mg and Mg,n are separated, and so get coarse moduli spaces for them by
Keel-Mori.

We want to discuss what we did last as well as how to generalize things. Throughout, assume X is
finite type over a noetherian ring. The next two (subsub)sections best viewed side-by-side, but figuring
out how to do that live sounds like a bad idea...
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12.1.1 DM case of Keel-Mori

Theorem 12.4. If X! X×X is unramified (i.e. X DM) and finite (i.e. X separated), then there exists
a coarse moduli space X! X.

Proof Sketch. Let x : Spec k ! X be a geometric point with closed image.

(1) Let (U, u)
sm
−−! (X, x) be a smooth neighborhood of our point. Then, “slice” U to arrange that we See proof

that unrami-
fied diagonal
gives DM

have U ! X étale with a Cartesian diagram

Spec k U

BGx X

u

ét

(2) Let W ⊂ (U/X)d := U ×X . . .×X U be the complement of the diagonal(s). Note that Sd ↷W , and
[W/Sd] parameterizes diagrams

US S

Z

S X

⌜closed

fin, ét
deg=d

We showed that there’s a map [W/Sd] ! X sending w 7! x which is étale, representable, and
identifies Aut(w) = Aut(x). Finally, shrink to arrange W to be affine and replace Sd with Gx.

We know ∃[W/Gx]
ét,repr
−−−−! X with W affine.

(3) Show that [SpecA/G]! SpecAG is a coarse moduli space (noteAG is global sections of [SpecA/G]).

(4) Use IX ! X finite to arrange that [SpecA/Gx]! X preserves all stabilizers.

(5) Show

X Y

X Y

f

cms cms

f

with X,Y DM, if f étale and preserves stabilizer groups, then f is étale and the diagram is Cartesian.

(6) Find W = [SpecA/G]
ét
−! X ∋ x. Get diagram

W ×X W W = [SpecA/G] X ∋ x

R SpecAG = V V/R

cms

ét

cms

with R ⇒ SpecAG =: V an étale equivalence relation. Hence, V/R is an algebraic space. This is
the space we’re after. ■
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12.1.2 General Keel-Mori Theorem

Theorem 12.5. If inertia IX ! X is finite, then there exists a coarse moduli space X! X.

Recall 12.6. Inertia is given by the pullback square

IX X

X X× X

so X separated (and DM?) =⇒ IX ! X is finite. ⊙

Proof Sketch. Let x : Spec k ! X be a geometric point with closed image.

(1) Same argument as (1) of DM case can be used to arrange a Cartesian diagram

Spec k U

BGx X

with U ! X quasi-finite and flat.

(2) Consider relative Hilbert scheme H parameterizing

US U

Z

S X

fin, flat
deg=d

(right square Cartesian). Universal family gives

UX U

W

H X
fin, flat

ét
repr

with W a scheme, and you can arrange for it to be affine. Get w 7! x with Aut(w)
∼
−! Aut(x).

Know ∃
W affine

H X

fin
flat

ét,repr

(3) Take R = W ×X W ⇒ W = SpecA! H, a finite flat groupoid. Show that H! Spec Γ(H,OH) =

AR is a coarse moduli space.
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(4) Same as (4) in DM case

(5) Same as (5) in DM case.

(6) Same as (6) in DM case. ■

12.2 Refresher on smooth curves

Definition 12.7. A curve over a field k is a pure 1-dimensional scheme C of finite type over k. If C is
proper, then we define its genus to be g = g(C) = h1(X,OX). ⋄

Fact.

• If C is proper, then C is projective.

• If C is a separated algebraic space of dimension 1, then C is a scheme. We may never actually use
this second fact, but good to know.

Theorem 12.8 (Easy Riemann-Roch). Let C be an integral projective curve of genus g. If L is a line
bundle on C, then

χ(C,L) = degL+ 1− g.

Theorem 12.9 (Serre-Duality). If C is a smooth projective curve over k, then ΩC is a dualizing
sheaf, i.e. there is a linear map tr : H1(C,ΩC) ! k such that for any coherent sheaf F , the natural
pairing

Hom(F ,ΩC)×H1(C,F )! H1(C,ΩC)
tr
−! k

is perfect.

Corollary 12.10 (Riemann-Roch). In the setting of easy Riemann-Roch,

h0(L)− h0(ωC ⊗ L−1) = degL+ 1− g.

Corollary 12.11. Let C be a smooth, projective curve over k, and let L be a line bundle on C. Then,

(1) degL < 0 =⇒ h0(C,L) = 0

(2) degL > 0 =⇒ L ample

(3) degL ≥ 2g =⇒ L basepoint free

(4) degL ≥ 2g + 1 =⇒ L very ample

Assume C is geometrically connected over k. If g(C) ≥ 2, then

• h0(C,ωC) = h1(C,OC) = g

• h1(C,ωC) = h0(C,OC) = 1

• RR applies to ωC gives degωC = 2g − 2 so the canonical bundle is ample.

For k > 1
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• h0(C,ω⊗k
C ) = (2k − 1)(g − 1) and h1(C,ω⊗k

C ) = 0.

• degω⊗k
C = k(2g − 2)

• ω⊗k
C is very ample if k ≥ 3

12.3 Families of smooth curves

Definition 12.12. A family of smooth curves of genus g over a scheme S is a smooth and proper
morphism C! S of schemes s.t. every geometric fiber is a connected curve of genus g. ⋄

Note any such family has a sheaf ΩC/S of relative differentials, and for s ∈ S, one has ΩC/S |Cs =

ΩCs/κ(s).

Proposition 12.13. Let C! S be a family of smooth curves of genus g ≥ 2. Then, for k ≥ 3, Ω⊗k
C/S is

relatively very ample, and π∗Ω⊗k
C/S is a vector bundle of rank (2k − 1)(g − 1).

Uses this to show Mg is a stack.

12.4 Nodal curves

Definition 12.14. Let C be a curve over an arbitrary field k.

(1) If k = k, then p ∈ C is a node is
ÔC,p ∼= kJx, yK /(xy),

where
ÔC,p := lim −OC,p/m

n
p

is the completion of the local ring.

(2) In general, g ∈ C is a node if there exists a node p′ ∈ Ck over p. ⋄

Exercise. Say p ∈ C is a node and C a curve over k. Then, κ(p) is separable over k.

Exercise. If p ∈ C is a node over k, then there exists a finite, separable field extension k ↪! k′ and a
point p′ ∈ Ck′ over p such that

ÔCk′ ,p′
∼= k′Jx, yK /(xy).

Note that happens over the algebraic closure by definition; this is saying only need a finite, separable
extension.

Exercise. If p ∈ C is a node, then you form a diagram

C
ét
 −− U

ét−−! Spec k[x, y]/(xy) ⊂ A2

and a point u ∈ U such that
p − [ u 7−! 0.

We’ll later see a relative version of this.
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12.4.1 Genus

Let C be a connected, nodal31, projective curve over k = k. Let p1, . . . , pδ ∈ C be the nodes, let
C1, . . . , Cν be the irreducible components of C, and let gi = g(C̃i) be the genus of the normalization of
Ci.

Example. See the slides for this class. △

Note that the normalization of C is C̃ =
⊔
C̃i; let π : C̃ ! C denote the normalization map. This is

birational (iso away from nodes), so we get an exact sequence

0 −! OC −! π∗OC̃ −!
⊕
i

κ(pi) −! 0.

This induces the long exact sequence

0! H0(C,OC)︸ ︷︷ ︸
1

! H0(C̃,OC̃)︸ ︷︷ ︸
ν

!
⊕
i

κ(pi)︸ ︷︷ ︸
δ

! H1(C,OC)︸ ︷︷ ︸
g

! H1(C̃,OC̃)︸ ︷︷ ︸∑
gi

! 0

with the numbers under each group denoting its dimension. Thus,

g =
∑

gi + δ − ν + 1.

12.4.2 Nodal Curve

A nodal curve C is a local complete intersection, so it has a dualizing sheaf ωC (e.g. see Hartshorne’s
chapter on Serre duality). We can also get an explicit description of ωC .

Consider π : C̃ ! C the normalization, and let Σ = Csing be the set of nodes. Let Σ̃ := π−1(Σ) be
the points above the nodes. If zi ∈ Σ, we let pi, qi be its two preimages in C̃. Consider

0 −! ΩC̃ −! ΩC̃(Σ̃) −! OΣ̃ −! 0,

and note that
OΣ̃ =

⊕
y∈Σ̃

κ(y).

Remark 12.15. You can interpret ΩC̃(Σ̃) as the sheaf of meromorphic/rational sections of Ω with a pole of
order ≤ 1 at each point above a node. The map ΩC̃(Σ̃)!

⊕
y∈Σ̃ κ(y) above just sends such a differential

to its residues at the points y ∈ Σ̃. ◦

Definition 12.16. The subsheaf ωC ⊂ π∗ΩC̃(Σ̃) is defined on V ⊂ C as

Γ(V, ωC) =
{
s ∈ Γ

(
π−1(V ),ΩC̃(Σ̃)

)∣∣∣∀zi ∈ Σ : respi(s) + resqi(s) = 0
}
. ⋄

Remark 12.17. This definition gives rise to the two exact sequences

0 −! ωC −! π∗ΩC̃(Σ̃) −!
⊕
zi∈Σ

κ(zi) −! 0,

31By a ‘nodal curve’ we mean each point is either smooth or a node. This implies that it is geometrically reduced
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where the second map is s 7! (respi(s)− resqi(s))i, and

0 −! π∗ΩC̃ −! ωC −!
⊕
zi∈k

κ(zi) −! 0

with latter map s 7! (respi(s))i. ◦

Example. Let C = Spec k[x, y]/(xy) ⊂ A2, the union of the two axes. It’s normalization is C̃ =

Spec(k[x] × k[y]), two copies of A1. Let π : C̃ ! C be the normalization map. Then, there’s one node
Σ = {0} ⊂ C, and we let Σ̃ = {p, q} be its preimages. Note that k[x, y]/(xy) ↪! k[x]× k[y] is the subring
consisting of (f(x), g(y)) such that f(0) = g(0). Note that

ν =

(
dx

x
,−dy

y

)
∈ Γ(C,ωC)

(residue at x is 1 and residue at y is −1, so this is a global section). Say we have(
f(x)

dx

x
,−g(y)dy

y

)
∈ Γ(C,ωC)

is a global section (all of this form, since poles at worse simple). Since the residues are negation of each
other, we see that f(0) = g(0). From this, one sees that(

f(x)
dx

x
,−g(y)dy

y

)
= (f(0) + f(x) + g(y)) · ν.

Thus, ωC ∼= OC with generator ν. △

The importance of the above example is that (by a previous exercise), étale-locally, all nodes look like
that.

Exercise. If f : C ′ ét
−! C is étale, then f∗ωC ∼= ωC′ .

As a consequence, ωC is always a line bundle on a nodal curve.

Exercise. Use Serre-Duality for smooth curves to show that ωC is a dualizing sheaf as we defined it above.

12.4.3 Local Structure of Nodes

Recall 12.18 (Local structure of smooth points). Let C! S be a smooth family of curves. Then,
for any p ∈ C, there exists a diagram

C C′ A1
A′

S S′

ét
ét

ét

(square not necessarily Cartesian). That is, étale-locally this looks like A1. This is generally true just for
smooth morphisms. Above, there exists p′ ∈ C′ mapping to p ∈ C and to 0 ∈ A1

S′ . ⊙
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Theorem 12.19 (Local Structure of Nodes). Let π : C! S be a flat of finite presentation map s.t.
every fiber is a curve. If p ∈ C is a node in a fiber Cs, there exists

(C, p) (U, u)
(

SpecA[x,y]
(xy−f) , (s′, 0)

)

(S, s) (SpecA, s′)

ét ét

ét

where f ∈ A is a function vanishing at s′.

Remark 12.20. The diagonal map above is a basechange of

SpecA

SpecZ[x, y, t]/(xy − t) SpecZ[t]

where A ∋ f 7! t ∈ Z[t]. ◦
We end with a proof sketch.

Proof Sketch.

(step 1) Reduce to case that S is finite type over Z using absolute noetherian approximation.

(step 2) Reduce to case where
ÔCs,p

∼= k(s)Jx, yK /(xy)

Apply earlier exercise to show there exists a separable field extension k(s)! k′ and a point p′ ∈ Ck′

with above property. Then choose an étale neighborhood (S′, s′)
ét
−! (S, s) s.t. k(s) ! k(s′) is the

map k(s)! k′ we want.

(step 3) Show
ÔC,p

∼= ÔS,sJx, yK /(xy − f)

for f ∈ m̂s using formal deformation theory. Use Schlessinger’s (up to spelling) theorem applied
to local deformation functor of a node; this says that given Cs ! Spec k(s) (say k(s) = k for
convenience) with a deformation, i.e. Cartesian

Cs D

Spec k SpecB

flat

(withB local artinian or complete), then both vertical maps above are pulled back from Spec kJt, x, yK /(xy−
t)! Spec kJtK. We apply this to

Cs C×S ÔS,s

Spec k Spec ÔS,s
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This gives

Cs C×S ÔS,s Spec kJt, x, yK /(xy − t)

Spec k Spec ÔS,s Spec kJtK

with both square Cartesian. This finishes the step.

(step 4) At this stage, we know
ÔC,p

∼= ÔS,sJx, yK /(xy − f)

for some f ∈ m̂s. We now apply Artin Approximation (Theorem 2.3). Define the functor

F : Sch /S −! Set

(T ! S) 7−!


Cs CT SpecZ[t, x, y]/(xy − t)

S T SpecZ[t]


We constructed an element ξ̂ ∈ F (ÔS,s) in the previous step. Artin approximation (with N = 2)
then gives us our desired diagram. To check that the diagonal map is étale, show that it induces
an iso on completions32. ■

13 Lecture 13 (2/24): Stable Curves

Note 8. See slides for a picture of a 3-pointed stable curve of genus 14.

13.1 Review of nodes

Definition 13.1. Let C be a curve over k.

• If K = k, then p ∈ C is a node if ÔC,p ∼= kJx, yK /(xy).

• In general, p ∈ C is a node if there exists a node p′ ∈ Ck over p. ⋄

Example. 0 ∈ C = SpecR[x, y]/(x2 + y2) is a node. After R ! C, node becomes ‘split’ (completion is
what you want). △

Definition 13.2. Say C/k is a nodal curve if all p ∈ C are either smooth or nodal. ⋄

Theorem 13.3 (Local Structure of Nodes). Let π : C ! S be a flat of finite presentation map s.t.
every fiber is a curve. If p ∈ C is a node in a fiber Cs, there exists

(C, p) (U, u)
(

SpecA[x,y]
(xy−f) , (s′, 0)

)

(S, s) (SpecA, s′)

ét ét

ét

32a surjective endomorphism of noetherian rings is an isomorphism.
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where f ∈ A is a function vanishing at s′.

Remark 13.4. When S = Spec k, the theorem implies that there’s a finite, separable extension k ! k′

and a point p′ ∈ Ck′ such that ÔCk′ ,p′
∼= k′Jx, yK /(xy). ◦

Example. Consider the family

SpecZ[x, y, t]/(xy − t)! SpecZ[t].

When t = 0, fiber looks like union of axes; away from 0, the fibers look like hyperbolas which are smooth.
Theorem says that every deformation of a node étale-locally is the pullback of this example. △

We can get a variant of the theorem when Cs is non-reduced and p ∈ (Cs)red is nodal.

Exercise. Let R be a dvr with uniformizer t ∈ R. Suppose C! SpecR is flat of finite presentation, and
C is regular.

(1) If p ∈ (C0)red smooth, there exists R! R′ étale and SpecR′[x, y]/(xa − t)
ét
−! C sending 0 7! p.

(2) If p ∈ (C0)red is a node, then there exists R ! R′ étale and SpecR′[x, y]/(xayb − t)
ét
−! C with

0 7! p.

13.2 Applications

What are some applications of the local structure theorem?

Corollary 13.5. Let π : C! S be as in the theorem. Then,

C≤node :=
{
p ∈ C : p ∈ Cπ(p) is smooth or a node

} open
⊂ C.

Proof. We know the smooth locus is open. If p ∈ Cs is a node (s = π(p)), apply structure theorem to get
p ∈ g(U)

open
⊂ C≤node, where g : (U, u)

ét
−! (C, p) is the map guaranteed by the theorem. ■

Corollary 13.6. If in addition, π : C! S is proper, then

S≤node := {s ∈ S : Cs nodal}
open
⊂ S.

Proof. S≤node = S \ π(C \ C≤node) and proper maps are closed. ■

We will apply this result next time to show that the stack M≤nodal
g of nodal curves is algebraic; the

objects here are maps C ! S which are flat, proper and finitely presented with fibers Cs which are all
nodal curves.

There are problems with this stack, even though it is algebraic. It is not separated, and not bounded
(i.e. not finite type). This comes from valuative criterion. The point is if you have a smooth family over
SpecR (a dvr), then you can blowup a node in the special fiber to get a different family (of nodal curves)
over SpecR extending the family over the generic fiber. This new family will still have nodes, so you can
keep blowing up to get infinitely many limits of the family over SpecFracR.
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13.3 Stable curves

Definition 13.7. An n-pointed curve C over k is a curve C along with an ordered set of rational
points p1, . . . , pn ∈ C(k). ⋄

Definition 13.8. Say q ∈ C is special if q is marked or a node. ⋄

Definition 13.9. An n-pointed curve (C, p1, . . . , pn) over k is a stable curve if C is a connected, nodal, A reference
for much
of what’s
in this lec-
ture (and
presumably
later ones) is
this paper

projective curve, and p1, . . . , pn ∈ C are distinct smooth points such that

(1) every smooth rational subcurve P1 ⊂ C contains at least 3 special points; and

(2) C is not of genus 1 without marked points. ⋄

Example. See lecture slides. △

Remark 13.10. There are no stable curves if

(g, n) = (0, 0), (0, 1), (0, 2) or (1, 0) ⇐⇒ 2g − 2 + n ≤ 0.

So sometimes we impose 2g − 2 + n > 0. ◦

Definition 13.11. A semistable curve C is a stable curve except we’ve replace the number ‘3’ with
‘2’ in condition (1). It is prestable if neither condition (1) nor condition (2) are required, i.e. prestable
= connected, nodal, projective + distinct, smooth marked points. ⋄

Let (C, p1, . . . , pn) be an n-pointed prestable curve over k. Take normalization C̃
π
−! C, and we let

p̃i ∈ C̃ be the unique preimage of pi ∈ C. We denote π−1(Csing) = {q̃1, . . . , q̃m}, the points over nodes.

Exercise. Show (C, {pi}) is stable ⇐⇒ every connected component of
(
C̃, {p̃i}, {q̃i}

)
, the pointed

normalization, is stable.

Example. *See lecture slides* △

Fact. The only smooth n-pointed curves (C, p1, . . . , pn) with #Aut(C, {pi}) = ∞ are

• C = P1 with n = 0, 1, 2.

• g = 1 and n = 0.

Note these are the same curves (those satisfying 2g − 2 + n ≤ 0) we saw earlier.

Proposition 13.12. Let (C, {pi}) be an n-pointed prestable curve. Then, TFAE

(1) (C, {pi}) is stable

(2) Aut(C, {pi}) is finite

(3) ωC(p1 + · · ·+ pn) is ample

Proof. ((1) ⇐⇒ (2)) follows from previous fact + exercise before it.
((1) ⇐⇒ (3)) We need a property of the dualizing sheaf not mentioned last time.
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Fact. If C is a nodal curve, and T ⊂ C is a subcurve, then ωC |T = ωT (T ∩ T c), where T c is the closure
of C \ T .

Therefore, ωC(p1 + · · ·+ pn) ample ⇐⇒ π∗ωC(p1 + · · ·+ pn) is ample ⇐⇒ ∀T ⊂ C̃, ωC(p1 + · · ·+
pn)|T = ωT

(∑
pi∈T pi + T ∩ T c

)
(is ample?) ⇐⇒ ∀T ⊂ C̃ the pointed curve

(
T,
∑
pi∈T pi + T ∩ T c

)
is stable. ■

Exercise. If (C, {pi}) is stable, then for k ≥ 3,

ωC(p1 + · · ·+ pn)
⊗k

is very ample.
Hint(assuming n = 0 for simplicity): Need to show ω⊗k

C separates points and tangent vectors. That
is,

• for all x, y ∈ C

H0(C,ω⊗k
C ) ↠ (ω⊗k

C ⊗ κ(x))⊗
(
ω⊗k
C ⊗ κ(y)

)
.

• for all x ∈ C

H0(C,ω⊗k
C ) ↠ ω⊗k

C ⊗ OC,x/m
2
x.

Both of these come from the exact sequence

0! ω⊗k
C ⊗mxmy ! ω⊗k

C ! ω⊗k
C ⊗ OC,x/mxmy ! 0,

so suffices to show H1(C,ω⊗k
C ⊗ mxmy) = 0 for all x, y ∈ C (possibly equal). By Serre duality, this is

cohomology group is Hom(mxmy, ω
⊗k
C ). Show this vanishes with case analysis of x, y ∈ C being nodes or

smooth.

13.4 Families of stable curves

Definition 13.13.

(1) A family of n-pointed nodal curves is a flat, proper and finitely presented morphism C! S of
schemes with n sections σ1, . . . , σn : S ! C such that every geometric fiber is a (reduced) connected
nodal curve.

(2) A family of n-pointed stable curves is a family C ! S of n-pointed nodal curves such that
every geometric fiber (Cs, σ1(s), . . . , σn(s)) is stable. ⋄

Can similarly define families of semi- or pre-stable curves.

Definition 13.14. We define Mg,n as the prestack over Sch with

• objects (C! S, σ1, . . . , σn) families of n-pointed stable curves (this is an object over S).

• morphism = cartesian diagrams preserving the sections. ⋄
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Fact. If C ! S is prestable (or even just nodal), then C ! S is a local complete intersection. This is
enough to guarantee the existence of a relative dualizing sheaf ωC/S . This is e.g. in Hartshorne’s ‘Residue
and Duality’ book. It’s also in Liu’s ‘AG and arith. curves’.

The main property you need to know is that if you have T ! S, then

ωC/S |CT
= ωCT /T .

In particular, ωC/S |Cs
= ωCs/κ(s).

Proposition 13.15 (Properties of Families of Stable Curves). Let (C ! S, {σi}) be a family of
n-pointed stable curves of genus g, and set L := ωC/S(

∑
i σi). If k ≥ 3, then L⊗k is relatively very ample,

and π∗L⊗k is a vector bundle of rank (2k − 1)(g − 1) + kn.

Relative very ampleness can be checked on fibers, the pushforward being a vector bundles comes from
cohomology and base change, and the rank is Riemann-Roch.

Proposition 13.16 (Openness of Stability). Let (C! S, {σi}) be a family of n-pointed nodal curves.
Then, the locus of points s ∈ S such that (Cs, {σi(s)}) is stable is open.

Proof. First note that the locus of s ∈ S where σ1(s), . . . , σn(s) are distinct and smooth is open. Hence,
we may assume (C! S, {σi}) is prestable. We now give two arguments.

(1) Consider Aut(C/S, σ1, . . . , σn) ! S. This is a finite type group scheme with identity section e :

S ! Aut(C/S, σ1, . . . , σn). Note that the map

s 7! dimAut(Cs, {πi(s)})

is upper semi-continuous, so

{s ∈ S : (Cs, {σi(s)}) stable} = {s ∈ S : dimAut(Cs, {σi(s)}) = 0}

is open.

(2) Let L = ωC/S(σ1 + · · ·+ σn). Ampleness is also an open condition, so

{s ∈ S : Ls ample on Cs} = {s ∈ S : (Cs, {σi(s)}) stable}

is open. ■

13.5 Automorphisms, deformations and obstructions

The automorphisms, deformations, and obstructions of a stable curve C are governed by Exti(ΩC ,OC)

for i = 0, 1, 2.

Proposition 13.17. Let (C, p1, . . . , pn) be an n-pointed stable curve of genus g over k. Then,

dimk Ext
i

(
ΩC

(∑
i

pi

)
,OC

)
=


0 if i = 0

3g − 3 + n if i = 1

0 if i = 2
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Remark 13.18. We will later apply

• Ext0 = 0 =⇒ Mg,n is DM.

• Ext2 = 0 =⇒ Mg,n is smooth.

• dimk Ext
1 = 3g − 3 + n =⇒ dimMg,n = 3g − 3 + n over a field. ◦

Proof of Proposition 13.17. (i = 0) We do the n = 0 case for notational simplicity. Keep in mind the
diagram

Σ̃ = π−1(Σ) C̃

Σ C

⊂
π

⊂

where (C̃, Σ̃) is the pointed normalization (Σ the set of nodes in C).

Claim 13.19. Hom(ΩC ,OC) = Hom(ΩC̃(Σ̃),OC̃).

That is, regular vector fields on C are the same as regular vector fields on C̃ vanishing on preimages
of nodes. We skip the proof of this claim.33

Note (C̃, Σ̃) is stable and ΩC̃ is a line bundle. Hence,

Hom(ΩC̃(Σ̃),OC̃) = H0(TC̃(−Σ̃)) = 0,

where we’ve used that (C̃, Σ̃) is stable to see that the degree of the bundle above is < 0 (hence no global
sections). This finishes the i = 0 case.

(i = 2) Use the local-to-global spectral sequence

Ep,q2 = Hp(C,Extq(ΩC ,OC)) =⇒ Extp+q(ΩC ,OC).

Since dimC = 1, Ep,q2 = 0 for p > 1, so this is a two-column spectral sequence. We claim that
Ext1(ΩC ,OC) has 0-dimensional support because ΩC is a line bundle away from the nodes and (for z ∈ C)
Ext1(ΩC ,OC)z = Ext1(Ωc,z,OC,z) vanishes when z smooth. Hence, E1,1

2 = H1(C,Ext1(ΩC ,OC)) = 0.
Now we compute E0,2

2 . Since C is a locally complete intersection, there exists a locally free resolution

0 −! E1 −! E0 −! ΩC −! 0.

This tells us that E0,2
2 = Ext2(ΩC ,OC) = 0. Thus, the 2-diagonal on the E2-page vanishes, so Ext2(ΩC ,OC) =

0 as desired.
33Use knowledge of dualizing sheaf?
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(i = 1) The low degree exact sequence of the local-to-global spectral sequence looks like

0 E1,0
2 Ext1(ΩC ,OC) E0,1

2 E2,0
2

H1(Hom(ΩC ,OC)) H0(Ext1(ΩC ,OC)) 0

∏
z∈Σ Ext1(ΩC,z,OC,z)

∏
z∈Σ Ext1(Ω̂C,z, ÔC,z)

We know Ext1(ΩC ,OC) classifies 1st order deformations of C, i.e. Cartesian diagrams

C C

Spec k Spec k[ε]/(ε2)

flat

Similarly, Ext1(Ω̂C/z, ÔC,z) classifies first order deformations of ÔC,z (note Ω̂C,z = ΩÔC,z
), and the image

of a deformation of C is
Spec ÔC,z Spec ÔC,z

Spec k Spec k[ε]

This let’s us identity the kernel with Ext1(ΩC̃(Σ̃),OC̃), so the sequence looks like

0! Ext1(ΩC̃(Σ̃),OC̃)! Ext1(ΩC ,OC)!
∏
z∈Σ

Ext1(ΩÕC,z
, ÔC,z)! 0.

Each Ext group on the right is 1-dimensional appartently, so the quotient has dimension equal to the
number of nodes. On the left, write C̃ =

⊔
C̃i and Σ̃i = Σ̃ ∩ C̃i, so the dimension of the kernel is∑

i

Ext1(ΩC̃i
(Σ̃i),OC̃i

) =
∑
i

h1(TC̃i
(−Σ̃i))

=
∑
i

h0(Ω⊗2

C̃i
(Σ̃i))

=
∑
i

(
deg

(
Ω⊗2

C̃i
(Σ̃i)

)
+ 1− g̃i

)
=
∑
i

(
3g̃i − 3 + #Σ̃i

)
= 3

∑
i

g̃i − 3#comp + 2#nodes
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(every node has 2 preimages in the normalization). Doing one final addition, this shows that

dimExt1(ΩC ,OC) = 3
∑
i

g̃i − 3#comp + 3#nodes = 3g − 3,

where we’ve used the genus formula

g =
∑

g̃i −#comp +#nodes + 1. ■

14 Lecture 14 (3/1): The stack of all curves

It’s been a while since we reminded ourselves of the goal of this class.

Goal. The moduli space Mg of stable curves of genus g ≥ 2 is a smooth, proper and irreducible Deligne-
Mumford stack of dimension 3g − 3 which admits a projective coarse moduli space.

Where are we?

• we’ve introduced stable curves, and so defined the prestack Mg.

• We almost know that

– Mg is a DM stack which is smooth over SpecZ of rel. dim 3g − 3 (we secretly just need to
show that it is algebraic).

– there exists a coarse moduli space Mg ! Mg (need to know Mg is separated to apply our
version of Keel-Mori)

Remark 14.1. We could show that Mg is algebraic by replicating the Hilbert scheme proof we used for
Mg, but we do something else instead. ◦

14.1 Six steps towards projective moduli

This is a general plan of attack we want to quickly outline.

Setup 14.2. Let X be the moduli stack of interest, and let M ⊃ X be some “enlargement.”

Example. Take X = Mg and M = Mall
g . △

Definition 14.3. Call x ∈ M(k) stable if x ∈ X(k). ⋄

The six steps are

(Step 1) Algebraicity: show M is an algebraic stack locally of finite type over the base. This is today’s
goal in our case of interest.

(Step 2) Openness of stability: given E ∈ M(T ), show that

{
t ∈ T : E|Specκ(t) stable

}
⊂ T is open.

This implies that X is algebraic and locally of finite type.
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Example. For Mg ⊂ Mall
g , this will follow from openess of nodal locus and openess of stability for

a family of nodal curves. △

(Step 3) Boundedness of stability: show X is of finite type ( ⇐⇒ quasi-compact)

Example. For us, this will follow from C! S stable =⇒ ω⊗3
C/S is very ample. △

(Step 4) Existence of coarse moduli space: Show ∃X cms
−−! X (e.g. show X is separated and DM).

(Step 5) Stable reduction: show X is proper ( =⇒ X is proper). We’ll do this next time (probably).

(Step 6) Projectivity: show X is projective. This will be our final lecture, following Kollár.

14.2 Recap on stable curves

Recall 14.4. An n-pointed curve (C, p1, . . . , pn) over k (recall pi ∈ C(k)) is a stable curve if C is
connected, nodal, projective curve, and p1, . . . , pn ∈ C are distinct smooth points such that

(1) every smooth rational subcurve P1 ⊂ C contains at least 3 special (i.e. nodal or marked) points;
and

(2) C is not of genus 1 without marked points. ⊙

Proposition 14.5. Let (C, p1, . . . , pn) be an n-pointed stable curve of genus g over k. Then,

dimk Ext
i

(
ΩC

(∑
i

pi

)
,OC

)
=


0 if i = 0

3g − 3 + n if i = 1

0 if i = 2

Recall 14.6.

(1) A family of n-pointed nodal curves is a flat, proper and finitely presented morphism C ! S of
schemes with n sections σ1, . . . , σn : S ! C such that every geometric fiber is a (reduced) connected
nodal curve.

(2) A family of n-pointed stable curves is a family C ! S of n-pointed nodal curves such that every
geometric fiber (Cs, σ1(s), . . . , σn(s)) is stable. ⊙

Proposition 14.7 (Properties of Families of Stable Curves). Let (C ! S, {σi}) be a family of
n-pointed stable curves of genus g, and set L := ωC/S(

∑
i σi). If k ≥ 3, then L⊗k is relatively very ample,

and π∗L⊗k is a vector bundle of rank (2k − 1)(g − 1) + kn.

Proposition 14.8 (Openness of Stability). Let (C! S, {σi}) be a family of n-pointed nodal curves.
Then, the locus of points s ∈ S such that (Cs, {σi(s)}) is stable is open.
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14.3 More on stability: contraction morphisms

Definition 14.9. Let (C, p1, . . . , pn) be an n-pointed prestable curve. We say that a smooth rational
subcurve E ∼= P1 ⊂ C is

• a rational tail if E ∩ Ec = 1 and E contains no marked pointed.

• a rational bridge if either #E ∩ Ec = 2 and E contains no marked points, or #E ∩ Ec = 1 and
E contains one marked point. ⋄

Recall 14.10. Ec is the union of irreducible components other than E. ⊙

Note that (C, {pi}) is stable ⇐⇒ ∄ rational tails or bridges, and it is semistable ⇐⇒ ∄ rational
tails.

We would like to be able to contract the rational tails and bridges.

Definition 14.11. If (C, {pi}) is prestable, its contraction/stable model is the proper curve Cst

obtained by contracting all rational tails and bridges Ei. ⋄

Remark 14.12. In some simple cases, one has

Cst = C \
⋃
Ei. ◦

If π : C ! Cst is the natural map and pi 7! p′i, then (Cst, p′1, . . . , p
′
n) is stable.

Example. See slides for examples. △

Can we do this in families? Yes, but it requires a lot of work. The end result is the following.

Proposition 14.13 (Stable Models in Families). If (C ! S, σ1, . . . , σn) is a family of prestable
curves, there exists a map π : C! Cst over S such that

(1) (Cst ! S, {σ′
i}) is a faimly of stable curves where σ′

i = π ◦ σi;

(2) for all s ∈ S, (Cs, {σi(s)})! (Csts , {σ′
i(s)}) is the map contracting rational tails and bridges;

(3) OCst = π∗OC and R1π∗OC = 0 (and this remains true after base change); and

(4) If C! S is semistable, then ωC/S(
∑
i σi) = π∗ωCst/S(

∑
i σ

′
i).

Example. Say C! S is a family of prestable curves with Cs stable for s ̸= 0 and C0 = E +Ec (with E
rational). Then, 0 = C0 · E = E2 + Ec · E. If E is a rational bridge, then E2 = −1. If E is a rational
bridge, then E2 = −2. Can contract by Castelnuovo (spelling) maybe, I think. △

Vague Proof Sketch. (local to global) See Stacks
tag 0E8A

• Use noetherian approximation to reduce to S finite type over Z

• Show uniqueness of Cst ! S
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• Given s ∈ S, there exists Cs ! Csts = Y0. Something about infinitesimal thickenings

Cs = C0 ↪! C1 ↪! C2 ↪! . . .

and a Cartesian diagram

Ĉ C

Spec ÔS,s S

• Use deformation theory to extend C0 ! Y0 to Cn ! Yn

• Algebraize to Ĉ! Ŷ (formal schemes?)

• Artin approximation gives ∃S′ ét
−! S and CS′ ! Y ′.

• Use uniqueness to descend to a map C! Y . ■

14.4 Stack of all curves

We begin by redefining our notion of curve.

Definition 14.14. A curve is a 1-dimensional scheme C of finite type over a field k. In particular, we
do not assume pure dimension 1 or connected. ⋄

Example. Consider P1 ! P3 given by [x, y] 7! [x3, x2y, xy2, ty3]. As t 7! 0, you get a plane nodal curve
with an embedded point at the origin with degenerates (has as a deformation?) to a reduced nodal curve
with a disjoint rational point. △

Definition 14.15. Let S be a scheme.

• A family of curves over S is a flat, proper and finitely presented morphism C ! S of algebraic
spaces such that every fiber is a curve.

• A family of n-pointed curves over S is a family of curves C ! S with n (arbitrary) sections
σ1, . . . , σn : S ! C. ⋄

Remark 14.16 (Fulghesu). There exists a family of genus 0 nodal curves C! S with S a smooth projective
surface and C a smooth 3 dimensional algebraic space which is not a scheme. Can even have generic fiber
Ck(S) = P1

k(S). ◦

Remark 14.17 (Raynaud). There exists a family of smooth genus 1 curves C! S with S a normal surface
and C not a scheme (so M1 defined way back when is not a stack). ◦ Remember:

Families
of genus
1 curves
do not al-
ways glue, as
schemes

Remark 14.18. If C! S is a stable family, then ωC/S is ample, so C is projective over S (and in particular,
a scheme). ◦

Proposition 14.19. If C! S is a family of curves, then ∃S′ ↠ S étale s.t. CS′ ! S′ is projective.

We give two sketches
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• (first sketch: local to global) Same sort of picture as last time

Cs = C0 C1 . . . Ĉ C

Specκ(s) Spec ÔS,s/m2
s . . . Spec ÔS,s S s∈

We proceed in cases/steps

(1) (C0). Need to use the following.

Fact. Separated, 1-dimensional algebraic spaces are schemes. Furthermore, proper 1-dimensional
schemes are projective.

This gives us a line bundle L0 of Cs = C0 which is ample.

(2) (Cn = C×SSpecOS,s/mn+1
s ) Deformation theory says the obstructions to deforming line bundle

Ln on Cn to Ln+1 on Cn+1 live in H2(C0,OC0) = 0, so get Ln on Cn for all n.

(3) (Ĉ over ÔS,s) Assume ÔS,s is complete, local and noetherian. Use Grothendieck Existence
Theorem34

Coh(Ĉ)
∼
−! lim −Coh(Cn)

(need to generalize to proper algebraic spaces over a complete local noetherian ring) “If you re-
member how you show Grothendieck’s existence theorem, which you probably don’t...” Rough
strategy is to show it in projective case (use niceties of O(1)) and then reduce to projective
case using Chow’s lemma (smth smth devissage at some point smth smth).

This gives a line bundle L̂ mapping to the compatible family of line bundles Ln constructed
in previous step.

(4) (S f.type /Z) Apply Artin approximation to

Sch /S −! Set

(T ! S) 7−! Pic(CT )

(5) (S general) Use noetherian approximation.

• (second sketch: explicitly extend line bundle). Say we have

Cs C

Spec k(s) S

with L0 an ample line bundle on Cs. Let’s assume all fibers are generically reduced ( =⇒ generically
smooth). Let C0 ⊂ C be the smooth locus, and note that C0 ↠ S is smooth and surjective. Choose
p1, . . . , pn ∈ Cs s.t. every irreducible dimension 1 component contains some pi. We can and do take
L0 = OCs(p1 + · · ·+ pn). Use étale-local structure of smooth theorems to get S′ ét

−! S and sections
σi : S

′ ! C0
S′ ! C0 extending pi. Then, OC(σ1 + · · ·+ σn) is ample in an open neighborhood of s.

34Need Ĉ! Spec ÔS,s proper morphism over a complete local noetherian ring
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14.5 Algebraicity of the stack of all curves

Let Mall
g,n be the prestack with

• objects: (C! S, σ1, . . . , σn) families of curves

• morphisms: Cartesian diagrams compatible with sections.

Lemma 14.20. Mall
g,n is a stack over SchÉt.

Proof. (We’ll only do the case n = 0). Say we have

R = p∗1C
′ C′

S′ ×S S′ S′ S

p1

p2◦α

p1

p2

Above, α : p∗1C
′ ∼
−! p∗2C

′. R ⇒ C′ is an étale equivalence relation, so we can simply form the quotient
C = C′/R which is an algebraic space over S. ■

Lemma 14.21. The diagonal
Mall
g,n

∆
−!Mall

g,n ×Mall
g,n

is is representable ( =⇒ any map S !Mall
g,n from a scheme is representable).

Proof. (We only do n = 0 case). Let T be a scheme fitting into the Cartesian diagram

IsomT (C1,C2) T

Mall
g Mall

g ×Mall
g

(C1,C2)

∆

We need to show that IsomT (C1,C2) is an algebraic space. We first reduce to C1,C2 both projective. We

know ∃T ′ ét
↠ T such that the base change C1,T ′ ,C2,T ′ are projective over T ′. If IsomT ′(C1,T ′ ,C2,T ′) is an

algebraic space, then use the Cartesian diagram

IsomT ′(C1,T ′ ,C2,T ′) T ′

IsomT (C1,C2) T

to see that IsomT (C1,C2) is an algebraic space (left vertical map is étale, representable, and surjective).
So now we assume C1,C2 ⇒ T are projective. We have an inclusion of functors

IsomT (C1,C2) ⊂ MorT (C1,C2) ⊂ Hilb(C1 ×T C2/T )

with latter map sending a morphism (C1
α
−! C2) to its graph (C1

Γα−−! C1 ×T C2). We know the Hilbert
scheme is projective, so suffices to show these inclusions are represented by open immersions. So

IsomT (C1,C2)

is even a
scheme
(!) when
C1,C2 ⇒ T

are projec-
tive.
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Fact. Given
X Y

T

with X ! T  Y both proper, then there exists an open T 0 ⊂ T such that for all S ! T ,

XS
∼
−! YS ⇐⇒ S ! T factors through T0.

This facts implies IsomT (C1,C2) ⊂ MorT (C1,C2) is an open immersion. To know that MorT (C1,C2) ⊂
Hilb(C1 ×T C2/T ) is an open immersion, know that a subscheme Z ⊂ C1 ×T C2 is the image of a map
C1 ! C2 iff the composition Z ↪! C1 ×T C2

p1−! C1 is an isomorphism. Hence, the fact implies that we
again get an open immersion. ■

Theorem 14.22. Mall
g,n is an algebraic stack locally of finite type over Z

Proof. We start with some inductions.

• it suffices to assume n = 0.

This is because Mall
g,n+1 ! Mall

g,n is the universal family, so the target being algebraic shows the
source is Question:

Why?

Answer: If
U ! Mall

g,n

is a repre-
sentable,
smooth
cover by
an alge-
braic space,
then so is its
pullback to
Mall
g,n+1

• Suffices to show that for all projective curves C0/k, there exists a scheme U with smooth presentation
U !Mall

g w/ [C0] in the image.

Question:
Why?

Answer: I
guess just
cover by
the disjoint
union of all
the U ’s

The argument now (I think)

• Choose embedding C0 ↪! PN such that h1(C0,O(1)) = 0. Let P (t) be the Hilbert polynomial,
and consider the Hilbert scheme H := HilbP (PnZ) (which is projective over Z). There’s a universal
family

Ch0 C0 C PNH

h0 H∈

• Cohomology and base change implies that ∃H ′ open
⊂ H of h0 such that for all s ∈ H ′, h1(Cs,O(1)) =

0.

• We have a map H ′ !Mall
g sending [C ⊂ PN ] 7! [C].

Claim 14.23. H ′ !Mall
g is smooth.

For this, use formal lifting criterion. Say A ↠ A0 local artinian with residue field k s.t. ker(A !
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A0) = k. The lifting criterion translates to

Spec k

SpecA0 H ′

SpecA Mall
g

[C⊂PN
k ]

[C0⊂PN
A0
]

[C0]

[C⊂PN
A ]

This further translates to

PNk PNA0
PNA

C C0 C

Spec k SpecA0 SpecA

Assumption (simplifying assumption). Let’s assume C is a local complete intersection.

Over the central fiber, we have C ↪! PNk and some deformation of this C0 ↪! PNA0
. We also have a

deformation C of C over A, and we want to know if we can extend this into a deformation of the
embedding C ↪! PNk . Deformation theory tells us that such extensions are classified by If C were

smooth,
then ΩC

would
be a line
bundle, and
we’d have
Ext1(ΩC ,OC) =

Ext1(OC ,Ω∨
C) =

H1(C, TC)
where
TC = Ω∨

C is
the tangent
bundle

extensions
C0 C

SpecA0 SpecA

 = Ext1(ΩC ,OC)

and 
extensions

PNA0
PNA

C0 C

SpecA0 SpecA


= Hom(I/I2,OC) = H0(NC/Pn),

where I = IPN
k /C

is the ideal sheaf of C ↪! PNk . Because we assume C is a local complete
intersection, it is locally cut out by a regular sequence, and we even have an exact sequence

0 −! I/I2 −! ΩPn |C −! ΩC −! 0.
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Applying Hom(−,OC) gives

Hom(I/I2,OC) −! Ext1(ΩC ,OC) −! Ext1(ΩPn |C ,OC) = H1(C, TPn |C)

(the first map above takes an embedded deformation to an abstract deformation). Now, it suffices
to show the first map above is surjective. To see this, we appeal to the Euler sequence

0 −! OC −! OC(1)
⊕(n+1) −! TPn |C −! 0.

Taking cohomology of this shows that H1(C, TPn |C) = 0 (note we’re using that we restricted to H ′

where h1(O(1)) = 0). ■

Remark 14.24. We have inclusions

Mg,n ⊂ Mg,n ⊂ Mss
g,n ⊂ Mpre

g,n ⊂ M≤nodal
g,n ⊂ Mall

g,n

We’ve just seen the right end is algebraic. Each of these is an open inclusion, so all of these are algebraic
stacks.

• We showed nodal open in all last time (use étale descent to reduce to scheme case)

• prestable is open in nodal since it’s the open locus where n sections are disjoint and smooth

• ss is the open locus in prestable where ωC/S is nef

• We’ve shown the stable locus is open last time

• Finally, Mg,n ⊂ Mg,n is the smooth locus ◦

Remark 14.25. Contraction map gives a map

Mpre
g,n Mg,n

Mg,n

⊂

It is true that Mg,n is proper and that Mpre
g,n is universally closed (over Z), but not separated. ◦

15 Lecture 15 (3/3): Stable reduction

UW quarter ends next week, but we’ll give 4 more lectures (including this one). The rought schedule is

• Today: stable reduction (4/3 lectures)

– Mg,n proper

• Monday: gluing and forgetful morphisms (2/3 lecture)

– Mg1,n1
×Mg2,n2

!Mg1+g2,n1+n2−2
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– Mg,n !Mg+1,n−2

– Mg,n !Mg,n−1 universal family

• Wednesday: irreducibility (1 lecture)

– Mg,n irreducible

• Monday after: projectivity (1 lecture)

– The coarse moduli space Mg,n is projective

15.1 Recap

Recall 15.1. Let (C, p1, . . . , pn) be an n-pointed stable curve of genus g over k. Then,

dimk Ext
i

(
ΩC

(∑
i

pi

)
,OC

)
=


0 if i = 0

3g − 3 + n if i = 1

0 if i = 2

⊙

Theorem 15.2. If 2g− 2+ n > 0, then Mg,n is a quasi-compact DM stack which is smooth over SpecZ
of relative dimension 3g − 3 + n>

Proof.

• First we need to know Mg,n is algebraic and locally of finite type over Z.

We showed last time that the stack Mall
g,n of all curves is algebraic and locally of finite type over Z.

We’ve also showed that Mg,n

open
⊂ Mall

g,n so it inherits algebraicity.

• We next need to know that Mg,n is DM.

For an n-pointed stable curve (C, p1, . . . , pn), the abstract automorphism group Aut(C, {pi}) is finite
when (C, {pi}) is stable. We need more than this. We know that TCAut(C, {pi}) = Ext0(ΩC(

∑
pi),OC) =

0, so the scheme Aut(C, {pi}) is finite and reduced. By earlier characterization of DM stacks, we
can now conclude Mg,n is DM.

• Mg,n ! SpecZ is smooth.

Use the formal lifting criterion. Consider diagrams

SpecA0 Mg,n

SpecA SpecZ.

We want to know that we can get a lifting SpecA ! Mg,n. We may assume A ↠ A0 map
of local artinian rings with kernel k. Hence, we have Spec k ↪! SpecA0, and so a stable curve
(C, {pi}) ∈ Mg,n(k). Deformation theory now tells us there’s some element of Ext2(ΩC(

∑
pi),OC)

which vanishes iff a lift exists, but this whole group is 0, so we win.
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• For a field k, dim(Mg,n ×Z k) = 3g − 3 + n.

Use deformation theory again to identify

TMg,n×Zk,[C,{pi}]
∼= Ext1

(
ΩC(

∑
i

pi),OC

)

• All that remains is boundedness: Mg,n being quasi-compact

We use the following fact.

Fact. If (C, {pi}) is stable, then L := ωC(p1 + · · · + pn)
⊗3 is very ample, so gives an embedding

|L| : C ↪! PN , where N = h0(L)− 1.

Let P (t) be the Hilbert polynomial, and consider the Hilbert scheme HilbP (PNZ ) which is projective.
In fact, consider more. We have n marked points p1, . . . , pn, so consider

H :=
{
(C ↪! PN , p1, . . . , pn) : pi ∈ C

}
⊂ HilbP (PNZ )× (PNZ )n.

We know that H is quasi-compact (since it’s quasi-projective?). There’s a natural map f : H !

M
all

g,n sending (C ↪! PN , pi) 7! (C, pi), and the fact tells us that its image contains Mg,n, so Mg,n

is quasi-compact.35 ■

15.2 Overview of stable reduction

Goal. Mg,n ! SpecZ is proper.

Recall the valuative criterion for properness.

Theorem 15.3 (Valuative Criterion for Properness). Let f : X ! Y be a finite type morphism of
notherian algebraic stacks. Then, f is proper if and only if for every dvr R with fraction field K and
2-commutative diagram

SpecK X

SpecR Y

f

one has

(1) there exists an extension R! R′ of dvrs (with K ! K ′ of fraction fields) together with a lifting

SpecK ′ SpecK X

SpecR′ SpecR Y.

f

(2) any two liftings are isomorphic.
35Hilbp(PN

Z )× (PN
Z )n is projective so noetherian so all its subspaces are quasi-compact, including H ×Mall

g,n
Mg,n (which

is open subscheme since Mg,n ↪! Mall
g,n is an open immersion) which surjects onto Mg,n
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Notation 15.4. Think of SpecR =: ∆ as a unit disk, and SpecK := ∆∗ as a punctured unit disk.

In the present case, existence becomes

Theorem 15.5 (Stable Reduction). If (C∗ ! ∆∗, s∗1, . . . , s
∗
n) is a family of n-pointed stable curves of

genus g, then there exists a finite cover ∆′ ! ∆ of spectra of dvrs, and a family (C′ ! ∆′, s′1, . . . , s
′
n) of

stable curves extending C∗ ×∆∗ ∆′∗ ! ∆′∗.

and uniqueness becomes

Theorem 15.6 (Separatedness of Mg,n). If (C! ∆, σ1, . . . , σn) and (D! ∆, τ1, . . . , τn) are families
of n-pointed stable curves, then any isomorphism α∗ : C∗ ! D∗ over ∆∗ with τ∗i = α∗ ◦ σ∗

i of the generic
fibers extends to a unique isomorphism α : C! D over ∆ with τi = α ◦ σi.

15.3 First examples

Example (Colliding marked points). Let C be smooth, projective and connected curve over K. Consider
C ×∆

p2−! ∆ with sections σ1, σ2, σ3 given (étale locally) by t 7! (t2,−t2, 4t) (e.g. σ2(t) = −t2). Hence,
(C, σ1, σ2, σ3) is stable away from the identity t = 0.

*See slides for details* Here you end up blowing up the intersection point in the central fiber which
introduces a rational bridge, so then you contract that bridge, and then you win. △

Example (Node degenerating to a cusp). Suppose we have a family C ! ∆ with local equations y2 =

x3 + tx2. Here, ∆ = SpecR and t ∈ R a uniformizer. The central fiber is a cusp y2 = x3, while when
t ̸= 0 you get a node y2 = x2(x+ t). What is the stable limit?

These examples are hard to write notes for... I’m just gonna drop a link to the course website which
has slides/videos/notes: https://sites.math.washington.edu/ jarod/math582C.html. This example
also appears at the beginning of section 3.C of Harris-Morrison’s ’Moduli of Curves’ book. △

15.4 Stable reduction: basic strategy

(Reference: Harris and Morrison)
We’re given a stable curve C× ! ∆× = SpecK ↪! SpecR = ∆.

(Step 1) Find some extension C! ∆ to a flat family with possible very singular central fiber C0.

Consider embedding
∣∣ω⊗3

C×

∣∣ : C× ↪! PNK . We can let C := C× ⊂ PNR , the closure/scheme theoretic
image of C× under PNK ↪! PNR . The map C! ∆ = SpecR is flat. Question:

Why?

Answer:
See e.g.
Proposition
III.9.8 in
Hartshorne

(Step 2) Reduce to the case where the generic fiber C× ! ∆× is smooth.

The idea is that if C× has k nodes, take the pointed normalization (C̃×, p̃1, . . . , p̃2k). Can perform
stable reduction to each component, and then take nodal union of sections (glue them back together).
For this to work, need pointed case.

(Step 3) Use embedded resolutions. There exists

C̃ C

∆

proj
birational

generically
smooth
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s.t. C̃ ! C is a finite sequence of blow-ups at closed points, C̃ is regular, and C̃0 is/has (?) set-
theoretic normal crossings (i.e. (C̃0)red nodal).

Note 9. There was an example here I missed.

(Step 4) Take ramified base extension ∆′ = SpecR ! ∆ = SpecR, t 7! tm such the central fiber of the

normalization ˜
C̃×∆ ∆ is reduced and nodal.

(Step 5) Take minimal resolution and contract rational tails/bridges.

We’ll give more details on steps 4/5.

15.5 Birational geometry of surfaces

Slogan. Understanding the moduli of n-dimensional varieties (specifically, stable reduction) requires
birational geometry and minimal model program in dimension n+ 1.

Definition 15.7. A surface will be an integral scheme of finite type over k = k of dimension 2. ⋄

(References: Hartshorn Ch. V and Kollár ‘Lectures on Resolutions of Singularities’)

Theorem 15.8 (Embedded Resolutions). Let X be a surface and X0 ⊂ X be a curve. There is a
projective birational morphism X̃ ! X obtained as a finite sequence of blow-ups at reduced points of X0

yielding such that X̃ is smooth and the preimage X̃0 of X0 has set-theoretic normal crossings, i.e. (X̃0)red

is nodal.

Theorem 15.9 (Minimal Resolutions). Let X be a surface. There exists a unique projective birational
morphism X̃ ! X from a smooth surface s.t. every other resolution Y ! X factors as Y ! X̃ ! X.

Theorem 15.10 (Castelnuovo’s Contraction Theorem). Let X be a smooth projective surface, and
E a smooth rational curve with E2 = −1. Then there is a projective birational morphism X ! Y to a
smooth projective surface and a point y ∈ Y s.t. Xy = E and X \ E ! Y \ {y} is an isomorphism.

Corollary 15.11 (Existence of Relative Minimal Models). A smooth surface X admits a projective
birational morphism X ! Xmin to a smooth surface such that every projective birational morphism
Xmin ! Y to a smooth surface is an isomorphism. In particular, Xmin has no smooth rational (−1)-
curves.

All of these are in Hartshorne.

15.6 Stable reduction (in characteristic zero)

Assume R is a dvr over Q. We’re given a stable curve C× ! ∆× = SpecK, and we write ∆ = SpecR.

(Steps 1–3) Reduce to C× ! ∆× smooth, find some limit, and apply embedded resolutions.

This gives C! ∆ with (C0)red nodal and C regular.

(Step 4) Take ramified base extension
C′ C

∆ ∆t7!tm
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s.t. central fiber of the normalization C̃′ is reduced and nodal.

Can take m to be the lcm of the multiplicities of the components.

Recall 15.12. We have an étale-local description of C! ∆ near p ∈ C0.

(1) If p ∈ (C0)red is smooth, we get something looking like (x, y) 7! xa, i.e. central fiber looks like
xa = 0 near p.

(2) If p ∈ (C0)red is nodal, get something looking like (x, y) 7! xayb, i.e. central fiber looks like
two thick irred components xayb = 0 near p.

⊙

For (1), p ∈ C has local equation xa − t (t ∈ R uniformizer local coordinate of base), and there
exists a unique preimage p′ ∈ C′ = C ×∆,t7!tm ∆ which has local equation given by xa − tm. We
took m s.t. a | m, so this factors

xa − tm =

a−1∏
i=0

(
x− ρitm/a

)
,

where ρ a primitive ath root of unity. Since we’re in char. 0, this is reduced.36 Now let C̃′ ! C′ be
the normalization. This has a preimage p̃′ 7! p′ with local equation x−ρitm/a, one of these factors.
Hence, p̃′ ∈ C̃′

0 is smooth?

For (2), p ∈ C has local equation (x, y) 7! xayb.

Exercise. Under C̃′ ! C, each preimage p̃′ of p has a local equation of the form tk = xy.

This tells us that p̃′ ∈ C̃′
0 is reduced and nodal, and it tells you that p̃ ∈ C̃′ is an Ak−1-singularity.

The upshot is we have C̃′ ! ∆ a nodal family whose total space may have singularities.

(Step 5) Take a minimal resolution of C (what we called C̃′ in the previous step) to get C! ∆ a prestable
family with regular total space. Now, take the stable model by contracting rational tails and bridges
to get

C Cst

∆

Explicitly, we get Cst by contracting rational tails (by Castelnuovo) which gives the relative minimal
model C ! Cmin with Cmin ! ∆ semistable family with regular total space (could stop here and
call it semistable reduction), and then now contract rational bridges. Remember:

Rational
tails are
(−1)-curves,
and rational
bridges are
(−2)-curves

15.7 Summary

∆ = SpecR and R a dvr. In characteristic 0, we have proved

Theorem 15.13 (Semistable Reduction). If C∗ ! ∆∗ = SpecK is a smooth, projective and geomet-
rically connected curve, then there exists a cover ∆′ ! ∆ of spectrums of dvrs and a family C′ ! ∆′ of
semistable curves extending C∗ ×∆∗ ∆′∗ ! ∆′∗ such that C′ is regular.

36In char. p, if you take a ramified base change t 7! tp, things don’t improve
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Theorem 15.14 (Stable Reduction). If (C∗ ! ∆, s∗1, . . . , s
∗
n) is a family of n-pointed stable curves of

genus g, then there exists a finite cover ∆′ ! ∆ of spectra of dvrs and a family (C′ ! ∆′, s′1, . . . , s
′
n) of

stable curves extending C∗ ×∆∗ ∆′∗ ! ∆′∗.

History. Deligne-Mumford (’69) showed stable reduction in positive/mixed characteristic by using stable
reduction for abelian varieties.

Artin-Winters (’71) gave a proof (again, working in positive/mixed characteristic) roughly along the
same lines as what we presented.

16 Lecture 16 (3/8): Gluing and forgetful morhpisms

Today’s outline

• Recap

• Explicit stable reduction (compute stable limit of y2 = x5 + t)

• Uniqueness of the stable limit (i.e. Mg,n separated)

• Gluing morphisms

– Mg1,n1
×Mg2,n2

!Mg1+g2,n1+n2−2 (will allow us to define boundary divisors)

– Mg,n !Mg+1,n−2

• Forgetful morphisms

– Mg,n+1 !Mg,n (will show this is a universal family)

16.1 Recap of stable reduction

Theorem 16.1 (Stable Reduction). If (C∗ ! ∆, s∗1, . . . , s
∗
n) is a family of n-pointed stable curves of

genus g, then there exists a finite cover ∆′ ! ∆ of spectra of dvrs and a family (C′ ! ∆′, s′1, . . . , s
′
n) of

stable curves extending C∗ ×∆∗ ∆′∗ ! ∆′∗.

In the n = 0 case, Stable reduction says that given a stable curve C× ! ∆× = SpecK, the fraction
field of a dvr SpecR = ∆, possibly after an extension ∆′ ! ∆, t 7! tn, there exists a completion of C×

to a stable family C! ∆ = SpecR s.t.
C× C

∆× ∆

commutes. This is the existence part of the valuative criterion of properness.
See notes from last lecture for an idea of the proof (especially when charK = 0).

(Step 1) Reduce to case where the generic fiber C× ! ∆× is smooth.

(Step 2) Find some extension C
flat
−−! ∆
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(Step 3) Use embedded resolutions to get

C̃ C

∆

with C̃ regular, C̃! C projective + birational (finite sequence of blowups at closed points) and C̃0

set-theoretic normal crossings (i.e. (C̃0)red a nodal curve).

(Step 4) Take ramified base extension ∆′ = SpecR ! SpecR = ∆, t 7! tm s.t. the central fiber of the

normalization ˜
C̃×∆ ∆′ is reduced and nodal.

(Step 5) Take minimal resolution and contract rational tails/bridges (i.e. take stable model).

16.2 Explicit stable reduction

The biggest challenge in computing the stable limit is in ‘step 4,’ computing the normalization ˜C×∆ ∆′

after base change ∆′ ! ∆, t 7! tn. In practice, it is useful to factor ∆′ ! ∆ as a composition of prime
order base changes ∆′ ! ∆, t 7! tp.

Proposition 16.2.

• Let C! ∆ be a generically smooth family of curves such that (C0)red is nodal.

• Define the divisor C0 =
∑
aiDi on C

• Let ∆′ ! ∆ be defined by t 7! tp, and set C′ := C×∆ ∆′ with normalization C̃′

Then, C̃′ ! C is a branched cover ramified over
∑

(ai mod p)Di.37

Example. Suppose C ! ∆ = SpecR with local equation y2 = x5 + t. Here, t ∈ R is a uniformizer. See also
Harris-
Morrison
pg. 122

When t = 0, central fiber C0 is not stable and p ∈ C0 is ramiphoid (spelling?) cusp. Central fiber looks
like y2 = x5. What is the stable limit?

Since we already have some limit, begin with step 3: blow-up points in central fiber until (C0)red is
nodal.

Notation 16.3. We’ll let C be the surface we’re blowing up, and let C̃ = Blp C with exceptional divisor
E above p. There are two charts U1, U2 ⊂ C̃ s.t. U1 ! C looks like (x̃, ỹ) 7! (x̃, x̃ỹ) and U2 ! C looks
like (x̃, ỹ) 7! (x̃ỹ, ỹ). Note that E|U1

: x̃ = 0 and E|U2
: ỹ = 0.

• Blowup 1.

– 1st chart: y2 − x5 = (x̃ỹ)2 − x̃5 = x̃2(ỹ2 − x̃3) so one (reduced) component looks like E1 and
the other is cuspidal.

• Blowup 2
37set-theoretically. This expression does not indicate multiplicity beyond = 0 or ̸= 0

102



– 1st chart: x2(y2 − x3) = x̃2((x̃ỹ)2 − x̃3) = x̃4(ỹ2 − x̃) with components the new exceptional
divisor E2 and also D : ỹ2 − x̃, a nodal curve (?).

– 2nd chart: x2(y2 − x3) = x̃2ỹ4(1 − x̃3ỹ). The x̃2 is the first exceptional divisor E1, the ỹ4 is
E2, and the (1− x̃3ỹ) is D.

• Blowup 3

– 2nd chart: x4(y2 − x) = x̃4ỹ4(ỹ2 − x̃ỹ) = x̃4ỹ5(ỹ − x̃). Our latest exceptional divisor is
F : ỹ = 0. We also have an E2 component (the x̃4 factor) and D : ỹ − x̃, the normalization of
the original central fiber.

• Blowup 4

– 1st chart: x4y5(y−x) = x̃10ỹ5(ỹ−1). So we have a new exceptional divisor G with multiplicity
10, we have F from the third blowup with multiplicity 5, and we have D : ỹ − 1.

Now we have a family38 C! ∆ with (C0)red nodal and

C̃0 = D + 10G+ 5F + 4E2 + 2E1.

We base change by t 7! t5 and normalize to get C̃′ π
−! C ramified over D+E2+E1 (they have coefficients

not divisible by 5. Use previous prop). What are the preimages of the other components? Let G′ =

π−1(G)
5:1
−−! G = P1. This map is branched over 2 points, each with ramification index 5, so Riemann- Question:

Why?

Answer: It’s
branched
over the
points where
G inter-
sects any
of D,E2, D1.
G intersects
D,E2 each
at one point.
Still not
sure why
it’s totally
ramified
though...

Hurwitz gives
2g(G′)− 2 = 5(−2) + 8 = −10 + 8 =⇒ g(G′) = 0 =⇒ G′ = P1.

Similarly, let F ′ = π−1(F )
5:1
−−! F = P1 unramified. Since P1 has no non-trivial unramified covers, we

must have F ′ = F1 ⊔ · · · ⊔ F5 with Fi = P1.
Over ∆, new central fiber is C′

0 = 5D + 10G′ + 5(F1 + · · ·+ F5) + 20E2 + 10E1. Over ∆′, we divide
by 5 to get C′

0 = D + 2G′ + (F1 + · · · + F5) + 4E2 + 2E1. We’ve decreased some multiplicities. Now
we compute base change t 7! t2 and normalize to get π : C̃′ 2:1

−−! C ramified over D + F1 + · · · + F5.
We do same sort of Riemann-Hurwitz calculations, e.g. let H := π−1(G′)

2:1
−−! G′ = P1 ramified over 6

points and RH gives g(H) = 2. We also know q = H ∩D is a ramification point of H ! P1 which some

Question:
Why?

Answer:
G′ inter-
sects each of
D,F1, . . . , F5

people call a “Weierstrass point.” The central fiber will have everything with multiplicity 1 except E2

with multiplicity 2.
After this, one needs to repeat t 7! t2 one last time to get a reduced central fiber. Then the final step

is to contract rational tails. You end up with a genus two curve H along with D, the normalization of
the original central fiber (the two intersect at a Weierstrass point), and nothing else.

Question 16.4. Which genus 2 curve is it? More generally, what happens to

y2 = x5 + a3(t)x
3 + · · ·+ a0(t)?

△

Remark 16.5. Apparently Timothy Dokchitser has implemented an algorithm for doing such computa-
tions. ◦

38See slides for a picture
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16.3 Uniqueness of stable limit

Proposition 16.6 (Separatedness). If (C ! ∆, σ1, . . . , σn) and (D ! ∆, τ1, . . . , τn) are families of n-
pointed stable curves, then any isomorphism α∗ : C∗ ! D∗ over ∆∗ with τ∗i = α∗ ◦ σ∗

i of generic fibers
extends to a unique iso α : C! D over ∆ with τi = α ◦ σi.

Proof. Assume n = 0 and C× = D× smooth for simplicity.
We’re given stable families C,D ⇒ ∆ = SpecR ∋ t which restrict to isomorphic families

C× D×

∆×

∼

smooth smooth

over the generic point ∆× = SpecK. We want to extend this isomorphism. We know the local structure
of z ∈ C; if z ∈ C0 is a node, it looks like xy = tn+1, an An-singularity.

(Step 1) Take minimal resolutions of C,D. Since the node in the central fiber meant we had a
surface with an An-singularity, this is resolved by a collection

π−1
C (z) = E1 ∪ · · · ∪ En with E2

i = −2

of (−2)-curves.

(Step 2) In order to compare these minimal resolutions, we want to compare them by another
smooth surface. To do this, we take the closure of the image of the graph of α× : C× ∼

−! D×, and
then take the minimal resolution of that. That is, we consider a minimal resolution Γmin ! Γ of

Γ = im
(
C× ! Cmin ×∆ Dmin

)
(scheme-theoretic image above). At this point, we have a diagram like so

Γmin

Cmin Dmin

C D

∆

∼

stable
stable

(everything with a min subscript is smooth).

(Step 3) Both maps Γmin ⇒ Cmin,Dmin are birational maps of smooth projective surfaces, so we
have an equality

Γ
(
ω⊗k
Cmin/∆

)
= Γ

(
ω⊗k
Dmin/∆

)
= Γ

(
ω⊗k
Γmin/∆

)
.

of pluricanonical sections.
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(Step 4) C,D are relative stable models of Cmin,Dmin. Apparently by uniqueness of stable models,
we know that Question:

Why do we
have these
Proj descrip-
tions?

Answer: I
think maybe
this is a con-
sequence
of Proposi-
tion 14.13
(4) and the
canonical
bundle being
ample

C = Proj
⊕
k≥0

Γ
(
ω⊗k
Cmin/∆

)
and D = Proj

⊕
k≥0

Γ
(
ω⊗k
Dmin/∆

)
,

and so C ∼= D. ■

Above argument works more generally for moduli of higher dimensional varieties. In the case of
moduli of curves, where you’re just dealing with surfaces, things can be made more explicit.

Alternate Proof Sketch. Let’s give a more explicit argument that Γmin
∼
−! Cmin and Γmin

∼
−! Dmin. If

not, there exists E = P1 ⊂ Γmin that is contracted under Γmin ! Cmin, but not to Γmin ! Dmin

(since minimal resolutions are built via successive blowups). Let ED = πD(E) with total transform
π−1
D (ED) = E ∪ F (so F is contracted by πD). We know how blowing up affects self-intersection; by

projection formula
E2

D = E · (E + F ) ≥ E2 = −1.

The Hodge index theorem for exceptional curves tells us that E2
D < 0, so E2

D = −1. Hence, ED ⊂ Dmin

is singular. As Γmin ! Γ resolves the singularity, we must have E · F ≥ 1 which gives E2
D ≥ 0, a

contradiction. ■

The upshot is that Mg is proper. We’ve shown this in characteristic 0, but it’s actually true that
Mg ! SpecZ is proper. By Keel-Mori, we then get a coarse moduli space Mg

cms
−−!Mg with Mg a proper

algebraic space.

16.4 Gluing morphisms

(Reference: Knudsen, Projectivity II (1983))

Proposition 16.7. There are morphisms of algebraic stacks

Mg,n ×Mg′,n′ !Mg+g′,n+n′−2 and Mg,n !Mg+1,n−2.

The first one comes from gluing two curves together at a couple of marked points (and then not
marking the resulting glued point). The second comes from gluing together two marked points on the
same curve (and again not marking the glued point).

We need this to work in families.

Proof sketch of first map. Assume n = n′ = 1 we we have C ⇄ S ⇆ C′ with σ, σ′ : S ⇒ C,C′ the sections.

• (Approach 1) use pushout

S C′

C C̃

σ′

σ

which exists by Ferrand. Pushouts in AG scary in general, but well-behaved when one map is a
closed immersion and the other is finite (here, both are closed immersions).

We need to show C̃! S is the desired family of stable curves. We will use
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(1) Pushout is étale local on S,C,C′

(2) local structure of smooth maps (C,C′ are smooth along σ, σ′).

Reduce pushout computation to

SpecA SpecA[y]

SpecA[x] SpecA[x]×A A[y],

σ′=0

σ=0

where
A[x]×A A[y] = {(f(x), g(y)) : f(0) = g(0)} = A[x, y]/(xy)

so C̃! S is a nodal family. One can check stability on fibers.

• (Approach 2) Use Proj construction. Same initial setup. We know ωC/s(σ) and ωC′/S(σ
′) are ample.

Use exact sequence
0 −! ωC −! ωC(σ) −! Oσ −! 0.

We get ωC(σ)
⊗k ! Oσ for all k. Form the sheaf fiber product

Ak π′
∗(ωC′/S(σ

′)⊗k)

π∗
(
ωC/S(σ)

⊗k) OS

Check that C̃ = Proj
⊕

k≥0 Ak ! S is desired stable family. ■

Proof sketch of second map. Assume n = 2 so we’re given (C! S, σ1, σ2).

• (Approach 1) use pushout again
S ⊔ S C

S C̃

σ1⊔σ2

finite

Local calculation now looks like

Spec(A×A) SpecA[t]

SpecA SpecB

(0,1)

where (x = t2 − 1, y = t3 − t)

B = {f ∈ A[t] : f(0) = f(1)} = A
〈
t2 − 1, t3 − t

〉
= A[x, y]/(y2 − x2(x+ 1)).

• (Approach 2) Proj construction is similar. ■

Application (Boundary divisors). Let δi = im
(
Mi,1 ×Mg−i,1 !Mg

)
for i = 1, . . . , ⌊g/2⌋, and let

δ0 = im
(
Mg−1,2 !Mg

)
.
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Note 10. Not being able to draw these curves on the fly really negatively impacts these notes.

Fact (Important). δ = δ0 + · · ·+ δ⌊g/2⌋ is a divisor (e.g. codim 1) and is furthermore a simple39 normal
crossing (snc) divisor (e.g. intersect transversally).

16.5 The universal family Mg,n+1 !Mg,n

Warning 16.8. Forgetting a marked point can make the curve unstable! •

Let Ug !Mg be the universal family (coming form 2-Yoneda). As a stack, Ug parameterizes

C

S

σ

with σ : S ! C arbitrary (could land in singular locus).

Definition 16.9. Ug !Mg a universal family means given any other family of curves C! S, there’s a
Cartesian diagram

C Ug

S Mg
[C]

⋄

In particular, Ug is an algebraic stack, and Ug !Mg is a proper, flat family of nodal curves.
We have Mg,1 ! Ug sending a stable 1-pointed family (C! S, σ) to (Cst ! S, σst), the stable model

obtained by contracting rational bridges.

Proposition 16.10. Mg,1
ψ
−! Ug is an isomorphism.

Proof Sketch.

• (Proj construction, follow Knudsen) We explicitly construct an inverse Ug ! Mg,1. Let C! S be
a stable curve with section σ : S ! C. Let Iσ ⊂ OC be the ideal sheaf of σ. Define K as Question: Is

this right?
0 −! OC −! I∨σ ⊕ OC −! K −! 0,

and define C̃ = Proj SymK. Use that there’s a surjection

σ∗K ↠ σ∗ (K/OC) = σ∗ (I∨σ /OC) .

One needs to show that I∨σ /OC is a line bundle, so we get a section σ̃ : S ! C̃ and show that
(C̃! S, σ̃) is stable.

• (deformation theory40) We have Mg,1
ψ
−! Ug sending (C ′, p′) 7! (C, p) with C = (C ′)st the stable

model of C. To show it is an iso, we need to show that Potentially
Spec k !

B(Z/2Z)
is a coun-
terexample.
Sounds like
you need to
add that the
morphism
all preserves
stabilizers

39This word might should not be here
40“I’m sort of confident that this argument works, but I have not checked all the details myself, and I am not following a

reference here” (paraphrased)
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– ψ is proper and representable

– ψ separates points

– ψ separates tangent vectors

By stable reduction, we know both sides are proper, so we get that ψ is proper for free. One can
check directly that ψ separates points. The challenge is in having it separate tangent vectors.

For simplicity, assume only one rational bridge is contracted and consider Question:
What are Ip
and Ip′?

Answer:
ideal sheaf
of a point

TMg,1,[C′,p′] TUg,[C,p]

Ext1(ΩC′ , Ip′) Ext1(ΩC , Ip)

(Ip′ is a line bundle, but Ip is not). Here are some properties of contraction map C ′ π
−! C

Question:
Because it’s
a node or
something?

Answer:
Yes, so the
its stalk
at p (i.e.
the maxi-
mal ideal
mp ⊂ OC,p)
is not free,
i.e. not
mp is not
a principal
ideal

(1) π∗OC′ = OC and R1π∗OC′ = 0.

(2) π∗Ip′ = Ip and R1π∗Ip′ = 0.

(3) 0! κ(p)! ΩC ! π∗ΩC′ ! 0 exact.

The map on Ext’s is

Ext1(ΩC′ , p′) ∋ [0! Ip′ ! E′ ! ΩC′ ! 0] 7! [0! Ip ! E ! ΩC ] ∈ Ext1(ΩC , Ip)

where
E = ΩC ×π∗ΩC′ π∗E

′

(take pushforward of original sequence then pull it back to one ending in ΩC). Suppose E is the
trivial extension, so there’s a section s : ΩC ! E. One can check that s descends to a section
s̃ : π∗ΩC′ ! π∗E

′. Then use adjunction

Hom(π∗ΩC′ , π∗E
′) = Hom(π∗π∗ΩC′ , E′),

and check that the map π∗π∗ΩC′ ! E′ obtained from it descends to a section s′ : ΩC′ ! E′, so E′

is also trivial and the map of Ext groups is injective (so an iso, meaning we win). ■

In the above proof, the correct fact to use is

Fact. Let f : X! Y be a proper map of algebraic stacks such that

(1) For all k = k, the induced map X(k)/ ∼−! Y(k)/ ∼ is injective

(2) f induces isomorphisms Aut(x)! Aut(f(x))

(3) f separates tangent vectors

Then, X! Y is a closed immersion.

This is an analogue of proper monomorphisms being closed immersions it sounds like.
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17 Lecture 17: Irreducibility

Recall the goal of the course is to prove

Goal. The moduli space Mg of stable curves of genus g ≥ 2 is a smooth, proper and irreducible DM stack
of dimension 3g − 3 which admits a projective coarse moduli space.

We know everything 41 except irreducibility and projectivity. We do irreducibility today and summa-
rize projectivity on Monday.

Note 11. ∼40 people today.

Today’s outline

(1) Background on branched covers42

(2) Clebsch-Hurwitz argument (1872 and 1891), a char = 0 argument with some non-algebraic input

(3) Fulton’s appendix to Harris and Mumford’s paper “On the Kodaira Dimension of Mg” (1982), a
char = 0 argument which is completely algebraic

(4) Some arguments which work in char = p via reducing to the char = 0 case (Fulton’s argument here
also needs p≫ 0)

• Deligne-Mumford’s 2 arguments in “On the irreducibility of Mg” (1969)

• Fulton’s argument in “Hurwitz schemes and irreducibility of Mg” (1969)

Note 12. The lecture notes for the course are caught up to Monday. It may be another week or two
before the stuff from these last two lectures are added.

Remark 17.1. Argument (3) and the DM arguments in (4) will exploit the compactification Mg ⊂ Mg.
Heuristically, if you have a smooth curve [C] ∈ Mg, you want to show you can degenerate it to a something
on the boundary Mg \Mg, and then show that any two curves on the boundary can be degenerated to
each other (picture this as giving a path between any two points). ◦

Remark 17.2. Mg itself is irreducible. ◦

17.1 The goal

Goal. Mg,n is irreducible.

Remark 17.3. As Mg,n is smooth, this is ⇐⇒ Mg,n is connected ⇐⇒ Mg connected ⇐⇒ Mg

connected and dense in Mg. ◦

Remark 17.4. We have coarse moduli spaces Mg,n
cms
−−!Mg,n with |Mg,n| =

∣∣Mg,n

∣∣ at topological spaces.
Hence the previous statements on stacks are equivalent to corresponding statements on coarse moduli
spaces. ◦

Why do we care about any of this?

• Mg connected ⇐⇒ genus is the only discrete invariant.
41We only proved properness in char 0, but it’s true over Z and we’ll even use that today
42Comes up in arguments (2),(3), and Fulton’s part of (4)
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• Mg ⊂ Mg dense ⇐⇒ ̸ ∃ (irreducible) component of Mg consisting entirely of singular curves.

We will try to summarize algebraic approaches. There are other topological/analytic arguments (e.g.
using Teichmüller).

17.2 Background on branched covers

Definition 17.5. A branched cover of P1 is the a finite morphism f : C ! P1 with C a smooth,
connected curve and K(P1)! K(C) separable. ⋄

Remark 17.6. f above is étale at points p where
(
ΩC/P1

)
p
= 0. ◦

Definition 17.7. We say f is ramified at p of index e if length(ΩC/P1)p = e− 1. ⋄

Example. X = A1 ! A1 = Y via x 7! xd. Then,

ΩX/Y =
k[x]dx

d · xd−1dx = 0
.

If char ∤ d, then length(ΩX/Y )0 = d− 1. △

Definition 17.8. The ramification divisor is

R =
∑
p∈C

length
(
ΩC/P1

)
p
· p.

⋄

The short exact sequence
0 −! f∗ΩP1 −! ΩC −! ΩC/P1 −! 0

implies KC = f∗KP1 +R as divisors. Taking degrees gives Riemann-Hurwitz

2g − 2 = d(−2) + degR =⇒ degR = 2d+ 2g − 2.

where d = deg f .

Definition 17.9. A branched cover C ! P1 is called simply branched if

(1) every ramification point has index 2; and

(2) there exists at most one ramification point in every fiber. ⋄

Riemann-Hurwitz implies that a simply branched covering C d
−! P1 is ramified over b := 2d+ 2g − 2

distinct points in P1.

Lemma 17.10. Let C be a smooth, projective, connected curve of genus g, and let L be a line bundle of
degree d ≫ 0. Then for a general V ⊂ H0(L) of dimension 2, the induced map |V | : C ! P1 is simply
branched.

Proof. Do a dimension count: h0(L) = d+ 1− g. Also dimGr(2,H0(L)) = 2(h0(L)− 2) = 2(d− g − 1).
If C V

−! P1 is not simply branched, then either
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(1) V has a base point

(2) there’s a ramification point of index > 2

(3) there’s 2 ramification points in the same fiber

Want to show these all describe lower dimensional subspace of the Grassmannian. Let’s just look at case
(2) in detail.

Case (2). There’s a point with ramification index at least 3, so ∃s ∈ V s.t. s ∈ H0(L(−3p)) for some
p ∈ C. At the same time

dim
{
V ∈ Gr(2,H0(L)) : C

V
−! P1 satisfies (2)

}
= dimPH0(L(−3p)) + dimP(H0(L)/s)

= d− 3 + (1− g)− 1 + d− g − 1

= 2d− 2g − 4 < 2(d− g − 1)− 1

(need one section s ∈ H0(L(−3p)) and one section in the quotient). We added the −1 to the RHS since
there’s an extra degree of freedom from choosing the point p ∈ C. ■

Exercise. Do the other two cases in the previous proof.

Warning 17.11. It’s possible above proof (sketch) will break down in positive characteristic. We only
need it in characteristic 0. •

Lemma 17.12. If C ! P1 is a simply branched cover of degree d > 2, then Aut(C/P1) = {1}.

The main point is an automorphism α : C ! C over P1 would fix the 2d + 2g − 2 branched points,
and a classical fact about curves is that there does not exist any non-trivial automorphisms fixing more
than 2g + 2 points. Question:

Why?

Answer:
Briefly, Lef-
schetz fixed
point will
say any non-
identity au-
tomorphism
has ≤ 2 + 2g

fixed points

Define the (topological or algebraic) space

algebraic
space since
automor-
phisms are
trivial

Hd,b :=
{
C

d
−! P1 simply branched over b points

}
where b := 2g − 2d− 2.

We have maps
Hd,b

Mg Symb P1 \∆ = Pb \∆

The left map is [C ! P1] 7! [C]. The right map is [C ! P1] 7! {b branched points}. Can use right map
to define topology if you want.

Lemma 17.13. In char = 0, Hd,b ! Symb P1 \∆ is finite and étale, i.e. a covering space.

This implies that any C ! P1 can be deformed so that the branched locus is general.

Proof sketch of étaleness.

(Topological) Say we’re given C ! P1 and have p1, p2 ∈ P1. Say we want to move p1 to q1 (nearby)
and deform the cover along with it. Everything is topological, so we can take a small open U around
p1, q1 and just deform things above small open. Then just glue everything back in.
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(Algebraic) Def1st(C
f
−! P1) ! Def1st({pi}bi=1 ⊂ P1). This right space is b-dimensional. The left

space is H0(C,Nf ) where Nf is the normal bundle

0 −! TC −! f∗TP1 −! Nf −! 0.

We have a short exact sequence

0 −! H0(f∗TP1) −! H0(Nf ) −! H1(TC) −! 0

(the quotient above is secretly the forget map from deformations of the cover to deformations of
the curve43). Note deg(f∗TP1) = 2d, so one can use Riemann-Roch to see that h0(Nf ) = b. This
tells you should expect Def1st(C

f
−! P1)! Def1st({pi}bi=1 ⊂ P1) to be a bijection. Showing that it

actually is a bijection requires more work. ■

Remark 17.14. We’re always taking d to be sufficiently large for our purposes. ◦

17.3 Clebsch-Hurwitz proof over C

(References: Clebsch (1872), Hurwitz (1891), and Fulton “Hurwitz schemes and irreducibility...” (1969))
Need the following non-algebraic input:

Theorem 17.15 (Riemann Existence Theorem). There are bijections{
C ! P1 algebraic
branched covers

}
↔

{
C ! P1 topological
branched covers

}
↔

{
C ! P1 holomorphic

branched cover

}

We also need monodromy action. Given C
f
−! P1, let B ⊂ P1 be the ramification locus. Say p ∈ P1

under some q ∈ C. Take a loop γ ∈ π1(P1
C \B, p) based at p around some branch point(s). We can trace

q under the lifting of the path γ to C to get another point q′ ∈ f−1(p). That is, we have a monodromy
action

π1(P1
C \B, p) ↷ f−1(p)

(note #f−1(p) = d), i.e. we have a group homomorphism

π1(P1
C \B, p) ρ

−! Sd.

Note that π1(P1
C\B, p) = ⟨σ1, . . . , σb | σ1σ2 . . . σb = 1⟩ with σi a simple loop around the ith point in B.

Remark 17.16. C is connected ⇐⇒ im(ρ) ⊂ Sd is a transitive subgroup. ◦

(Keep in mind in our definition of (simply) branched cover, we assumed C connected. This isn’t need
in this analytic story above, but we have still been assuming C smooth above)

The upshot is that for a subset B ⊂ P1 of b points, there’s a bijection{
C

d
−! P1

branched covers

}
/∼

 !

{
group homomorphisms π1(P1 \B)

ρ
−! Sd

s.t. im ρ ⊂ Sd is a transitive subgroup

}
/∼

43It is also secretly the induced map of tangent spaces Hd,b ! Mg
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where the objects on the right are defined up to inner automorphisms. This restricts to a bijection

{simply branched covers} ! {ρ(σi) ∈ Sd transpositions} .

Recall 17.17. We have a diagram

Hd,b

Mg Symb P1 \∆

f.étale

⊙

Theorem 17.18 (Clebsch-Hurwitz). Hd,b is connected over C, so Mg is connected too.

Proof sketch.

• π1(P1 \B) = ⟨σ1, . . . , σb |
∏
i σi = 1 ⟩

• π1(P1 \B) ↷ fibers of C ! P1 simply branched over B.

• Similarly, π1(Symb P1 \∆, B) acts on the fibers of β : Hd,b ! Symb P1 \∆.

• Let’s define

Hd,B := β−1(B) =
{
C ! P1 simply branched over B

}
=

{
(τ1, . . . , τb) ∈ (Sd)

b : τi transposition and
∏
i

τi = 1

}

(implicitly above we require ⟨τi⟩ ≤ Sd be a transitive subgroup)

We want the action π1(Symb P1 \∆, B) ↷ Hd,B to be transitive (gives Hd,b connected).
Strategy: find loops in Symb P1 \∆ that act on (τ1, . . . , τb) ∈ Hd,B in a controlled way so that we can

show each orbit contains

τ∗ =

(12), (12), (13), (13), . . . , (1 d− 1)(1 d− 1)︸ ︷︷ ︸
2(d−1)

, (1d)(1d), . . . , (1d)︸ ︷︷ ︸
2g+2

 .

Define
Γi : [0, 1] −! Symb P1 \∆

t 7−! (p1, . . . , pi−1, γi(t), γ
′
i(t), pi+2, . . . )

Check One day I’ll
actually un-
derstand
the con-
nection be-
tween Hur-
witz spaces
and braid
groups. To-
day is not
that day

(1) Γi · (τ1, . . . , τb) =
(
τ1, . . . , τi−1, τ

−1
i τi+1τi, τi, τi+2, . . .

)
(2) By using Γi’s in some order, can move any (τ1, . . . , τb) to τ∗ ■

17.4 Fulton’s 1982 appendix to Harris and Morrison’s admissible covers

(Reference: Harris and Mumford “On the Kodaira Dimension of Mg”)

113



Completely algebraic argument in characteristic 0.
Key input

Proposition 17.19. Every smooth curve C degenerates to a singular stable curve.

In other words, there exists some curve T and map T !Mg s.t. t 7! [C] (C the given smooth curve)
and 0 7! [C0], a singular stable curve (0, t ∈ T any two points).

Proof Sketch. Lemma 17.10 tells us there’s some simply branched cover C ! P1. Choose an ordering
p1, . . . , pb ∈ P1 of branched points. This defines a b-pointed curve B ∈ M0,b. Lemma 17.13 let’s us assume
that B ∈ M0,b is general. Then, B degenerates to

D0 =


. . .

p1

p2

pb


∈ M0,b.

We have
C×

B = D× D

SpecK SpecR ∆

simply
branched

∈M0,n(R)

Define C as the integral closure of OD in K(C×). Purity of the branched locus (branched locus always a
divisor) implies (one of?)

• the ramification of C over D is a divisor in the relative smooth locus of D

• C0 ! D0 ramified over σ1(0), . . . , σb(0) and possibly over an entire component of C0

As in stable reduction, after base change by ∆′ ! ∆, t 7! tm (m multiplicity of some component) and
replace C with ˜C×∆ ∆′ to arrange that C0 ! D0 is ramified only over σi(0) and nodes. Check that C0

is nodal, so C! ∆ is a family of nodal curves.
If C0 is stable, we win (can’t be smooth since maps to union of P1’s). Otherwise, take the stable

model (contract rational tails/bridges) Cst ! ∆, and check that Cst is not smooth. Let T ⊂ C0 be an
irreducible component. Since C0 ! D0, the union of P1’s, we have T ! P1 (since T irreducible). Now,
RH =⇒ 2g(T )− 2 = −2d+R. If P1 is a tail (at the end), then R ≤ 2 + (d− 1). If P1 is a bridge (in the
middle), then R ≤ 1 + 2(d− 1). In either case,

2g(T )− 2 ≤ −2 + 1 + 2(d− 1) = −1 =⇒ g(T ) = 0.

Thus, every component T of C0 is a P1 and this implies that Cst0 is nodal, which is what we wanted. ■

Second key prop is

Proposition 17.20. Mg \Mg is connected.
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Proof. δ := Mg\Mg = δ0∪δ1∪· · ·∪δ⌊g/2⌋ where δ0 = im(Mg−1,2 !Mg) and δi = im
(
Mi,1 ×Mg−1,i !Mg

)
.

By induction on the genus, we know each δ0, δ1, . . . is irreducible. We also know δi ∩ δj ̸= ∅ for all i, j
(can come up with examples). ■

Corollary 17.21. Mg is connected.

Given two curves, first proposition let’s you degenerate them to the boundary. The second proposition
then let’s you degenerate them further (along the boundary) to each other.

This argument in fact shows more. The limit C0 ! D0 we constructed is what’s called an admis-
sible cover, i.e. it is simply branched away from nodes, and over the nodes the branching looks like
Spec k[x, y]/xy ! Spec k[x, y]/xy via (x, y) 7! (xm, ym). Can define a stack Hd,b of admissible covers
and get a compactified diagram

Hd,b

Mg M0,b

finite

17.5 Two irreducibility papers in 1969

(References: Deligne and Mumford ‘The irreducibility of the space of curves of given genus’ and Fulton
‘Hurwitz schemes and Irreducibility of Moduli of Algebraic Curves’)

Both papers show that Mg is irreducible in positive characteristic (p > g + 1 in Fulton) relying on
char = 0 case.

DM #1 Uses Mg ! SpecZ smooth and proper.

Fact. If X ! Y smooth and proper, the function y 7! # connected components of Xy is constant. If you have
proper and
flat, this
map is lower
semicontinu-
ous (assum-
ing I heard
correctly)

Since Mg ×Z C is connected, this let’s you conclude Mg ×Z Fp is connected.

DM #2 Several steps.

(Step 1) For any field k of char = p, show there are no proper connected components of M := Mg ×Z k.

Uses existence of coarse moduli space Mg ! Mg over Z using GIT. Also use a compactification
Mg ⊂ X with X projective over Z.44 Using result like in DM #1, use X×ZC connected to conclude
that X ×Z Fp is connected. Showed Mg not proper by using degneration of Jacobians.

(Step 2) No connected component of Mg ×Z k consisting entirely of smooth curves.

This is step 1 + stable reduction.

(Step 3) Mg \Mg connected.

Steps 1 and 2 give the key proposition we saw when looking at Fulton’s appendix. That + this step
finishes the argument.

’
44projectivity not important. Could have used Nagata compactification to get something proper
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Fulton The Hurwitz scheme Hd,b is defined over Z, and there is a diagram

Hd,b

Mg Symb P1 \∆

β

with β étale always and finite when p > g + 1. He established a “reduction theorem”: since Hd,b !

Symb P1 \∆ is finite étale, connectedness of Hd,b ×Z C implies connectedness of Hd,b ×Z Fp for p > g+1.

18 Lecture 18 (3/15): Projectivity (Last Lecture)

(References: Kollár’s ‘Projectivity of complete moduli’ and Viehweg’s ‘Quasi-projective moduli for po-
larized manifolds)

Goal. The moduli space Mg of stable curves of genus g ≥ 2 is a smooth, proper and irreducible Deligne-
Mumford stack of dimension 3g − 3 which admits a projective coarse moduli space.

We finish this today.
Today’s outline

(0) Recap of how we got here

(1) Setup for Mg

(2) Survey of projectivity methods

(3) Nef vector bundles

(4) The ampleness lemma

(5) Application to Mg

There will be missing details, but we’ll try to cover the main ideas.

Recall 18.1. Mg is the coarse moduli space of Mg. ⊙

18.1 Recap

Recall the 6 steps towards projective moduli. In our case, we have Mg ⊂ Mall
g .

(Step 1: algebraicity) Mall
g is algebraic and locally of finite type.

We used a Hilbert scheme to construct a smooth neighborhood Hilb!Mall
g around any particular

curve.

(Step 2: Openness of stability) Mg ⊂ Mall
g is an open substack, so it inherits algebraicity from Mall

g .

Openness translates to: if C! S is a family of arbitrary curves, then {s ∈ S : Cs is stable} ⊂ S is
open in the base. We showed this in two steps.

– Nodal locus is open (using local structure of nodes)
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– The stable locus within the nodal locus is open (C stable ⇐⇒ Aut(C) finite ⇐⇒ ωC ample).

(Step 3: Boundedness of stability) Mg is of finite type (in particular, it’s quasi-compact).

We used: if C! S is a stable family, then ω⊗3
C/S is relatively very ample and HilbP (P5g−6) is finite

type.

(Step 4: Existence of coarse moduli space) ∃Mg
cms
−−!Mg

We showed Mg is a separated DM stack, and applied the Keel-Mori theorem. Can in-
terchange
steps 4 and
5 since sep-
aratedness
is shown
when show-
ing proper-
ness

(Step 5: Stable reduction) Mg is proper ( =⇒ Mg proper)

We verified the valuative criterion for properness. In lecture, we only did the characteristic 0 case
(using results from birational geometry and minimal model program of surfaces).

(Step 6: Projectivity) Mg is projective.

Today!

Remark 18.2. Sometimes you can work directly with the stack, but you have many more tools (e.g.
intersection theory and Hodge theory) if you know it has a projective coarse moduli space. ◦

18.2 Setup

• Let Ug
π
−!Mg be the universal family

• Define the coherent sheaf
Ek := π∗

(
ω⊗k
Ug/Mg

)
on Mg

• For [C] : S
f
−!Mg, note one has

f∗Ek = πS,∗(ω
⊗k
C/S).

• Ek is a vector bundle by cohomology and base change.

This is really our first time making use of the notion of a coherent sheaf.45 Why consider π∗
(
ω⊗k
Ug/Mg

)
?

(1) We get line bundles
λk := detπ∗

(
ω⊗k
Ug/Mg

)
on Mg. Note: to show projectivity, you want existence of an ample line bundle.

For S !Mg corresponding to πS : C! S, one has λk|S = detπ∗

(
ω⊗k
C/S

)
.

(2) We get multiplication maps: for C! S a family of curves, there’s the natural map

Symd π∗
(
ωC/S

)
−! π∗

(
ω⊗d
C/S

)
.

For C ! Spec k, this is
SymdH0(ωC)! H0(ω⊗d

C ),

45the structure sheaf played a role in Keel-Mori, but we didn’t need more general coherent sheaves
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and its kernel is identified with46

ker =

{
degree d equations defining C

|ωC |
−−−! Pg−1

}
,

so (if C not hyperelliptic), can recover it from the data of this map.

More generally, given two integers k and d, we have a map

Symd π∗

(
ω⊗k
C/S

)
! π∗

(
ω⊗dk
C/S

)

with kernel given by
{

degree d equations cutting out C
|ω⊗k

C |
−−−−! PN

}
. When k ≥ 3, the kth pluri-

canoncial bundle is very ample, so can recover C from this multiplication map.

18.3 Survey of projectivity methods

Geometric Invariant Theory (GIT) The construction in this case depends on two integers

k ≥ 5 and d≫ 0.

A stable curve C is pluri-canonically embedded

C
|ω⊗k

C |
↪! Pr(k)−1 where r(k) = h0(ω⊗k

C ) = (2k − 1)(g − 1).

Let P (t) be the Hilbert polynomial of this embedding. Consider the locally closed locus

H ′ :=

{[
C ↪! Pr(k)−1

] ∣∣∣∣ C stable
C embedded via ω⊗k

C

}
⊂ HilbP (Pr(k)−1,

and define H := H ′ so H is projectivity. For d≫ 0, we get an embedding

H −! Gr(P (d), h0(Pr(k)−1,O(d)))

[C ↪! Pr(k)−1] 7−!
[
Γ(Pr(k)−1,O(d)) ↠ Γ(C,O(d))

]
Note that

Γ(Pr(k)−1,O(d)) = SymdH0(ω⊗k
C ) and Γ(C,O(d)) = H0(ω⊗dk

C ),

so the embedding of H into the Grassmannian associates an embedded curve to its multiplication map.
Furthermore, we have the Plucker embedding Gr(P (d),Γ(Pr(k)−1,O(d))) ↪! PΛP (d)Γ(Pr(k)−1,O(d)).

Also PGLr(k)−1 acts on the Grassmian and the map from H is equivariant w.r.t this action.47

Note 13. Missed a couple things.

Remark 18.3. It is easy to show that Mg = [H ′/PGLr(k)−1]. ◦

46Note if C
|ωC |
−−−! Pg−1 (with nondegenerate image), then OC(1) ≃ ωC and H0(Pg−1,O(d)) = Symd H0(Pg−1,O(1)) =

Symd H0(C,ωC)
47This is how you know the line bundle Ld on H descends to one on the quotient stack Mg
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The hard part (where GIT comes in) is showing that given h = [C ⊂ Pr(k)−1] ∈ H, C is stable (as
a curve) ⇐⇒ h ∈ H is GIT stable with respect to Ld (i.e. ∃s ∈ Γ(H,LNd )PGL s.t. s(h) ̸= 0). Use Question: Is

this the pull-
back of O(1)

coming from
the Plucker
embedding?

Answer: yes

Hilbert-Mumford criterion to produce sections.
In the end, one shows

Proposition 18.4. The coarse moduli space of Mg is

Mg = Proj

⊕
n≥0

Γ(H,Lnd )
PGLr(k)−1


with the graded ring above finitely generated. Hence, Mg is projective.

Remark 18.5. Hilbert-Mumford criterion let’s you produce sections, and ampleness of a line bundle is
about showing existence of lots of sections. ◦

For k ≥ 5 and d ≫ 0, you can compute the class of the ample line bundle that you get. It is
r(k)λdk − r(dk)λk on Mg. As d ! ∞, the asymptotic limit is ∼

(
12− 4

k

)
λ1 − δ with δ the boundary

divisor. Can get even more:

Theorem 18.6 (Comalla-Harris). aλ1 − δ ample ⇐⇒ a > 11

(GIT w/ k = 5 gives 11.2)

Projectivity via Griffith’s period maps This is a complex-analytic approach. The main idea is to
consider the map from C to its Jacobian Jac(C) = H0(C,ωC)/H1(C,Z) (alternatively, consider map to
Hodge structure C 7! [H1(C,ωC) ⊂ H1(C,C)]). This gives

Mg ! hg/ Sp2g

(need to compatify this map, but let’s not worry about that right now). The strategy is to show projec-
tivity of hg/ Sp2g and infer projectivity of Mg (via some Torelli theorem?).

We note that π∗ωC/S and R1π∗C both play a role here.

Projectivity via positivity We have a coarse moduli space

Mg
π
−!Mg.

Fact. For n sufficiently divisible, each λk descends to Mg, i.e. λk = π∗λk.

We want to show that λk is ample. Here are some approaches

• Suppose

(a) λk is semiample (i.e. λ⊗nk basepoint free for n≫ 0)

(b) For every T !Mg non-trivial, deg λK |T > 0.

Then λk is ample.
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Consider MG ! X ⊂ P(H0(λ⊗nk )). (a) says the map is well-defined and (b) says it doesn’t contract
curves, so it must factor through the coarse moduli space Mg

∃!
−! X. This map is quasi-finite and

proper so finite over X (which is projective), so Mg is projective.

Sadly, semiampleness is tough to check.

• Basepoint-free theorems can imply semiampleness.

Example. big, nef, and
⊕

n≥0 Γ(λ
⊗n
k ) finitely generated together imply semiample. △

These properties are not themselves easy to show. Can get finite generation using BCMM (some
paper from the past 10 years. Apparently kind of a big deal).

• There are other ampleness criteria

Theorem 18.7 (Nakai-Moishezon criterion). If X a proper algebraic space with line bundle L,
then L ample ⇐⇒ ∀Z ⊂ X irreduce and closed LdimZ · Z > 0.

Theorem 18.8 (Kleiman’s criterion). L ample ⇐⇒ ∀C ∈ NE(X), C · L > 0. Here, NE(X)

is the closure of the cone of curves. Question:
What’s that

Theorem 18.9 (Seshadir’s criterion). L ample ⇐⇒ ∃ε > 0 s.t. for all curves C, C ·L > εm(C)

where m(C) is the ‘multiplicity of the singularities of C.’ Question:
What’s that
mean?18.4 Nefness

Definition 18.10. A vector bundle E on a scheme X is nef (or semipositive) if for all proper curves
T

f
−! X and all line bundle quotients F ∗ ↠ L, degL ≥ 0. ⋄

Remark 18.11. This is the case iff OPE(1) is nef on PE in the usual line bundle sense of the word. ◦

Here are some properties

(1) Quotients and extensions of nef vector bundles are nef.

(2) Nefness is open in flat families.

(3) E nef =⇒ Symk E is nef.

Remark 18.12. We have this multiplication map

Symd
(
π∗ω

⊗k
C/S

)
−! π∗

(
ω⊗dk
C/S

)
.

If this is a surjection, the the source being nef implies that π∗(ω⊗dk
C/S ) is nef. ◦

Theorem 18.13. Suppose we know that

• Mg is a peopre DM stack (we do know this)

• ∃k0 > 0 s.t. for all C! T stable families,

π∗(ω
⊗k
C/T ) nef for k ≥ k0.
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Then, λk = detπ∗(ω
⊗k
C/T ) is ample for k ≫ 0.

Remark 18.14. Kollar motivation in proving this was not to construct Mg, but to study moduli of surfaces
and other higher dimensional varieties. His method is very much still relevant and useful.

This is closer to what was written down

• generalizes to any moduli of polarized varieties

– [Kovais-Patakfolvi ’17] Moduli of stable varieties in any dimension is projective.

– [Codogni-Patakfilui ’20] and [Xu-Zhang ’20] Moduli of K-polystable Fano varities is projective

• Nefness of π∗
(
ωC/T

)
is easier and is classical Sounds

like this is
enough for
Mg using
some ad-hoc
argument.
However, for
other moduli
spaces, you
really wanna
show nefness
for push-
forwards of
higher pow-
ers

• Harder to show nefness for π∗
(
ω⊗k
C/T

)
(despite the fact that they are actually more positive) ◦

18.5 The ampleness lemma

Setup 18.15. Let X be a proper algebraic space. Let W be a rank w vector bundle with reductive
structure group G ! GLw (i.e. its transition functions live in G). Let W ↠ Q be a quotient bundle of
rank q.

There is a classifying map
X −! [Gr(q, w)/G]

taking a point x to the quotient of the fibers x 7! [Wx ↠ Qx]. To get a point in the Grassmannian, need
to choose bases Wx

∼= kw and Qx ∼= kq; this choice is well-defined up to G.

Lemma 18.16 (Ampleness Lemma, char 0 version). If in addition,

(1) W is nef

(2) X ! [Gr(q, w)/G] is quasi-finite

Then detQ is ample.

Remark 18.17. The easy case is W trivial, so the structure group G = {1} is also trivial. Hence, get
X ! Gr(q, w) between proper spaces. Since we’ve assumed it is quasi-finite, this map is quasi-finite and
proper (so finite) which implies that X is projective. ◦

Not that we are not assuming the image of X lands in the G-stable locus. But if it did, you would
get

X ! [Gr(q, w)ss/G] ↠ Gr(q, w)//G

where Gr(q, w)//G is the projective GIT quotient. The map X ! Gr(q, w)//G is quasi-finite, so finite,
so X is projective. You get that detQ is ample, and even that (detQ)w ⊗ (detW )−q is ample.

The main idea of the proof of the ampleness lemma is to use nefness to verify Nakai-Moishezon.
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18.6 Application to Mg

We restate the results we need.

Lemma 18.18 (Ampleness Lemma, char 0 version). If in addition,

(1) W is nef

(2) X ! [Gr(q, w)/G] is quasi-finite

Then detQ is ample.

Theorem 18.19. Suppose we know that

• Mg is a peopre DM stack (we do know this)

• ∃k0 > 0 s.t. for all C! T stable families,

π∗(ω
⊗k
C/T ) nef for k ≥ k0.

Then, λk = detπ∗(ω
⊗k
C/T ) is ample for k ≫ 0.

Proof Sketch. Assume the ampleness lemma. Consider the universal curve

C = Ug
π
−! S = Mg.

Choose k and d such that

• ω⊗k
C/S is relatively very ample

• R1π∗ω
⊗k
C/S = 0

• Every curve C
|ω⊗k

C |
↪! Pw is cut out by degree ≤ d equations

• π∗(ω
⊗k
C/S) is nef

• The multiplication map
Symd π∗

(
ω⊗k
C/S

)
︸ ︷︷ ︸

W

↠ π∗

(
ω⊗dk
C/S

)
︸ ︷︷ ︸

Q

is surjective.

Note that W has rank w and Q has rank q. Also note that the structure group of W is G = PGLr(k).
We know W is nef by hypothesis. We claim

Claim 18.20. The map
Mg ! [Gr(q, w)/G] ,

taking a curve to its multiplication map, is injective (so quasi-finite among other things).
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Why is this true? Note that W = H0(PN ,O(d)) and Q = H0(C,O(d)). The kernel of this map
determines C, so that give injectivity.

To apply the Ampleness lemma, we need a scheme (or algebraic space?), not an algebraic stack, so
take a finite cover U fin

−!Mg with U a scheme. ■

Here’s the logical order of Kollár’s argument

• Use Nakai-Moishezon to proof ampleness lemma

• Use ampleness lemma to proof the above theorem

• Show the last remaning theorem below

Theorem 18.21. Let C π
−! T (T a smooth projective curve) be a stable family of curves of genus g ≥ 2

over a field k. Then, π∗
(
ω⊗k
C/T

)
is nef for k ≥ 2.

Remark 18.22. Similar strategy can show Mg,n is projective. ◦

The first reductions: one may assume

• C smooth and minimal surface

• C! T is generically smooth

• genus of T is ≥ 2 ( =⇒ C is general type)

Can reduce to positive characteristic case. Suppose char k = 0. Since everything is finite type, ∃A ⊂ k

f.g. Z-subalgebra so C, T spread out to T̃ , C̃ defined over A. After enlarging A, can arrange the C̃ ! T̃

and T̃ ! SpecA are flat. Can also arranges that all fibers satisfy the conditions of the first reduction.
Now, the closed points of SpecA are in positive characteristic. Since Nefness is open in flat families, we
get it also in characteristic 0.48

Assumption. To simply things, still assume p ̸= 2. Can make this works with some modification even
if p = 2

We now need some birational input.

Theorem 18.23 (Ekedahl). In char = p > 0, if

• S smooth projective minimal surface of general type

• D effective divisor with D2 = 0

Then H1(S, ω⊗n
S (D)) = 0 for n ≥ 2.

Remark 18.24. Ekedahl actually showed H1(S, ω
⊗(−n)
S ) = 0 for n ≥ 1. It’s not hard to show this implies

the version we stated (use Serre dual and a short exact sequence involving the divisor). ◦
48Completment of nef locus is a closed set containing no closed points, but this is impossible since T quasi-compact
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Proof Sketch of Theorem 18.21. If not nef, ∃π∗
(
ω⊗k
C/T

)
↠M∨ with d := degM > 0. Consider Frobeinus

C C

T T

F

F

Then,
F ∗π∗

(
ω⊗k
C/T

)
= π∗

(
ω⊗k
C/T

)
and degF ∗M = pd.

Hence we can arrange d≫ 0!
So we may assume M = ω⊗k

T ⊗ L with L very ample. Thus we get a surjection

π∗ω
⊗k
C/T ⊗ ω⊗k

T ⊗ L↠ OT .

Note h1(OT ) = g(T ) ≥ 2. Apparently also h1(LHS) ≥ 2. Use Leray spectral sequence to relate

H1
(
π∗ω

⊗k
C/T ⊗ ω⊗k

T ⊗ L
)

and H1(C, ω⊗k
C ⊗ π∗L).

In particular, you get that the right hand space has dimension ≥ 2. This contradicts Ekedahl. Unravelling
the chain of implications, this shows projectivity of Mg, so we win. ■

“Man, that was some course. I’m surprised you’re still here.”
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19 List of Marginal Comments

o This is missing the assumption that F be a Zariski sheaf . . . . . . . . . . . . . . . . . . . . . . 4
o Liu talks about excellent schemes in his book . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
o Question: How does this theorem justify the slogan? . . . . . . . . . . . . . . . . . . . . . . . . 7
o Answer: The choice of ξ̂ ∈ F (Spec ÔS,s) is like a witness to an algebraic property at the comple-

tion. This is then saying that witness has some approximate (depending on N) counterpart
in some (residually-trivial) étale neighborhood. See e.g. the proof of Theorem 12.19 . . . . . 7

o As a rule of thumb, assume all functors in this class are contravariant . . . . . . . . . . . . . . 9
o Remember: G is the category whose objects are g ∈ G and whose morphisms are only identities.

BG is the category with one object ∗ and morphisms Mor(∗, ∗) = G. . . . . . . . . . . . . . . 12
o The vertical 7!’s are not arrows/morphisms. They just denote e.g. that a lies over R, i.e.

p(a) = R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
o Note S is a prestack in the same way schemes are prestacks (described earlier) . . . . . . . . . 16
o e.g. Think of closed subscheme as an ideal sheaf, and apply (effective) descent for qcoh sheaves 21
o The map P ! P ′ needs to be G-equivariant, i.e. the induced isomorphism P

∼
−! P ′

T is an iso of
G-torsors over T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

o This is a Morphism “from P to P ′” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
o This is different from BG the groupoid from before. . . . . . . . . . . . . . . . . . . . . . . . . 22
o Remember: Any finite set of points on a quasi-projective scheme is contained in an open affine

(someone said this in chat once, I think). See also this stackexchange . . . . . . . . . . . . . . 28
o Question: Is this (related to) Seesaw theorem? . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
o Remember: 4 step strategy to showing a stack is isomorphic to a quotient stack . . . . . . . . . 29
o If x ∈ [X/G](k), then (I think) Gx = StabG(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
o Question: Do we not need to remove all real numbers? . . . . . . . . . . . . . . . . . . . . . . . 39
o If char k = p, then the Z-action factors through Fp and (I’m pretty sure) X ≃ A1

k via A1
k ! X

the Artin-Schreier map x 7! xp − x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
o I think, for example, you can show that X has no closed points (exercise: any quasi-compact

scheme has a closed point). If SpecL! X is a closed immersion, then so is SpecL×XA1
k ! A1

k,
but the latter is infinite and so not the zero set of a polynomial in one variable . . . . . . . . 39

o U × U ! X ×X is representable by schemes, so you can take T ′ to be the fiber product if you
want (though I don’t think this is necessary) . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

o Show that there is an open, dense locus which is a scheme, then use group operation to translate
this open around to show the whole space is a scheme . . . . . . . . . . . . . . . . . . . . . . 42

o Remember: The inertia stack is the pullback of the diagonal along the diagonal . . . . . . . . . 42
o If k = k, this maps corresponds to the trivial G-torsor and every G-torsor over the dual numbers

is also trivial, or something . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
o Question: generic flatness? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
o Question: Do we need u to be a closed point for this? . . . . . . . . . . . . . . . . . . . . . . . 52
o Question: When did we show that the diagonal is affine? . . . . . . . . . . . . . . . . . . . . . . 54
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o Answer: We showed Mg is the quotient stack of something quasi-projective mod the (affine)
group PGLn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

o I think, in general, if you want to make sense of “global sections” of a functor F on a cat-
egory C (w/o a final object), you can define it to be compatible local sections Γ(C,F ) :={
(sU ∈ F (U))U∈C | ∀V ! U : sU |V= sV

}
. Alternatively, if F is an abelian sheaf on a cite

C, you could define Γ(C,F ) := HomAb(C)(Z,F ). . . . . . . . . . . . . . . . . . . . . . . . . . 61
o This should be something like limit over sections of the V ⊃ f(U) . . . . . . . . . . . . . . . . 61
o See warning at end of lecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
o This is IndG1 W , I’m pretty sure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
o Something something DM stacks are like algebraic orbifolds something something . . . . . . . . 63
o Question: Diagonal of a DM stack is always unramified. finite = proper + quasi-finite. Does

this do it? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
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