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These are my course notes for “Math 679 (A Course on Mazur’s Theorem)” at University of Michigan.
Each lecture will get its own ‘chapter’. These notes are live-texed and so likely contain many mistakes.
Furthermore, they reflect my understanding (or lack thereof) of the material as the lecture was happening,
so they are far from mathematically perfect.1 Despite this, I hope they are not flawed enough to distract
from the underlying mathematics. With all that taken care of, enjoy and happy mathing.

The instructor for this class is Andrew Snowden, and the course website can be found by clicking this
link. The website has notes and recordings of all the lectures, so is probably the place to go if you want
to learn this stuff. If you are trying to search up some particular fact, then I guess everything is in one
place here instead of spread across multiple webpages.
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1 Lecture 1: Overview

1.1 Motivating the Goal

Let’s start with a problem.

Problem 1.1. Let f ∈ Q[x, y]. Describe the set of points (x, y) ∈ Q2 with f(x, y) = 0. Equivalently, say
C/Q is an algebraic curve. Describe C(Q).

This is an old problem and much is known.

Example. Say C/Q is an algebraic curve.

• Say it has genus g(C) = 0.

Then, C(Q) = ∅ or C ∼= P1 (in which case C(Q) is infinite)

• g(C) = 1

Then, C(Q) = ∅ or C(Q) is a f.g. abelian group.

• g(C) ≥ 2

Then, C(Q) is always finite (Faltings’ theorem) △

These are fairly qualitative descriptions of the sizes of sets of rational points. You can ask more
specifically, e.g. in the case of genus g ≥ 2, exactly how many points there can be.

Question 1.1. How many points can a genus 2 curve have?

Conjecture 1.2. There exists a number N so that #C(Q) ≤ N for any C/Q genus 2. There’s been
progress on
this since
2013, see
e.g. this
survery.
This con-
jecture is
known if
you let N
depend on
the rank of
Jac(C)

The current2 record is a genus 2 curve with 642 points, apparently.
Say C is genus 1 and has a point. Then, C(Q) ∼= C(Q)tors × Zr and its torsion subgroup is finite.

Question 1.3. What are the possibilities for r and for C(Q)tors?

Not a ton known about the rank (e.g. is it absolutely bounded?), but everything is known about the
torsion subgroup.

Theorem 1.4 (Mazur’s theorem). C(Q)tors is isomorphic to one of

• Z/nZ for 1 ≤ n ≤ 10 or n = 12

• Z/2Z× Z/nZ for n = 2, 4, 6, 8

This theorem is the goal of this course.

Note 1. It seems (at least in this first recording) that the video misses a few things. Hopefully this won’t
continue throughout...

2in 2013, when this class was taught

1
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1.2 Brief overview of proof of Mazur

Hard part: show that ∄N -torsion point where N is a prime > 7.

(Step 1) Criterion to exclude N -torsion.

For this, we’ll need modular curves. Start with

Y1(N) = {iso. classes of pairs (E,P ) with E an elliptic curve over C and P a point of order N}

This has a natural topology and complex structure making it a Riemann surface and it can in fact
be realized as an algebraic curve over Q. Note that Y1(N)(Q) = {(E,P ) : E/Q and P ∈ E[N ](Q)},
so this first step is showing Y1(N)(Q) = ∅ if N > 7 is prime. We can also define

Y0(N) = {(E,G) | E elliptic curve and G ⊂ E cyc. subgroup of order N} .

This is missing two points 0,∞ (cusps) and so has compactification X0(N) = Y0(N) + (cusps).
These two points can be given moduli interpretations as well.

Theorem 1.5. Let N > 7 be prime. Suppose there exists an abelian variety A/Q and a map
f : X0(N)! A so that

(a) A has good reduction away from N

(b) f(0) ̸= f(∞)

(c) A(Q) has rank 0

Then, no elliptic curve / Q has a rational point of order N .

Proof Sketch. Assume we have E/Q with a point P ∈ E(Q) of order N , and let x ∈ X0(N)(Q) be
the point corresponding to (E, ⟨P ⟩). This x will extend to a Z[1/N ]-point of X0(N). We’re gonna
reduce this mod 3. Note that you can’t have a point of big order on an elliptic curve mod 3 by the
Hasse bound (4 + 2

√
3 < 8)

|#E(Fq)− (q + 1)| ≤ 2
√
q,

so we have to have bad reduction at 3, i.e. x must go to one of the two cusps mod 3 (in fact, you
can show it reduces to ∞). Hence, f(x) − f(∞) reduces to 0 in A(F3). This is a torsion point by
hypothesis (c). Injectivity of the reduction map on torsion then implies that f(x) = f(∞) ∈ A(Q).
Now suppose p is a prime of bad reduction for E. Then x mod p ∈ {0,∞}. Since f(x) = f(∞)

and f(0) ̸= f(∞), we conclude x mod p = ∞. This will imply that E[N ]|Qp
= Z/NZ ⊕ µN , the

local Galois representation is split. Algebraic number theory implies that this decomposition holds
globally E[N ] = Z/NZ⊕ µN . One gets a contradiction from this3 ■

Remark 1.6. One of the most important points about is that rankA(Q) = 0. This is what let us
transfer some information mod 3 (which we got by free since 3 is small) to integral information
(and so to other primes p). ◦

3smth smth quotient by µN and then induct to split an ℓ-adic Tate module smth smth

2



(Step 2) Criterion for rank 0

Theorem 1.7. Let A/Q be an abelian variety, and fix distinct primes N ̸= p (with N odd). Suppose

(a) A has good reduction away from N

(d) A has completely toric reduction at N , i.e. if you look at the Néron model, the fiber at N is a
torus

(e) A[p](Q) has Jordan-Hölder constituents 1 and χp (the cyclotomic character)

Then, A(Q) has rank 0.

Proof Sketch. Let A/Z be the Néron model of A. If you carefully study A[pn], you can show it’s
built from 4 basic pieces. Explicit computations with these pieces let you bound #H1

fppf(Z,A[pn])

independent of n. Then, A(Q) ↪! lim −H1
fppf(Z,A[pn]) with the RHS finite, and so you win. ■

(Step 3) Complete the proof.

Let J0(N) := Jac(X0(N)). Note we have a map X0(N)! J0(N) which is universal for maps from
X0(N) to abelian varieties. Hence, A will have to be a quotient of J0(N). There’s a Hecke algebra
T which acts on J0(N). We’ll define an explicit ideal I ⊂ T and use that to build A.

1.3 Plan for the class

We’ll switch steps 1/2 chronologically.

• Part I: elliptic curves and abelian varities

– theory over field (kinda quickly)

– group schemes

– Néron models

– Jacobians

– Proof of Theorem 1.7.

• Moduli of elliptic curves

– modular curves

– modular forms

– Hecke operators

– Proof of Theorem 1.5

• Proof of Mazur’s theorem

– Eisenstein ideal

– proof of criteria

3



1.4 Related Results

We won’t get into these in this class, but it’s good to be aware of them.

1.4.1 Analogs over other number fields

Mazur’s theorem is about elliptic curves over Q. What if we replace Q with K? Let

S(d) := {primes p : ∃ell. curve E/K which has a point of order N , for some [K : Q] = d} .

Mazur computes S(1) = {2, 3, 5, 7} (1977). In 1992, Kamienny computed S(2) = {2, 3, 5, 7, 11, 13}. These
suggest that #S(d) <∞ always.

Theorem 1.8 (Merel, 1996). S(d) is finite for all d ≥ 1. Furthermore, if N ∈ S(d), then N ≤ d3d
2

.

The bound above is probably not optimal.
In 2003, Parent computed S(3) = S(2).

1.4.2 Serre’s uniformity conjecture

Let E/Q be an elliptic curve. Then, E[N ](Q) ∼= (Z/NZ)2 and comes equipped with a Galois action, so
we have some 2-dimensional mod N representation

ρE,N : GQ −! GL2(Z/NZ).

Theorem 1.9 (Serre, 1972). Assume E not CM. Then, there exists some number N0(E) so that ρE,N

is surjective for all (prime?) N > N0(E).

Question 1.10 (Serre). Does N0(E) actually depend on E? Does there exists N0 so that ρE,N is
surjective for all non-CM curves E and all N > N0?

It’s believed that N0 = 37 works.
If ρE,N is not surjective, it’s image is a proper subgroup of GL2(Z/NZ). The maximal subgroups of

GL2(Z/NZ) are

• Borel

(
∗ ∗

∗

)

• Normalizer of the split Cartan

(
∗

∗

)
∪

(
∗

∗

)
(note split Cartan here is just the diagonal matrices)

• Normalizer of the non-split Cartan

• Exceptional

To prove ρE,N is surjective, want to show its image is not contained in (a conjugate of?) one of these
maximal subgroups.

Theorem 1.11 (Serre). im(ρE,N ) ̸⊂ exceptional group for N > 7.

4



(E non-CM and N prime).

Mazur’s torsion theorem shows that im(ρE,N ) ̸⊂

(
1 ∗

∗

)
for N > 7. This is because a rational point

of order N is exactly a Galois-fixed element of the representation on the N -torsion. This is smaller than
the Borel, but Mazur actually handled that case the following year. His theorem on rational isogenies

shows im(ρE,N ) ̸⊂

(
∗ ∗

∗

)
for N > 27. Bilu-Parent (2009) showed im(ρE,n) ̸⊂ N(split Cartan) for

N ≫ 0. The non-split Cartan case is still open.

2 Lecture 2: Elliptic Curves

Fix a field k.

Assumption. All curves will be smooth and projective.

Not many proofs today (reference: Silverman’s book)

2.1 Review of curves

Let C/k be a curve.

Definition 2.1. A divisor is a formal sum
∑

x∈C nx[x] with nx ∈ Z equal to 0 for all but finitely many
x. The degree of a point is deg(x)[κ(x) : k]. The degree of D is deg(D) =

∑
nx deg(x). ⋄

This notion of degree gives a homomorphism deg : Div(X)! Z with kernel Div0(X) := ker(deg).

Definition 2.2. If f ∈ k(C)× is a nonzero rational function, we define

div(f) :=
∑
x∈C

νx(f)[x]

and call it a principal divisor. The subgroup of principal divisors is denoted PDiv(X) ⊂ Div(X). ⋄

Fact. deg(div(f)) = 0, i.e. # zeros of f = # poles of f .

Definition 2.3. The divisor class group of C is Cl(C) = Div(C)/PDiv(C). We also set Cl0(C) :=

ker deg. ⋄

Say f : X ! Y is a map of curves. We can push forward and pullback divisors. Given D =
∑
nx[x] ∈

Div(X), we define
f∗(D) :=

∑
nx[f(x)] ∈ Div(Y ).

Given D =
∑

y∈Y ny[y] ∈ Div(Y ), we define

f∗(D) =
∑
y∈Y

∑
f(x)=y

e(x | y)ny[x]

with e(x | y) the ramification index of x over y. Note that

f∗(f
∗D) = (deg f)D.
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Let’s discuss Riemann-Roch. Let D ∈ Div(X). Define the k-vector space

L (D) := {f ∈ k(X) : div(f) ≥ −D} .

Example. If x ∈ X, then L ([x]) is the space of functions which are holomorphic outside x, and have at
worst a simple pole at x. △

Fact. L (D) = 0 if degD < 0.

Notation 2.4. ℓ(D) := dimL (D).

Theorem 2.5 (Riemann-Roch).

ℓ(D)− ℓ(K −D) = deg(D)− g + 1,

where g is the genus of X and K is the canonical divisor of X. Furthermore, deg(K) = 2g − 2.

Corollary 2.6. If deg(D) > 2g − 2, then ℓ(D) = degD − g + 1.

If g = 1, above says deg(D) > 0 =⇒ ℓ(D) = deg(D).
Say f : X ! Y is a map of curves. This induces an extension k(Y ) ↪! k(X) of function fields. We

let K/k(Y ) be the maximal intermediate extension so that K/K(Y ) is separable and k(X)/K is totally
inseparable. This factors f as

X X ′ Y

f

with the first map totally inseparable and the second map separable. This let’s you define the separa-
ble/inseparable degrees of f .

Example. Say X : f(x, y) = 0 for some f ∈ k[x, y] with char k = p. Let f (p) ∈ k[x, y] be the result of
raising the coefficients of f to the pth power, and let X(p) : f (p)(x, y) = 0. Thus, we get a morphism
Fp : X ! X(p) sending (x, y) 7! (xp, yp) called the Frobenius map. This is totally inseparable.

If q = pr, can consider Fq = Fpr : X ! X(q). △

These are the only inseparable maps. Any map f : X ! Y factors as

X X(q) Y
Fq

f

sep

where q is the inseparable degree of f .

2.2 Elliptic Curves

Definition 2.7. An elliptic curve is a pair (E, 0) where E/k is a genus 1 curve, and 0 ∈ E(k). ⋄

These have group laws. One way to see this is to show that the map

E(k) −! Cl0(E)

x 7−! [x]− [0]
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is a bijection. Transfer of structure implies that E(k) is a group.

Fact. The group law on E(k) is induced by an algebraic group law

E × E ! E

on E.

We can describe an elliptic curve explicitly in terms of equations. First note ℓ([0]) = 1 by Riemann-
Roch, so it must be spanned by 1 ∈ L ([0]). Then, ℓ(2[0]) = 2 so it has a number function we’ll call x,
i.e. 1, x ∈ L (2[0]) linearly independent. Next, ℓ(3[0]) = 3 so we add a function y. Now, ℓ(4[0]) = 4 and
1, x, y, x2 ∈ L (4[0]). Almost there: ℓ(5[0]) = 5 and 1, x, y, x2, xy ∈ L (5[0]). Finally, ℓ(6[0]) = 6, but
1, x, y, x2, xy, x3, y2 ∈ L (6[0]). So there must be some linear dependence

a1y
2 + a2x

3 + a3xy + a4x
2 + a5y + a6x+ a7 = 0.

Let E′ ⊂ P2
k be the curve defined by this equation. Then, (x, y) : E ! E′ defines a map of curves.

Proposition 2.8. This is an isomorphism.

Assumption. To keep equations simple, assume char(k) ̸= 2, 3.

A suitable change of variables let’s one arrive at an equation of the form

Ea,b : y
2 = x3 + ax+ b.

Every elliptic curve is isomorphic to one of these Ea,b’s. Which of them are isomorphic to eachother?
You can set y = u−3y1 and x = u−2x1 for any u ∈ k× to see that

Ea,b
∼= Eu4a,u6b.

These are all the isomorphisms between them.
Ea,b will define an elliptic curve iff it is smooth. To check this, one writes down the discriminant

∆ = −16(4a3 + 27b2).

Fact. Ea,b is an elliptic curve ⇐⇒ ∆ ̸= 0.

Hence, {
iso classes of

elliptic curves/k

}
∼=
{
(a, b) ∈ k2 | ∆ ̸= 0

}
(a, b) ∼ (u4a, u6b)

Definition 2.9. The j-invariant of an elliptic curve is

j := −1728
(4a)3

∆
. ⋄

This is an isomorphism invariant.

Theorem 2.10. If k = k, then E ∼= E′ ⇐⇒ j(E) = j(E′).

Definition 2.11. An isogeny is a non-constant map f : E1 ! E2 such that f(0) = 0. ⋄
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Example. Multiplication by n
[n] : E ! E

is an isogeny. △

Example. Frobenius Fq : E ! E(q) is an isogeny. △

Fact. Isogenies are always group homomorphisms.

Notation 2.12. Hom(E1, E2) := {isogenies} ∪ {0}. This is a finite free Z-module. We also write
End(E) := Hom(E,E) which is now a ring.

Proposition 2.13. Suppose f : E1 ! E2 is an isogeny with separable degree n and inseparable degree
m.

(a) If y ∈ E2(k), then #f−1(y) = n.

(b) If f(x) = y, then e(x | y) = m.

Say f : E1 ! E2 is an isogeny. Let ωi be a nonzero holomorphic differential on Ei (unique up to
scaling).

Proposition 2.14.

(a) f separable ⇐⇒ f∗(ω2) ̸= 0

(b) We can write f∗(ω2) = α(f)ω1. This defines a homomorphism

α : Hom(E1, E2)! k.

(c) If E1 = E2 and you take ω1 = ω2, then α : End(E)! k is a ring homomorphism.

Corollary 2.15. [n] is separable ⇐⇒ p ∤ n where p = char(k).

Stay with an isogeny f : E1 ! E2.

Proposition 2.16. There exists a dual isogeny f∨ : E2 ! E1 so that

E2(k) Cl0(E2)

E1(k) Cl0(E1)

∼

f∨ f∗

∼

commutes.

As a consequence

(a) f∨f = [deg(f)]

(b) (f + g)∨ = f∨ + g∨
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Quadratic nature of deg Define Λ = Hom(E1, E2) and give it the pairing

⟨−,−⟩ : Λ× Λ −!
1

2
Z

defined by
2 ⟨f, g⟩ = deg(f + g)− deg(f)− deg(g).

One can check that
2 ⟨f, g⟩ = f∨g + g∨f

by using (a) from before. From this, one sees that ⟨−,−⟩ is bi-additive and that ⟨f, f⟩ = deg(f). Hence,
this form is positive definite and deg is a quadratic function. In particular, deg([n]) = n2.

Working over C Say E/C is an elliptic curve, i.e. a Riemann-surface of genus 1 (so topologically a
torus). It’s universal cover will be a map π : C! E. The kernel of this map will be

Λ = kerπ = π1(E) = H1(E,Z).

Thus, Λ ∼= Z2 is a lattice in C.
Conversely, if Λ ⊂ C is a lattice, then E = C/Λ is a Riemann surface of genus 1. One can furthermore

show that it is algebraic, so this E is an elliptic curve.
Say we have two elliptic curves E1 = C/Λ1 and E2 = C/Λ2. Then,

Hom(E1, E2) ∼= {α ∈ C : αΛ1 ⊂ Λ2} .

The map corresponding to α is an isogeny ⇐⇒ α ̸= 0 and is an isomorphism ⇐⇒ αΛ1 = Λ2.

Corollary 2.17.
{isom. classes of ECs} ∼= {lattices in C}/scaling .

If E = C/Λ, we have
End(E) = {α ∈ C : αΛ ⊂ Λ} .

We can scale the lattice, so we may assume Λ = ⟨1, τ⟩ with τ ∈ C \ R. Then the requirement is that
α ∈ Λ and ατ ∈ Λ, so write α = a+ bτ for some a, b ∈ Z. Assume b ̸= 0 to keep things interesting (else
α ∈ Z). Writing ατ = c+ dτ with c, d ∈ Z shows that τ satisfies the quadratic equation

bτ2 + (a− d)τ− c = 0.

Thus, τ must be imaginary quadratic ( ⇐= b ̸= 0). Also α ∈ Q(τ), and so we see that

End(E) = Z or End(E) is an order in an imaginary quadratic field.

In the second case, we say E has complex multiplication or CM.

Example. Say Λ = ⟨1, i⟩. Then, we get [i] : E ! E. In terms of equations, we have E : y2 = x3 + x and
[i] : (x, y) 7! (−x, iy). △
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Tate module + Weil pairing Say we have an elliptic curve E/k and we fix an integer n coprime to
p = char k. Then, [n] is separable. Since deg([n]) = n2, we know #E[n](k) = n2. Applying this for all
d | n, one concludes that

E[n](k) ∼=
(

Z
nZ

)2

.

Example. If k = C, then E[n](C) = 1
nΛ/Λ. △

Fix a prime ℓ ̸= p. The Tate module is

TℓE := lim −E[ℓn](k).

If you want, can think of an element as a sequence (x0, x1, . . . ) where x0 = 0 and ℓxn = xn−1. By
the above discussion, TℓE ∼= Z2

ℓ (if k = C, then TℓE = Λ ⊗ Zℓ). If k ̸= k, the absolute Galois group
Gk := Gal(k/k) will act on the Tate module, giving a representation

ρ : Gk −! GL2(Zℓ).

You can form this Tate module for any group.

Example. Gm = P1 \ {0,∞} is the group with Gm(k) = k×. Then, TℓGm
∼= Zℓ and again has a Galois

action
χ : Gk ! GL1(Zℓ) = Z×

ℓ .

This is the cyclotomic character. △

Proposition 2.18. There exists a map

en : E[n]× E[n]! µn

satisfying

(a) bilinearity: en(x+ y, z) = en(x, z)en(y, z)

(b) alternating: en(x, x) = 0

(c) non-degenerate: if en(x, y) = 0 for all y, then x = 0

(d) Galois-equivariant: en(σx, σy) = σen(x, y) for σ ∈ Gk

(e) compatibility: if x ∈ E[nm] and y ∈ E[n], then

enm(x, y) = en(mx, y).

Thus, lim − eℓn defines a pairing TℓE × TℓE ! TℓGm.

Notation 2.19. Zℓ(1) := TℓGm. The “(1)” indicated the Galois action.

The proposition above implies that the Weil pairing defines an isomorphism∧2
(TℓE) ∼= Zℓ(1).
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Equivalently, det(ρ) = χ, so the Weil pairing computes the determinant of the Tate module.

Proposition 2.20. Say we have a map f : E1 ! E2 along with x ∈ E1[n] and y ∈ E2[n]. Then,

en(f(x), y) = en(x, f
∨(y)).

“The dual isogeny is adjoint to f w.r.t. the Weil pairing.”

Proposition 2.21. Given f : E ! E,

deg(f) = det (f | TℓE) .

Proof. Given x, y ∈ TℓE, we have

det(f) ⟨x, y⟩ = ⟨f(x), f(y)⟩ = ⟨f∨f(x), y⟩ = (deg f) ⟨x, y⟩

with first equality by definition (of determinant) and the angle brackets shorthand for the Weil pairing. ■

3 Lecture 3: Abelian varieties (analytic theory)

Last time we were talking about elliptic curves, but didn’t quite finish all we wanted to say, so we’ll pick
up where we left off.

3.1 Elliptic Curves over Finite Fields

(Reference: Silverman, Ch. V)

3.1.1 Point counting

Say E/Fq is an elliptic curve. The Frobenius map Fq : E ! E(q) = E is an endomorphism.

Remark 3.1. If x ∈ E(Fq), then x ∈ E(Fq) ⇐⇒ Fqx = x, so

E(Fq) = ker(1− Fq)(Fq). ◦

Lemma 3.2. The map 1− Fq is separable, and so #E(Fq) = deg(1− Fq).

Proof. This is because (1− Fq)
∗
ω = 1∗ω−F ∗

q ω = ω is nonzero, where ω is a holomorphic differential on
E. ■

Recall 3.3. We defined a positive definite pairing ⟨−,−⟩ on End(E) by polarizing degree, i.e. ⟨f, f⟩ =
deg(f). ⊙

We can apply Cauchy-Schwarz to this in order to see that

⟨1,−Fq⟩2 ≤ ⟨1, 1⟩ ⟨−Fq,−Fq⟩ = q,
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so |⟨1,−Fq⟩| ≤
√
q. Recalling that

2 ⟨1,−Fq⟩ = deg(1− Fq)− deg(1)− deg(Fq) = #E(Fq)− 1− q,

we conclude

Theorem 3.4 (Hasse bound).
|#E(Fq)− 1− q| ≤ 2

√
q.

Intuition. Think of an equation E : y2 = x3 + ax+ b. If you plug in a random x ∈ Fq, the RHS to be a
random element of Fq as well. Half the elements of Fq are squares while half are non-squares. If do get
a (nonzero) square, there will be two y’s solving the equation, but if you get a non-square, there will be
none. Hence you expect about

1 + 2

(
q − 1

2

)
+ 0

(
q − 1

2

)
= q

Fp-points. The Hasse bound says this is correct within an error of about 2
√
q.

Notation 3.5. We fix a ∈ Z so that
E(Fq) = q − a+ 1,

i.e. a = 2 ⟨1, Fq⟩ (so |a| ≤ 2
√
q).

Question 3.6 (Audience). Is there an elementary heuristic for the error term?

Answer. It really comes from this Riemann hypothesis (which we’ll state soon). That’s not an elementary
heuristic, but at least fits it into a bigger context. ⋆

Proposition 3.7. a = Tr(Fq | TℓE) is the trace of Frobenius acting on the Tate module.

Proof. For any 2× 2 matrix A, one has Tr(a) = 1+det(A)−det(1−A) (exercise). If A = Fq | TℓE, then
this reads

Tr(Fq | TℓE) = 1 + deg(Fq)− deg(1− Fq) = a

(last lecture [Proposition 2.21] we showed the determinant on the Tate module is the degree). ■

Definition 3.8. A Weil number of weight w (w.r.t. q) is an algebraic number α ∈ Q s.t. |α| = qw/2

for any embedding Q(α) ↪! C. ⋄

Theorem 3.9 (Riemann hypothesis). The eigenvalues of Fq on TℓE are Weil numbers of weight 1.

Proof. Let α, β be the eigenvalues under consideration. Then,

αβ = det(Fq) = q and α+ β = Tr(Fq) = a,

so α, β both satisfy T 2 − aT + q = 0. Hence,

α, β =
a±

√
a2 − 4q

2
.

The Hasse bound says the discriminant is negative, so α, β are complex conjugate to each other and hence
|α|2 = |β|2 = αβ = q. ■
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Definition 3.10. Let X/Fq be any variety. Its zeta function is

ZX(T ) = exp

∑
r≥1

#X(Fqr )
T r

r

 . ⋄

Theorem 3.11. If E/Fq is an elliptic curve, then

ZE(T ) =
1− aT + qT 2

(1− T )(1− qT )
.

Proof. #E(Fqr ) = 1 + qr − Tr(Fqr | TℓE). Since Fqr = F r
q , this says

#E(Fqr ) = 1 + qr − αr − βr,

with α, β the Eigenvalues of Fq as before. Using the identity − log(1 − T ) =
∑

n≥1 T
n/n, one now sees

that ∑
r≥1

#E(Fqr )
T r

r
= − log(1− T )− log(1− qT ) + log(1− αT ) + log(1− βT ),

and so
ZE(T ) =

(1− αT )(1− βT )

(1− T )(1− qT )
. ■

Remark 3.12. The numbers α, β are the roots of the Zeta function and they have absolute value q1/2.
This is why Theorem 3.9 is called the Riemann hypothesis; it’s analogous to all the zeros being on the
line Re(s) = 1

2 .4 ◦

Suppose f : E1 ! E2 is an isogeny over Fq. This induces a map TℓE1 ! TℓE2 on Tate modules. This
map will have no kernel and will have finite index image, so TℓE1 ⊗ Qℓ

∼
−! TℓE2 ⊗ Qℓ as vector spaces. Question:

For ℓ ∤
#ker f?

This isomorphism furthermore commutes with the action of Frobenius, and so these give isomorphic
2-dimensional representations of Frobenius. In particular, they have the same traces, so

#E1(Fq) = #E2(Fq).

Theorem 3.13 (Tate). The converse holds as well. If two Elliptic curves over Fq have the same number
of points (over every finite extension), then they are isogenies.

3.1.2 Ordinary/Supersingular

Consider any field k with char(k) = p. Then, [p] is not separable and has deg = p2. This gives two
possibilities

(a) The separable degree is p, i.e. E[p](k) ∼= Z/pZ. In this case, we say E is ordinary.

(b) The separable degree is 1, i.e. E[p](k) ∼= 0. In this case, we say E is supersingular.

Proposition 3.14. If E is supersingular, then j(E) ∈ Fp2 .
4Imagine e.g. that T = q−s so |T | = q−Re(s)
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Proof. Multiplication by p is inseparable of degree p2, so factors as

E E(p2) E
Fp2

[p]

f

where f must have degree 1 and so be an isomorphism. Thus,

j(E) = j(E(p2)) = j(E)p
2

=⇒ j(E) ∈ Fp2 . ■

Corollary 3.15. If k = k, there are only finitely many s-s curves.

(The exact number of such curves is computed in equation (15.1))

Question 3.16 (Audience). Do we know the different groups that arise as groups of rational points E(Fq)

of elliptic curves over finite fields?

Answer. They’re very constrained. There’s the Hasse bound and they have to be a product of two cyclic
groups, so you should be able to say something. Unclear what the exact answer should be. ⋆

3.2 Abelian varieties

(Reference: Ch. 1 of Mumford’s “Abelian Varities”)

Definition 3.17. An abelian variety is a connected and complete (i.e. proper) group variety. ⋄

Example. Elliptic curves are 1-dimensional abelian varieties. △

Proposition 3.18. If A is an abelian variety and dimA = 1, then g(A) = 1.

Proof. If you have a group variety and a cotangent vector at the origin, you can use the group law to
translate it around and form a whole vector field. This gives you a trivialization of the sheaf of 1-forms
since you have a nowhere vanishing section. Thus, Ω1 ∼= OA is trivial, so h0(Ω1) = h0(O) = 1 is the
genus. ■

Assumption. For the rest of this lecture, we work over C.

If A is an abelian variety, then A(C) is a compact, connected complex Lie group.
Let X be any compact, connected complex Lie group. Let g = dim(X) and V = Lie(X) = TeX with

e ∈ X the identity. Let exp : V ! X be the exponential map. Then,

(a) X is commutative.

Explanation. The adjoint map Ad : X ! End(V ) is a holomorphic map from a compact space to a
vector space. By the maximum modulus principle, the map must be constant, so Ad(x) = Ad(e) =

id for all x ∈ X. Hence, the conjugation action is trivial, so X is commutative.

(b) exp is a homomorphism of groups.

Explanation. This is true for all commutative Lie groups.

(c) exp is surjective
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Explanation. Let U = im(exp). Then U is a subgroup that is an open set (exp a local homeomor-
phism), so X/U is discrete + compact, i.e. a point. Hence, X = U .

(d) M = ker(exp) is a lattice in V .

Explanation. exp is a local homeomorphism, so M must be discrete. exp is surjective so gives an
isomorphism V/M

∼
−! X. Hence, M is cocompact.

(e) X is a torus, i.e. ∼= (S1)2g

Explanation. It’s V/M = R2g/Z2g.

(f) X[n] ∼= (Z/nZ)2g

(g) Hi(X,Z) = Hom(
∧i

M,Z)

Explanation. Künneth (+ induction on g?) will give an isomorphism
∧i

H1(X,Z) ∼
−! Hi(X,Z).

Finally, H1(X,Z) =M .

3.2.1 Line bundles on Complex Tori

Let X = V/M be a complex torus. Let Pic(X) be its group of (iso classes of) line bundles. Let Pic0(X)

be the subgroup of line bundles which are trivial topologically. The Néron-Sevri group is the quotient

NS(X) = Pic(X)/Pic0(X).

Definition 3.19. A Riemann form on V is a Hermitian form H whose imaginary part E = im(H)

takes integer values on the lattice M . ⋄

Warning 3.20. Some people require Riemann forms to be positive definite. •

Notation 3.21. Let R be the set of Riemann forms, a group under addition. Let

P =

{
(H,α)

∣∣∣∣H ∈ R and α :M ! U(1) satisfying
α(x+ iy) = eiπE(x,y)α(x)α(y)

}
,

and let
P0 := Hom(M,U(1)) ⊂ P.

Note that P is a group via
(H1, α1) · (H2, α2) = (H1 +H2, α1α2).

These fit into an exact sequence
0 −! P0 −! P −! R −! 0.

Theorem 3.22 (Appell-Humbert). There is a natural isomorphism P ∼
−! Pic(X) inducing P0 ∼

−!

Pic0(X) and R ∼
−! NS(X).

Remark 3.23. We won’t prove the theorem, but here are some thoughts

• Let π : V ! X be the quotient map. If L ∈ Pic(X), the π∗L is a (trivial) line bundle on V .
However, π∗L has an action by M , and L is the quotient of π∗L by its M -action.
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• Say (H,α) ∈ P. Then, M ↷ V × C via

λ · (v, z) =
(
v + λ, α(λ)eπH(v,λ)+π

2 H(λ,λ)z
)
.

Let L(H,α) be the quotient bundle living on X. This is the isomorphism in the theorem.

The hard part in proving the theorem is showing all actions look like this.

• There is a bijection between Hermitian forms H on V and alternating real forms E s.t. E(ix, iy) =

E(x, y). This is just a statement about complex vector spaces (nothing about lattices). The bijection
is

E = imH and H(x, y) = E(ix, y) + iE(x, y).

• Given (H,α) ∈ P, we get E = imH. It will be alternating and integral values on M , so it gives a
map E :

∧2
M ! Z, i.e. it is an element of

Hom(
∧2

M,Z) = H2(X,Z).

Under our identifications, this is c1(L(H,α)). Note that L(H,α) is topologically trivial

⇐⇒ c1 = 0 ⇐⇒ E = 0 ⇐⇒ H = 0. ◦

If x ∈ X, get translation map
tx : X −! X

y 7−! x+ y.

This induces an action X ↷ Pic(X) via x · L = t∗x(L).

Proposition 3.24.
t∗xL(H,α) = L

(
H,αe2πiE(x,−)

)
Some remarks on this proposition

• The mapping M ∋ λ 7! e2πiE(x,λ) is well-defined since E is integer valued on the lattice (so any
choice of lift of x will give same result).

• Furthermore, L(H,α) ∈ Pic(X) is translation-invariant iff H = 0 iff L(H,α) ∈ Pic0(X).

•
t∗xL(H,α)⊗ L(H,α)∨ = L(0, e2πiE(x,−)) ∈ Pic0(X).

For any L ∈ Pic(X), the map x 7! t∗xL⊗ L−1 defines a group homomorphism

φL : X ! Pic0(X).

What can we say about sections of these line bundles?

Definition 3.25. A θ-function for (H,α) ∈ P is a holomorphic function θ : V ! C satisfying

θ(v + λ) = α(λ)eπH(v,λ)+π
2 H(λ,λ)θ(v) for all v ∈ V, λ ∈M. ⋄
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Proposition 3.26. H0(X,L(H,α)) ∼= {θ-functions}.

(the idea is that if you have a section of L(H,α), it pulls back to a section of the trivial bundle on V
– i.e. a holomorphic function – which must interact with the equivariance)

Theorem 3.27 (Lefschetz). L(H,α) is ample ⇐⇒ H is positive definite.

Corollary 3.28. X is a projective algebraic variety (i.e. an abelian variety) ⇐⇒ there exists a positive
definite Riemann form.

Remark 3.29.

• X algebraic =⇒ X projective

• If H positive definite, then L(H,α)⊗3 is already very ample.

• Say E = C/ ⟨1, τ⟩ is a 1-dimensional complex torus. Then we can define

H(x, y) =
xy

|Im τ|
.

This is a positive definite Riemann form, so E is algebraic. ◦

Given two complex tori X,Y , we write

Hom(X,Y ) = {holo. group homomorphisms X ! Y } .

Definition 3.30. f ∈ Hom(X,Y ) is an isogeny if f is surjective and ker(f) is finite. It’s degree is
deg(f) := #ker(f). ⋄

Example. [n] : X ! X is an isogeny of degree n2g. △

3.2.2 Dual torus

Start with X = V/M . Let
V

∗
:= {conj-lin maps V ! C}

with lattice
M∨ =

{
f ∈ V

∗
: (im f)(M) ⊂ Z

}
.

Define
X∨ := V

∗
/M∨.

Exercise. (X∨)
∨ ∼= X.

Properties

• If f : X ! Y is a map of tori, get dual map f∨ : Y ∨ ! X∨.

• If f is an isogeny, then so is f∨ and deg f = deg f∨. In fact, more is true

Proposition 3.31. ker(f) is canonically (Pontryagin) dual to ker(f∨)
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(See proof in course notes)

Application. If X = Y and f = [n], then f∨ = [n], and we get a canonical pairing

X[n]×X∨[n] −! Z/nZ (∼= µn) ,

the Weil pairing.

• There is a natural isomorphism X∨ = Pic0(X).

Proof. Say we have f ∈ V
∗
. Then we get a map

αf : M −! U(1)

λ 7−! e2πi im(f(λ))

which gives an element of P0 ∼= Pic(X). By definition, f 7! αf descends to a map X∨ ! Pic0(X).
■

Suppose we have a Riemann form H ∈ R (H Hermitian so conjugate-linear in second slot). If H is
non-degenerate, it defines an isomorphism

V −! V
∗

v 7−! H(v,−).

This makes M to M∨, and so descends to a map of tori φH : X
∼
−! X∨.

Remark 3.32. If L = L(H,α) (for any α), then we get a commutative square

X X∨

X Pic0(X)

φH

= =

φL

with vertical maps the usual isomorphisms. ◦

Definition 3.33. A polarization is a map X ! X∨ of the form φH (or φL) where H is positive
definite (i.e. L ample). This will necessarily be an isogeny. A principal polarization is one giving an
isomorphism X

∼
−! X∨. ⋄

4 Lecture 4: Abelian varieties (algebraic theory)

Last time was abelian varieties over C. Today is the theory over general fields.

Notation 4.1. k will be a field, and A/k will be an abelian variety.

Over C, every abelian variety was a complex torus, and this made things easy. We don’t have such a
uniformization over arbitrary fields, but many of the same statements are nevertheless true.
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Lemma 4.2 (Rigidity Lemma). Suppose X,Y, Z are varieties and X is complete. Let f : X × Y ! Z

be a function so that f |X×{y0} is constant and f |{x0}×Y is constant for some x0 ∈ X and y0 ∈ Y . Then,
f is constant.

Corollary 4.3. Suppose A,B are abelian varieties, and f : A ! B is a map of varieties s.t. f(0) = 0.
Then, f is a group homomorphism.

Proof. Consider h : A×A! A defined by h(x, y) = f(x+ y)− f(y)− f(x). Then, h(x, 0) = 0 = h(0, y)

for all x, y, so h = 0 by rigidity. ■

Corollary 4.4. Abelian varieties are commutative

Proof. A! A, x 7! −x takes 0 7! 0 and so is a homomorphism. ■

Theorem 4.5 (Theorem of the cube). Let X,Y, Z be varieties, X and Y complete. Fix basepoints
x0 ∈ X, y0 ∈ Y, z0 ∈ Z. Let L be a line bundle on X × Y × Z. Suppose that

L|X×Y×z0 , L|X×y0×Z , and L|x0×Y×Z

are all trivial. Then, L is trivial.

Remark 4.6. This says that a map from X × Y × Z ! BGm which is trivial on the three axes is itself
trivial. Phrased this way it looks a bit like rigidity, except now you need 3 factors since you’re mapping
to a stack instead of a scheme. ◦

Question 4.7 (Audience). Could you replace Gm there with GLn?

Answer. I don’t know. ⋆

Corollary 4.8. Let A = AV (i.e. A be an abelian variety). Let pi : A× A× A! A be projection onto
the ith factor. Let pij = pi + pj and p123 = p1 + p2 + p3. If L is a line bundle on A, then⊗

S⊂{1,2,3}

(p∗SL)
(−1)1+#S

≃ OA

is trivial.

Proof. Immediate. Notice on A × A × 0, p∗123 = p∗12, p∗12L = p∗1L, and p∗3L is trivial. Get similar
cancellation when you restrict to other axes. ■

Corollary 4.9. Suppose we have maps f, g, h : X ! A from a variety X to an AV A, and let L be a
line bundle on A. Then,

(f + g + h)
∗
L⊗ (f + g)

∗
L−1 ⊗ (f + h)

∗
L−1 ⊗ (g + h)

∗
L−1 ⊗ f∗L⊗ g∗L⊗ h∗L

is trivial.

Proof. Consider (f, g, h) : X ! A3 and pull back the previous corollary. ■
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Problem 4.1. Let L be a line bundle on A = AV . Then,

[n]∗L = L
n2+n

2 ⊗ ([−1]∗L)
n2−n

2 .

In particular, if L is symmetric (i.e. L ≃ [−1]∗L), then [n]∗L ≃ Ln2

and if L is anti-symmetric (i.e.
L−1 ≃ [−1]∗L), then [n]∗L ≃ Ln.

Proof. Take f = [n], g = [1], and h = [−1]. We see that

[n]∗L⊗ [n+ 1]∗L−1 ⊗ [n− 1]∗L−1 ⊗ [n]∗L⊗ L⊗ [−1]∗L

is trivial, i.e.
[n+ 1]∗L = [n]∗L2 ⊗ [n− 1]∗L−1 ⊗ L⊗ [−1]∗L.

Now induct upwards and downwards. ■

Proposition 4.10. [n] : A! A is an isogeny, i.e. is surjective with finite kernel.

Proof. Choose an ample bundle L on A. We may replace L by L⊗ [−1]L to assume it is symmetric and Abelian va-
rieties are
projective.
We won’t
prove this.

ample. Hence, [n]∗L = Ln2

is ample. At the same time, [n]∗L|A[n] is trivial, so it is both trivial and
ample on A[n]. That is, A[n] is a proper variety with OA[n] ample. This forces dimA[n] = 0, so A[n] is
proper and quasi-finite, so finite. The image of [n] will have the same dimension as A, and so [n] must
be surjective. ■

Proposition 4.11. [n] has degree n2g

Proof. Start with a general fact:

Fact. If f : X ! Y is a finite, surjective map of g-dimensional varieties and let D1, . . . , Dg be divisors
on Y . Then, we have an equality

(deg f)(D1 · · ·Dg)Y = (f∗D1 · · · f∗Dg)X

of intersection numbers.

Let D be a symmetric ample divisor on A. We know [n]∗D ≡ n2D (linear equivalence), so

(deg[n])(D · · ·D) =
(
(n2D) · · · (n2D)

)
= n2g(D · · ·D) =⇒ deg[n] = n2g.

Above, we are using that (D · · ·D) ̸= 0 since this just computes the degree of the image of A under the
projective map induced by D. ■

One can show that [n] induces multiplication by n on the tangent space T0A at the identity. In
particular, if char k ∤ n, this is an isomorphism of the tangent space.

Proposition 4.12. [n] separable ⇐⇒ n prime to char k. So if char k ∤ n, #A[n](k) = n2g.
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An induction argument now shows that if n is prime to the characteristic, then

A[n](k) ∼=
(

Z
nZ

)2g

.

On the other hand, [p] : A ! A is not separable, so #A[p](k) < p2g. In fact, #A[p](k) < pg. We’ll say
more about why later.5

Theorem 4.13 (Theorem of the square). Let L be a line bundle on A, and fix points x, y ∈ A. Then,

t∗x+yL⊗ L ≃ t∗xL⊗ t∗yL.

Here, tblah is translation by blah.

Proof. Take f = id, g = x, h = y in Corollary 4.9. ■

This is essentially saying that, given L, we have a group homomorphism

φL : A −! Pic(A)

x 7−! t∗xL⊗ L−1.

4.1 Dual Variety

Recall 4.14. Given a complex torus A = V/M , the dual torus was A∨ = V
∗
/M∨. We saw that there

was a bijection A∨ ∼
−! Pic0(A). Here, Pic0 was the topologically trivial line bundles, but we saw these

were equivalently the translation-invariant ones. ⊙

Definition 4.15. Let
Pic0(A) = {L ∈ Pic(A) : t∗xL

∼= L for all x ∈ A} . ⋄

Goal. We want to give Pic0(A) the structure of an abelian variety A∨.

To make sense of this, we consider the following functor. For a variety T , set

F (T ) =

{
isom. classes of line bundles L on T ×A so that

(a)L |{t}×A∈ Pic0(A)∀t ∈ T and (b)L|T×{0} is trivial

}
.

Remark 4.16. F (k) = Pic0(A). ◦

Definition 4.17. The dual abelian variety is the variety A∨ representing F , if it exists. ⋄

Remark 4.18. If A∨ exists, it comes with a universal bundle ℘ ∈ F (A∨), i.e. a line bundle on A × A∨.
This has the property, among other things, that

A∨ ∋ t 7−! ℘|A×{t}

gives a bijection A∨ ∼
−! Pic0(A). This is called the Poincaré bundle. ◦

Fact. A∨ always exists.
5Corollary 6.24
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How do you find it? Pick some ample L on A, so we get φL : A ! Pic0(A). Over C, this was an
isogeny of complex tori. Over arbitrary fields, can show φL is surjective w/ finite kernel K(L). One can
endow K(L) w/ a scheme structure, and then define A∨ = A/K(L).

Here’s another way to think of A∨. Start with L ∈ Pic0(A). Choose for each x ∈ A, an isomorphism
φx : t∗xL

∼
−! L. These satisfy some compatibilities:

t∗x+yL t∗xt
∗
yL

L t∗xL

=

φx+y t∗xφy

φx

should commute. It won’t in general if you pick some random φx. The discrepancy of its commutativity
is measured by writing

φx+y = αx,y(t
∗
xφy) ◦ φy for some αx,y ∈ Aut(L) = Gm.

These αx,y give a 2-cocycle α (in the sense of group cohomology, with A acting trivially on Gm). Thus,
it corresponds to a central extension

1 −! Gm −! G(L) −! A −! 0

of A by Gm.

Construction 4.19 (Alternate construction). Consider the maps m, p1, p2 : A × A ! A. One can show
that

L ∈ Pic0(A) ⇐⇒ m∗L ∼= p∗1L⊗ p∗2L.

Looking at fibers, this is giving isomorphisms Lx+y
∼= Lx ⊗Ly. These induce maps Lx ×Ly ! Lx+y, i.e.

a map L×L! L lifting multiplication on A. Then, G(L) = L \ {zero section} with this map L×L! L

as its multiplication.

Fact. This G(L) is a commutative group variety.

This construction gives a map

G : Pic0(A)! Ext1(A,Gm),

with Ext1 above taken in the category of commutative group varieties.

Theorem 4.20 (Serre). G above is an isomorphism of (abstract) groups. Potentially
this is in
his book on
algebraic
groups and
class fields

If you take Ext in the category of sheaves of groups, then you recover A∨.

4.2 Mordell-Weil

Theorem 4.21 (Mordell-Weil). Let A be an abelian variety over a number field K. Then, A(K) is a
f.g. abelian group.

One usually proves this in two steps

22



(1) (weak Mordell-Weil) A(K)/nA(K) is finite (n ∈ Z)

(2) Deduce full theorem from (1) + theory of height functions.

We won’t discuss (2), but let’s go over the proof of (1). We’ll see the same ideas later.

Proof of weak MW. Start with the Kummer sequence

0 −! A[n](K) −! A(K)
n−−! A(K) −! 0.

This is a short exact sequence of Galois modules, so we can take cohomology to get

0 −! A[n](K) −! A(K)
n−−! A(K) −! H1(GK , A[n](K)) −! H1(GK , A(K))

n−−! H1(GK , A(K)),

where GK = Gal(K/K). Exactness of the above sequence mostly amounts to saying that

0 −! A(K)/nA(K)
δ−−! H1(GK , A[n](K)) −! H1(GK , A(K))[n] −! 0

is exact. To prove finiteness of A(K)/nA(K), it would suffice to show that H1(GK , A[n](K)) is finite,
but it’s not. However, there exists a finite set S of places of K such that im(δ) consists of classes which
are unramified away from S, i.e.

im(δ) ⊂ H1(GK,S , A[n](K)),

where GK,S is the Galois group of the maximal extension of K unramified outside S. In fact, one can
take S to be the set consisting of places where A has bad reduction union the set of places above n. We’ll
say more about this after talking about group schemes in greater generality.

Accepting the above, we only need to show that H1(GK,S , A[n](K)) is finite. Let L/K be a finite Remember:
For analyz-
ing Galois
H1’s in gen-
eral, often
useful to
extend K
to a field L
whose Ga-
lois group
acts triv-
ially on the
module, and
then look at
the inflation-
restriction
sequence

Galois extension s.t. GL acts trivially on A[n](K). Now, consider the inflation-restriction sequence

0 −! H1(Gal(L/K), A[n](K)) −! H1(GK,S , A[n](K)) −! H1(GL,S , A[n](K)).

The left group is obviously finite, so the middle group will be finite if the right one is. Note that

H1(GL,S , A[n](K)) ∼= Hom(GL,S ,Z/nZ),

and that a map GL,S ! Z/nZ is (almost) the same thing as a Z/nZ extension of L unramified away from
S. There are only finitely many such extensions (e.g. by Hermite-Minkowski or class field theory). ■

We’ll use a similar sort of approach when we prove Theorem 1.7.

4.3 Isogeny Category

Theorem 4.22 (Poincaré reducibility). Suppose A is an abelian variety and B ⊂ A is a sub abelian
variety. Then, there exists C ⊂ A a sub abelian variety s.t. B × C ! A is an isogeny.

Proof idea. There is a quotient map A! A/B which induces a dual map (A/B)
∨ ! A∨. Choosing any

ample L on A, we get an isogeny A∨ φL−−! A. We let C be the image of (A/B)
∨ in A. ■
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Definition 4.23. An abelian variety A is simple if its only sub AVs are 0 and A. ⋄

Corollary 4.24. Given A, there exists simple B1, . . . , Bn and an isogeny B1 × . . .×Bn ! A.

Definition 4.25. We define the category Isog whose

• objects are abelian varieties over k; and whose

• morphisms are HomIsog(A,B) = HomAV(A,B)⊗Q.

This is called the isogeny category. ⋄

Remark 4.26. Can show if f : A! B, there is an isogeny g : B ! A s.t. gf = [n] for some n. Thus, 1
ng is

the inverse to f in Isog. In fact, Isog is the universal categories in which isogenies become isomorphisms.
Furthermore, one can show that Isog is an abelian category, and Poincaré reducibility ⇐⇒ Isog is
semi-simple. One gets the following consequences for free

• The decomposition of A into a product of simple AVs is unique up to isogeny

• If A is a simple Abelian variety, then End(A)⊗Q is a division algebra over Q

The above are formal facts about (semi-simple) abelian categories. ◦

5 Lecture 5: Group schemes 1

(Reference: Tate’s article “Finite flat group schemes” in “Modular forms and Fermat’s Last Theorem”)
Let E be a supersingular elliptic curve over Fp. Then, E[p](Fp) = 0. However, E[p] is a degree p2

subscheme of E, so there’s something there; we just can’t study it via points. This is the sort of thing
we’d like to understand better by studying group schemes.

Definition 5.1. Let C be a category with all finite products, and let ∗ be the final object (= empty
product). A group object in C is a tuple (G,m, i, e) with G an object of C equipped with morphisms

• m : G×G! G multiplication

• i : G! G inversion

• e : ∗! G identity

satisfying

• Associativity, i.e.
G×G×G G×G

G×G G

id×m

m×1 m

m

commutes

• identity, i.e.

G G× ∗ G×G G

id

id×e m

commutes (and similarly with identity of the left)
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• inverse, i.e.

G G×G G×G G

∗

diag id×i m

e

commutes (and similarly with i on the left) ⋄

Example. A group object in Set is a normal group. △

Definition 5.2. A group object G ∈ C is commutative if

G×G G×G

G

τ

m m

commutes, where τ : G×G! G×G is the morphism switching the factors. ⋄

Definition 5.3. If G,H are group objects in C, a homomorphisms G! H is a morphism in C s.t. all
the diagrams you expect to commute do commute. ⋄

Hence, one can form the category of group objects in C.
One can simplify this story by using the functor of points perspective.

Notation 5.4. For X ∈ C and T ∈ C, we let hX : Cop ! Set be the functor

hX(T ) = HomC(T,X).

Theorem 5.5 (Yoneda Lemma). X is determined by hX , i.e. X ⇝ hX gives a fully faithful embedding
C ↪! Psh(C).

If G is a group object in C, then hG(T ) is naturally a group. Furthermore, if f : T ! T ′ in C, then
f∗ : hG(T

′)! hG(T ) is a homomorphism. Hence, hG : C ! Grp. The converse holds as well: if you have
G ∈ C and a lift of hG : C ! Set to hG : C ! Grp, then G is a group object.

Remark 5.6. This shows giving G the structure of a group object is equivalent to giving hG the structure
of a group object in the category of presheaves on C (i.e. category of functors Cop ! Set). This let’s you
define group objects even for categories without products. ◦

5.1 (Co)kernels

Say f : G! H is a homomorphism of group objects in C, and let 1 be the trivial group object on C.

Definition 5.7. The kernel of f is the equializer of G
f

⇒
1
H, i.e. the fiber product

ker f 1

G H

⌜

f

. ⋄
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Definition 5.8. The cokernel of f is the coequalizer of G
f

⇒
1
H. ⋄

Remark 5.9. hker f (T ) = ker (f : G(T )! H(T )). However, understanding the functor the cokernel rep-
resents is less straightforward (since the cokernel is defined in terms of maps out of it). ◦

Warning 5.10. In particular, one does not have hcoker f (T ) = coker(G(T )! H(T )). •

5.2 Group schemes

Definition 5.11. A group scheme over S is a group object in the category SchS of schemes over S. ⋄

Example. An abelian variety is a group scheme which is a proper variety. △

Assumption. Let’s work over a field k.

Recall 5.12. The category of affine schemes over k is anti-equivalent to the category of k-algebras. ⊙

Hence, affine group schemes should be anti-equivalent to co-group k-algebras.

Example. Say G = SpecA is a group object. Then,

• multiplication G×G! G⇝ comultiplication ∆ : A! A⊗A

• identity Spec k ! G⇝ counit A! k

• inverse G! G⇝ antipode A! A

This gives A the structure of a Hopf algebra. △

Definition 5.13. A Hopf algebra over k is a k-vector space A with the following data:

• multiplication m : A⊗A! A

• unit e : k ! A

• comultiplication ∆ : A! A⊗A

• counit η : A! k

• antipode i : A! A

satisfying the expected axioms. This perspective shows that the data is symmetric w.r.t. to flipping all
the arrows. ⋄

Corollary 5.14. There’s an anti-equivalence of categories{
affine group schemes

over k

}
 !

{
commutative Hopf algebras

over k

}
.

Commutativity of a group scheme corresponds to cocommutativity of the associated Hopf algebra.

Example. Below, T = SpecR
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• additive group Ga = Spec k[t] represents the functor

Ga(T ) = R

(with additive group law). In terms of the Hopf algebra, the comultiplication map ∆ : k[t] !

k[t]⊗ k[t] sends t 7! t⊗ 1 + 1⊗ t. Note that t2 7! (t⊗ 1 + 1⊗ t)2, not to t2 ⊗ 1 + 1⊗ t2

• multiplicative group Gm = Spec k[t, t−1] has functor of points

Gm(T ) = R×

(with multiplicative group law). Here, comultiplication is

∆ : k[t, t−1] −! k[t, t−1]⊗k k[t, t
−1]

t 7−! t⊗ t.

• For G an abstract group, we get the constant group scheme G =
⊔

x∈G Spec k. Note that

Hom(T,G) = Hom(π0(T ), G),

where π0(T ) is the set of connected components of T . Note that G = SpecA where A = Map(G, k).
Hence, A ⊗ A = Map(G × G, k) and we have comultiplication ∆ : Map(G, k) ! Map(G × G, k)

given by (∆f)(x, y) = f(xy).

Warning 5.15. This A is different from the group algebra k[G]. For example, Fun(G, k) is always
commutative, while k[G] is iff G is. •

• nth roots of unity µn = Spec k[t]/(tn − 1) has functor of points

µn(T ) = {x ∈ R : xn = 1} .

Note µn = ker
(
Gm

n
−! Gm

)
.

• Assume char k = p. Get a group scheme αp = Spec k[t]/(tp) with functor of points

αp(T ) = {x ∈ R : xp = 0} .

This is a group under addition, and αp = ker

(
Ga

Fp
−−! Ga

)
. △

For the rest of the lecture, we’ll be interested in finite (in the sense of scheme theory) group schemes.

Definition 5.16. Let G be a finite k-group scheme (i.e. its coordinate ring A is f.d. over k). It’s order
is #G := dimk(A). ⋄

Theorem 5.17 (Grothendieck). Let G be a finite commutative k-group scheme, and let H ⊂ G be a
closed subgroup. Then,

(1) The (categorical) quotient G/H exists and is itself a finite (commutative) k-group scheme.
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(2) #(G/H) = (#G)/(#H).

(3) hG/H is the quotient of hG by hH as sheaves on the fppf site of k.

Remark 5.18. Cokernels existing in this category is the same as kernels existing in the category of Hopf
algebras, so (1) above is not hard to prove. ◦

Corollary 5.19. The category of finite commutative group schemes is abelian.

5.3 Étale group schemes

Recall 5.20. Let A be a finite dimensional k-algebra. Then, A is étale over k iff it is a finite product
of separable fields extensions of k. If char k = 0, this is equivalent to A being reduced. ⊙

Suppose A is a f.d. étale k-algebra, and let kS be the separable closure of k. Then,

A⊗k k
s =

∏
x∈I

kS .

Furthermore, there will be a Galois action Gk ↷ I, and so we have a functor

{finite étale algebras} Φ−−! {finite Gk-sets} .

One can go backwards. If I is a finite Gk-set, one can define the étale k-algebra

A =

(∏
I

ks

)Gk

.

This gives a functor
{finite étale algebras} Ψ

 −− {finite Gk-sets}

in the opposite direction.

Theorem 5.21. Φ,Ψ are quasi-inverse equivalences of categories.

Proof. Exercise. ■

Corollary 5.22. The functor

{fin ét schemes/k} −! {fin. Gk-sets}
X 7−! X(ks)

is an equivalence.

Corollary 5.23. There’s an equivalence of categories{
fin ét commutative
group schemes/k

}
 !

{
finite

Gk-modules

}
.

Definition 5.24. Let G = SpecA be a finite commutative group scheme. A in an Artinian algebra and
so A =

∏
i∈I Ai with each Ai a local Artinian algebra. There is a unique 0 ∈ I s.t. the counit of A factors

through A0. We call G◦ := SpecA0 ⊂ G the identity component of G. ⋄
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Remark 5.25. G◦ is connected (Spec of a local ring) and has a k-point (given by counit). Hence, G◦ is
geometrically connected, so G◦ ×G◦ is still connected. Hence, G◦ will be a subgroup of G. ◦

Definition 5.26. Let Aét be the maximal étale subalgebra of A. Concretely, Aét =
∏

i(Ai)ét, where
(Ai)ét is the separable closure of k in Ai. Let Gét := Spec(Aét), so we have a natural map G! Gét. One
can show that this is the universal homomorphism to an étale group scheme. In particular, Gét will be a
quotient group of G. ⋄

Consider the tensor product A⊗Aét k. This will be the maximal quotient of A where the idempotent
defining A0 is the identity element. Using this, one can show that A ⊗Aét k ≃ A0. Geometrically, the
sequence

1 −! G◦ −! G −! Gét −! 1

is exact. This is the connected-étale sequence.

Remark 5.27. Suppose that k is perfect (every finite extension separable). Then, (Ai)ét is the algebraic
closure of k in Ai, and so maps isomorphically onto its residue field. So one gets an isomorphism
Gred

∼
−! Gét. Since k is perfect, the product of two reduced schemes is reduced, so Gred will be a

subgroup. This splits the connected-étale sequence, i.e. G ≃ G◦ × Gét. Furthermore, there are no
nontrivial maps from an étale scheme to a connected scheme, so this splitting is unique. ◦

Example (a non-split connected-étale sequence). let X be some moduli space of elliptic curves over Fp

(e.g. X0(N)). Let E ! X be the universal elliptic curve over X, and let k = Fp(X) be the function field
of X. Let E = Ek be the generic fiber of this family, and let Gn = E[pn].

• E is not defined over Fp, and so E is ordinary.

The j-invariant defines a morphism j : X ! P1 which is non-constant. Hence, j ∈ k is transcen-
dental over Fp, but by definition j = j(E). Supersingular curves are always defined over Fp2 .

• Since E is ordinary, Gn(k) ̸= 0, so Gét
n ̸= 0.

• Gn is not reduced (since it has p-torsion), so it’s not étale so G◦
n ̸= 0. Question:

Why does
this imply
that it’s not
reduced?

Answer:
Multiplica-
tion by p (or
pr) is not
separable,
so Frobe-
nius factors
through it.
Hence, the
kernel of
Frobenius is
a subgroup
of Gn

• The sequence 1! G◦
n ! Gn ! Gét

n ! 1 is not split if n≫ 0.

Suppose not, i.e. Gn = G◦
n × Gét

n for all n. Take unions G∞ = G◦
∞ × Gét

∞. Both pieces will be
p-divisible, so End(G∞) = Zp ⊕ Zp. It’s known that the map

End(E)⊗ Zp ! End(G∞)

is an isomorphism, but this forces rankEnd(E) = 2, so E is CM. However, CM curves are defined
over Fp,6 a contradiction. △

We’ll end with one last fact for the day: if char k ∤ #G, then G is étale.
Let G = SpecA be a finite connected (i.e. A local) commuative group scheme over k. Let I ⊂ A be

the kernel of the counit A! k, so A = k ⊕ I. Consider the projection π : A! I/I2.
6If you fix an order, there are only finitely many things CM by that order, so a Galois argument should descend you

down to Fp
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Exercise. π is a derivation.

Let x1, . . . , xn ∈ I be elements projecting to a basis for I/I2. Define Di : A! A as the composition

Di : A
∆
−! A⊗A

id⊗π
−−−! A⊗ I/I2

id⊗x∨
i−−−−! k

where x∨1 , . . . , x∨n give the dual basis to x1, . . . , xn.

Proposition 5.28.

(a) If char k = 0, φ : k[x1, . . . , xn]! A is an isomorphism.

(b) If char k = p and xpi = 0 for all i, then

φ : k[x1, . . . , xn]/(x
p
1, . . . , x

p
n)! A

is an isomorphism.

Proof. Nakayama (+ A ≃ k ⊕ I) implies that φ is surjective. For injectivity, one uses that φ ∂
∂xi

= Diφ

(derivations agreeing on the generators xj). As a consequence, the kernel of φ is stable by ∂
∂xi

. Try to
think of ideals in a polynomial ring which are stable by derivative. If char k = 0, taking the derivative of
a generator will get you something of lower degree, so the only ones are (0) and (1). If char k = p, there’s
the issue that ∂

∂xi
xpi = 0, but we’ve killed xpi in (b). Thus, in either case, we must have kerφ = (0). ■

Corollary 5.29. If char k = 0, then G is trivial.

Proof. A is a finite dimensional polynomial ring, so A = k (i.e. n = 0) ■

Corollary 5.30. If char(k) = p, then #G is a power of p.

Proof. Let G1 = ker

(
G

Fp
−−! G(p)

)
be the kernel of Frobenius, and let G2 = G/G1. We can apply (b)

to G1, so G1 = Spec k[xi]/(x
p
i ) which means #G1 = pn. Now, apply induction to G2. ■

Theorem 5.31. Let G = SpecA be a finite commutative k-group scheme. If #G is invertible in k, then
G is étale.

Look at the étale-connected sequence, and apply the above observations.

6 Lecture 6: Group schemes 2

Fix some base field k.

6.1 Cartier duality

Let G = SpecA be a finite, commutative k-group scheme. Recall that A is a commutative and cocom-
mutative Hopf algebra. Let A∨ = HomVectk(A, k) be the k-linear dual. This is still a commutative and
cocommutative Hopf algebra.

Definition 6.1. The Cartier dual of G is G∨ := Spec(A∨). ⋄
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Note that #G = #G∨ and (G∨)
∨ ≃ G.

Let’s describe the functor of points of G∨. Let R be a k-algebra. Then, a k-algebra map A∨ ! R is
an R-algebra map A∨

R ! R is an R-coalgebra map R! AR is a choice of element x ∈ AR (the image of
1) s.t. ∆x = x⊗ x and ηx = 1 (∆ the comultiplication and η the counit).

Recall 6.2. One of the axioms of a Hopf algebra says that m(1⊗ i)∆ = η. ⊙

Applying this to x above, we see that

1 = η(x) = m(1⊗ i)∆(x) = x · i(x),

so x ∈ A×
R is a unit. Returning to our description of the functor of points of G∨, choosing this x ∈ A×

R

is the same as giving a map R[t, t−1] ! AR of Hopf algebras over R. All in all, we have arrived at the
following:

Proposition 6.3. G∨(R) = Hom(GR, (Gm)R), i.e. G∨ = Hom(G,Gm).

“The R-points of G∨ are the characters of G defined over R.”

Example. Say G = Z/rZ, the constant group scheme, so A =
∏

i∈Z/rZ kei. Multiplication here is
determined by eiej = δijei while comultiplication is given by

∆en =
∑

i+j=n

ei ⊗ ej .

Let e∨i be the dual basis of A∨. Multiplication is defined so that

A A⊗A k
∆

e∨i e∨j

e∨i ⊗e∨j

commutes, i.e.
(e∨i e

∨
j )(en) = (e∨i ⊗ e∨j )(∆en) = δ(i+j),n =⇒ e∨i e

∨
j = e∨i+j .

Similarly, comultiplication is defined so that

A⊗A A km

∆(e∨n)

e∨n

commutes, i.e.
∆(e∨n)(ei ⊗ ej) = e∨n(eiej) = δijδjn =⇒ ∆e∨n = e∨n ⊗ e∨n .

We see from this that the map A∨ ! k[t]/(tr − 1) sending e∨i 7! ti is an isomorphism of Hopf algebras,
i.e.

(Z/rZ)∨ ≃ µr.

You can alternatively see this directly from the functor of points perspective. △

Example (exercise). If G = αp, one can compute that G∨ = αp as well. △
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Last time we broke group schemes into two pieces: connected (= local) and étale ones. By looking at
G and G∨, we get 4 possibilities:

(the first words refers to G and the second to G∨)

• local-local

Example. αp △

• local-étale

Example. µp △

• étale-local

Example. Z/pZ △

• étale-étale

Example. Z/ℓZ with ℓ ̸= p △

Note above only in positive characteristic. In characteristic 0, everything is étale.

Remark 6.4. If k is perfect, one gets a splitting G = Gll ×Gle ×Gel ×Gee. ◦

6.2 Frobenius + Verschiebung

Definition 6.5. Let G = SpecA, and let σ be the pth power map (on any ring of characteristic p).
Given α ∈ k and x ∈ A, we have σ(αx) = σ(α)σ(x), so σ is not quite a ring homomorphism. To fix this,
we define

A(p) := A⊗k,σ k,

so xα⊗ β = x⊗ αpβ in A(p). Thus,

Fp : A(p) −! A

x⊗ α 7−! xpα

is a k-algebra homomorphism, called Frobenius. Naturality implies that the induced Fp : G! G(p) will
be a group homomorphism. ⋄

If q = pr, we also have Fq = F r
p : G! G(q).

Proposition 6.6. Let G be a finite commutative group scheme. Then,

(1) G is étale ⇐⇒ Fp is an isomorphism.

(2) G is connected ⇐⇒ Fq = 0 for some q.

Proof. (2) First suppose G = SpecA is connected. Then, A is a local Artinian ring, so its maximal
ideal is nilpotent. If q is big, Frobenius will map every non-unit of A(q) to 0, so Fq : G ! G(q) is the
0 morphism for q ≫ 0. Conversely, the map Fq : G(k)

∼
−! G(q)(k) is always an isomorphism (exercise:

check this). If Fq = 0, then G(k) = 0, so Gét = 0, so G = G◦.
(1) If Fp is an isomorphism, then Fp is an isomorphism on G◦, so Fq = 0 is an isomorphism on G◦

for q ≫ 0, so G◦ = 0. Hence, G is étale. ■
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Definition 6.7. The Verschiebung is the Cartier dual of Frobenius Fp : G∨ ! (G∨)
(p), so it is a map

Vp : G(p) ! G. ⋄

Exercise. FpVp = [p] : G(p) ! G(p) and VpFp = [p] : G! G.

6.3 Classification in height 1

Let G = SpecA connected, so A = k ⊕ I with I = ker η its maximal ideal. Write

L(G) = Lie(G) =
(
I/I2

)∨
.

Remark 6.8. For connected groups in characteristic 0, the Lie algebra remembers basically everything.
Here, G is commutative so there’s no bracket. Hence, it only knows the dimension, so it doesn’t remember
very much. ◦

However, in characteristic p, there is an additional structure on the Lie algebra.

Definition 6.9. A k-linear derivation D : A! A is invariant if

∆D = (D ⊗ 1)∆. ⋄

Given v ∈ L(G), can build a map A! A as the composition

Dv : A
∆
−! A⊗A

1⊗π
−−−! A⊗ I/I2

1⊗v
−−! A.

Fact. v 7! Dv is an isomorphism L(G)! {invariant derivations}.

Suppose D : A! A is an derivation. Then,

Dn(xy) =
∑

i+j=n

(
n

i

)
(Dix)(Djy).

If n = p, most of these coefficients vanish, so

Dp(xy) = xDpy + yDpx,

i.e. Dp is a derivation. Thus, we get a map

F : L(G) −! L(G)

D 7−! Dp.

Note that F (aD) = apF (D) when a ∈ k.

Definition 6.10. An F -module is a k-vector space L equipped with an additive map F satisfying
F (av) = apF (v) for all a ∈ k and v ∈ V . ⋄

Example. Say G = αp so A = k[t]/(tp). An example of an invariant derivation is D = ∂
∂t , i.e. ∆D =

(1⊗D)∆. Can check this just on the generator:

∆Dt = 1⊗ 1 = (1⊗D)(t⊗ 1 + 1⊗ t) = (1⊗D)∆t.
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Furthermore, Dp = 0. Hence, L(G) = k with F = 0. △

Example. Say G = µp so A = k[t]/(tp − 1). Then, D = t ∂
∂t is an invariant derivation, and Dp = D in

this case (since Dt = t). Hence, L(G) = k and F is the pth power map. △

Warning 6.11. We see from the above examples that this extra structure let’s us distinguish µp from αp.
However, it’s not a complete invariant. For one thing, L(G) = 0 if G is étale. Also, a non-isomorphism
of groups can induce an isomorphism on tangent spaces, e.g. µp2 ! µp induces an isomorphism on
L(G)’s. •

Definition 6.12. We say G is height 1 if it’s connected and Fp = 0. ⋄

Theorem 6.13. G 7! L(G) is an equivalence of categories

{height 1 group schemes} ! {f.d. F -modules} .

Proof idea. We’ll give the functor in the opposite direction. Say L is an F -module. Then, we set

A := Sym∗(L)/ (xp − F (x) : x ∈ L) .

This will be a f.d. k-algebra and we give it comultiplication ∆ : A ! A ⊗ A sending x 7! x⊗ 1 + 1⊗ x

for all x ∈ L. Then we send L 7! Spec(A∨). ■

(Details in Mumford’s book on Abelian varieties)

Theorem 6.14. Assume k = k and char k = p. Then, L(αp) and L(µp) are the only simple objects in
the category of f.d. F -modules.

Proof. Let L be some F -module. If there is some nonzero x ∈ L with Fx = 0, then kx ⊂ L is an
F -submodule isomorphic to L(αp). Now suppose no such x exists. Let e1, . . . , en be a k-basis of L. Write

F (ei) =
∑
i,j

Cijej

and let C = (cij)i,j ∈Mn(k). Note that

x =

n∑
i=1

aiei =⇒ Fx =

n∑
i,j=1

apiCijej .

That is, if x ↔ v = (ai), then Fx ↔ Cvp (where vp is take coordinate-wise pth powers). From this, we
deduce det(C) ̸= 0 (if Cv = 0, the Fx = 0 where x↔ v1/p, which exists since k = k). To find a copy of
L(µp), we’ll want to find an element fixed by F . Elements fixed by F correspond to v with v = Cvp, i.e.
vp = C−1v. So we want v = (a1, . . . , an) so that

api =
∑(

C−1
)
ij
aj .
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To find such a thing, we define

R := k[xi]

/xpi =
∑
j

(
C−1

)
i,j
xj

 ,

so that F -fixed vectors correspond to k-points of SpecR. Note that dimk(R) = pn and that Ω1
R/k = 0,7

so SpecR is finite étale over k and has exactly pn points over k = k. Thus, dimFp

(
LF=1

)
= n = dimk(L).

From this, one can check that the natural map LF=1 ⊗Fp
k ! L is injective (apply F to a hypothetical

minimal linear dependence), which implies that L ∼= L(µp)
⊕n. ■

Corollary 6.15. Assume k = k. The simple finite commutative group schemes are Z/ℓZ,Z/pZ, µp, αp.

Proof. If a group scheme is simple, it is either connected or étale. If it is simple and connected, it must
be height 1, and so must be µp or αp. The simple étale group schemes are Z/ℓZ and Z/pZ.8 ■

Corollary 6.16. G is killed by #G Apparently,
this (rather,
it’s exten-
sion to fi-
nite, flat
commuta-
tive groups
over a gen-
eral base)
was proved
by Deligne
on the bus
going to
his year of
service in
the Bel-
gian army,
and the ex-
tension to
the non-
commutative
case remains
unsolved
(except over
fields)

(prove by passing to algebraic closure and then inducting up from the simple case. Also, this is not
the only proof of this statement).

Remark 6.17. An F -isomodule is an F -mod L s.t. F : L(p) ∼
−! L is an isomorphism. The above work

shows we have an equivalence of categories

At around
this point,
the record-
ing becomes
less useful
than before

{F -isomods} ≃
{
G : Gk = µn

p

}
≃

Cartier

{
G : Gk = (Z/pZ)n

}
= {G : G étale and killed by p} = ModFp[Gk]

over any field k. Explicitly, this takes an F -isomoduleM to (M⊗ks)F=1 and takes a Galois representation
V (killed by p) to (V ⊗ ks)Gk . Fontaine generalized this to a description of the category of Zp[Gk]-
modules. ◦

6.4 Dieudonné theory

Notes from
here to the
end of the
lecture di-
rectly from
the course
site in-
stead of the
recording

Let k be a perfect field. Let W =W (k) be the ring of Witt vectors of k.

Example. When k = Fq, W = OK is the ring of integers of the unramified extension K/Qp with residue
field k. In particular, W (Fp) ∼= Zp. △

The pth power map on k induces an automorphism of W which we’ll call

φ :W
∼
−!W.

Definition 6.18. A Diudonné module is a W -module M equipped w/ additive maps F, V satisfying
F (αx) = φ(α)F (x), V (αx) = φ−1(α)V (x) and FV = p = V F . ⋄

Theorem 6.19. There is an equivalence of categories{
finite commute k-group schemes

with p-power order

}
 !

{
Dieudonné modules of
finite length over W

}
.

7the Jacobian matrix is given by C−1, which is invertible
8finite étale commutative group schemes are finite Gk-modules (see Corollary 5.23). Since k = k, these are finite abelian

groups. All simple (finite) abelian groups are cyclic.
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We write D(G) for the Dieudonné module associated to G. The functor D has several nice properties

• D is exact

• The group G is killed by pn iff D(G) is

• The order of G is equal to pr, where r is the length of D(G) as a W -module

• G is connected iff F is nilpotent on D(G)

• G is étale iff F is an isomorphism on D(G)

• D(G∨) is naturally the dual of D(G), where the dual of a Dieudonné module M is the W -module
HomW (M,K/W ) with F, V defined by

(Ff)(x) = φ(f(V x)) and (V f)(x) = φ−1(f(Fx)).

Above, K = FracW .

• If G has height 1, then D(G)∨ = L(G) (and V = 0).

6.5 Applications to abelian varieties

6.5.1 Duality of abelian varieties

We previously showed that if f : X ! Y is an isogeny of complex tori, then ker f and ker(f∨) are
naturally Pontryagin dual groups. This generalizes to arbitrary fields:

Proposition 6.20. Let f : A ! B be an isogeny of abelian varieties. Then, ker(f∨) is naturally the
Cartier dual of ker(f).

Proof. Let G = ker f , and apply Hom(−,Gm) to the short exact sequence

0! G! A! B ! 0

of fppf sheaves. This gives

Hom(A,Gm)! Hom(G,Gm)! Ext1(B,Gm)! Ext1(A,Gm).

There are no nontrivial maps from an abelian variety (proper) to Gm (affine), so the first group vanishes,
and

Hom(G,Gm) ≃ ker
(
Ext1(B,Gm)! Ext1(A,Gm)

)
.

We’ve seen previously that Hom(−,Gm) is Cartier duality for finite commutative group schemes and
Ext1(−,Gm) is duality for abelian varieties. ■

(A more elementary proof is given in section 15 of Mumford’s “Abelian varieties”)

Corollary 6.21. Let A be an abelian variety. Then, A[n] and A∨[n] are Cartier dual. In particular,
there is a canonical pairing A[n]×A∨[n]! µn, the Weil pairing.
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6.5.2 p-torsion of an elliptic curve

Let E be an elliptic curve over k = k of characteristic p. Then, G = E[p] is a finite commutative k-group
scheme of order p2. We will try to describe it more explicitly.

From the start, we know that G is not étale (since ·p : E ! E is not étale, e.g. since it induces 0 on
tangent spaces). We also know that G is self-Cartier dual (from the existence of the Weil pairing since
E is self-dual as an abelian variety).

• Suppose that E is ordinary. Then, G(k) ̸= 0, so Gét is non-zero. Thus, G = G0 × Gét with
both factors having order p. By the classification of étale groups (Corollary 5.23), we conclude
that Gét = Z/pZ. Since G is self-dual, G0 is necessarily the dual of Gét, so G0 = µp. Thus,
G = µp × Z/pZ.

• Suppose that E is supersingular, so G(k) = 0 which means Gét = 0. Thus, G = G0 is local, and so
local-local, as it is self-dual. The only simple local-local group is αp (e.g. by Corollary 6.15), so we
must have an extension of the form

0 −! αp −! G −! αp −! 0.

This extension cannot be split since αp ⊕ αp has a two-dimensional tangent space, but G has a
1-dimensional tangent space. We also cannot have G = αp2 since this group is not self-dual (it has
V = 0 but F ̸= 0). Thus, we cannot have G = α∨

p2 either. Up to isomorphism, there are only
four self-extensions of αp (this follows from Dieudonné theory), so G must be the one we have not
yet named. One can describe G as the sum of αp2 , α∨

p2 in Ext1(αp, αp), and one can also explicitly
describe its Dieudonné module D(G).

Exercise (Assuming I did this computation correctly when I tried working this out myself). Show
that D(G) ≃ k ⊕ k, and one can choose bases so that F (x, y) = (0, xp) = V (x, y).

6.5.3 p-torsion of an abelian variety

Let A be an abelian variety over k, and assume k perfect of characteristic p. Write

A[p] = G1 ⊕G2 ⊕G3 and #G1 = pr,#G2 = ps,#G3 = pt,

where G1 is étale, G2 is local-étale, and G3 is local-local. Note G1

has to be
étale-local
since we’re
looking at
p-torsion
e.g. since
(over k) the
only simple
étale-étale
groups are
Z/ℓZ with
ℓ ̸= p (e.g.
by Corollary
6.15)

Proposition 6.22. The numbers r, s, t are isogeny invariants.

Proof. Decompose A[pn] = G1,n ⊕ G2,n ⊕ G3.n as above. Induct over the exact sequence 0 ! A[p] !

A[pn]
p
−! A[pn−1]! 0 to see that Gi,n is a success extension of Gi’s. Hence,

#G1,n = pnr, #G2,n = pns, and #G3,n = pnt.

Now suppose A ! A′ is a degree d isogeny. Then, #ker(G1,n ! G′
1,n) ≤ d. For n ≫ 0 this is only

possible if r ≤ r′. By symmetry (i.e. the existence of an isogeny A′ ! A), we must also have r′ ≤ r, so
r = r′. One similarly shows s = s′ and t = t′. ■
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Proposition 6.23. We have r = s and so t = 2g − 2r, where g = dim(A).

Proof. By duality + isogeny-invariance, we have r(A) = s(A∨) = s(A). ■

Corollary 6.24. A[p](k) = (Z/pZ)r with r ≤ g.

Proof. Since r = s, we have 2r = r + s ≤ 2g, so r ≤ g. ■

6.5.4 The Dieudonné module as a p-adic Tate module

Let A be an abelian variety of dimension g over k, a perfect field of characteristic p. Then, Tp(A), the
p-adic Tate module of A, has rank at most g (and possibly even 0). It is therefore much unlike the ℓ-adic
Tate modules of A.

We define the Diedonné module of A, denoted D(A), as the inverse limit of the D(A[pn])’s. This
D(A) is a free W -module of rank 2g equipped with a semi-linear map F , and so looks more like the ℓ-adic
Tate modules (note: V note needed since V F = p).

Suppose k = Fq with q = pr. Let F ′ = F r. Then, F ′ is a W -linear automorphism of D(A), and so
we get something looking even more like the ℓ-adic Tate module. One even has that the eigenvalues of
F ′ are the same as the eigenvalues of Frobenius on the ℓ-adic Tate module.

7 Lecture 7: Raynaud’s Theorem

Say S = SpecR is noetherian. We will consider finite flat commutative group schemes over S.

Assumption. If we say ‘S-group scheme’ in this lecture, assume we mean ‘finite flat S-group scheme’.

Here are some facts about these groups (compare to theory over fields from last two lectures):

• They correspond to Hopf algebras over R which are finitely generated projective modules9

• The order of the group is the rank of the Hopf algebra (locally constant function on S, so simply a
number if S is connected)

• Quotients work: if H ⊂ G is closed, then G/H exists and is finite flat

• There’s an equivalence of categories when S connected{
finite étale

commutative S-group schemes

}
 !

{
finite πét

1 (S, s)-modules
}
,

where s is a geometric point of S. This is more-or-less tautological.

Remark 7.1. If R = OK is the ring of integers of K/Qp, then πét
1 = Gal(Kun/K). ◦

• If R is local + henselian, then we get a connected-étale sequence. Remember:
The
connected-
étale se-
quence does
not exist
over arbi-
trary bases

If G = SpecA, then A =
∏
Ai with Ai local. We let G0 = Spec(Aj) be the identity component,

and Gét = G/G0.

• Cartier duality works
9A finitely presented flat module over a noetherian ring is projective, see e.g. here
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Our goal today is to prove Raynaud’s theorem.

Setup 7.2. Let K/Qp be a finite extension, let R = OK with ramification index e and residue field k.

Theorem 7.3 (Raynaud). Suppose e < p − 1. Let G,G′ be finite flat commutative R-group schemes
which are isomorphic over K. Then, they’re isomorphic over R.

Warning 7.4. This is false if e ≥ p − 1. For example, take K = Qp(µp). Then, Z/pZ and µp are
isomorphic over K, but not over R (e.g. since they are not isomorphic over the special fiber Fp). •

The strategy is the reduce to the simple case, classify the simple groups, and then check the theorem
holds for them by hand.

7.1 Prolongations

Definition 7.5. Let G0/K be a group. A prolongation is some G/R s.t. GK
∼= G0. ⋄

Say G0 = Spec(A0) with A0 a f.g. K-algebra, and say G = SpecA is a prolongation. Then, A ⊂ A0

is an R-subalgebra. In fact,

Fact. Prolongations of G0 correspond to R-subalgebras A ⊂ A0 s.t.

• A is f.g. over R

• A spans A0 over K

• A is closed under ∆

We partially order prolongations using inclusion of the corresponding R-subalgebras of A0.

Proposition 7.6. Any two prolongations of G0 have both an inf and a sup.

Proof. Say A,A′ ⊂ A0 are prolongations. Their sup is simple AA′ (b/y ⊃ obvious and AA′ closed under
∆). Now, the inf exists by Cartier duality; the prolongations of G0 are in order-reversing bijection with
those of G∨

0 . ■

Proposition 7.7. If G0 has a prolongations, then it has a maximal one G+ and a minimal one G−.

Proof. Say G0 = SpecA0 with A0 a finite étale K-algebra, so it has some maximal order O. If A is a K/Qp is
character-
istic 0

prolongation, then A ⊂ O. Furthermore, A,O are both lattices for A0, so A is finite index in O. Hence,
the prolongations satisfy acc which forces there to exists a maximal one. A minimal exists by Cartier
duality. ■

Definition 7.8. Say G0 satisfies property UP (unique prolongation) if any two prolongations are
isomorphism. ⋄

Raynaud’s theorem says everything satisfies UP.

Remark 7.9. G0 satisfies UP ⇐⇒ the natural G+ ! G− is an isomorphism. Note this is something
which can be checked after passing to an extension. ◦
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Say we have a short exact sequence

0 −! G′
0 −! G0 −! G′′

0 −! 0

over the generic fiber. Let G be a prolongation of G0.

Exercise. G′ := the scheme-theoretic closure of G′
0 in G is a prolongation of G′

0.

Then, G′′ = G/G′
0 is a prolongation of G′′

0 .
Now suppose H is a second prolongation of G0 with a map G! H. Then we get maps G′ ! H ′ and

G′′ ! H ′′ as well. That is, we get a morphism of short eaxct sequence:

0 G′ G G′′ 0

0 H ′ H H ′′ 0

In particular, if the outer two (vertical) maps are isomorphisms, then the middle one is as well.

Proposition 7.10. If G′
0, G

′′
0 satisfy UP then so does G0.

(apply above discussion to the map G+ ! G−)
This let’s us reduce to the case of simple objects.

Slogan. If you have a simple object is some abelian category, you can think of it as a module over its
endomorphism ring.

Suppose G0/K is simple. It corresponds to the Galois representation V = G0(K) which will be an
irreducible representation of GK/Fp.

Assumption. All the group schemes today have p-power order. The other ones are étale and so simpler.

Let F := EndGK
(V ). This is a division algebra over Fp and so actually a finite extension of Fp. Now,

V is an absolutely irreducible F-linear representation of GK .

Assumption. Now assume k = k, the residue field is algebraically closed.

In this case, GK is like an inertia group and so splits up as

1 −! Iw −! GK −! It −! 1

with Iw the wild inertia, a pro-p group, and It the tame inertia, an abelian group.

Fact. Iw is a pro-p group acting on a nonzero Fp-vector space V , so it must fix a vector, i.e. V Iw ̸= 0. I think the
main point
should be to
apply Burn-
side’s lemma
and use the
fact that
0 ∈ V gives
an orbit of
size 1

Since V Iw

is a nonzero subrep of V (as Iw◁GK), we must have V = V Iw

, i.e. V is really an irreducible
representation (over F) of the abelian group It. This forces dimF V = 1.

Definition 7.11. An F-module scheme is a group scheme G (over K or R) equipped with a ring
homomorphism F! End(G). It is a Raynaud F-module scheme if #G = #F, i.e. dimFG(K) = 1. ⋄

Above, we showed the following.
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Proposition 7.12. If k = k, then any simple group over K is a Raynaud F-module scheme (for some
F).

Corollary 7.13. If all Raynaud F-module schemes over Kun satisfy UP, then all groups over K satisfy
UP.

7.2 F-module schemes

Setup 7.14. Fix some finite field F of size q = pr. Assume, there eixsts an embedding F ↪! k.

Definition 7.15. A character χ : F× ! R× is called fundamental if the composition

F× χ
−! R× ! k×

extends to a field homomorphism. ⋄

Two facts

• Fundamental characters exist

• If χ is a fundamental character, then all other fundamental characters are of the form χpk

for some
k ∈ Z.

Let {χi}i∈I be the set of all fundamental characters, and define i + 1 by the relation χp
i = χi+1. This

make I a Z/rZ torsor (recall q = pr).
If µ : F× ! R× is any character, there exists a unique expression

µ =
∏
i∈I

χ
µ(i)
i where µ(i) ∈ Z and 0 ≤ µ(i) ≤ p− 1

(not all µ(i) = 0).
Say G = SpecA is an Raynaud F-scheme over R. We want to completely understand A (e.g. write it

in terms of generators and relations). To do this, we observe that F× acts on A, so we can decompose it
under this action. First write A = R⊕ I with I the augmentation ideal, and note F× ↷ I. #F× = q− 1

is invertible in R, so we can decompose I into a sum of irreducibles. Since the residue field contains an
embedding of F, all the irreducible of F× will be 1-dimensional characters (all the characters exist over
R), so

I =
⊕
µ

Iµ where Iµ =
{
x ∈ I : [t]x = µ(t)x for all t ∈ F×} .

Above, [t] : A! A is the map induced by t ∈ F.
Note GK is a 1-dimensional F-module scheme over K, so it has to be the constant group scheme

on F, i.e. GK = F. Hence, there is an isomorphism AK
∼= Map(F,K). In particular, for a character

µ : F× ! K
×

, we’ll write εµ : F! K for the function extending µ by 0. Note this is an element of AK .
Furthermore,

Iµ ⊗R K = Kεµ,

so Iµ is rank 1 over R for all µ. Let Xi be a generator of Iχi as an R-module (recall χi is a fundamental
character).
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Notation 7.16. For a character µ =
∏
χ
µ(i)
i , we define

Xµ :=
∏
i

X
µ(i)
i .

Note that the Xi’s generate I as an R-algebra iff the Xµ’s span I as an R-module.
Let B = HomR(A,R) be the Cartier dual. Note that there’s an isomorphism BK

∼= K[F] between
BK and the group algebra on F. For t ∈ F, we’ll write [t] ∈ BK . Let J be the augmentation ideal of B,
and we decompose J =

⊕
µ Jµ. We can give generators after tensoring up to K

• If µ ̸= 1, then Jµ ⊗R K is spanned by

eµ =
1

q − 1

∑
t∈F×

µ−1(t)[t].

• If µ = 1, then Jµ ⊗R K is spanned by

−1 +
1

q − 1

∑
t∈F×

[t]

(note coefficients need to add to 0 to land in augemntation ideal)

Note IK and JK are dual vector spaces, and the εµ,eµ’s are dual bases (exercise). Write εi := εχi . This
generates Iχi , so we can write

Xi = ciεi for some ci ∈ K
×
. (7.1)

Define
Y i = c−1

i ei and Y µ =
∏
i

Y
µ(i)
i for µ =

∏
i

X
µ(i)
i .

Define

wµ = ⟨Xµ, Y µ⟩ =

〈∏
i

(ciεi)
µ(i),

∏
i

(c−1
i ei)

µ(i)

〉
= ⟨εµ, eµ⟩

(Recall X’s,Y ’s live in dual vector spaces).

Remark 7.17. The above expression for wµ is independent of G. Everything involved (AK = Map(F,K),
BK = K[F], εi ∈ AK and ei ∈ BK) was defined only using F with no reference to G. ◦

We similarly define
wi = ⟨Xp

i , Y
p
i ⟩ = ⟨εpi , e

p
i ⟩ ,

another absolute constant.

Proposition 7.18.
wµ =

∏
µ(i)! mod p

(in particular, wµ ∈ R×) and
wi = −p mod p2.
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Note that

⟨Xµ, Y ν⟩ =

 0 if µ ̸= ν

wµ ∈ R× otherwise.

since they live in different eigenspaces when µ ̸= ν. This is telling us that we have R-dual modules I, J
containing submodules span {Xµ},span {Y µ} which are themselves R-dual! This forces I = span {Xµ}
and J = span {Y µ} since otherwise the dual of span {Xµ} would be a strict quotient of J , not a submodule.

Corollary 7.19. The Xi’s generate A as an R-algebra.

One can even say more. Note Xp
i = δiXi+1 and Y p

i = γiYi+1 for some δi, γi ∈ R. Hence,

wi = ⟨Xp
i , Y

p
i ⟩ = δiγi ≡ −p mod p2 =⇒ v(δi) ≤ e.

This essentially proves

Theorem 7.20. A = R[xi]/(x
p
i = δixi+1) for some δi ∈ R with v(δi) ≤ e for all i.

The converse of this will hold.

Theorem 7.21. Suppose we are given (δi)i∈I with δi ∈ R and v(δi) ≤ e. Then, A := R[xi]/(x
p
i = δixi+1)

has a unique Raynaud F-module structure such that [t]xi = χi(t)xi for all t ∈ F×.

Proof. Choose elements ci ∈ K
×

so that δi = cpi /ci+1 (compare with (7.1)). Define the isomorphism
AK

∼
−! Map(F,K) sending xi 7! ciεi. As before, define

xµ :=
∏

x
µ(i)
i .

We need to define comultiplication on A. The idea is to try and pull back comultiplication from
Map(F,K). The hard will be to, after identifying A ↪! AK with a subring, show that A is closed under
this comultiplication map. This will be equivalent to showing that it’s dual is closed under multiplication,
so that’s what we’ll do.

Let B = HomR(A,R) be the R-linear dual of A, so BK = K[F] is the group algebra. Identifying AK

and Map(F,K), we have
xµ =

(∏
c
µ(i)
i

)
εµ.

Let yµ be the dual basis of the xµ’s. That is,

yµ =
(∏

c
−µ(i)
i

)
eµ.

We’ll let yi = c−1
i ei and yµ =

∏
y
µ(i)
i =

(∏
c
−µ(i)
i

)
eµ (note eµ = wµeµ). These yµ’s span B an an

R-module. Write ypi = γiyi+1; an easy computation shows γiδi = wi. Note that v(wi) = e and v(δi) ≤ e,
so γi ∈ R is integral. Thus, ypi ∈ B. Since B is spanned by the yµ’s, which are monomials in the yi’s
with exponents < p, one can conclude (from ypi ∈ B) that in fact any monomial in the yi’s lands in B, so
B is an algebra (i.e. closed under multiplication). Thus, A is closed under comultiplication.

This gives a Hopf algebra structure on A. We leave uniqueness to you. ■
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This gives a nice classification. Given δ = (δi)i∈I with δi ∈ R and v(δi) ≤ e, we get a Raynaud
F-module scheme

Gδ := Spec

(
R[Xi]

(Xp
i = δiXi+1)

)
.

Furthermore, all Raynaud F-module schemes are of this form.

Exercise. Maps f : Gδ ! Gδ′ of F-module schemes correspond the sequences (ai)i∈I (with ai ∈ R)
satisfying ai+1δi = api δ

′
i. From this, build a map of rings sending f∗(x′i) = aixi.

Proposition 7.22. Suppose e < p − 1 and that we have a map f : Gδ ! Gδ′ of Raynaud F-module
schemes which is an isomorphism over K. Then, f is an isomorphism (over R).

Proof. f corresponds to some (ai)i∈I with ai+1δi = api δ
′
i. We want to show these are all units. Pick i s.t.

v(ai) is maximal. Then,

v(ai) + e ≥ v(ai+1) + v(δi) = pv(ai) + v(δ′i) ≥ pv(ai),

which forces (p− 1)v(ai) ≤ e. This forces v(ai) = 0 (since e < p− 1 by assumption). Thus, v(aj) = 0 for
all j ∈ I. ■

Proposition 7.23. Say e < p − 1, and let G0/K be a Raynaud F-module scheme. Then, G0 satisfies
UP (there’s at most one prolongation).

Proof. Need to show that G+ ! G− discussed earlier is an isomorphism. By uniqueness, G+, G− are
necessarily F-module schemes over R. Now this proposition follows from the previous one. ■

This finishes the argument for Theorem 7.3.

8 Lecture 8: Elliptic curves over DVRs

(Reference: chapter VII of Silverman)

Setup 8.1. Let R be a complete dvr with field of fractions K = Frac(R), maximal ideal m ⊂ R, residue
field k = R/m, and valuation v : K× ! Z.

Assumption. Assume char(k) ̸= 2, 3.

Let E/K be an elliptic curve. By our characteristic assumption, we may write

E : y2 = x3 + ax+ b.

This equation for E is not unique. If you change (x, y)! (u2x, u3y), then you scale (a, b)! (u−4a, u−6b).

Definition 8.2. We say the equation for E is minimal if a, b ∈ R and v(a) < 4 or v(6) < 6. This is
equivalently to saying that a, b ∈ R and v(∆) is minimal among all possible Weierstrass models of E. ⋄

Let E be the projective curve over R defined by a minimal equation. This is a called a minimal
Weierstrass model for E, and is unique up to isomorphism.
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Definition 8.3. Let E := Ek be the special fiber of E . This is a projective curve over k which will be
irreducible (from the form of the Weierstrass equation), but which may not be smooth. We let Esm

denote the smooth locus of E; this is canonically a group variety. ⋄

Remark 8.4. Since E is projective (so proper), we have E(R) = E(K) = EK(K) = E(K). Thus, we get a
reduction map

E(K)! E(k).

Concretely, if you have a K-point [x : y : z] in projective coordinates, you can scale it so as to kill
denominators, and then reduce mod m. ◦

Notation 8.5. We’ll let E0(K) ⊂ E(K) be the points reducing into Esm(k).

This E0(K) will be a subgroup of E(K). Furthermore, E0(K)! Esm(k) is a group homomorphism
which is surjective by Hensel’s lemma. Finally, we define

E1(K) := ker
(
E0(K)! Esm(k)

)
.

8.1 Types of reduction

Write E : y2 = x3 + ax+ b. This curve will be smooth iff

0 ̸= ∆ = −16
(
4a3 + 27b

2
)

⇐⇒ ∆ ∈ R×.

In this case, we say that E has good reduction (E is an elliptic curve). In this case, E is smooth over
SpecR, and it’s actually an R-group scheme.

What if ∆ = 0?

• If a = b = 0, then E : y2 = x3 has a single singular point at (0, 0), a cusp.

In this case, Esm
∼= Ga as a group, and we see that E has additive reduction.

• If a, b ̸= 0, then E has a single singular point at
(
− 3b

2a , 0
)
, a node.

In this case, Esm
∼= Gm over k as a group. We say E has multiplicative reduction. If Esm

∼= Gm

over k ( ⇐⇒ −b/(2a) = □ in k), we say it has split multiplicative reduction.

To summarize

• Good reduction ⇐⇒ ∆ ∈ R×

• Multiplicative reduction ⇐⇒ ∆ ∈ m and a, b ∈ R×

• Additive reduction ⇐⇒ ∆ ∈ m and a, b ∈ m

Definition 8.6. More terminology: We say E has bad reduction if it has multiplicative or additive
reduction. We say E has semi-stable reduction if it has good or multiplicative reduction ( ⇐⇒ a ∈ R×

or b ∈ R×). ⋄

Reduction type is not always preserved under field extensions.
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Proposition 8.7. Say K ′/K is a finite extension. Suppose either

(a) K ′/K is unramified; or

(b) E has semi-stable reduction over K

Then, a minimal equation for E/K stays minimal over K ′, so the reduction type stays the same.

Proof. (a) Here v′ = v so (v(a) < 4 or v(b) < 6) ⇐⇒ (v′(a) < 4 or v′(b) < 6).
(b) If v(a) = 0 or v(b) = 0 (i.e. a or b is a unit), then v′(a) = 0 or v′(b) = 0, so the equation is still

minimal. ■

Theorem 8.8 (semi-stable reduction theorem). There always exists a finite extension K ′/K s.t. E
has semi-stable reduction over K ′.

Proof. Start with E : y2 = x3 + ax+ b. We want to make either a or b a unit, and we’re allowed to make
changes (a, b)⇝ (u−4a, u−6b) = (a′, b′).

• If 3v(a) ≤ 2v(b), then take u = a1/4 so a′ = 1 and b′ = b/a3/2 ∈ R. Over K ′ = K(a1/4), E has
semi-stable reduction.

• If 3v(a) ≥ 2v(b), take u = b1/6 so b′ = 1 and a′ = a/b2/3 ∈ R. Over K ′ = K(b1/6), E has semi-stable
reduction. ■

Remark 8.9. Can always take K ′/K above to have degree ≤ 6 (at least away from char = 2, 3). This and to be
separablefollows from the above proof. ◦

For K ′/K sufficiently large, the reduction type of E/K ′ is constant and either good or multiplicative.
In this first case, we say E has potentially good reduction. In the second, it has potentially
multiplicative reduction.

Proposition 8.10. E has potentially good reduction iff its j-invariant

j(E) := −1728
(4a3)

∆

is integral.

Proof. Suppose E has semi-stable reduction. In the good case, ∆ ∈ R× and a ∈ R, so j ∈ R. In the
multiplicative case, ∆ ̸∈ R× but a ∈ R×, so v(j) < 0. ■

Example. Consider E : y2 = x3 + p over K = Qp. Here, a = 0, b = p, and ∆ = −16(27p2). This has
additive reduction with j-invariant j = −1728 4(0)3

∆ = 0 ∈ R, so it better have potentially good reduction.
Change (x′, y′) = (p1/3x, p1/2y). Then, E is isomorphic to y2 = x3 + 1 over Qp(p

1/6), and this curve has
good reduction. △

8.2 Reduction of torsion points

Assumption. Assume E has good reduction, i.e. E is a smooth, proper group scheme over R.

46



By the assumption, E [n] will be a finite, flat group scheme over R. We want to study the map

E[n](K) −! E(k)[n].

Proposition 8.11. Suppose that G/R is a finite flat group scheme, and #G is invertible on R. Then,

G(K)
∼
−! G(k)

is an isomorphism of Gal(K/K)-modules. In particular, G(K) is an unramified Galois module.

Proof. The map is Gal-equivariant, so it suffices to check it’s a bijection. This can be checked after going
to an extension of k. Since #G is invertible, G is étale, so G ∼= Z/nZ after some extension where this
proposition is clear. ■

Corollary 8.12. If n is prime to char k, then E[n](K)
∼
−! E[n](k) as Gal-modules.

Proposition 8.13. Assume K is an extension of Qp with ramification index e < p − 1. Let G/R be a
finite flat group scheme. Then, G(R)! G(k) is injective.

Proof. Let Γ = G(R), and view this as a constant group scheme Γ over R. We have a natural map
Γ! G of group schemes. Let Γ be the scheme theoretic image, i.e. the scheme-theoretic closure of G(K)

in G. The map Γ ! Γ is an isomorphism over K. Raynaud (Theorem 7.3) then implies that it is an
isomorphism over R, so Γ! G is a closed embedding. Now we have

G(K) = Γ(R)
∼

−−−−−!
Γ const

Γ(k) ↪! G(k). ■

Warning 8.14. G(R)! G(k) not necessarily surjective.

Non-example. Let G be the Kummer extension of Z/pZ by µp corresponding to some a ∈ R×. If A is
an R-algebra, then

G(A) =

{
(i, z)

∣∣∣∣ i ∈ Z/pZ, z ∈ Z

zp = ai

}
.

If R has no primitive pth root of 1, and no pth root of A, then G(R) = 0. If k is perfect, one has
Gk = Z/pZ× µp, so G(k) = Z/pZ. Hence, G(R)! G(k) is not surjective. ▽

•

Warning 8.15. If e ≥ p− 1, G(R)! G(k) is not necessarily injective.

Non-example. Take G = µp and K with K ⊃ µp. Then, G(K) is the pth roots of unity in K, but
G(k) = 1. ▽

•

Corollary 8.16. Let K/Qp be an extension with e < p− 1. If E has good reduction, then

E[n](K) ↪! E[n](k).
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8.3 Kernel of reduction map

Recall 8.17.
E1(K) = ker (E0(K) −! Esm(R)) . ⊙

Note we’re no longer assuming E has good reduction.

Remark 8.18. The points of E1(K) are m-adically close to the identity point of E. ◦

Because of this, we’ll change coordinates so the identity is at the origin. Start with the projective
equation

E : ZY 2 = X3 + aZ2X + bZ3.

One normally takes x = X/Z and y = Y/Z. Instead, let’s use u = X/Y and v = Z/Y . We then get the
affine equation

E : v = u3 + av2u+ bv3︸ ︷︷ ︸
F (u,v)

with identity point (u, v) = (0, 0) at the origin. We can now iterate:

v = F (u, v) = F (u, F (u, v)) = . . . .

This turns into an (infinite) expression for v in terms of u:

v = φ(u) where φ(u) = F (u, F (u, F (u, . . . )) . . . ) ∈ RJuK .

Proposition 8.19. The map m 7! E1(K) sending u 7! (u, φ(u)) is a bijection of sets.

This is not a group isomorphism, but does allow you to define a new group law on m by transfer of
structure. Let ⊕ : m×m! m denote the resulting addition map. One can show that

s⊕ t = G(s, t) for some G ∈ RJs, tK .

Note that 0 is the identity for ⊕, so G(s, 0) = s = G(0, s), so G(s, t) = s + t + . . . . This in particular
implies that mn is a subgroup of m under ⊕.

Notation 8.20. Let En(K) denote the image of mn in E1(K).

Since ⊕ is normal + with higher terms thrown in, one gets that

En(K)/En+1(K) ∼= mn/mn+1 ∼= k.

Proposition 8.21. E1(K) has a filtration with associated graded pieces all isomorphic to k.

Corollary 8.22. If k is finite of characteristic p, then E1(K) is a pro-p group.

Corollary 8.23. If n is prime to p = char(k), then the reduction map

E0[n](K)! Esm[n](K)

is injective.
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Theorem 8.24.

(a) The quotient E(K)/E0(K) is finite.

(b) If E has split multiplicative reduction, then E(K)/E0(K) is cyclic with order = −v(j).

(c) If E does not have split multiplicative reduction, then #E(K)/E0(K) ≤ 4.

We are not going to prove this, but will give some remarks on the proof.

Remark 8.25.

• (a) Follows from the existence of Néron models

• (b),(c) follow from the classification of Néron models

• If k is finite, then (a) is easy since E(K) is compact (using the topology coming from K) and
E0(K) is an open subgroup, so the quotient is compact and discrete (i.e. finite)

• Can prove the full theorem w/o Néron models (via some casework).

Consider the case where v(a) = 1 and v(b) ≥ 2. Consider a point P = (x, y). Then,

x(2P ) =
x4 − 2ax2 − 8bx+ a2

4(x3 + ax+ b)
.

If P reduces to the singular locus, then x ∈ m; staring at the above expression shows that v(x(2p)) ≤
0. This shows 2P ∈ E0(K), so E(K)/E0(K) is killed by 2. One can even show that the sum of
any two elements in this quotient is 0, so it must be 0 or Z/2Z. ◦

8.4 Néron-Ogg-Shafarevich

Theorem 8.26 (Néron-Ogg-Shafarevich Criterion). Let ℓ ̸= char k be prime. Then,

(1) E has good reduction ⇐⇒ TℓE is unramified (i.e. inertia IK acts trivially)

(2) E has semi-stable reduction ⇐⇒ IK action on TℓE is unipotent (i.e. acts by matrices

(
1 ∗
0 1

)
)

Proof. (1) TℓE is unramified ⇐⇒ E[ℓn](K) is unramified for all n. We have shown (Corollary 8.12)
that if E has good reduction, then these are unramified. Now assume ℓn torsion unramified for all n. Let
d := #E(Kun)/E0(K

un) with Kun the maximal unramified extension (all ℓ-power torsion points defined
over it by assumption). We claim

#(E0(K
un) ∩ E[ℓn](Kun)) ≥ ℓ2n

d
.

This is simply because this group is

ker

E[ℓn](Kun)︸ ︷︷ ︸
#=ℓ2n

−! E(Kun)/E0(K
un)︸ ︷︷ ︸

#=d

 .
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The injection E0(K
un)[ℓn] ↪! Esm(k) then implies that

#Esm[ℓn] ≥ ℓ2n/d.

There are only a few possibilities for the group Esm over k. Note that

#Gm(k)[ℓn] = ℓn and #Ga(k)[ℓ
n] = 0

are both less that ℓ2n/d (for n≫ 0). Thus, Esm must be an elliptic curve.
(2) First say IK acts unipotently. Then, it acts trivially on a 1-dimensional subspace, so E[ℓn](Kun) ⊃

Z/ℓnZ. Now do the same sort of counting argument to conclude that Esm ̸= Ga.
In the other direction, assume E has semi-stable reduction. Consider the smooth points Esm of the

minimal Weierstrass model. This is a group scheme over R, so Esm[ℓn] will be a flat group scheme over
R (note multiplication by ℓn will be a flat map since this thing is smooth), but it is not necessarily finite
(since Esm not necessarily proper). Let G be the scheme theoretic closure in Esm[ℓn] of the K-points
which extend to R-points.

Remark 8.27. G ⊂ Esm[ℓn] is a closed, finite, flat subgroup. Furthermore, Gk = Esm[ℓn]. ◦

This G is étale (since finite, flat of ℓ-power order), so

E(Kun)[ℓn] ⊃ G(Kun)
∼
−! G(k) = Esm[ℓn](k) ⊃ Z/ℓnZ

(last containment since we’re assuming semi-stable reduction). This produces a lot of unramified ℓ-power-
torsion, and in particular let’s us conclude that IK fixes some vector in TℓE. Thus,

Ik ↷ TℓE via

(
1 ∗
0 α

)

for some character α. Taking determinants, we see that α = χℓ|IK = 1 since the cyclotomic character is
trivial on inertia. ■

9 Lecture 9: Néron models

Setup 9.1. Let R be a complete dvr with fraction field K = FracR, and let Γk = Gal(K/K) be its
absolute Galois group. Let k be the residue field of R.

9.1 Quasi-finite étale groups schemes/R

Recall 9.2. Quasi-finite means finite fibers. ⊙

Let G be a qfinite étale R-group scheme (also commutative and finite presentation?). Let M = G(K).
This is a ΓK-module classifying GK . Similarly, M0 = G(k) is a Γk = ΓK/IK-module classifying Gk.
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Since G is étale, we get an isomorphism G(R)
∼
−! G(k), and so a diagram

G(K) G(R) G(k)

M M0

⊂ ∼

(in particular, M0 ⊂M IK ).

Remark 9.3. Above, R is the ring of integers in K. ◦

Thus, from G, we get a pair (M,M0) with M a ΓK-module and M0 ⊂M IK a Γk-submodule.

Theorem 9.4. The above assignment gives an equivalence of categories.

Remark 9.5. Suppose G⇝ (M,M0) and H ⇝ (N,N0) with H ≤ G a subgroup.

• H is closed ⇐⇒ N0 =M0 ∩N

• If H is closed, then G/H is an étale quasi-finite group scheme corresponding to (M/N,M0/N0)

• If G0/K is finite, this corresponds to some M . To specify an extension over R, just need to specify
some M0.

– Get max extension by taking M0 =M IK

– Get min extension by taking M0 = 0 (extension of zero)

• (M0,M0) corresponds to the maximal finite subgroup H in G. This has the property that Hk = Gk

(their special fibers agree)

• If G/R is flat, quasi-finite and killed by n ∈ R×, then G is étale ◦

Recall 9.6. If E is an elliptic curve with semistable reduction, then (TℓE)IK ̸= 0. ⊙

Proof Sketch. We let G be the ℓn-torsion in the smooth part of a minimal Weierstrass model. This was
a quasi-finite étale group scheme. Then we let H ⊂ G be the maximal finite subgroup. Then, Hk = Gk

is the ℓn-torsion in an elliptic curve or in a torus, so H(k) ⊃ Z/ℓnZ. Thus,

Z/ℓnZ ⊂ H(k) ⊂ G(k) ⊂ G(K) = E[ℓn](K)

which was what we needed to show (the existence of an inertia-invariant ℓn-order point). ■

9.2 Néron Models

(Reference: chapter IV of Silverman’s “Advanced topics”)
Let E/K be an elliptic curve with minimal Weierstrass model W/R. This W is proper, so W (R) =

E(K). However, it is usually singular, so Wsm is a smooth group scheme over R, but Wsm(R) ⊊ E(K).
The Néron model E/R will be a smooth group scheme where K-points extend to R-points, i.e. E(R) =
E(K).
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These will fit into the diagram

0 E0(K) E(K) finite 0

0 Wsm(k) E(k) π0(E) 0

E0(k)

(In particular, the smooth part of the Weierstrass model is the identity component of the Néron model)
We still haven’t defined the Néron model, properly.

Definition 9.7. Let C/K be a curve. A regular model of C is a flat, proper regular scheme C/R such
that CK ∼= C. Such a model C is a minimal regular model if for any regular model C′, there exists a
map C′ ! C extending the identity over K. ⋄

Theorem 9.8. Minimal regular models exist and are unique.

Remark 9.9. You can find a regular model by starting with any model, and then performing a suitable
sequence of blowups and normalizations. Once you have a regular one, you get a minimal model by
blowing down certain divisors (contract all (−1)-curves) ◦

Fact. Let E be an elliptic curve. Then, it’s Néron model E is the smooth locus of its minimal regular
model.

Example (K = Qp). Let E : y2 = x3 + p. This has additive reduction (since p is not a unit). The same
equation defines W , so W is smooth away from the point p given in coordinates by (x, y) = (0, 0) ∈Wk.
We claim that W is regular at p (and so regular everywhere).

Let A = R[x, y]/(y2 = x3 + p) and let m = (x, y, p), so SpecA
open
⊂ W with p ∈ W corresponding the

the maximal ideal m. Note that

m2 = (x2, xy, y2, p2, px, py) =
(
x2, xy, x3 + p, p2, px, py

)
=
(
x2, xy, p

)
.

Hence, m/m2 has a basis given by x, y and so is 2-dimensional. Thus, A is regular at m (dimAm = htm =

dimA = 2).
Hence, W is a regular model. The special fiber is an irreducible curve, so there’s nothing to blowdown,

so W is the minimal regular model. Hence, the Néron model is E = W \ {p}. In particular, Ek = Ga is
connected, so E(K) = E0(K). △

Example (K = Qp). Now look at E : y2 = x3 + p2. This is again a minimal Weierstrass equation and
W is smooth away from p = (0, 0) in Wk. However, p is no longer a regular point.

Let A = R[x, y]/(y2 = x3 + p2) with m = (x, y, p). Then,

m2 = (x2, xy, y2, p2, px, py) = (x2, xy, p2, px, py).

Now, m/m2 has basis consisting of x, y, p, and so is 3-dimensional.
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To get a regular model, we blowup the point p. Let B ⊂ A[t] be the subring generated by tx, ty, and
tp. The blowup of SpecA at m is Proj(B). Let B1 = B[1/(tx)]0, B2 = B[1/(ty)]0, and B3 = B[1/(tp)]0.
Then, Ui = SpecBi form an affine open cover of Proj(B). Note that

B1 = R
[
x, y,

y

x
,
p

x

]
/
(
(y/x)2 = x+ (p/x)2, x(y/x) = y, x(p/x)

)
= R

[
x,
y

x
,
p

x

]/((y
x

)2
= x+

( p
x

)2
, x
( p
x

)
= p

)
.

We can see what the special fiber is by taking p = 0, so

B1,k = k [x, y/x, p/x] /((y/x)2 = x+ (p/x)2, x(p/x) = 0).

Second equations says either x = 0 or (p/x) = 0. When x = 0, you get y/x = ±(p/x) which is a union
of two lines. When px/ = 0, get x = (y/x)2, another line (a parabola). These three lines meet when
x = p/x = y/x = 0, so U1 is three copies of A1 meeting at a point. Pictorially, it’s ∗.

Exercise. Finish this computation.

For U2, you get 3 lines with no intersection (2 A1’s, and 1 Gm). These glue so that U1 ∪ U2 is two
P1’s meeting an A1 at a single point of intersection (and U3 ⊂ U1 ∪U2), so the special fiber of Blp(W ) is
three P1’s meeting as in ∗. This Blp(W ) is in fact the minimal regular model, so Ek is 3 copies of Ga. In
particular, π0(Ek) = Z/3Z. △

Example. If E has split multiplicative reduction and val(j(E)) = −n, then Ck is n copies of P1 arranged
in a cycle (a Néron (or standard) n-gon). If n = 1, Ck is a plane nodal curve and the minimal Weierstrass I was too

lazy to add
the picture
here, but
not too lazy
to do it later
on, so see
Figure 2

model is the minimal regular model. △

Example. For y2 = x3+p3, the special fiber Ck is five P1’s meeting with dual graph the extended Dynkin
diagram D̃4, i.e

2 11

1

1

(the ‘central’ P1 appears with multiplicity 2) △

If E has bad reduction, then Ck is made up of P1’s (with singularities and non-reducedness). Néron-
Kodaira classified the possibilities of Ck.

Corollary 9.10 (of classification). If E hoes not have split multiplicative reduction, then #π0(Ek) ≤ 4.

9.3 Néron Models of Abelian Varieties

The previous discussion does not nicely generalize to higher dimensional abelian varieties. They key to
get a nice generalize is to give a functorial description of Néron models.

Fact. Let E be the Néron model of E, and let X be a smooth scheme over R with X := XK . Then,
HomR(X , E)

∼
−! HomK(X,E).
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Definition 9.11. Given a smooth scheme A/K, the Néron model of A is a smooth scheme A/R s.t.

HomR(X ,A)
∼
−! HomK(X,A) for all smooth X/R.

This is called the Néron mapping property. ⋄ This says
that A =

η∗A as
sheaves on
the (small)
smooth site
over SpecR

(here, η :

SpecK ↪!

SpecR is
the generic
point).

Remark 9.12.

• The Néron mapping property specifies the functor of points of A, but only on smooth schemes.
Since A is itself a smooth scheme, this specifies it uniquely up to isomorphism by Yoneda’s lemma.

• Main theorem: A exists if A = AV .

• Important case of mapping property: X = SpecR =⇒ A(R) = A(K).

• Say K ′/K is a finite extension. Let A/K be an abelian variety with Néron model A. Let A′ be
the Néron model of AK′ . Then, A ⊗R R

′ is a smooth scheme with generic fiber AK′ , so we get a
canonical map

f : A⊗R R
′ −! A′.

If K ′/K is unramified, then f is an isomorphism. Similarly, if A has ‘semi-stable reduction’, then f
is an isomorphism. In general, it won’t be an iso though. In particular, A(R′) ̸= A(K ′) usually. ◦

Let A be the Néron model of A, and let A0 := Ak (a smooth k-group scheme). Let A0
0 be the identity

component of A0.

Theorem 9.13 (Chevalley). Any smooth connected group scheme is the extension of an abelian variety
by a linear group. The ground field needs to be perfect for this.

In particular, we have
0 −! L −! A0

0 −! B −! 0

with B a k-abelian variety and L a smooth, commutative affine group scheme. We can further decompose
(since L commutative)

0 −! T −! L −! U −! 0

with T a torus and U unipotent.

Definition 9.14. dim(T ) is the toric rank of A. dim(U) is the unipotent rank. dim(B) probably
also has a name. ⋄

Definition 9.15. A has good reduction iff it extends to an abelian scheme10 over R (i.e. T = U = 0).
In this case, π0(A0) = 0. A has semistable reduction if U = 0. ⋄

Theorem 9.16 (Néron-Ogg-Shafarveich). Let ℓ ̸= char k be a prime. Then,

• A has good reduction ⇐⇒ TℓA is unramified representation of ΓK .

(The proof here is of the same point-counting flavor as the proof we gave in the elliptic curve case)
10proper, smooth group scheme with geometrically connected fibers
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• (Grothendieck) A has semi-stable reduction iff IK acts unipotently in TℓA

Theorem 9.17 (Semi-stable reduction theorem). There exists a finite extension K ′/K s.t. AK′

has semi-stable reduction.

Proof. Let’s assume K is a finite extension of Qp for simplicity. It suffices to find K ′/K s.t. IK′ acts
unipotently on TℓA. We’ll prove the existence of such an extension for any ℓ-adic Galois representation
V .

Let IwK be the wild inertia group, a pro-p group. It’s action on V must factor through a finite group,
so can pass to a finite extension to assume that IwK acts trivially. Now, the wild inertia quotient is See e.g. this

or this
ΓK/I

w
K =

〈
F, τ

∣∣FτF−1 = τq
〉

where q = #k, F is (a lift of) Frobenius, and τ is a generator for It (so F, τ generate the group
topologically). From this we see that τ and τq are conjugate linear relations of V , so they have the same
eigenvalues α1, . . . , αn, i.e. αq

i = ασ(i) for some σ ∈ Sn. Thus, αqn!

i = αi, so the αe
i = 1 with e = qn! − 1.

Now, if K ′/K has ramification degree e, then

τ for K ′ = (τ for K)
e

has 1 as its only eigenvalue, and so we win. ■

10 Lecture 10: Jacobians

Goal. Associate to a curve X an abelian variety Jac(X).

We will first give the construction over C.

10.1 Analytic Theory

Let X be a smooth, projective, connected curve/C of genus g.

Notation 10.1. Let V = H0(X,Ω1) be its (g-dimensional) C-vector space of global 1-forms. Let H1
dR(X)

denote its de Rham cohomology, a 2g-dimensional R-vector space.

Remark 10.2. Every element of V is closed as d(f(z)dz) = f ′(z)dz ∧ dz = 0. Thus, we get a map

V −! H1
dR(X)⊗R C. ◦

Lemma 10.3. This map is injective

Proof. Suppose ω = df . By Cauchy-Riemann, this implies that f is holomorphic. Thus, f is constant
(X projective), so ω = 0. ■

Theorem 10.4 (Hodge decomposition for curves). H1
dR(X)⊗R C = V ⊕ V
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Proof. We have a natural map V ⊕V ! H1
dR(X)⊗RC which we need to show is injective. Let J : Tx ! Tx

be multiplication by i on the tangent space at x ∈ X. Given a 1-form ω, define ωc := −iωJ (recall, 1-
forms eat tangent vectors). Note that V lives in the c = 1 eigenspace on H1

dR(X) ⊗ C, while V lives in
the c = −1 eigenspace, so V ∩ V = 0 (inside H1

dR(X)⊗ C) and we win. ■

Proposition 10.5. Let p : H1
dR(X) ⊗R C ! V be the natural projection map. This induces an isomor-

phism
H1

dR(X)
∼
−! V.

Proof. Say α ∈ H1
dR(X) and write α = ω + η with ω, η ∈ V . Then, α = α =⇒ ω = η. Furthermore,

ω = p(α), so α = p(α) + p(α) and we get an inverse map V ! H1
dR(X) sending ω 7! ω + ω. ■

Proposition 10.6. Suppose α, β ∈ H1
dR(X) are real 1-forms. Write ω = p(α) and η = p(β). Then,∫
X

α ∧ β = 2Re

[∫
X

ω ∧ η
]
.

Proof sketch. Write α = ω + ω and β = η + η, note that ω ∧ η = 0 = ω ∧ η (think: dz ∧ dz) and that
ω ∧ η = ω ∧ η. ■

We define a Hermitian form H on V via

H(ω, η) = 2i

∫
X

ω ∧ η.

The factor of i above ensures that H(ω, η) = H(η, ω). From the previous proposition, we see that (this
is why we have the factor of 2) ∫

X

α ∧ β = ImH(p(α), p(β)).

Notation 10.7. Let L = H1(X,Z), a free Z-module of rank 2g.

Remark 10.8. Given γ ∈ L and ω ∈ V , we can form∫
γ

ω ∈ C.

This defines a map i : L! V ∨. ◦

Proposition 10.9. i(L) is a lattice in V ∨

Proof. Extending i to iR : L ⊗ R ! V ∨. Take the dual i∨R : V ! L∨
R = H1

dR(X).11 Chasing through
identifications, this map is ω 7! ω + ω which is known to be an isomorphism. ■

Definition 10.10. The Jacobian of X is

Jac(X) := V ∨/i(L),

a compact, complex torus of dimension g. ⋄
11There’s a subtly here where we’ve taken the real dual of the complex dual of V . To get a map V ! Hom(Hom(V,C),R)

we send v ∈ V to the functional φ 7! Reφ(v), where φ : V ! C
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We define the Hermitian form H∨ on V ∨. First consider

j : V −! V ∨

ω 7−! H(−, ω)

(a conjugate-linear iso of C-vector spaces). Then, define

H∨(λ, µ) = H(j−1(µ), j−1(λ)).

This is a positive-definite Hermitian form on V ∨.

Proposition 10.11. ImH∨(i(γ), i(γ′)) = ⟨γ, γ⟩ is the intersection pairing on H1.

Proof Idea. Extend pairings to LR, transfer to dual L∗
R = H1

dR(X). On the left, you get (α, β) 7!

ImH(p(α), p(β)). The the right, you have (α, β) 7!
∫
X
α ∧ β. Check definitions to show that these

agree. ■

Corollary 10.12. Jac(X) is a principally polarized abelian variety

Properties

• T0 Jac(X) = V ∨ = H1(X,O) (last equality by Serre duality)

• H0(Jac(X),Ω1) ∼= V = H0(X,Ω1)

• H1(Jac(X);Z) = L = H1(X;Z).

Recall 10.13. Pic(X) is the group of iso. classes of line bundles on X. We let Pic0(X) ⊂ Pic(X) be the
subgroup of degree 0 line bundles. ⊙

Proposition 10.14. There is a natural isomorphism Jac(X)
∼
−! Pic0(X)

Proof Sketch. Consider the exponential exact sequence

0 −! Z −! OX
f 7!exp(2πif)
−−−−−−−−! O×

X −! 0

of sheaves on X. Taking cohomology gives

0 −!
H1(X,OX)

H1(X,Z)
−! H1(X,O×

X) −! H2(X,Z) −! 0.

The middle object above is Pic(X) and the right map is the degree map deg : Pic(X)! Z. Finally, the
left object is the Jacobian. ■

Remark 10.15. Fix a basepoint x ∈ X. Then, you can define the Abel-Jacobi map fx : X ! Jac(X).
Given y ∈ X, we pick a path ρ from x to y, and use this to construct

V −! C

ω 7−!

∫
ρ

ω.
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Since there was a choice involved in picking ρ, this element of V ∗ is only well-defined up to the homology
class of the path, i.e. up to i(L). Thus, we get in this way a well defined map

fx : X −! Jac(X)

y 7−!

[
ω 7!

∫
ρ

ω

]
with fx(x) = 0. This is in fact the universal map from X to an(y) abelian variety sending x 7! 0. ◦

10.2 Algebraic Theory

The description above won’t work over general fields; instead, we define Jacobians in terms of their
connections to line bundles.

Setup 10.16. Let k be any field, and let X/k be a smooth, connected projective curve over k/

Goal. We would like to give Pic0(X) the structure of a variety.

To do this, we first need to figure out what we mean by a family of degree 0 line bundles (i.e. a
hypothetical map T ! Pic0)

Definition 10.17. A family of elements of Pic0(X) over T is a line bundle L on XT = X × T s.t.
L |X×{t} has degree 0 for all t ∈ T . We let F (T ) denote the set of isom classes of families / T . ⋄

This F (T ) is a decent first guess for the functor of points of Pic0(X), but it is not correct; this functor
is not representable, for at least two reasons

(1) Line bundles on T cause problems.

Suppose F is representable by some J with a universal line bundle L on XJ . Let L be a line bundle
on some scheme T , and let p : XT ! T be the projection map. Then, p∗(L) is a line bundle on XT

which is trivial on each fiber, p∗(L)|X×{t} = OX for all t ∈ T . This is fiberwise degree 0, so p∗(L)
is classified by a map f : T ! J (i.e. f∗L = p∗L). Since all the fibers are trivial, f must map
all of T to a single point (f(t) ∈ J corresponds to the trivial bundle always), i.e. f is the constant
map, i.e. f∗L must be the trivial bundle, i.e. we’ve reached a contradiction.

Notation 10.18. To fix this, we define

G(T ) := F (T )/p∗ Pic(T ).

This has the same k-points, and now avoids the above issue.

(2) G(T ) is still not representable because Pic doesn’t have good descent properties (G is not a sheaf
in general).

Let k′/k be a Galois extension w/ group Γ. Suppose G were a sheaf (e.g. if G were representable).
We’d then get an isomorphism

G(k)
∼
−! G(k′)Γ.
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Proposition 10.19. There is an exact sequence

0 −! Pic(X) −! Pic(Xk′)Γ −! Br(k)

(have a Brauer group obstruction to G(k)! G(k′)Γ being an iso)

Proof. Let L,L′ ∈ Pic(X), and assume ∃ isom i : Lk′
∼
−! L′

k′ . This i does not have to be Galois
invariant. Consider some σ ∈ Γ, and get iσ : Lk′ ! L′

k′ . Then, i, iσ differ by an automorphism.
Note that Aut(Lk′) = (k′)

×, so we may write

iσ = cσi for some cσ ∈ (k′)
×
.

This defines a 1-cocycle c ∈ H1(Γ, (k′)
×
) = 0 (Hilbert 90). Thus, cσ = σ(α)/α for some α ∈ (k′)

×

and all σ ∈ Γ. Thus, α−1i is Γ-invariant, and so descends to an isomorphism L! L′ over k. This
gives injectivity on the left.

Now exactness in the middle. Say we have L ∈ Pic(Xk′)Γ. For each σ ∈ Γ, fix an isomorphism
iσ : L

∼
−! σ∗L. Given, σ, τ ∈ Γ, we can write

iτσ = cσ,τ(σ
∗iτ) ◦ iσ for some cσ,τ ∈ (k′)

×
.

One can check that these give a 2-cocycle

c ∈ H2(Γ, (k′)
×
) ⊂ Br(k) (= H2(k,Gm)). ■

Example. Say X is a genus 0 curve not isomorphic to P1, e.g. X2 + Y 2 + Z2 = 0 over R. Let k′ = k,
so Xk′ = Pic1 and Pic(Xk′) = Z. Then, Pic(X) ⊂ Pic(Xk′) = Z. Note that the Galois group must act
trivially on Pic(Xk′); the only thing it could do is switch ±1 ∈ Z, but only one of these corresponds to an
ample line bundle. Thus, in particular, O(1) ∈ Pic(Xk′)Γ; however, it does not descend to a line bundle
on X since it would then give an isomorphism X

∼
−! P1

k. △

Example. Say k/Qp a finite extension, and take k′ = k. Note Br(k) = Q/Z by class field theory. In this
case, im(δ) = N−1Z/Z where N is the gcd of degrees of divisors on X. △

Remark 10.20. Neither of these give counterexamples to descent for degree 0 line bundles, but such things
do exist; they’re just harder to know off-hand (probably can find one by looking at genus 1 curves). ◦

This shows the type of things that can go wrong in representing the functor G.

Fact. If X(k) ̸= ∅, then G is a sheaf.

Fix a point x ∈ X(k) and consider the category Gx(T ) of pairs (L, i) with L a line bundle on X × T

(fiberwise degree 0), and i : L{x}×T
∼
−! OT an iso. Let

Gx(T ) := {isom classes in Gx(T )} .

The isomorphism i rigidifies the category enough to kill automorphisms (automorphisms would be given
by scaling, but preserving i means you better scale by 1), so Gx is a stack with trivial automorphism
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groups. This means that Gx satisfies descent. More concretely, you can look at the cocycles from before,
and use the rigidification to show they’re all trivial.

Lemma 10.21. The map Gx ! G is an isomorphism.

Proof. Say L ∈ G(T ) and let L0 = L|{x}×T . Replace L with L⊗ p∗(L−1
0 ) (this equals L in G(T )). This

comes from Gx(T ), so we have surjectivity. Injectivity is similarly easy. ■

Theorem 10.22. Suppose X has a k-point. Then, the sheaf G is representable, and the representing
sheaf is denoted Jac(X) and called the Jacobian of X.

Remark 10.23. If X does not have a rational point, G is not necessarily a sheaf. However, you can take
its (étale- or fppf-)sheafification, and that will be representable by a scheme then called the Jacobian of
X. ◦

10.2.1 Construction of Jac(X)
References
include
Milne’s
notes or
Kleiman’s
article, I
guess

Recall we’re assume X/k has a base point x ∈ X(k). Let X(r) be the rth symmetric power of X, i.e.
X(r) = Xr/Sr. Then,

X(r)(k′) = deg r effective divisors on Xk′ .

Let D,D′ be two effective divisors of degree g = g(X). Then,

ℓ(D +D′ − g[x]) ≥ 1

by Riemann-Roch. An appropriate semi-continuity result ensures that

U :=
{
(D,D′) ∈ X(g) ×X(g) : ℓ(D +D′ − g[x]) = 1

}
is an open set. One can show that U is nonempty. Thus, if we have (D,D′) ∈ U , there is a unique (up
to scaling) function f ∈ L (D +D′ − g[x]). Note that

D′′ := div(f) +D +D′ − g[x]

is effective of degree g, so D′′ ∈ X(g). In this way, we get a map U ! X(g) which we think of as a rational
map

X(g) ×X(g) 99K X(g).

Now, Weil proved a general result saying that such a rational group law uniquely extends to an actual
group law, i.e. there exists a unique group variety J with a birational group homomorphism X(g) 99K J .
Finally, one shows that J actually represents G.

Many of the properties from the analytic theory carry over the algebraic theory.

Remark 10.24. Fix n prime to char(k). Get the Kummer sequence

0 −! µn −! Gm
n−−! Gm −! 0
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of sheaves on the étale site on Xk. This gives rise to an isomorphism

H1(Xk, µn)
∼
−! H1(Xk,Gm)[n] = Pic(Xk)[n] = Jac(Xk)[n].

Taking an inverse limit over n = ℓm for m≫ 0, we conclude

H1(Xk,Zℓ(1)) = Tℓ(Jac(X)).

Think of this as saying Hét
1 (Xk,Zℓ) = Hét

1 (Jac(X)k,Zℓ) (the seeming discrepancy with twisting here is
coming from H2

ét(Xk,Zℓ) = Zℓ(−1), it sounds like). ◦ TODO:
Convince
yourself this
makes sense

Remark 10.25. SupposeX ! S is a family of smooth, geometrically connected, projective curves. Further
assume it has a section, X(S) ̸= ∅. Can define G as before, and it will be represented by an abelian
scheme Jac(X)/S. ◦

Example. Say R is a dvr, K = FracR, and X/K a curve with Jacobian J = Jac(X). If X extends to a
smooth curve over R, then J has good reduction (The Jacobian of the extension of X will be an abelian
scheme extending J). △

11 Lecture 11: Criterion for rank 0

Goal. Prove Theorem 1.7.

Theorem 11.1 (Theorem 1.7). Let A/Q be an abelian variety. Suppose we have distinct prime numbers
p ̸= N with N odd, so that

• A has good reduction away from N

• A has completely toric reduction at N

• A[p](Q) has only trivial representation and cyclotomic character as its J-H constituents. We’ll see
in a bit,
that this is
equivalently
requiring
A[p]/Z to be
admissible

Then, A(Q) has rank 0.

The proof idea is similar to that of weak Mordell-Weil.

Recall 11.2. For weak MW, we showed there’s an injection A(Q)/nA(Q) ↪! H1(GQ, A[n]) with image
contained in some H1(GQ,S , A[n]) which is a finite group. In general, can take

S = {primes of bad reduction} ∪ {primes | n} ,

so in our case, we’ll be able to take S = {p,N}. ⊙

We’ll want to do even better than this. Let A be the Néron model of A/Z, and let Gn := A[pn], a
group scheme/Z. Then,

H1(GQ,S , A[p
n]) = H1

ét (SpecZ[1/(pN)], Gn) ,

i.e. the Galois cohomology used in weak-MW is really just étale cohomology on a punctured SpecZ.
Because of the ramification, we cannot use étale cohomology over all of SpecZ, but we will be able to
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use fppf cohomology. That is, there will be an injection

A(Q)/pnA(Q) ↪! H1
fppf(SpecZ, Gn).

The plan will be to show that the cardinality of the RHS is bounded, independent of n. This implies the
same for the LHS which forces rankA(Q) = 0.

Remark 11.3. I didn’t bother noting them in these notes, but there are quite a few places throughout the
proof where we really use the fact that we’re over Q (e.g. to freely apply Raynaud or to know PicOQ = 0).
Andrew drew attention to this during the lecture (and I think also in his notes online). ◦

11.1 Prelims on (pre-)admissible groups

Fix p,N for the rest of the lecture. Let’s start with some definitions.

Definition 11.4.

• A group scheme G/Z[1/N ] is pre-admissible if it is finite, flat, commutative, and killed by a power
of p. By Theorem

5.31, this
implies that
G is finite
étale over
Z[1/(pN)]

• A group scheme G/Z is pre-admissible if it is commutative, flat, killed by a power of p, quasi-finite,
finite over Z[1/N ], separated and of finite presentation. ⋄

Example. If A has good reduction away from N , then A[pn] is pre-admissible over Z. Here, A is the
Néron model of the abelian variety A. △

Definition 11.5. Let G/Z[1/N ] be pre-admissible. An admissible filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = G

is an ascending filtration by closed subgroups such that Fi/Fi−1 is Z/pZ or µp for all i. We say G is
admissible if it has an admissible filtration. We say G/Z is admissible if it is pre-admissible and
GZ[1/N ] is admissible. ⋄

We define similar notions for Galois modules. We let ΓQ := Gal(Q/Q) be the absolute Galois group.

Definition 11.6. A finite ΓQ-module M is admissible if there’s a filtration I guess M
an Fp[ΓQ]-
module0 = F0 ⊂ · · · ⊂ Fn =M

s.t. Fi/Fi−1 is a 1-dimensional Fp-vector space where ΓQ acts trivially or cyclotomically. ⋄

Proposition 11.7. Let G/Z[1/N ] be pre-admissible. Then, G is admissible ⇐⇒ G(Q) is admissible.

Proof. First assume G(Q) is admissible. Let V ⊂ G(Q) be the first step of an admissible filtration, and
let H0 ⊂ GQ be the subgroup corresponding to V . Let H = H0 ⊂ G be its closure. Over Z[1/(Np)], H As in Corol-

lary 5.23
(All group
schemes in
char 0 are
smooth)

is finite, étale and H(Q) is 1-dimensional over Fp, so H must be either µp or Z/pZ, depending on the
Galois action on H(Q). All of these things – i.e. all of HZ[1/(pN)], µi, Z/pZ – extend to finite, flat groups
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over Z[1/N ]. This is the situation in which Raynaud (Theorem 7.3) tells us the isomorphism extends, so
H = µp or H = Z/pZ over Z[1/N ].12 Now we win by induction. ■

Let’s attach some invariants to admissible groups.

Definition 11.8. Let G/Z be admissible. We define

• ℓ(G) := logp(#GQ), the length of G (length of an admissible filtration)

• δ(G) := logp(#GQ)− logp(#GFN
) (recall N is prime)

If G were finite + flat over Z, we’d have δ(G) = 0.

• α(G) := #Z/pZ’s in an admissible filtration of GZ[1/N ].

• hi(G) := logp #Hi
fppf(SpecZ, G) for i = 0, 1 ⋄

Let’s say a little about this flat cohomology.

Remark 11.9 (low degree fppf cohomology). Let G/S be a group scheme. A G-torsor is a scheme T/S
w/ a simply transitive G-action, i.e. for any x ∈ T (S′) the map G(S′)

∼
−! T (S′), g 7! gx is a bijection.

An fppf G-torsor is a G-torsor for which there exists an fppf cover S′ ! S so that T (S′) ̸= ∅. This first
fppf cohomology group is simply the set of all such torsors:

H1
fppf(S,G) = {isom classes of fppf G-torsors} .

Also, H0
fppf(S,G) = G(S). ◦

Definition 11.10. An admissible group G/Z is called elementary if it has length 1. ⋄

Example. Over Z[1/N ], there are two elementary admissible groups, Z/pZ and µp. △

Proposition 11.11 (See Theorem 9.4 and the remarks below it). Suppose H is a finite group scheme
over QN . The extensions of H to a pre-admissible group /ZN correspond to unramified Galois submodules
of H(QN ). In particular, if H(QN ) is 1-dimensional and unramified, there are two such extensions.

Corollary 11.12. There are 4 elementary admissible groups over Z:

Z/pZ, (Z/pZ)♭ , µp, µ
♭
p.

These have invariants as shown in Table 1.

Remark 11.13. Above, the flat sign ♭ denotes extension by 0. ◦

Exercise. Convince yourself that the first three lines of Table 1 are correct.

Computation of the last line of Table 1. We’ll need to use some facts about fppf cohomology we don’t
have time to prove. Write S = SpecZ.

12If p = 2, Raynaud doesn’t apply, but a theorem by Fontaine does instead. Also, note here that the K is the application
of Raynaud is K = Qp, so there is no ramification

63



Z/pZ (Z/pZ)♭ µp µ♭
p

δ 0 1 0 1
α 1 1 0 0

h0 1 0

{
1 if p = 2

0 otherwise.
0

h1 0 0

{
1 if p = 2

0 otherwise.


1 if p ̸= 2 and p | (N − 1)

1 if p = 2 and N ≡ 1 (mod 4)

0 otherwise.

Table 1: Invariants of the elementary admissible groups over Z

First note that H1
fppf(S,Z/pZ) = H1

ét(S,Z/pZ) since Z/pZ is étale over S. Indeed, if T/S is an fppf

torsor for Z/pZ, ∃S′ ét
↠ S s.t. TS′ = (Z/pZ)S′ , but then TS′ is étale over S′, so T must be étale over S

(by fppf descent for properties of morphisms). Since Z/pZ is a constant sheaf, we further have

H1
ét(S,Z/pZ) = Hom(πét

1 (S),Z/pZ),

but now πét
1 (S) = 1 (it’s the Galois group of the maximal unramified extension of Q).

Now, observe that we have a short exact sequence

0 −! (Z/pZ)♭ −! Z/pZ −! G −! 0

of sheaves on S. Furthermore, G above is just the pushforward of Z/pZ along the inclusion SpecFN ↪!

SpecZ = S. On cohomology, we get

0 H0
fppf(S,Z/pZ) H0

fppf(S,G) H1
fppf(S, (Z/pZ)♭) 0

H0
fppf(S, (Z/pZ)♭) Z/pZ Z/pZ H1

fppf(S,Z/pZ)

from which we quickly see that H1
fppf(S, (Z/pZ)♭) = 0.

Next up is µp. Start with the Kummer sequence

0 −! µp −! Gm
p−−! Gm −! 0

(this is exact in the fppf topology even when it’s not in the étale topology). Looking at cohomology, we
get

0 −! H0
fppf(S,Gm)/pH0

fppf(S,Gm) −! H1
fppf(S, µp) −! H1

fppf(S,Gm)[p] −! 0.

Note that Gm(S) = Z× = {±1}, so the pth power map on this group is a bijection when p odd (and trivial
when p even). Furthermore, H1

fppf(S,Gm) = PicS = 0 since Z is a PID. This completes the computation. fppf descent
tells you
that an fppf
Gm-torsor
is the same
thing as a
line bundle

This just leaves µ♭
p for which we look at the exact sequence

0 −! µ♭
p −! µp −! G −! 0
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where now G is the pushforward of µp along SpecFN ↪! SpecZ. Taking cohomology gives

H0
fppf(S, µp) H0

fppf(S,G) H1
fppf(S, µ

♭
p) H1

fppf(S, µp) H1
fppf(S,G)

µp(Z) µp(FN ) H0
fppf(S,Gm)/pH0

fppf(S,Gm)

When p is odd, we get H1
fppf(S, µ

♭
p) ≃ µp(FN ). When p is even, we get

H1
fppf(S, µ

♭
p) ≃ ker

(
H1

fppf(S, µp)! H1
fppf(S,G)

)
.

Since p = 2, we know H1
fppf(S, µp) ∼= Z/2Z, and now we need to think about what this map is doing.

Thinking through the Kummer theory, the nontrivial element of this group corresponds to the µ2-torsor
SpecZ[i] ! S obtained by adjoining a square root of −1. The above maps on H1

fppf’s is just restriction
along SpecFN ↪! S, so we want to know if SpecZ[i]×S FN is the trivial torsor or not, i.e. if SpecFN [i]

has an FN -point, i.e. if FN has a square root of −1. This holds iff N ≡ 1 (mod 4). ■

Proposition 11.14. Let G/Z be admissible. Then, h1(G)− h0(G) ≤ δ(G)− α(G).

Proof. The idea is simply to induct over an admissible filtration, so we only need to show the claim
behaves well in extensions. Suppose we have a short exact sequence

0 −! G1 −! G2 −! G3 −! 0.

This gives a long exact sequence

0! H0
fppf(G1)! H0

fppf(G2)! H0
fppf(G3)! H1

fppf(G1)! H1
fppf(G2)! K ! 0

with K ≤ H1
fppf(G3). Thus,

h1(G2)−h0(G2) = (h1(G1)−h0(G1))+ (logp(#K)−h0(G3)) ≤ (h1(G1)−h0(G1))+ (h1(G3)−h0(G3)).

In other words, h1 − h0 is sub-additive in short exact sequences. On the other hand, α, δ are additive
(directly from their definitions). Thus, the proposition will be true for G2 if its true for G1, G3, so it
suffices to check it for elementary admissible groups. Stare at Table 1. ■

11.2 Proof of Theorem 11.1

Let A be the Néron model of A/Z. Let A0 be the connected component of the identity. Let Gn = A◦[pn]. Question:
Why use
A0[pn] in-
stead of
A[pn]?

Answer: An-
drew an-
swers this.
Keep read-
ing

Remark 11.15. By assumption, A has good reduction away from N , so Gn is pre-admissible. Also by
assumption, A[p](Q) is an admissible Galois module, so A[pn](Q) is admissible also13. This implies that
Gn is admissible. ◦

We want to bound the flat cohomology of Gn. By the last proposition of the previous section, to do
this, it’ll be useful to compute the invariants of Gn:

13Induction with 0 ! A[p] ! A[pn]
p
−! A[pn−1] ! 0
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• ℓ(Gn) = 2gn where g = dim(A) (since A[pn]Q is finite (étale) or order (pn)2g)

• δ(Gn) = gn

(Gn)FN
= A0

FN
[pn] = µg

pn with the last equality holding since we have toric reduction. Thus,
#(Gn)FN

= gn.

• α(Gn) = gn

First note α(Gn) = nα(G1). This is because α is additive and Gn is an iterated extension of G1’s.
If p ̸= 2, then α(G1) is the number of Z/pZ’s in (G1)Fp

= AFp
[p], i.e.

α(G1) = logp
(
#AFp

[p]ét
)
.

This AFp [p] only has Z/pZ’s and µp’s and so AFp is ordinary. This forces it to have the same number
of Z/pZ’s and µp’s (think: Weil pairing), so α(G1) = g.

Remark 11.16. AFp
[p] only has Z/pZ’s and µp’s since G1 = A[p] is admissible, but we got admis-

sibility here just from our assumption on A[p](Q), so (ultimately via Raynaud), we’ve started with
some assumption on the Galois representation and concluded that this thing is ordinary mod p. ◦

Corollary 11.17 (by Proposition 11.14). h1(Gn)− h0(Gn) ≤ 0

We can do one better:
H0

fppf(S,Gn) = A0(Z)[pn] ⊂ A(Z)[pn] = A(Q)[pn].

Mordell-Weil tells us that A(Q) is a f.g. abelian group, so #A(Q)[pn] is bounded as n!∞. Thus,

Corollary 11.18. h1(Gn) ≤ O(1) as n!∞.

Now, we bring in our old friend the Kummer sequence

0 −! Gn −! A0 pn

−−! A0 −! 0.

Question 11.19. Why is A0 pn

−! A0 surjective?

Answer. Each fiber of A0 is p-divisible; they are all either abelian varieties or tori. This is not true for
A. At N , A is an extension of a torus by a finite group. If that finite group has some p-part to it, then
multiplication by pn won’t be surjective. ⋆

Taking cohomology of the Kummer sequence, one gets that

H0
fppf(SpecZ,A0)⊗ Z

pnZ
↪−! H1

fppf(SpecZ, Gn).

That is
#
(
A0(Z)⊗ Z/pnZ

)
= O(1) as n!∞

(i.e. this group has cardinality bounded independent of n).
Let C be the component group of A at N , so we have an exact sequence

0! A0(Z)! A(Z)! C.

66



Note that C is finite and A(Z) = A(Q) (by Néron mapping property), so A0(Z) is finite index in A(Q).
Thus, A0(Z) is finitely generated, so it must be finite ( ⇐= #A0(Z)/pnA0(Z) = O(1)), so A(Q) must
be finite, and we win.

12 Lecture 12: Modular curves over C

We finished the ‘first third’ of the class last time. We’ve been talking about the arithmetic of elliptic
curves/abelian varieties, but now we switch gears and start to talk about moduli of elliptic curves. We
work over C today, but eventually want moduli spaces over Z.

Let’s start by considering the set

Y (1) = {isom classes of elliptic curves/C} .

We’d like to give this the structure of an algebraic variety, but before that, let’s mention some other
moduli problems we’d like to be able to represent. Consider also the sets

Y1(N) = {isom classes of pairs (E,P ) where E an elliptic curve and P ∈ E has order N}

(here, an iso (E,P )
∼
−! (E′, P ′) is an iso f : E

∼
−! E′ with f(P ) = P ′),

Y0(N) = {isom classes of pairs (E,G) where E an elliptic curve and G ⊂ E cyclic of order N} ,

and

Y (N) = {isom classes of triples (E,P,Q) where E an elliptic curve and P,Q ∈ E[N ] a basis} .

Note we have natural maps
Y (N) −! Y1(N) −! Y0(N) −! Y (1).

12.1 Yblah(N) as a complex variety

Let’s start with Y (1). We know a description of it as a set. The j-invariant gives a bijection

j : Y (1)
∼
−! C.

We would use this to give Y (1) the structure of a complex variety (it looks like A1
C), but this approach

won’t work as well for the Yblah(N). Instead, it’s better to arrive at a complex structure via lattices.

Recall 12.1. Every elliptic curve E/C is of the form C/Λ with Λ ⊂ C a lattice. ⊙

You can always replace Λ by αΛ with α ∈ C×, so we may assume Λ = ⟨1, z⟩ with z ∈ C\R. Replacing
z by −z if necessary, we may assume it lies in the upper half plane

H := {z ∈ C : Im(z) > 0} .

Notation 12.2. Given z ∈ H, we let Λz := ⟨1, z⟩ ⊂ C and Ez := C/Λz.
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Note we have a surjective map
H −! Y (1)

τ 7−! Eτ.

Warning 12.3. This map is not injective. If

(
a b

c d

)
∈ SL2(Z), then ⟨1, z⟩ = ⟨az + b, cz + d⟩, so

(cz + d)
−1

Λz =

〈
1,
az + b

cz + d

〉
and hence Ez ≃ E az+b

cz+d
. •

Notation 12.4. Let Γ(1) := SL2(Z). For γ =

(
a b

c d

)
∈ Γ(1) and z ∈ H, we get

γz :=
az + b

cz + d
.

This defines an action Γ(1) ↷ H.

Theorem 12.5. The natural map H/Γ(1)! Y (1) is a bijection.

Proof. We already have surjectivity. For injectivity, suppose Ez ≃ Ez′ , i.e. Λz = αΛz′ for some α ∈ C×.
Then, we can write

1 = α(cz + d) for some c, d ∈ Z.

We must have gcd(c, d) = 1 since one can show 1/ gcd(c, d) ∈ Λz. Now pick a, b s.t. ad − bc = 1, so

γ :=

(
a b

c d

)
∈ Γ(1). Thus, Λz = αΛz′ = Λγ(z′). This says we can write

z = nγ(z′) +m and γ(z′) = n′z +m′ for some n, n′,m,m′ ∈ Z.

This implies z = nn′z + (nm′ +m). Taking imaginary parts, we see nn′ = 1, so n = n′ = ±1. Thus,
z = nγ(z′)+m = ±γ(z′)+m. Since z, γ(z′) ∈ H, the sign here must be positive, so z = γ(z′)+m = γ′γ(z′)

where

γ′ =

(
1 m

1

)
. ■

Thus we’ve seen two descriptions C = Y (1) = H/Γ(1). Let’s say a bit about these two. Pull the
j-invariant back to H

H −! C
z 7−! j(Ez).

If one writes things out explicitly, they can see that this is actually a holomorphic function on H (which
is invariant under Γ(1)). Alternatively, one can see that H/Γ(1) is a punctured genus 0 curve using
fundamental domains.

Fact. Γ(1) is generated by

(
1 1

1

)
and

(
1

−1

)
, giving the functions z 7! z + 1 and z 7! −1/z.
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i

ρ ρ+ 1

Figure 1: A fundamental domain for Γ(1) ↷ H. Here, ρ = exp(2πi/3)

Using the first of these, one can move any point z ∈ H to one with |Re(z)| ≤ 1
2 . Then, one can use

the second one to ensure |z| > 1. With this, one can show that

F :=

{
z ∈ H : |z| > 1 and − 1

2
≤ Re(z) ≤ 1

2

}
is a fundamental domain for Γ(1) ↷ H, pictured in Figure 1. The only Γ(1)-identifications in F are
between the two vertical sides (via z 7! z + 1) and between the two halves of the circular arc (with
positive/negative real part) via z 7! −1/z. Topologically, thinking about these boundary identifications,
the two vertical sides come together to form a cylinder, and the the arc identifications let you sew up the
base, so you end up with a flat plane.

Let’s move on from Y (1) to Y1(N). There’s a surjective map

H −! Y1(N)

z 7−! (Ez,
1

N
)

(recall Y1(N) is moduli of ECs w/ a given N -torsion point). Note that if γ ∈ Γ(1), then γz 7!
(
Eγz,

cz+d
N

)
.

This will be the same point of Y1(N) if N | c and d ≡ 1 (mod N). This motivates considering the group

Γ1(N) :=

{
γ ∈ Γ(1) : γ ≡

(
1 ∗
0 1

)
mod N

}
.

Theorem 12.6. The map H/Γ1(N)! Y1(N) is an isomorphism.

One gets similar results for Y0(N) and Y (N). Define

Γ0(N) :=

{
γ : γ ≡

(
∗ ∗

∗

)
(mod N)

}
and Γ(N) := {γ : γ ≡ 11 (mod N)} .

Then, H/Γ0(N)
∼
−! Y0(N) and H/Γ(N)

∼
−! Y (N).

12.2 YΓ

Setup 12.7. Let Γ ⊂ Γ(1) be any finite index subgroup. Define YΓ := H/Γ and let π : H ! YΓ be the
quotient map.

We can give YΓ the structure of a complex manifold. We say a function f : YΓ ! C is holomorphic if
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the pullback π∗f : H! C is holomorphic.

Fact. This makes YΓ a Riemann surface.

Warning 12.8. This is not entirely straightforward. If Γ ↷ H has fixed points, then this causes some
issues that need to be dealt with. •

There are other sorts of complications.

• YΓ is never compact

To remedy this, define H∗ := H∪ P1(Q). The points of P1(Q) are called cusps. We topologize this
by saying a nbhd basis at a cusp x ∈ P1(Q) consists of discs in H tangent to P1(R) at x. More
precisely, a nbhd basis of ∞ is given by sets

Uk := {z : Im(z) > K} ∪ {∞}

(and then get neighborhood bases at other cusps by translating these14 since Γ(1) ↷ P1(Q) transi-
tively).

Notation 12.9. XΓ := H∗/Γ

Fact. XΓ is a compact Riemann surface.

Note P1(Q)/Γ will be a finite set, so XΓ has finitely many cusps.

Exercise. Try and think about a moduli-theoretic interpretation of the cusps (we’ll talk about this more
later, but good to have it mind already).

12.3 Genera of XΓ

We want to understand the geometry of these Riemann surfaces a little. To do that, we’ll need to better
understand the actions Γ ↷ H∗. We start with the stabilizers

Γ(1)z := {γ ∈ Γ(1) : γz = z} .

Remark 12.10. Note that −1 ∈ Γ(1)z always, since(
−1

−1

)
z =

−z + 0

0z − 1
= z. ◦

Let
Γ(1) := Γ(1)/ {±1} .

Proposition 12.11. Γ(1)z ∼= Aut(Ez) (note, no bar on the Γ)

Proof. Consider some γ ∈ Γ(1)z and write γ =

(
a b

c d

)
. This defines a function g : Λz ! Λz sending

g(z) = az + b and g(1) = cz + d. Since γ(z) = z, we can write g(z) = az + b = z(cz + d). This means
that g is actually C-linear, and so induces an automorphism of Ez. One can reverse this reasoning to go
in the other direction. ■

14A nbhd basis of γ(∞) is γ(Uk) for γ ∈ Γ(1)
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Recall 12.12. Aut(Ez) = End(Ez)
× is the units of an order O in an imaginary quadratic field. Note

that

O× =


Z/4Z if O = Z[i]

Z/6Z if O = Z[ρ]

{±1} otherwise.

where ρ = e2πi/6. ⊙

Proposition 12.13. Say E/C is an elliptic curve. Then, End(E) = Z[i] =⇒ E ∼= Ei.

Proof. Write C/Λ with Λ a Z[i]-module. Since Λ is torsion-free over a Dedekind domain, it’s projective.
Since PicZ[i] = 0, Λ must be free, so Λ = αZ[i] = αΛi for some α. ■

Proposition 12.14. End(E) = Z[ρ] =⇒ E ∼= Eρ.

(Same proof)

Proposition 12.15. Say z ∈ H. Then,

• z ∈ Γ(1)i ⇐⇒ Γ(1)z = Z/2Z

• z ∈ Γ(1)ρ ⇐⇒ Γ(1)z = Z/3Z

• z ̸∈ Γ(1)i ∪ Γ(1)ρ ⇐⇒ Γ(1)z = 0

(up to action of Γ(1), only two problem points, ignoring cusps).

Problem 12.1. If z is a cusp, then Γ(1)z
∼= Z

Proof. All cusps are conjugate, so may take z = ∞. Then, z + n = z, so

(
1 n

1

)
∈ Γ(1)z. In general, if

γ =

(
a b

c d

)
∈ Γ(1), then

γ(∞) =
a

c

which equals infinity ⇐⇒ c = 0. This forces γ =

(
a b

a

)
with a = ±1, so ±γ is of the form

(
1 n

1

)
. ■

Now go back to some finite index subgroup Γ ⊂ Γ(1).

Definition 12.16. A point z ∈ H is elliptic for Γ if Γz ̸= 0 (its order is #Γz). ⋄

Only get elliptic points of order 2 or 3. If it has order 2, then z ∈ Γ(1)i and if it has order 3, then
z ∈ Γ(1)ρ (converses do not hold for Γ ̸= Γ(1)).

Proposition 12.17. Say Γ ⊂ Γ′ both finite index in Γ(1). Get induced map

f : XΓ ! XΓ′ .

Let z ∈ H with image p ∈ XΓ. Then, the ramification index of p for f is simply [Γ
′
z : γz].
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Proof. Choose neighborhood U ⊂ H of z stable under Γ
′
z. Consider the diagram

U/Γz XΓ

U/Γ
′
z XΓ′

The horizontal maps will be local homoeomorphisms. The left vertical is visibly generically [Γ
′
z : Γz]-to-

one. ■

Corollary 12.18 (genus formula). Let Γ ⊂ Γ(1) be an index d subgroup. Let ν2 be the number of
Γ-orbits of elliptic points of order 2, ν3 be defined similarly, and let ν∞ be the number of Γ-orbits of
cusps. Finally, let g = g(XΓ) be the genus of XΓ. Then,

g = 1 +
d

12
− ν2

4
− ν3

3
− ν∞

2
.

Proof. X(1) ∼= P1, so apply Riemann-Hurwitz to f : XΓ ! X(1) ∼= P1:

2− 2g = 2d−
∑
p∈XΓ

(ep − 1).

We only have ramification at the cusps and elliptic points. Let q2 be the image of i in X(1), let q3 be the
image of ρ in X(1), and let q∞ be the image of ∞ in X(1). This gives us 3 sums to compute.

For q2, elliptic points will be unramified (the index of the stabilizer groups is 1), while non-elliptic
points over q2 will have e = 2. The total number of points over q2 (counting w/ multiplicity) is d. Thus,
ν2 + 2#(ram pts) = d, so

#ram pts =
d− ν2

2
=⇒

∑
f(p)=q2

(ep − 1) =
d− ν2

2
.

A similar computation shows ∑
f(p)=q3

(ep − 1) =
2(d− ν3)

3
.

Over ∞, one writes ∑
f(p)=q∞

(ep − 1) =
∑

f(p)=q∞

ep −
∑

f(p)=q∞

1 = d = ν∞.

Put together, we have

2− 2g = 2d− d− ν2
2

− 2(d− ν3)

3
− (d− ν∞).

Rearrange to win. ■
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Example (Exercise). Fix N prime and take Γ = Γ0(N). In this, one gets

d = N + 1, ν∞ = 2, ν2 =


1 if N = 2

2 if N ≡ 1 (mod 4)

0 otherwise.

, and ν3 =


1 if N = 3

2 if N ≡ 1 (mod 3)

0 otherwise.

Thus,

g(X0(N)) =

⌊
N

12

⌋
+

−1 if N ≡ 1 (mod 12)

1 if N ≡ 11 (mod 12).

where N prime. e.g. if N ≤ 13, then g = 0 unless N = 11 (where g = 1). △

Example (Exercise).
g(X1(N)) = 0 ⇐⇒ N ≤ 12 and N ̸= 11.

These are exactly the values of N where an elliptic curve can have an N -torsion point over Q (by Mazur’s
theorem). This is not a coincidence. △

13 Lecture 13: Modular forms

Still working over C today. We’ll focus mostly on modular forms of level 1.

Recall 13.1.

H/Γ(1)
∼
−! {lattices in C} /homothety ∼

−! {isom classes of ECs} =: Y (1) ∼= A1. ⊙

Notation 13.2. We let L denote the set of lattices in C.

Recall 13.3. If γ =

(
a b

c d

)
∈ Γ(1), then Λγz = (cz + d)

−1
Λz. ⊙

Definition 13.4. A modular function is a meromorphic function on Y (1) (including at ∞). These
are all just rational functions in j (since X(1) ∼= P1). ⋄

A modular form will be a function on lattices which scales predictably under homothety.

Definition 13.5. A modular form of weight k is a function f : L ! C s.t.

(1) f(αΛ) = α−kf(Λ)

(2) z 7! f(Λz) is holomorphic on H

(3) (holomorphic at ∞) lim
z!∞

f(z) exists. We call this f(∞)

We let Mk denote the vector space of weight k modular forms. A cusp form is a modular form f with
f(∞) = 0. We let Sk denote the vector space of weight k cusp forms. ⋄

Let’s see a few perspectives on these things.

Abuse of Notation 13.6. For z ∈ H and f a modular form, we write f(z) := f(Λz). Note that, for
γ ∈ Γ,

f(γz) = f(Λγz) = f
(
(cz + d)

−1
Λz

)
= (cz + d)kf(z).
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Modular interpretation of modular forms Start with the space of lattices L . Over this, one has
the trivial vector bundle C×L . Below this, one can construct a natural family of elliptic curves E ! L

where
E := (C× L )/ ∼ where (z,Λ) ∼ (z′,Λ′) ⇐⇒ Λ = Λ′ and z ∈ Λ + z′.

These fit into a diagram
C× L E

L

Let w be a parameter on C. The differential dw on C×L descends to E . If α ∈ C×, it gives a homothety
α : L ! L with α∗(dw) = αdw, so this differential is not invariant under homothety. However, if f
is a weight k modular form, then f(dw)⊗k will be invariant under homothety, and so you expect it to
descend to the quotient.

Warning 13.7. To make this work properly, you need to work with stacks. Let π : E ! Y (1) be the
universal family (viewing Y (1) as a stack here). Define ω := π∗Ω

1
E/Y (1). This is a vector bundle on

Y (1) whose fiber over an elliptic curve [E] ∈ Y (1) is the space H0(E,Ω1
E) of holomorphic 1-forms. Now,

f(dw)k defines a section of ω⊗k over Y (1). This in fact defines a bijection (assuming you impose some
condition at ∞). More on this after discussing the moduli interpretation of cusps. •

Let’s try to say this more concretely. Say f is a modular form of weight k, let E be an elliptic curve,
and let ω ∈ H0(E,Ω1) be nonzero. We can write E ∼= C/Λ, and then get two elements

f(Λ)(dw)k, ωk ∈ H0(E,Ω1)⊗k

in this 1-dimensional vector space. Thus, they must differ from each other by a scalar, i.e.

f(Λ)(dw)k = F (E,ω)ω⊗k.

This F (−,−) thing has two properties

• If (E,ω) ∼= (E′, ω′), then F (E,ω) = F (E′, ω′)

• F (E,αω) = α−kF (E,ω)

• Some holomorphic condition

This F (−,−) gives another description of sections of ω⊗k.

A second interpretation of modular forms Say f : H ! C is a modular form, so f(γz) = (cz +

d)kf(z). Note that
γ∗(dz) = (cz + d)−2dz

with dz the differential on C. This is just an explicit computation. Thus, if f has weight 2k, then f(dz)k

is invariant under Γ(1), and so defines a meromorphic section of (Ω1)⊗k on X(1).
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Proposition 13.8. Pick x ∈ H with image y = π(x) ∈ X(1). Then,

ordy(ω) =


1

2
(ordx(f)− k) if x = i

1

3
(ordx(f)− 2k) if x = ρ

ordx(f)− k if x = ∞

and ordy(ω) = ordx(f) in all other cases.

Proof when x = i. Say z is a local parameter on H at x, and say w is one on X(1) at y. The projection
map π : H∗ ! X(1) is ramified with ramification index 2 at the point i. Hence, π∗(w) = z2 + . . . . Thus,
π∗(dw) = zdz + . . . . If ordy(ω) = n, then ω = wn(dw)k. Hence,

f(dz)k = π∗ω = z2n+k(dz)k,

so ordx(f) = 2n+ k. ■

Corollary 13.9.

M2k
∼=
{

sections ω of (Ω1
X(1))

⊗k

∣∣∣∣ordπ(i)(ω) ≥ −k
2 , ordπ(ρ)(ω) ≥ − 2k

3 , ordπ(∞)(ω) ≥ −k
ω is holomorphic elsewhere

}
(these conditions are what’s needed to ensure ord(f) ≥ 0 everywhere).

Corollary 13.10.

dimM2k =

⌊
k

6

⌋
+ ε where ε =

1 if k ̸≡ 1 (mod 6)

0 otherwise.

Proof. Let P = π(i), Q = π(ρ), and ∞ = π(∞). Let n = ⌊k/2⌋ and m = ⌊2k/3⌋. The previous corollary
says that

M2k = H0
(
P1, (Ω1)⊗k (nP +mQ+ k∞)

)
.

This bundle has degree
−2k + n+m+ k = n+m− k,

so dim(M2k) = 1 + n+m− k. Now one just simplifies. ■

Remark 13.11. The dimension of the space of cusp forms is always one less, since you add in one extra
condition (vanish at ∞). ◦

Example. dimM2 = 0. dimM2k = 1 if 2 ≤ k ≤ 5. dimM12 = 2. Similarly, dimS2k = 0 for k < 6 while
dimS12 = 1. △

13.1 Eisenstein series and ∆

At some point, we should probably write down some modular forms.
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Example. Say Λ ⊂ C is a lattice, and fix some even15 k ≥ 4. Set

Gk(Λ) =
∑′

λ∈Λ

1

λk
.

The prime ′ above means don’t include λ = 0 in the sum. Since k is big, this will have nice convergence
properties (exercise, I guess, if you want). It’s clear that Gk(αΛ) = α−kGk(Λ), so so far so good. Note
that

G(z) = G(Λz) =
∑′

n,m

1

(nz +m)k
.

This will be holomorphic in z (each term holomorphic + good convergence properties). Furthermore,

lim
z!∞

G(z) =
∑
m̸=0

1

mk
= 2ζ(k).

Thus, Gk is a (non-cuspidal) modular form of weight k, called the Eisenstein series of weight k.
For k < 12, this gives all modular forms of weight k since we know the dimensions of the spaces of

modular forms. In fact, more is true; one can show that⊕
k≥0

Mk
∼= Z[G4, G6]

as (graded) rings.
One can also define the normalized Eisenstein series of weight k

Ek :=
1

2ζ(k)
Gk. △

Remark 13.12. If f ∈Mk, it’s invariant under z 7! z + 1, so it has a Fourier expansion

f =
∑
n∈Z

anq
n where q = e2πiz.

Being holomorphic at ∞ means that an = 0 for n < 0. Being cuspidal means a0 = 0. ◦

Fact.
Ek(z) = 1− 4k

Bk

∑
n≥1

σk−1(n)q
n

where Bk is the kth Bernoulli number, defined by

x

ex − 1
=
∑
k≥0

Bk
xk

k!
,

and σk−1(n) =
∑

d|n d
k−1.

Example. Let ∆ = E3
4 − E2

6 . This is a modular form of weight 12. Since we normalized our Eisenstein
series, we have ∆(∞) = 0, so ∆ is a cusp form. Furthermore, ∆ ̸= 0 by looking at q-expansions

15If k odd, λ and −λ cancel out below, and you just get 0
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(∆ = q + . . . ). This ∆ is the unique (up to scaling) nonzero cusp form of weight 12. △

Fact (Jacobi). ∆(z) = q
∏

n≥1(1− qn)

13.1.1 In the modular interpretation

Recall 13.13. Every elliptic curve over C is isomorphic to some

Ea,b : y
2 = x3 + ax+ b.

Given u ∈ C×, there’s an iso φ : Ea,b
∼
−! Eu4a,u6b sending φ(x) = u2x and φ(y) = u3y. ⊙

Consider the differential ωa,b ∈ H0(Ea,b,Ω
1). Then,

φ∗ωu4a,u6b = u−1ωa,b.

Corollary 13.14. Given a pair (E,ω), there is a unique (a, b) s.t.

(E,ω) ∼= (Ea,b, ωa,b).

This let’s us define functions

E′
4(E,ω) := a and E′

6(E,ω) := b.

While we’re at it, let’s also define ∆′(E,ω) := discriminant of Ea,b. Note

(E,ω) ∼= (Ea,b, ωa,b) =⇒ (E, uω) = (Eu−4a,u−6b, blah),

so
E′

4(E, uω) = u−4E′
4(E,ω) and E′

6(E, uω) = u−6E′
6(E,ω) and ∆′(E, uω) = u−12∆′(E,ω).

Thus, these are modular forms under the moduli interpretation from before.

Fact. E′
4 = E4, E′

6 = E6 and ∆′ = ∆ (all up to scaling)

(Easiest way to see this is to appeal to dimension counts, I guess).

13.2 Higher Level Modular Forms

Most everything we’ve said carries over to an arbitrary finite index subgroup Γ ⊂ Γ(1).

Definition 13.15. Say Γ has level N if Γ(N) ⊂ Γ ⋄

Definition 13.16. A modular form of weight k for Γ is a function f : H! C s.t.

(1) f(γz) = (cz + d)kf(z) for all γ ∈ Γ

(2) f is holomorphic on H
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(3) f is holomorphic at the cusps16

f is a cusp form if it vanishes at every cusp. ⋄

Notation 13.17. We let Mk(γ), Sk(Γ) denote the spaces of modular/cuspidal forms of weight k for Γ.

These can be identified with sections of the Hodge bundle ω⊗k on XΓ (w/ certain conditions at
the cusps). Concretely, f defines a function {(E, ?, ω)} ! C (with ? auxiliary data determined by Γ)
satisfying certain transformation laws. Weight 2k modular forms will correspond to sections of (Ω1

XΓ
)⊗k

w/ certain local conditions.

Proposition 13.18 (Most important case). S2(Γ) ∼= H0(XΓ,Ω
1).

(Proof: exercise)
In particular, dimS2(Γ) = g(XΓ).

13.3 Hecke operators

Recall 13.19. L denote the set of lattices on C. ⊙

Notation 13.20. We let Z[L ] be the free abelian group on L .

Definition 13.21. Fix an integer n ∈ Z>0. Let T (n) : Z[L ]! Z[L ] be the operator determined by

T (n)[Λ] :=
∑

[Λ′:Λ]=n

[Λ′].

For α ∈ C×, we also define Hα[Λ] := [αΛ]. ⋄

Proposition 13.22.

(a) T (nm) = T (n)T (m) if (n,m) = 1

(b) T (pn+1) = T (p)T (pn)− pT (pn−1)Hp

(c) T (n) and T (m) commute for any n,m

Proof. (a) Say Λ′′ ⊂ Λ has index nm. By CRT, Λ/Λ′′ has a unique subgroup or order n, i.e. there’s a
unique Λ′ with Λ′′ ⊂ Λ′ ⊂ Λ with Λ′ index m in Λ. Thus,∑

[Λ′′:Λ]=nm

[Λ′′] =
∑

[Λ′:Λ]=m

∑
[Λ′′:Λ′]=n

[Λ′′].

This says T (n)T (m)[Λ] = T (nm)[Λ].
(b) We’ll only prove this when n = 1, i.e. we’ll show T (p)2 = T (p2) + pHp. Note

T (p)2[Λ]−
∑

Λ′′
p
⊂Λ′

p
⊂Λ

[Λ′′].

16It’s holomorphic at ∞ if lim
z!∞

f(z) exists. For other cusp x, write x = γ(∞) with γ =

(
a b
c d

)
∈ Γ(1), let g(z) =

(cz + d)−kf(γz), and then f is holomorphic at x ⇐⇒ g is holomorphic at ∞. If f is a modular form for Γ, then g is one
for γ−1Γγ
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This is equivalently

T (p)2[Λ] =
∑
Λ′′

p2

Λ

#

{
order p subgroups

of Λ/Λ′′

}
[Λ′′].

There are two groups of order p2, so

#such subgroups =

 1 if Λ/Λ′′ ∼= Z/pZ2

p+ 1 if Λ/Λ′′ ∼= Z/pZ× Z/pZ

(note second case ⇐⇒ Λ′′ = pΛ). On the other hand,

T (p2)[Λ] =
∑

Λ′′
p2

⊂Λ

[Λ′′].

From this, we see that T (p)2 − T (p2) = pHp.
(c) By (b), T (pn) is a polynomial in T (p) and Hp. Hence, T (pn) and T (pm) commute. Now, by (a),

we win. ■

Let’s now define an action of these Hecke operators on modular forms.

Definition 13.23. If f is a modular form for Γ(1) of weight k, then

(T (n)f)(Λ) = nk−1
∑

[Λ′:Λ]=n

f(Λ′)

(the nk−1 factor just makes some things nicer later on). ⋄

It’s clear that (T (n)f)(αΛ) = α−k(T (n)f)(Λ). To see that these preserve the holomorphic condition,
you can just explicitly compute their action on q-expansions.

Proposition 13.24. If f =
∑

n≥0 anq
n and p is prime, then

T (p)f =
∑
n≥0

(
apn + pk−1an/p

)
qn

(Above, an/p = 0 if p ∤ n).

(Can write a similar but uglier expression for general n)

Proof. I was too lazy to type it up... ■ TODO: Be
less lazy

This gives some big commuting algebra of operators acting on a finite-dimensional space of modular
forms. The utility of this is that it will enable us to find a basis of the space of cusp forms consisting of
things which are simultaneous eigenvectors for all these T (n)’s.

14 Lecture 14: Modular curves over Q

(Reference for today: Katz-Mazur ‘Arithmetic Moduli of Elliptic Curves’)
Let’s move from modular curves over C to them over Q.
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Recall 14.1. We talked about Y (1) as a Riemann surface whose points correspond to elliptic curves. ⊙

To make sense of this algebraically, we should first decide what the functor of points of Y (1) is. A
map S ! Y (1) should be a family of elliptic curves over S (equivalently, an elliptic curve over S).

Definition 14.2. An elliptic curve/S is a proper, smooth E ! S with a section 0 ∈ E(S) so that each
geometric fiber is a connected, genus 1 curve. ⋄

Consider the functor
FΓ(1)(S) := {isom classes of E/S} .

We would like FΓ(1) to be representable, and then we’d define Y (1) to be its representing object.

Warning 14.3. FΓ(1) is not representable. This is e.g. because the map FΓ(1)(Q) ! FΓ(1)(C) is not
injective (two non-isomorphic elliptic curves over Q can have the same j-invariant). However, if it were
representable (or even just a sheaf), this would be injective. •

Let’s take a bit of a closer look of why we don’t have injectivity.

Definition 14.4. We say E,E′/k are twisted forms of each other if Eks ∼= E′
ks . ⋄

The existence of such things is what’s obstructing representability.

Remark 14.5. Say E,E′/k are twisted forms, and pick an isomorphism φ : Eks
∼
−! E′

ks . For any
σ ∈ Gal(ks/k), φσ is another isomorphism Eks

∼
−! E′

ks , so we get ψσ := φσφ−1 ∈ Aut(Eks). One can
check that this is a cocycle and that there’s a bijection

{isom classes of twisted forms} ∼
−! H1(Gal(ks/k),Aut(Eks)).

Hence, these twisted forms are coming from non-trivial automorphisms. ◦

In general with moduli problems, if the parameterized objects have non-trivial automorphism groups,
you always get twisted forms and so the sheaf axiom always fails. This suggests that it might be helpful
to rigidify things (e.g. add level structure so there are no nontrivial automorphisms).

Example. Say we have an elliptic curve E/k with End(Eks) = Z, so Aut(Eks) = {±1} and the Galois
group acts trivially on this. Hence,

H1(Gal(ks/k), {±1}) = k×/(k×)2

by Kummer theory. Thus, the twisted forms of E correspond to square classes in k. Explicitly, if
E : y2 = f(x) and d ∈ k×, then the twist corresponding to d is given by E(d) : dy2 = f(x). △

Fix some integer N ≥ 2.

Assumption. Always assume N is invertible on whatever base we’re working over.

Definition 14.6. A Γ(N)-structure on E/S is a pair (P,Q) of E(S)[N ] which give a basis for the
N -torsion, i.e. the map

(P,Q) : (Z/NZ)2S ! E[N ]

is an isomorphism of group schemes (can check this on each geometric fiber). ⋄
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Exercise. If N ≥ 3 and f ∈ AutS(E) fixing a Γ(N)-structure, then f = id.

So elliptic curves equipped with Γ(N)-structure are rigid (when N ≥ 3). Define

FΓ(N)(S) := {isom classes of (E, (P,Q)) over S} .

The previous exercise (+ some general facts) imply that FΓ(N) is a sheaf17 for N ≥ 3.

Question 14.7. Is FΓ(N) representable?

14.1 FΓ(3) is representable

Start with E/S with a given Γ(3)-structure (P,Q).
Riemann-Roch says we can pick a function x on E w/ a pole of order 2 along the zero section, and

no other poles. This will be unique up to x 7! ax + b. You can similarly find a y w/ a pole of order 3

unique up to y 7! ay + bx+ c. These x, y satisfy an equation of the form

y2 + a1xy + a3y = h(x) (14.1)

where h is a cubic in x. The point P is 3-torsion, so 3[P ]− 3[0] is a principle divisor. This means it’s the
divisor a function with a pole of order 3 at 0 and a triple zero at P , but 1, x, y span the space of functions
with a pole of order ≤ 3 at 0 (and no other poles), so we may assume wlog that 3[P ]− 3[0] = div(y). We
can replace x ⇝ x − x(P ) to assume valP (x) ≥ 1. Since P is not 2-torsion, we can’t have valp(x) = 2

(otherwise, div(x) = 2[P ]−2[0]), so valP (x) = 1. Now, looking at equation (14.1), the LHS has valuation
≥ 3 at P while the RHS has valuation ≤ 3 at P . In order for these to match, the RHS must only have
an x3 term, so we have an equation of the form

y2 + a1xy + a3y = x3 with P = (0, 0).

The only ambiguity left in the choice of x, y is the scaling.
Now, let’s make use of Q. We can write 3[Q]− 3[0] = div(y −Ax−B).

Claim 14.8. A ∈ O×
S

Proof. Suffices to treat the case where S is a field, and then to show that A is nonzero. Suppose A = 0.
Then, y−B vanishes to order 3 at Q, so Q is the only 0 of y−B. This implies that x3−(B2+a1xB+a3B)

has only one root, so it must be

x3 − (B2 + a1xB + a3B) = (x− x(Q))3.

Comparing x2 coefficients then shows that x(Q) = 0. Plugging this in shows that y(Q) = 0 or y(Q) = −a3 This uses 3

being invert-
ible

which says Q = ±P , a contradiction. ■

Since A is a unit, replace y ⇝ y/A3 and x 7! x/A2 in order to assume A = 1 (Now, there’s no more
ambiguity in choice of x, y).

17Sheaf on SpecZ[1/N ]Fppf
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Note that we now know

x3 −
(
(x+B)2 + a1x(x+B) + a3(x+B)

)
= (x− C)3 where C = x(Q).

Comparing coefficients gives

3C = a1 + 1, − 3C2 = 2B + a1B + a3, and C3 = B2 + a3B.

The first two of these let’s us express a1, a3 in terms of B,C. The last equation then gives some relation
between B,C; specifically, it says B3 = (B + C)3.

Proposition 14.9. Given E/S with Γ(3)-structure (P,Q), we have shown there exists a unique pair of
functions x, y on E s.t.

(1) val0(x) = 2, val0(y) = 3, and x, y are regular elsewhere. Furthermore, y2/x3 = 1 at 0.

(2) valP (y) = 3 and valP (x) = 1

(3) valQ(y − x−B) = 3 for some B ∈ Γ(S,OS).

Furthermore, if C = x(Q), then (B + C)3 = B3 and E is given by the equation

y2 + a1xy + a3y = x3 where a1 = 3C − 1 and a3 = −3C2 −B − 3BC.

Finally, P = (0, 0) and Q = (C,B + C).

The above is a summary of what we have done. Now, we see that we can go backwards. Given
B,C, can define (E, (P,Q)) using the above equation. If ∆ ∈ O×

S , this will be an elliptic curve with
Γ(3)-structure.

This shows that elliptic curves with Γ(3)-structure over S are the same thing as giving B,C on S

satisfying one relation and having nonzero discriminant!

Theorem 14.10. Let
R := Z

[
1

3
, B,C

] [
1

∆

]/(
B3 = (B + C)3

)
.

Then, FΓ(3) is represented by SpecR.

We’d like a similar theorem for higher N , but this approach won’t work out so nicely in general.
However, there’s a neat trick where you use the result for N = 3 to get it for higher N .

14.2 FΓ(N) is representable

Proposition 14.11. Let E/S be an elliptic curve. We’ll consider a moduli problem relative to this
starting data. For an S-scheme S′/S, we set

G(S′) := {Γ(N)-structures on ES′} .

Then, G is represented by a finite étale scheme T/S.
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Proof. Start with T0 := E[N ] ×S E[N ]. This represents the functor picking out two points of order N .
The Weil pairing gives a map T0 ! (µN )S . Inside the target, one has the subscheme (µprim

N )S of primitive
roots of unity. Just take T := T0 ×(µN )S (µprim

N )S ; this is the closed subscheme of T0 consisting of pairs
of points with Weil pairing a primitive root of unity. Since T ⊂ T0 is closed and T0/S is finite étale, we
conclude that T/S is finite étale as well. ■

Theorem 14.12. Suppose that 3 ∤ N . Then, FΓ(3N) is representable by a smooth, affine scheme Y (3N)

over Z[1/(3N)].

Proof. Start with T
fin.ét
−−−! Y (3), the space of Γ(N)-structure on the universal curve over Y (3). A map

S ! T is equivalently a map S ! Y (3) along with a lift S ! T of it; from this, we see that

HomZ[1/(3N)](S, T ) ∼=
{

isom classes of E/S with
Γ(3)-structure + Γ(N)-structure

}
.

By Chinese Remainder Theorem, this is the same thing as giving a Γ(3N)-structure. Thus, we win. ■

Remark 14.13. Here’s one way to think about what just happened. The Proposition 14.11 is giving a
‘relative representability’ result; if you already have an elliptic curve, then specifying a Γ(N)-structure
is a representable task. Theorem 14.12 is now saying something like if you have something representable
and something relatively representable over it, then the thing upstairs is itself representable. ◦ If X is a

stack, X
is a scheme,
and X ! X

is a mor-
phism rep-
resentable
by schemes,
then X must
be a scheme
(since
X ≃ X×XX)

This only takes care of level divisible (exactly once) by 3, so we’d like to get rid of that 3. Here’s how
things might work: on Y (3N) there’s an action of GL2(Z/3Z) by moving around the level 3 structure,
and the quotient should be Y (N).

Warning 14.14. This strategy has to fail when N = 1, so there must be some subtlety. •

Proposition 14.15. Say N ≥ 4 is prime to 3. Then, GL2(Z/3Z) ↷ FΓ(3N) freely, and

FΓ(3N)/GL2(Z/3Z)
∼
−! FΓ(N)

as sheaves.

Proof. There’s an obvious map FΓ(3N)/GL2(Z/3Z)! FΓ(N), so just need to show the action is free and
that this map is a bijection. Suppose thatE, (P,Q)︸ ︷︷ ︸

Γ(3)

, (P ′, Q′)︸ ︷︷ ︸
Γ(N)

 ∈ FΓ(3N)

is fixed by g ∈ GL2(Z/3Z). This means there’s an automorphism f : E
∼
−! E taking (P,Q) to g(P,Q) and

(P ′, Q′) to (P ′, Q′). Since N ≥ 4 (in particular, it’s ≥ 3) and this fixes (P ′, Q′), we must have f = idE .
This then forces g = 1 which proves freeness.

Let’s show the map of sheaves is surjective. Say we have E/S with a Γ(N)-structure. We need to
extend this to a Γ(3N)-structure, but we can do so after passing to a cover. By Proposition 14.11, there
exists some finite étale T ! S with a universal Γ(3) structure for E. Now, ET has a Γ(3)-structure and
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a Γ(N)-structure, so gives an element of FΓ(3N)(T ) (locally) lifting the element of FΓ(3)(S) we started
with.

Injectivity is clear. Any two elements of FΓ(3N) getting identified in FΓ(N) must be off by an element
of GL2(Z/3Z). ■

Corollary 14.16. Suppose N ≥ 4 and prime to 3. Then, FΓ(N) is representable by a smooth affine
scheme /Z[1/(3N)].

Proof. GL2(Z/3Z) acts freely on Y (3N), so we define Y (N) to be the quotient. This will be a smooth,
affine scheme representing FΓ(3N)/GL2(Z/3Z) = FΓ(N). ■

Warning 14.17. The argument above only works with 3 inverted since we started with FΓ(3N) even
though 3 ∤ N . We’d prefer to get Y (N)/Z[1/N ]. •

The main result is the following

Theorem 14.18. For any N ≥ 3, FΓ(N) is represented by a smooth affine scheme over Z[1/N ].

Proof Sketch. First do a base in level 2 explicitly. You can’t do Γ(2) since Y (2) is genuinely not a scheme
(it’s not a sheaf), but you could do some modification of it or even do Γ(4) if you wanted.18

Then use the same sort of tricks to get hat if N ≥ 3 and prime to 2, then FΓ(N) is representable as a
smooth affine scheme over Z[1/(2N)]. Now, if N is prime to 6, you can glue to get the thing you want
over Z[1/N ].

You then need some more work to remove the “N prime to 6” hypothesis. ■

There are other, more abstract ways to prove this theorem that don’t rely on the tricks we’ve been
using.

14.3 Stacks

The kind of stuff we’ve seen works well when there are no automorphisms in the moduli problem. When
there are automorphisms, the right thing to do is to use stacks. We won’t say too much about these, but
will say a little.

The problem with FΓ(1) is that if we have E/ks ∈ FΓ(1)(k
s)Γk (i.e. it’s isomorphism class is Galois-

invariant), then for any σ ∈ Gal(ks/k), there exists an iso σ∗(E)
∼
−! E. The issue is that there’s no

required compatibility between these isomorphisms for different σ, so you can’t get descent data and
can’t necessarily go down to the base field. When there are no automorphisms, the cocycle condition is
automatic.

In general, one passes from the set of isomorphism classes to the entire category (groupoid) of objects
and isomorphisms. This is the idea behind stacks.

Definition 14.19. A stack (on a topological space or on a site) is a rule F that assigns to every open
U a groupoid F (U) and every inclusion U ′ ↪! U s restriction function F (U)! F (U ′). We require that

18See here for one place with this done in detail
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for U ′′ ⊂ U ′ ⊂ U , there’s a 2-commutative diagram (so α a natural transformation of functors)

F (U) F (U ′)

F (U ′′)

α

Finally, it should satisfy some analogue of the sheaf conditions, e.g. gives a cover U =
⋃

i∈I Ui and objects
Xi ∈ F (Ui) with isomorphisms φij : Xi|Uij

∼
−! Xj |Uij

satisfying the cocycle condition φijφjk = φik (over
Uijk), then these glue to some X ∈ F (U). ⋄

(Compare the above definition with the definition of a sheaf)

Example. Say G is a finite group acting on a variety X. We can try to form the quotient X/G, but
this isn’t always the nicest thing if G has fixed points. For example, the fibers of X ! X/G don’t always
have cardinality #G. However, there’s always a nice quotient stack [X/G]. The stabilizers of points of
X will be the automorphism groups of the corresponding point of [X/G]. To actually define [X/G] as
a stack, we’d need to specify, for each scheme Y , the groupoid of maps Y ! [X/G]. If one does this
correctly, then they’ll see (essentially by definition) that if Y ! [X/G] is a map, then the fiber product
Y ×[X/G] X is actually a scheme and is moreover a G-torsor over Y .

In fact, the groupoid of maps Y ! [X/G] is, by definition, the groupoid of triples (T, f, g) where T is
a scheme with G-action, f : T ! Y makes T a G-torsor over Y , and g : T ! X is a G-equivariant map,
i.e. the groupoid of pictures

T X

Y [X/G].

g

f △

Not all stacks are nice, geometric objects (compare: not all sheaves are schemes).

Definition 14.20. A Deligne-Mumford stack if a stack X for which there exists a scheme X̃ and a
map X̃ ! X so that, for any map Y ! X from a scheme, the fiber product

X̃ ×X Y X̃

Y X

exists as a scheme, and the natural map X̃×X Y ! Y is both étale and surjective. One says that X̃ ! X I’m not
100% sure
this is the
correct defi-
nition. I feel
like usually
one lets this
fiber prod-
uct be an
algebraic
space in gen-
eral

is an étale cover of X. ⋄

We not let FΓ(1)(S) be the groupoid of elliptic curves over S. Then,

Y (N)! FΓ(1)
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is an étale cover over Z[1/N ]. The point is that, given S ! FΓ(1) (i.e. given an E/S), the fiber product

T Y (N)

S FΓ(1)

⌜

is the space of Γ(N)-structures on E/S, i.e. it is the (finite, étale) scheme T from Proposition 14.11!
Hence, Y (1) := FΓ(1) is a DM stack.

[A mistake from two lectures ago] Recall Y (N) = {(E, (P,Q))}. Note that there is a map

Y (N)↠ µprim
N which sends (E, (P,Q)) 7! eN (P,Q)

(eN (−,−) the Weil pairing). Hence, Y (N) is not connected; it has one connected component for each
primitive root of unity.

Two lectures ago we said Y (N) = H/Γ(N) (over C), but this can’t be the case since the RHS is
connected. What is true is that Y (N)ζ = H/Γ(N) after fixing some ζ ∈ µprim

N .

Definition 14.21. A Γ1(N)-structure on E/S is some P ∈ E[N ](S) of order N . ⋄

One can define the stack FΓ1(N) of elliptic curves with Γ1(N) structures and similarly prove.

Proposition 14.22. Y1(N) := FΓ1(N) is always a smooth DM stack over Z[1/N ]. If N ≥ 4, it’s in fact
a smooth, affine scheme.

Definition 14.23. A Γ0(N)-structure on E/S is a finite étale subgroup G ⊂ E which is cyclic of order
N on each fiber. ⋄

Theorem 14.24. Y0(N) := FΓ0(N) is always a smooth DM stack over Z[1/N ].

These are never schemes since multiplication by −1 always gives an automorphism.

15 Lecture 15: Modular curves over Z

Last time we discussed modular curves as schemes and then as stacks. The stack we called Y0(N) last
time, we’ll instead call M0(N) this time.

Recall 15.1. M0(N) is the stack over Z[1/N ] which assigns to a Z[1/N ]-scheme S, the groupoid of pairs
(E,G) with E/S an elliptic curve and G ⊂ E a closed subgroup which is finite, étale over S and which is
cyclic of order N in each fiber. This is the stack parameterizing elliptic curves with Γ0(N)-structure. ⊙

M0(N) is a smooth DM stack, i.e. it has an étale cover by a scheme. Explicitly, for p ∤ N , we define
a moduli functor

Y (S) :=

isom classes of tuples ( E︸︷︷︸
elliptic curve

, G︸︷︷︸
Γ0(N)-structure

, (P,Q)︸ ︷︷ ︸
Γ(p)-structure

)

 .
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If p > 2, then Γ(p)-structures are rigid, so this Y will be a scheme (think, analogue of Proposition 14.11).
The étale cover is then the natural map

Y !M0(N)

forgetting the Γ(p)-structure. In fact, M0(N) ≃ [Y/GL2(Z/pZ)] (as stacks over Z[1/(pN)]) is a quotient
stack.

One can also consider the scheme quotient Y/GL2(Z/pZ) instead of the stack quotient. One can show
that (over Z[1/(pN)]) this represents the (sheafification) of the functor

S 7−! |M0(N)(S)|

sending S to the set of isomorphism classes of the groupoid of maps S !M0(N). Using different p’s, one
gets that the sheafification of S 7! |M0(N)(S)| is represented by a scheme M0(N) = Y0(N) over Z[1/N ].
We call Y0(N) the coarse space19 of M0(N). Question:

Does the
coarse space
of a stack
X always
represent
the sheafi-
fication of
the functor
S 7! |X(S)|?

Answer: No,
see e.g. here
and/or here

Remark 15.2. This Y0(N) is smooth and affine ◦

Question:
Is it clear
that this is
affine?

Answer:
The map
Y ! Y (p)

is certainly
quasi-finite.
I suspect
it’s not too
hard to
check that
it’s proper
using the
valuative cri-
terion. As-
suming this,
Y is finite
over Y (p)

and so affine
(since Y (p)

is). Hence,
Y0(N) is
affine too

The coarse space has the advantage that it’s a scheme, not a stack, but it has the disadvantage that
it doesn’t support a universal family.

Example. When N = 1, the coarse space is the j-line M0(1) =M(1) = Y (1) = A1. △

(Andrew mentioned that the fundamental group of M(1) is like the profinite completion of SL2(Z))

15.1 Compactifying modular curves (over Z[1/N ])

(Reference: Deligne-Rapoport article in ‘Modular Functions of One Variable II’)

15.1.1 Level 1

First consider the level 1 case.

Recall 15.3 (over C). Over C, we had Y (1) = H/Γ(1) which is missing a point. To through this in, we
formed X(1) = H∗/Γ(1) where H∗ = H ∪ P1(Q). Since Γ(1) ↷ P1(Q) transitively, forming X(1) only
adds one more point to Y (1). ⊙

Recall 15.4 (Valuative criterion for properness). Say X/C is a scheme of finite presentation. Then, X
is proper iff for all dvrs A/C with fraction field K = Frac(A), every K-point of X extends uniquely to
an A-point. ⊙

This suggests that compactifying modular curves is related to extending elliptic curves / dvrs. This
is something we know a bit about.

Recall 15.5 (Semi-stable Reduction Theorem 8.8). Let A be a dvr and let K = Frac(A). Let E/K be
an elliptic curve. Then, there exists an extension K ′/K s.t. EK′ extends over A′ to an elliptic curve with
semi-stable reduction (i.e. good or multiplicative reduction). ⊙

19Assuming I’m not mistaken, the ‘coarse space’ of a stack X, if it exists, is an algebraic space X with a map X ! X so
that X(k) =

∣∣∣X(k)∣∣∣ for k any field, and X ! X is initial among maps from X to algebraic spaces. These often exist by the
Keel-Mori theorem (e.g. always exist for separated DM stacks)
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Figure 2: A picture of the standard 3-gon

So if we have an elliptic curve over with good reduction, we’re happy (it extends an elliptic curve
over A, an A-point of the moduli space), but if it has multiplicative reduction, then it doesn’t extend to
an A-point since we don’t have nodal cubics in our moduli space. This suggests that the missing point
should precisely be the nodal cubic.

Definition 15.6. Fix an integer n ≥ 1. The standard n-gon Cn is the quotient of P1 × Z/nZ where
(∞, i) = (0, i+ 1) for all i ∈ Z/nZ, see Figure 2. ⋄

Remark 15.7. The standard n-gon only has nodal singularities. In particular, the standard 1-gon is a
nodal cubic (P1 with 0,∞ identified). ◦

Remark 15.8. Csm
n = Gm × Z/nZ is a group, obtained by removing the nodes. Furthermore, the action

of Csm
n on itself extends to action on all of Cn.20 Furtherfurthermore, Csm

n [n] has order n2 and fits into
a short exact sequence

0 −! µn −! Csm
n [n] −! Z/nZ −! 0

with µn in the identity component of Csm
n . ◦

Definition 15.9. A generalized elliptic curve over S is a tuple (E,+, 0) where E/S is proper + flat
(of finite presentation?), 0 ∈ E(S) (landing in the smooth locus?) and + : Esm × E ! E s.t.

(1) + gives Esm the structure of a group (with identity 0?) and defines an action of Esm on E

(2) The geometric fibers are all either elliptic curves or n-gons. ⋄

We use this to define a new moduli stack. We let M(1) be the stack attaching to a scheme S, the
groupoid of generalized elliptic curves /S whose geometric fibers are either elliptic curves or 1-gons.

Theorem 15.10. M(1) is a proper, smooth DM stack over Z.

Remark 15.11. The valuative criterion for properness for DM stacks allows for finite extensions of DVRs
before filling in a point. Hence, this properness statement really is Theorem 8.8. ◦

Question 15.12 (Audience). What does smoothness mean for a DM stack?

Answer. It means you have an étale cover by a smooth scheme. Alternatively, there’s also a character-
ization in terms of an infinitesimal lifting criterion; for curves, there’s no H2 and so deformation theory
tells you there’s no obstruction to lifting, so you can also prove smoothness that way. ⋆

20The Gm parts fixes the singular points while the Z/nZ parts cyclically permutes them

88



15.1.2 Higher Level

Definition 15.13. A Γ0(N)-structure for a generalized elliptic curve E/S is a finite, flat (over S)
subgroup G ⊂ Esm which is cyclic of order N . ⋄

The definition of M0(N) should be related to Γ0(N)-structures on generalized elliptic curves, but
there’s some subtlety...

Remark 15.14 (Cusps of X0(N)). Say N is prime. The cusps of X0(N) = H∗/Γ0(N) are P1(Q)/Γ0(N).

One can show that P1(Q)/Γ0(N)
∼
−! P1(FN )/G where G ≤ GL2(FN ) is the Borel G =

{(
∗ ∗

∗

)}
. This

acts by linear maps (x 7! ax+ b), so there are 2 cusps (∞ and 0) on X0(N) (when N prime, maybe also
N > 2). ◦

Warning 15.15. The standard 1-gon has only one Γ0(N)-structure: µN ⊂ C1. We need to add two
C-points to get the right compactification, so it won’t be enough to just consider 1-gons anymore. •

We go up to N -gons: CN has two Γ0(N)-structures, up to isomorphism. It has µN ⊂ C0
N and

Z/NZ ⊂ CN . This looks good. However, for technical reasons, you want your level structure to hit every
irreducible component. Hence, the cusps should really be The conven-

tion below
is the one
Mazur uses
in his paper.
It sounds
(see video
for Lecture
18) like this
convention
is backwards
from the
standard
one, so we’ll
later use
the opposite
convention
for naming
the cusps

µN ⊂ C1︸ ︷︷ ︸
0

and Z/NZ ⊂ CN︸ ︷︷ ︸
∞

.

We define M0(N) (for any N , prime or not) to be the stack s.t. for any scheme S, M0(N)(S) is the
groupoid of (E,G) with E/S a generalized elliptic curve, and G is a Γ0(N)-structure meeting each
irreducible component in every geometric fiber.

Fact. This funny condition on G is equivalent to saying that the divisor defined by G is ample.

Theorem 15.16. M0(N) is a proper, smooth DM stack over Z[1/N ].

Let’s talk about maps. Suppose N ′ | N . Then, Γ0(N) ⊂ Γ0(N
′) so you get a map

X0(N) = H∗/Γ0(N) −! H∗/Γ0(N
′) = X0(N

′).

How to see this as a map M0(N)!M0(N
′)?

Remark 15.17. This is easy before compactifying. If (E,G) ∈ M0(N), there ∃!H ⊂ G of order N ′, so
map (E,G) 7! (E,H). ◦

Say (E,G) ∈ M0(N). We again have a unique H ⊂ G of order N ′. We can’t make (E,G) 7! (E,H)

since we need our subgroup to meet every component of each fiber. Hence, we just contract the fibers
not meeting H, i.e. we let E be E with components not meeting H contracted, and then we map
(E,G) 7! (E, img of H).

Remark 15.18 (Algebraic construction of E). Say f : E ! S is the structure map. Note that, since G is
ample,

E ≃ ProjS

⊕
n≥0

f∗ (OE(nG))

 .
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To form the contraction, we instead take21 Question:
Why does
this corre-
spond to
contracting
the compo-
nents not
meeting H?

Answer:
See e.g.
Theorem
6.7/1 of
‘Néron
Models’
by Bosch,
Lutke-
bohmert,
Raynaud.
The vague
intuition
is that
OE(nH) is
the trivial
bundle when
restricted
to any
component
not meeting
H, and so
sends those
compo-
nents to
Proj(

⊕
n≥0 O) =

ProjSym∗ O =

SpecO

E := ProjS

⊕
n≥0

f∗OE(nH)

 . ◦

15.2 Working over Z

We’ve been assuming that N is invertible so the N -torsion is étale. Now we work over Z (not Z[1/N ]),
and so N -torsion will no longer always be étale.

Warning 15.19. Elliptic curves over Fp can have too little p-torsion, e.g. if E/Fp is supersingular, then
E(Fp)[n] = 0. What is a Γ(p)-structure on E? •

There’s a solution to this problem that Drinfeld came up with, called ‘Drinfeld level structures.’ We
won’t actually talk about this; for our purposes, we only need X0(N) to be defined over Z, so we’ll do
something that works in this particular case.

Assumption. Assume N is squarefree.

Definition 15.20. Let E/S be a generalized elliptic curve. A Γ0(N)-structure on E is a closed subgroup
G ⊂ E which is finite, flat over S of order N . We define M0(N) where M0(N)(S) is the groupoid of
(E,G) w/ G meeting each irreducible component in every fiber. ⋄

Theorem 15.21. M0(N) is a proper, flat DM stack over Z. Question: Is
flatness easy
to show?

When N is inverted, this reverts to the previous thing we were talking about. Note that it is smooth
over Z[1/N ], but not over all of Z.

Remark 15.22. Can do this for any N , but

(1) Need to define what it means for a group scheme to be “cyclic” (e.g. should you allow αp×αp, αp2 ,
etc.?)

(2) If p2 | N , there exists a generalized elliptic curve w/ Γ0(N)-structure s.t. µp ⊂ Aut group. Points
on DM stacks have étale automorphism groups, so M0(N) won’t be DM (but it will be an Artin
stack) ◦

Remark 15.23. Katz-Mazur worked out the theory of these Drinfeld level structures in a lot of detail in
their book, but didn’t really give a moduli theoretic interpretation of the compactifications. They were
just working with things like Y0(N), but over all of Z. Deligne-Rapoport did the compactified theory,
but were working over Z[1/N ]. The compactified theory over Z was worked out by Brian Conrad. ◦

Remark 15.24 (properness). Say K = FracA and we have E/K w/ G a Γ0(N)-structure. May assume
E has semi-stable reduction and that the points of G are defined over K. Let E be the minimal regular
model, and let G be the closure of G in E (this lands in E

sm
since E

sm
is the Néron model and all K

points extend to the Néron model). Since it’s semi-stable, the special fiber of the minimal regular model
will be one of these N -gons. This G may not meet all irreducible components, so contract the ones it
doesn’t meet. This gives the desired extension. ◦

21This footnote is an extension of the marginal comments here. I think (!) you can think of this as looking at the image
of the map to projective space induced by OE(nH) (for some n ≫ 0). Hence, it will be an embedding on components
meeting H (where it restricts to a very ample bundle) and constant (i.e. a contraction) on components not meeting H
(where OE(nH) restricts to the trivial bundle)
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Question 15.25. What’s this M0(N) look like in bad characteristic?

Suppose p | N (N squarefree) and let N ′ := N/p (so p ∤ N ′). We want to look at M0(N)Fp
.

Remark 15.26. Let E/k be an elliptic curve with k = k and char k = p.

• If E is supersingular, then E[p] is an extension of αp by αp.22 It only has 1 subgroup of order p,
which is αp (= ker(F ), the kernel of Frobenius).

• If E is ordinary, then23 E[p] = Z/pZ× µp and so has exactly two subgroups of order p: Z/pZ and
µp (= ker(F )). The kernel

of Frobe-
nius is al-
ways picking
out the non-
étale Γ0(p)-
structure,
even for
standard
n-gons (it
gives the
µp), see I
think Propo-
sition 6.6

In particular, there’s always a canonical Γ0(p) structure you can put on it, given by the kernel of Frobenius.
◦

This suggests that there should be a map M0(N
′)Fp

! M0(N)Fp
(where you add the kernel of

Frobenius). In fact, there are two such maps. Define

f, g : M0(N
′)Fp
⇒M0(N)Fp

as follows.

Recall 15.27. For E/S, we have the Frobenius F : E ! E(p) whose dual isogeny is the Verschiebung
V : E(p) ! E. ⊙

Say we have (E,G) ∈ M0(N
′)Fp

. Then we set

f(E,G) := (E,G, ker(F )) and g(E,G) :=
(
E(p), V −1(G)

)
.

Let’s now define
f ′, g′ : M0(N)Fp

⇒M0(N
′)Fp

in the opposite direction. These will be

f(E,G,H) = (E,G) and g(E,G,H) = (E/H, image of G in E/H),

where E a generalized EC, G a Γ0(N
′)-structure, and H a Γ0(p)-structure.

One has
f ′f = id = g′g and f ′g = Frob on M0(N

′)Fp
= g′f.

Remark 15.28. The picture to have in mind is that M0(N)Fp
is two copies of M0(N

′)Fp
glued along their

supersingular loci (via the Frobenius map). ◦

Example. Say N ′ = 1, so M0(N
′)Fp = P1

Fp
. Then, the above says M0(p)Fp is just two copies of P1 glued

along a finite set of pts (the finitely many supersingular j-invariants).

22“It’s not αp2 , not αp × αp, and not the kernel of Frobenius on the second Witt scheme; it’s the other extension of αp

by αp”
23Get Z/pZ ↪! E[p] since k = k, and so get exact sequence 0 ! Z/pZ ! E[p] ! µp ! 0 since E[p] is Cartier self-dual.

This sequence must split since there’s also the connected-étale sequence 0 ! µp ! E[p] ! Z/pZ ! 0
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This has the following fun consequence. M0(p)Fp
is a nodal curve (compare Proposition 19.7) with

nodes in bijection with supersingular elliptic curves over Fp (recall a supersingular E/Fp has exactly one
Γ0(p)-structure, given by αp ↪! E[p]). In general, given a nodal curve C, its arithmetic genus is given by
the genus formula for nodal curves

pa(C) =
∑
i

gi + δ − ν + 1

(where gi ranges over the geometric genera of C’s irreducible components, δ is the number of nodes, and
ν is the number of irreducible components). In the present case, this says that

pa(M0(p)Fp
) = (0 + 0) + δ − 2 + 1 = δ − 1 =⇒ #supersingular j-invariants = δ = pa(M0(p)Fp

) + 1.

Furthermore, since M0(p) is flat over Z, all its fibers have the same (arithmetic) genus. Thus, the number
of supersingular j-invariants over Fp is one more than the genius of the classic modular curve/Riemann
surface X0(p), i.e.

#supersingular j-invariants/Fp = g(X0(p)) + 1 =
⌊ p
12

⌋
+


0 if p ≡ 1 (mod 12)

2 if p ≡ 11 (mod 12)

1 otherwise.

(15.1)

△

16 Lecture 16: Structure of the Hecke algebra

Everything today is over C.

Recall 16.1. Say f is a modular form for Γ(1) of weight k. We defined the Hecke operator Tn via

(Tnf)(Λ) := nk−1
∑

[Λ:Λ′]=n

f(Λ′).

The same formula defines Tnf if f is modular for Γ0(N) and (n,N) = 1. These satisfy

• These Tn commute with each other

• If (n,m) = 1, then Tnm = TnTm

• Tpn+1 = TpTpn − pTpn−1

• If f =
∑∞

n=1 anq
n and p is prime, then

Tpf =
∑
n≥1

(
anp + pk−1an/p

)
qn.

In particular, a1(Tpf) = ap(f). In general, a1(Tnf) = an(f) if (n,N) = 1. ⊙
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Notation 16.2. Let T̃ := Z[Tp] be the (formal) polynomial ring in the Tp’s. Let T be the image of T̃ in
End(S2(N)), where S2(N) is the space of weight 2 cusp forms for Γ0(N). We let TQ be the Q-span of T,
and we let TC be the C-span of T.

(in this class, we’ll mainly be interested in weight two forms)

Goal. Understand T

16.1 Petersson inner product

Let f, g ∈ S2(N) be weight two cusp forms.

Recall 16.3. f(z)dz is invariant under Γ0(N). The same is true for g(z)dz, and so

f(z)dz ∧ g(z)dz = 2if(z)g(z)dxdy

is a Γ0(N)-invariant 2-form (note dzdz = 2idxdy) ⊙

Definition 16.4. The Petersson inner product is

⟨f, g⟩ :=
∫
H/Γ0(N)

f(z)g(z)dxdy. ⋄

This integral converges since f, g are cusp forms and so ! 0 quickly at cusps. Furthermore, ⟨−,−⟩ is I think it
may be
enough for
only one of
f, g to be a
cusp form

a positive, definite Hermitian inner product on S2(N).

Proposition 16.5. Tp is self-adjoint, i.e. for f, g ∈ S2(N)

⟨Tpf, g⟩ = ⟨f, Tpg⟩ .

(One can compute this directly)
Thus, these Tp form a family of commuting, self-adjoint operators on this f.dim space, and so can be

simultaneously diagonalized.

Corollary 16.6. There exists a basis of S2(N) consisting of simultaneous eigenvectors.

Corollary 16.7. TC is a semi-simple C-algebra (a product of copies of C)

Definition 16.8. A Hecke eigenform is an f ∈ S2(N) which is an eigenvector for all Tp’s (p ∤ N). We
say f is normalized if a1(f) = 1. ⋄

Remark 16.9. If f is an eigenform, you get a homomorphism αf : TC ! C sending Tp to its eigenvalue
on f , i.e. αf determined by Tpf = αf (Tp)f . Such an αf is called a system of eigenvalues. These give
a decomposition

S2(N) =
⊕
α

S2(N)α where S2(N)α := {f : Tf = α(T )f for all T ∈ T} .

Furthermore, TC =
∏

α C. ◦
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Theorem 16.10 (Multiplicity One Theorem). Suppose that N is prime. Let f, g be two normalized
eigenforms with the same system of eigenvalues. Then, f = g.

Notation 16.11. For a matrix γ =

(
a b

c d

)
∈ SL2(R) and f : H! C, we define

(f |[γ])(z) := (cz + d)
−1
f(γz).

This defines a group action (the ‘slash action’) of SL2(R) on the same of functions on H. Furthermore,
f ∈ S2(N) ⇐⇒ f |[γ] = f for all γ ∈ Γ0(N) + the holomorphicity and vanishing conditions.

Proof. Recall a1(Tpf) = ap(f). Hence, since f is a normalized eigenform, we see that ap(f) is the
eigenvalue of Tp on f . The same is true for g, so ap(f) = ap(g) for all p ∤ N . By the multiplicativity
and recurrence properties of Hecke operators, this implies that an(f) = an(g) for all (n,N) = 1. Let
h = f − g, so an(h) = 0 unless N ∤ n (recall N prime), i.e.

h =
∑
n≥1

anN (h)qnN .

Thus, h(z + 1
N ) = h(z), so h|[γ] = h if γ ∈ Γ0(N) or γ =

(
1 1/N

1

)
. Let σ :=

(
N

1

)
and set

h′ := h|[σ−1]. Then,

h′|[γ] = h′ if γ ∈ σΓ0(N)σ−1 or γ = σ

(
1 1/N

1

)
σ−1 =

(
1 1

1

)
.

Now note that

σΓ0(N)σ−1 =

{(
a b

c d

)
∈ SL2(Z) : b ≡ 0 (mod n)

}
.

These together with

(
1 1

1

)
general the full Γ(1), so h′ ∈ S2(1) = 0 which means that h = 0 which

means that f = g. ■

Remark 16.12. A stronger version of the above theorem holds. If the Tp eigenvalues of f, g agree for all
but finitely many p (or even just for p in a density 1 set), then f = g. This is called Strong Multiplicity
One. ◦

Warning 16.13. This theorem is false (for a silly reason) if N is not prime. Suppose p | N and choose
f ∈ S2(N/p). Then, both f(z) and f(pz) are in S2(N), and they have the same Tℓ-eigenvalues for all
ℓ ∤ N . •

Remark 16.14. The above is the only thing that goes wrong. One can define the old subspace

S2(N)old = span {f(z), f(pz) : f ∈ S2(N/p), p | N} ,

and the new subspace S2(N)new, the orthogonal complement of the old subspace. Then, multiplicity one
holds on the new space. ◦
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Corollary 16.15 (of Multiplicity One). For all systems α of eigenvalues, dimS2(N)α = 1.

Corollary 16.16. There’s a bijection between homomorphisms T! C and normalized eigenforms. Question:
How do we
know ev-
ery homo-
morphism
T ! C is
realized as
the eigenval-
ues of some
eigenform?

Answer: See
aside

Corollary 16.17. S2(N) is free of rank 1 as a TC-module

Lemma 16.18. Let χ : T! C be a character. Then,

fχ =
∑
n≥1

χ(Tn)q
n

is a weight 2 cusp form.

Proof. There is a natural pairing

⟨−,−⟩ : T× S2(N) −! C
(T, f) 7−! a1(Tf)

which we claim is perfect. Indeed, for fixed T ∈ T, assume ⟨T, f⟩ = a1(Tf) = 0 for all f ∈ S2(N). Then,
for any f ∈ S2(N) and any m ∈ N, we have

am(Tf) = a1(TmTf) = a1(TTmf) = ⟨T, Tmf⟩ = 0,

so Tf = 0 always, i.e. T = 0. Conversely, for fixed f ∈ S2(N), suppose ⟨T, f⟩ = a1(Tf) = 0 for all
T ∈ T. Then, 0 = ⟨Tm, f⟩ = am(f) for all m ∈ N, so f = 0. Since dimC T = dimC S2(N) (e.g. by
Corollary 16.17), we conclude that ⟨−,−⟩ induces an isomorphism S2(N)

∼
−! HomC(T,C). In particular,

given χ : T! C, there is a unique f ∈ S2(N) so that ⟨T, f⟩ = χ(T ) for all T ∈ T. To finish, observe that

f =
∑
n≥1

an(f)q
n =

∑
n≥1

a1(Tnf)q
n =

∑
n≥1

⟨Tn, f⟩ qn =
∑
n≥1

χ(Tn)q
n = fχ,

so fχ = f ∈ S2(N) as claimed. ■

16.2 Hecke correspondences

Recall 16.19. In terms of lattices, we had defined

(Tpf)(Λ) =
∑

[Λ:Λ′]=p

f(Λ′).

If Λ corresponds to the elliptic curve E, then choosing a sublattice Λ′ of index p corresponds to choosing
some degree p isogeny E′ ! E (taking the dual, this equivalently corresponds to a degree p isogeny
E ! E′) ⊙

Recall 16.20. X0(p) = {(E,G) : G ⊂ E order p}. An order p subgroup is the same thing as a degree p
isogeny, so equivalently

X0(p) =
{
[E

φ
−! E′] : degφ = p

}
.
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For p ∤ N , we’ll think (G cyclic below)

X0(Np) =
{
(E

φ
−! E′, G) : degφ = p and #G = N

}
. ⊙

Consider now the diagram

X0(Np)

X0(N) X0(N)

p1 p2

where
p1(E

φ
−! E′, G) = (E,G) and p2(E

φ
−! E′, G) = (E′, φ(G)).

We if start with (E,G) ∈ X0(N), then p−1
1 (E,G) =

{
(E

φ
−! E′, G)

}
is the set of degree p isogenies out

of E (with the extra data of G carried along). This looks a lot like what the Hecke operator does.
The diagram above is called a Hecke correspondence.

Definition 16.21. A correspondence f : X 99K X is a diagram of the form

Y

X X

p1 p2

say with X,Y smooth projective curves and p1, p2 finite maps. ⋄

Example. Any (finite) function f : X ! X can be thought of as a correspondence by taking Y = X,
p1 = f , and p2 = id △

Slogan. A correspondence is a multiple valued function (x 7! p2p
−1
1 (x))

A correspondence f induces a map H1(X,Z) ! H1(X,Z) via (p2)∗ p
∗
1. The pushforward here is the

composition
(p2)∗ : H1(Y,Z) ≃ H1(Y,Z)

(p2)∗
−−−! H1(X,Z) ≃ H1(X,Z)

coming from Poincaré duality.
f also induces a map H0(X,Ω1)! H0(X,Ω1) by (p2)∗p

∗
1.24

Fact. The action of the correspondence f is compatible with the Hodge decomposition

H1(X,Z)⊗ C ≃ H0(X,Ω1)⊕H0(X,Ω1).

f also acts on divisors. Explicitly, given x ∈ X, one has

f∗([x]) :=
∑

p1(y)=x

[p2(y)].

Hence, f induces a map f∗ : Jac(X)! Jac(X) which is f∗ = (p∗2)
∨
p∗1.

24For the pushfowards, p2 is a local diffeomorphism so induces isos on tangent spaces, so you can get a form by taking a
tangent vector downstairs, looking at its preimages up stairs, evaluating on those, and then summing the values
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16.2.1 Hecke operators

Recall we have T̃ ↷ H1(X0(N),Z), we have S2(N) = H0(X0(N),Ω1), and we have H1(X0(N),C) =

S2(N)⊕ S2(N).
If T ∈ T̃ acts by 0 on S2(N), then it acts by 0 on S2(N) and so acts by 0 on H1(X0(N),Z). Thus,

the image of T̃ in End(H1(X0(N),Z)) is ∼= T (its image in End(S2(N))).

Corollary 16.22. T is a finite rank free Z-module ( ⇐= submodule of End(H1(X0(N),Z))), TC = T⊗C
and TQ = T⊗Q.

Corollary 16.23. Hecke eigenvalues are always algebraic integers.

Corollary 16.24. TQ is a semi-simple Q-algebra ( ⇐= TC being semisimple), so

TQ =

n∏
i=1

Ki

with Ki’s number fields.

Corollary 16.25. H1(X0(N),Q)⊗ C = S2(N)⊕ S2(N) is a free TC-module of rank 2.

Corollary 16.26. H1(X0(N),Q) is a free TQ-module of rank 2.

Note that T ⊂ End(J0(N)). The decomposition TQ =
∏

iKi gives a decomposition

J0(N) ∼
∏

J0(N)i

(in the isogeny category). Specifically, one will have Ki = eiTQ with ei ∈ TQ an idempotent. Pick k ∈ Z
s.t. kei ∈ T and then set J0(N)i := (kei)J0(N) (which is independent of k, up to isogeny).

This plays nicely with cohomology, e.g. H1(J0(N)i,Q) is a 2-dimensional Ki-vector space. Hence,
Tℓ(J0(N)i) is a rank 2 module over Ki ⊗Qℓ. If we pick a place λ of Ki over ℓ, then Tℓ(J0(Ni))⊗Ki Ki,λ

will be a 2-dimensional Ki,λ-vector space.

Remark 16.27. The Hecke correspondences are defined over Q, so this Tℓ(J0(Ni)) ⊗Ki
Ki,λ will have a

GQ-action on it. So we’ve associated to this Ki, a Galois representation. We’ll look at this more closely
next time. ◦

16.3 Atkin-Lehner involution

Definition 16.28. The Atkin-Lehner involution is the involution w : X0(N)! X0(N) taking a cyclic
isogeny of degree N to its dual isogeny. In terms of cyclic subgroups, it takes (E,G) 7! (E/G,E[N ]/G).
The first description makes it clear that w2 = id. ⋄

This w induces an action on S2(N) = H0(X0(N),Ω1). One can compute that this is given by

(wf)(z) = f

(
− 1

Nz

)
.

Fact. w commutes with Tp (p ∤ N) and so preserves eigenspaces.

Since these eigenspaces are 1-dimensional, if f is an eigenform, then wf = ±f .
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17 Lecture 17: Eichler-Shimura

17.1 The Proof

Today, we want to prove the Eichler-Shimura theorem.

Recall 17.1. Last time we defined Hecke correspondences Tp : X0(N) 99K X0(N). ⊙

Their definition makes sense over Q which implies that Tp ∈ End(J0(N)). Now, J0(N) extends to an
abelian scheme over Z[1/N ] (since X0(N) is smooth over Z[1/N ]), and Tp extends to an endomorphism
over this base as well. Now we can reduce mod any prime away from N .

Theorem 17.2 (Eichler-Shimura Theorem). Tp = F + V on J0(N)Fp where F is the Frobenius and
V is the Verschiebung.

Note that this definition of Tp is kinda funny; we defined it over Q and then extended abstractly.
We’d like to compute it via a correspondence over Fp.

Lemma 17.3. Let O be a complete dvr with K = FracO and k the residue field of O. Let X/O be a
smooth proper curve, and let f, g : Y ⇒ X be two finite, flat maps. Let JK = Jac(XK) and let J/O be
its Néron model (so J = Pic0X/O). Let hK : JK ! JK be the map given by (f, g) (i.e. this pullback-
pushfoward thing), and let h : J ! J be its extension to J . Now say we have a divisor D0 ∈ Div(Xk) on
the special fiber of X. Let x0 ∈ Jk be the corresponding point. Then,

h(x0) = [g∗f
∗(D0)] ∈ Jk.

Proof. Lift D0 to a relative divisor25 D on X/O (possible since X is smooth). Let D′ = g∗f
∗(D), another

relative divisor on X. Then, D,D′ define points x, y ∈ J(O). By definition, h(x) is the unique extension
of hK(xK) = [g∗f

∗DK ] = yK , so we must have y = h(x). Passing to the special fiber, we win. ■

To apply this, we’ll want an integral representation of the Hecke correspondences.

Recall 17.4. M0(N) is the moduli stack of generalized elliptic curves w/ Γ0(N)-structure, and M0(N)

is its coarse space. ⊙

There’s a map of stacks f̃ : M0(Np)!M0(N) which forgets the level p structure, i.e. sends (E,G) 7!
E where E an EC with Γ0(N)-structure and G is a Γ0(p) structure. Write f :M0(Np)!M0(N) for the
induced map on coarse spaces. We can similarly define g̃ : M0(Np)!M0(N), (E,G) 7! E/G as well as Note that

this g is
simply the
composition
of f with
the Atkin-
Lehner invo-
lution at p

g :M0(Np)!M0(N). This gives a correspondence

M0(Np)

M0(N) M0(N)

f g

which, over C, recovers the Hecke correspondence Tp from last time.

Fact. This f, g are finite + flat maps.
25Flat over the base and a divisor in each fiber
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Corollary 17.5. Tp is computed by g∗f∗ on J0(N)Fp

Now we can apply what we know about the structure of M0(N) in characteristic p.

Recall 17.6. Define
ĩ : M0(N) −! M0(Np)

E 7−! (E, kerF )

and
j̃ : M0(N) −! M0(Np)

E 7−! (E(p), kerV )

Let i, j be the induced maps on coarse spaces.
We computed before the compositions

fi = id , gj = id , fj = F, and gi = F.

The first two of these show that i, j are closed immersions. ⊙ Question:
Why?

Answer:
This is by
cancellation
theorem. fi
is a closed
immersion
and f is sep-
arated (i.e.
the diago-
nal of f is
a closed im-
mersion), so
i must be a
closed im-
mersion too

Let M0(N)ord be the open subscheme of M0(N) representing ordinary elliptic curves. We have a map
(i, j) : M0(N)ord ⊔M0(N)ord !M0(Np)

ord which is a closed immersion and hits all the points, so is an
isomorphism. Let’s look at the Hecke correspondence on the ordinary locus

M0(N)ordi M0(N)ordj

M0(N)ord M0(N)ord

⊔
id

F

id

F

(the subscripts on the M0(N)ord’s indicate which map (i or j) they come from. The left vertical maps
are f :M0(Np)

ord !M0(N)ord while the right ones are g :M0(Np)
ord !M0(N)ord)

This is telling us that the Hecke correspondence Tp is (on the ordinary locus) a disjoint union of two
correspondence, it is Tp = (id, F )+(F, id). We write + instead of ⊔ since it acts on divisors by addition of
the two factor correspondences, i.e. if D is a divisor on M0(N)ord, then TpD = (id, F )(D)+ (F, id)(D) =

F (D) + V (D).26 Thus, Tp = F + V holds on pts in J0(N) which are represented by divisors in the
ordinary locus.

Remark 17.7. There are only finitely many points in the supersingular locus, so any divisor is linearly
equivalent to one supported in the ordinary locus! ◦

This proves Theorem 17.2!

17.2 Tate module of J0(N)

Still in characteristic p.
Let Vℓ := Tℓ(J0(N)Fp)[1/ℓ] be the rational Tate module, a Qℓ-vector space. Since T ↷ J0(N), we

get that Vℓ is a TQℓ
-module which is moreover free of rank 2. The frobenius F also acts on Vℓ, and it

commutes w/ the action of T, so can think of F as in GLw(TQℓ
). Eichler-Shimura says Tp = F + V , so

26The last equality holds since these correspondence are exactly how Frobenius and Verschiebung are defined on divisors
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we get FTp = F 2 + p, i.e.
F 2 − TpF + p = 0.

Now, F is a 2× 2 matrix over the ring TQℓ
satisfying the above monic quadratic polynomial, so we’d like

to conclude that TrF = Tp and detF = p.

Warning 17.8. This isn’t automatic. For example A = diag(λ, λ) ∈ GL2(C) satisfies the quadratic
polynomial (A− λ)(A− µ) = A2 − (λ+ µ)A+ λµ for any µ ∈ C. •

Proposition 17.9. Tr(F |Vℓ) = Tp and det(F |V ) = p

Proof. Let ⟨−,−⟩ : Vℓ × Vℓ ! Qℓ(1) be the Weil pairing on Vℓ. The Tq’s (for q ∤ N) are self-adjoint w.r.t
this pairing. Indeed, Tq is computed by the correspondence (fq, gq) and generalities tell us the adjoint is
defined by (gq, fq). One of these looks like summing over q-isogenies out of E and the other looks like
summing over q-isogenies into E, but these two sets are the same, and this is way they end up defining
equal endomorphisms.

The upshot is that
φ : Vℓ −! V ∗

ℓ

x 7−! ⟨−, x⟩

is an isomorphism of TQℓ
-modules. We claim that φ(Fx) = V φ(x). This is because

φ(Fx)(y) = ⟨y, Fx⟩ = 1

p
⟨FV y, Fx⟩ = ⟨V y, x⟩ = φ(x)(V y) = (V φ(x))(y).

Hence, Tr(F |Vℓ) = Tr(V |V ∗
ℓ ) = Tr(V |Vℓ) (last equality since the two are represented by matrices which

are each others transpose). Now Eichler-Shimura says

Tp = F + V =⇒ 2Tp = Tr(Tp) = 2Tr(F )

(Tr(Tp) = 2Tp since Vℓ is free of rank 2 over TQℓ
∋ Tp, so Tp acts by a 2× 2 scalar matrix). Now that we

have this, the determinant part does follow from the polynomial F 2 − TpF + p = 0. ■

(Above, important that we take trace/determinant as endomorphisms of TQℓ
-modules)

Fix a prime number N . Let f ∈ S2(N) be a normalized eigenform. Let α : T ! C defined by
Tpf = α(Tp)f . Since f is normalized, we have α(Tp) = ap(f). Let K = α(T ⊗ Q), a number field; let
O = α(T), an order in K; and let a := kerα ⊂ T, an ideal.

Notation 17.10. Set Af := J0(N)/aJ0(N) where aJ0(N) :=
∑

T∈a TJ0(N).

Remark 17.11. The assumption that N is prime is not needed (avoids having to worry about newfor-
m/oldform stuff). Also, the construction really only depends on a, not on f itself (picking f is like picking
an embedding K ↪! C). ◦

What’s the dimension of Af? First note

T0(J0(N)) = H0(X0(N),Ω1)
over C
= S2(N)
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is (over C) a free TC-module of rank 1. This implies that T0(J0(N)) is a free TQ-module of rank 1. Thus,

T0(Af ) = T0(J0(N))/aT0(J0(N))

is a 1-dimensional K-vector space.

Proposition 17.12. dimAf = [K : Q].

Corollary 17.13. Af is an elliptic curve ⇐⇒ K = Q ⇐⇒ Fourier coefficients of f are rational.

Proposition 17.14. Af has good reduction away from N .

This follows from the analogous statement for J0(N) (which holds since it’s the Jacobian of a smooth,
proper Z[1/N ]-curve).

Lemma 17.15. Let B be an abelian variety over a dvr with good reduction, and let A be a subquotient
of B. Then, A also has good reduction.

Proof. Pick some invertible prime ℓ. Since B has good reduction, Tℓ(B) is unramified (i.e. inertia acts
trivially). Tℓ(A) is a subquotient of Tℓ(B), so Tℓ(A) is also unramified. Now, Néron-Ogg-Shafarevich
implies that A has good reduction. ■

Consider
O = T/a −! End(Af )

and so consider Vℓ(Af ) as a K ⊗Qℓ-module. It will be free of rank 2.

Proposition 17.16. Pick a prime p ∤ ℓN . Then, Tr(Fp|Vℓ) = ap and det(Fp|Vℓ) = p, where Fp is
Frobenius at p, and Vℓ = Vℓ(Af ).

Proof. We’ve previously shown that Tr(Fp|Vℓ(J0(N))) = Tp. The surjection J0(N) ! Af is compatible
with the map T! T/a, so we win as α(Tp) = ap. ■

Choose an embedding i : K ↪! Qℓ.

Theorem 17.17. There exists a unique (up to isomorphism) semi-simple representation

ρ : Gal(Q/Q) −! GL2(Qℓ)

such that

(1) ρ is unramified away from Nℓ

(2) Tr(ρ(Fp)) = ap(f)

(3) det ρ = χℓ

Proof. (Existence) If K = Q, we can take Vℓ(Af ). In general, we take a piece of the Tate module of Af .
The choice of i determines an idempotent e of K⊗Qℓ. Take ρ to be (the semi-simplification) of e (Vℓ(Af )).
We know that ρ is unramified away from Nℓ, we know Tr(ρ(Fp)) = ap, and we know det(ρ(Fp)) = p for
all p ∤ Nℓ. The last of these imply det ρ = χℓ. Two charac-

ters agreeing
at almost all
Frobenii, so
get this by
Chebotarev
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(Uniqueness) Say ρ′ also satisfies (1),(2),(3). Then, Tr(ρ(Fp)) = ap = Tr(ρ′(Fp)). Chebotarev tells
us that the Frobenii are dense in the Galois group, so this implies that Tr(ρ(g)) = Tr(ρ′(g)) for all
g ∈ Gal(Q/Q). Thus, ρ, ρ′ are semi-simple reps w/ the same character and so ρ ≃ ρ′. ■

Fact. ρ is in fact absolutely irreducible.

Remark 17.18. Instead of taking our data to be a form f and an embedding of its coefficient field into
Qℓ, we could have just started with a homomorphism T ! Qℓ. For any such α : T ! Qℓ, one gets a
representation ρα as above. Furthermore, one has a decomposition

H1
ét(X0(N)Q,Qℓ) =

⊕
α:T!Qℓ

ρα. ◦

Corollary 17.19 (Strong Multiplicity One). Let N be prime. Choose f, g ∈ S2(N) normalized cusp
forms (not necessarily eigenforms). Let S be a density 1 set of primes so that for all p ∈ S, f, g are
eigenvectors of Tp with the same eigenvalues. Then, f = g.

Proof. Let α : S ! C be the function giving the eigenvalues. Let V ⊂ S2(N) be the space of h s.t.
Tph = α(p)h for all p ∈ S. We want to show that dimV = 1. This V will have a basis consisting of
normalized eigenforms for the full T, so it’s enough to show that if h, h′ ∈ V are normalized eigenforms
for T, then h = h′. Let K ⊂ C be generated by the coefficients of the h’s, and choose an embedding
K ↪! Qℓ. This gives Galois representations ρ, ρ′ : Gal(Q/Q) ! GL2(Qℓ) associated to h, h′. These
satisfy, among other things,

Tr ρ(Fp) = ap(h) and Tr ρ′(Fp) = ap(h
′) for all p ∤ Nℓ.

Thus, Tr ρ(Fp) = Tr ρ′(Fp) for all p ∈ S. By Chebotarev, these Frobenii are dense in the Galois group,
so actually Tr ρ = Tr ρ′ everywhere. Hence, if p is any prime not dividing Nℓ, we must have

ap(h) = Tr ρ(Fp) = Tr ρ′(Fp) = ap(h
′).

Choose two different ℓ’s, we get ap(h) = ap(h
′) for all p ∤ N . Now, (weak) multiplicity one implies that

h = h′. ■

18 Lecture 18: Criterion for non-existence of torsion points

Today we want to prove Theorem 1.5.

Theorem 18.1 (Theorem 1.5). Fix a prime N > 7. Suppose there exists an abelian variety A/Q and a
map f : X0(N)! A s.t.

• A has good reduction away from N .

• A(Q) has rank 0.

• f(0) ̸= f(∞).

Then, no elliptic curve over Q has a rational point of order N .

102



After this lecture, we’ll try to find some A verifying these hypothesis. The hardest one will be the
second one (that A(Q) has rank 0), but luckily we have Theorem 11.1 which gives a criterion for that.
Hence, combining Theorems 18.1 + 11.1, we have (or will have by the end of the lecture)

Theorem 18.2. Let N > 7 be prime. Fix a prime p ̸= N and suppose there is an abelian variety A/Q
along with a map f : X0(N)! A so that

• A has good reduction away from N

• A has completely toric reduction at N

• A[p](Q) has J-H constituents either 1 or χp

• f(0) ̸= f(∞)

Then, no elliptic curve over Q has a point of order N .

Keep this in mind for future lectures, but today we focus on Theorem 18.1. In fact, we’ll actually
spend most of our time proving the below theorem instead.

Theorem 18.3. Let A, f be an in Theorem 18.1. Suppose E/Q has a point of order N . Then,

E[N ] = Z/NZ⊕ µN .

Remark 18.4. Having a point of order N =⇒ Z/NZ ⊂ E[N ]. The Weil paring then gives an extension

0 −! Z/NZ −! E[N ] −! µN −! 0.

Theorem 18.3 then says that this extension is split. ◦

18.1 Proof of Theorem 18.1, assuming Theorem 18.3

Setup 18.5. Assume we have A, f as in Theorem 18.1.

Lemma 18.6. X0(N)(Q) and X1(N)(Q) are finite.

Proof. Consider the maps
X1(N)(Q)! X0(N)(Q)

f
−! A(Q)

and each of these maps have finite fibers (since X0(N), X1(N) are curves and these maps are non-
constant). A(Q) is finite by hypothesis. ■

Lemma 18.7. Let E/Q be an elliptic curve. Then, EndQ(E) = Z.

Proof. Let O = End(E) and let K = O ⊗Q, so K is either Q or an imaginary quadric field. The natural
map O ! End(T0E) = Q is a ring homomorphism, so extends to a ring homomorphism K ! Q, so
K = Q and O = Z. ■

Proposition 18.8. Theorem 18.3 =⇒ Theorem 18.1
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Proof. Suppose E1/Q is an elliptic curve with a point P1 of order N . Then, Theorem 18.3 implies we can
find µN ⊂ E1. Let E2 = E1/µN , and let P2 be the image of P1. Now we can inductively get an infinite
chain

E1
N
−! E2

N
−! E3

N
−! . . .

of cyclic N -isogenies with order N points Pi ∈ Ei. These give points (Ei, Pi) ∈ X1(N)(Q), so finiteness
implies that Ei

∼= Ej for some i < j. Let f : Ei ! Ej be the isomorphism, and let g : Ei ! Ej be the map
appearing in the above infinite chain. Then, f−1g : Ei ! Ei is an isogeny of degreeN j−i. If f−1g = [n] for
some integer n, then n = N

j−i
2 (by degree considerations), but then (f−1g)(Pi) = N

j−i
2 P = 0. However,

g(Pi) ̸= 0 and f is an isomorphism, so f−1g ̸= [n] which implies End(Ei) ̸= Z, a contradiction. ■

18.2 Proof of Theorem 18.3

Assumption. We have a map f : X0(N)! A where

• A has good reduction away from N

• A(Q) has rank 0

• f(0) ̸= f(∞)

Suppose we have an elliptic curve E/Q with an N -torsion point P ∈ E[N ](Q).

Goal. We want to show that E[N ] ∼= Z/NZ⊕ µN .

Let E /Z be the Néron model of E, and extend P ∈ E[N ](Q) to P ∈ E (Z).

Proposition 18.9 (Step 1). E has everywhere semistable reduction

Proof. Suppose E has additive reduction at p.

(Case 1: N ̸= p) The reduction map on N -torsion is injective (by Proposition 8.11), so PFp
∈ EFp

still has order N . The classification of Néron models implies that EFp
has ≤ 4 components which

forces the image of PFp
in the component group is 0 (since N prime to 2, 3), so PFp

⊂ E 0
Fp

≃ Ga, a
contradiction as Ga,Fp

has no non-trivial N -torsion.

(Case 2: N = p) Since 1 = e < N − 1, Raynaud (theorem 7.3) will tell us that PFp
still has order

N . By the same reasoning, PFp
∈ E 0

Fp
= Ga,Fp

. Now, let K/Qp be such that EK has semistable
reduction. We may assume [K : Qp] ≤ 6 (see Remark 8.9, note p = N ̸∈ {2, 3}). Let O = OK

and let k = O/m be the residue field. Let E ′/O be the Néron model of EK . The Néron mapping
property gives a map

f : EO −! E ′

which is the identity of the generic fiber. We claim that f(E 0
k ) = 0. This is because E 0

k = Ga

while (E ′)0k is an elliptic curve or a torus; there are no non-constant maps from Ga to either of
these things. Let P ′ ∈ E ′(O) extend P . Then, P ′ = f(P) since these both extend P . This is a
contradiction. Over k, f(P) specializes to 0, so P ′

k = 0, contradicting injectivity on the reduction
map on N -torsion (holds by Raynaud since e(K) ≤ 6 < N − 1 as N > 7). ■
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Remark 18.10. The above argument can be generalized a bit. It didn’t really use most of what’s special
about A. It’s mainly just something about having an elliptic curve over an extension of Qp and a point
whose order is large compared to the ramification index, then the curve must be semistable. ◦

Proposition 18.11 (Step 2). Pick p ∈ {2, 3}. Then, E has bad (so multiplicative) reduction at p, and
PFp ̸∈ E 0

Fp
.

Proof. First suppose E has good reduction. Then, P specializes to a point of order N in EFp
. By the

Hasse bound (Theorem 3.4), we know

E (Fp) ≤ p+ 1 + 2
√
p ≤ 4 + 2

√
3 < 8 ≤ N,

a contradiction. Thus, E must in fact have multiplicative reduction, so E 0
Fp

is a 1-dimensional torus over

Fp, i.e. it’s Gm or T :=
(
Res

Fp2

Fp
Gm

)1
, the norm 1 elements of the quadratic extension, the kernel of the

norm map Nm : Res
Fp2

Fp
Gm ! Gm.27 Note that Gm(Fp) = F×

p has p − 1 elements and T (Fp) = norm 1
elements of F×

p2 has p+ 1 elements. Since p± 1 ≤ 4 < N , we can’t have PFp
∈ E 0

Fp
. ■

Corollary 18.12. E[N ] ∼= Z/NZ⊕ µN over Qp

Proof. Let G ⊂ E[N ] be the group of points reducing into E0
Fp

, a subgroup of order N . Since N is prime Question:
Why is
#G = N

Answer: G
is the kernel
of the map
f : E[N ] !

Φp to the
component
group of EFp

.
Since EFp

is a (the
smooth lo-
cus of a)
Néron n-
gon, Φp is
cyclic, so
f has non-
trivial ker-
nel. Fur-
thermore,
f has non-
trivial image
by Step 2.
Since N is
prime, the
claim fol-
lows.

(so every nonzero element of Z/NZ has order N), Step 2 shows that G∩Z/NZ = 0, so E[N ] = G⊕Z/NZ.
The Weil pairing shows that E[N ] is self-Cartier dual, so we conclude that G ≃ µN . ■

Proposition 18.13 (Step 3). Say p ̸∈ {2, 3} is a prime of bad reduction for E. Then, PFp
̸∈ E 0

Fp
.

(This is where we finally use our hypotheses)

Proof. First note

(1) PFp
has order N (if p ̸= N , prime to N . If p = N , apply Raynaud, see Theorem 19.16)

(2) E has multiplicative reduction at p (Step 1)

If p = N , then #E 0
FN

(FN ) = N ± 1 (it’s a torus) which is prime to N , so PFN
̸∈ E 0

FN
. Hence, from now

on, we may assume p ̸= N . There are three Z[1/N ]-points of X0(N) that we’ll care about

(1) The cusp ∞. This is the generalized elliptic curve that’s a 1-gon (so smooth locus is Gm) with
Γ0(N)-structure µn ⊂ Gm.

(2) The cusp 0. This the generalized elliptic curve that’s an N -gon. The smooth locus is Gm × Z/NZ
with Γ0(N)-structure Z/NZ.

In this case, the Γ0(N)-structure is not contained in the identity component.

(3) The third point is x = (E,Z/NZ) (with the Z/NZ generated by P ).

To be precise, the minimal regular model of E over Z[1/N ] has semi-stable reduction everywhere,
so it’s bad fibers are n-gons. Hence, E does extend to a generalized elliptic curve and then to get a
Γ0(N)-structure, you contract all irreducible components not meeting the Z/NZ generated by the
extension of P .

Remember:
In a Γ0(N)-
structure
(E,G), G
must meet
every irre-
ducible com-
ponent of
each fiber of
E/S

27Twisted forms of Gm are characterised by H1(GFp ,AutGm,Fp ) = H1(GFp , {±1}) = Homcts(Ẑ,±1) which has size 2
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Let A/Z[1/N ] be the abelian scheme extending A. Then, we get f : X0(N) ! A extending the f we
started with, by the Néron mapping property. The reduction map

A(Z[1/N ]) = A(Q) = A(Q)tors = A(Z[1/N ])tors ! A(Fq)

is injective for q ̸= 2 (using Raynaud for q-torsion). Now, both x and 0 ∈ X0(N)(Z[1/N ]) have the same
reduction mod 3 (Step 2 shows level structure mod 3 does not lie in identity component), so f(x) = f(0)

in A(F3). By injectivity, this implies that f(x) = f(0) ∈ A(Z[1/N ]).
Now, suppose that PFp

∈ E 0
Fp

. This implies that x,∞ have the same reduction in X0(N)(Fp) which
implies f(x) = f(∞) ∈ A(Fp) which implies f(x) = f(∞) in A(Z[1/N ]) which implies f(0) = f(∞), a
contradiction. ■

Corollary 18.14. If p is a prime of bad reduction, then E[N ] = Z/NZ⊕ µN over Qp.

Now we can complete the proof of Theorem 18.3. Let Γ = Gal(Q/Q), let ρ : Γ ! GL2(FN ) be the
representation given by E[N ], and let K = Q(µN ).

Lemma 18.15. ρ|K is everywhere unramified.

Proof. We break up into cases

(p ̸= N , E has good reduction) Then ρ unramified at p by Néron-Ogg-Shafervich.

(p = N , E has good reduction at p) Have exact sequence of finite flat group schemes (E [N ] finite
since E has good reduction at N)

0 −! Z/NZ −! E [N ] −! µN −! 0.

There’s also the connected-étale sequence going the other way around, so this must be split. Hence,
E [N ] = Z/NZ⊕ µN , so ρ|K is the trivial representation, and hence unramified.

(p prime of bad reduction) Steps 2 + 3 =⇒ E[N ] = Z/NZ⊕ µN , so ρ|K again trivial. ■

Now, ρ must be of the form (recall we have an N -torsion point P ∈ E[N ](Q))

ρ =

(
1 f0

χ

)

with χ the mod N cyclotomic character and f0 : Γ ! FN a 1-cocycle for χ−1. Let f = f0|K , so
f : ΓK ! FN is a group homomorphism (since χ|K = 1) which is everywhere unramified. By class field
theory, we can regard f as a homomorphism Cl(K) ! FN . If we let H = Cl(K) ⊗ Z/NZ, then we can
via f as an element of the dual space H∗ ∋ f . Now, Gal(K/Q) = F×

N acts on H. Now, H is an FN -vector
space and (N,#F×

N ) = 1, so we can decompose

H =
⊕
i∈F×

N

Hi where Hi =
{
x ∈ H : [a]x = aix

}
.

You can do the same thing for H∗. If you write down the 1-cocycle condition for f , you can see how the
Galois group acts on it, and conclude that f ∈ (H∗)

1
= (H−1)∗.
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Theorem 18.16 (Herbrand’s theorem). Suppose that j > 1 is an odd integer. Then, Hj ̸= 0 only if
N | BN−j, N divides that Bernoulli number.

(We’ll use this as a black box from algebraic number theory)

Corollary 18.17. H−1 = HN−2 ̸= 0 only if N |B2 = 1/6, i.e. H−1 = 0.

This forces f = 0, so ρ|K =

(
1

1

)
is the trivial representation. Thus, ρ is really a representation of

Gal(K/Q). Since #Gal(K/Q) is prime to N , ρ must be semi-simple. This gives the splitting

E[N ] = Z/NZ⊕ µN .

and so proves Theorem 18.3.

19 Lecture 19: J0(N) mod N

Goal (Course). Fix a prime N > 7. We want to find an abelian variety A/Q and a map f : X0(N)! A

s.t.

(1) A has good reduction away from N

(2) A has completely multiplicative reduction at N

(3) A[p](Q) only has trivial and cyclotomic Jordan-Hölder factors

(4) f(0) ̸= f(∞)

Such a thing would guarantee that no elliptic curve over Q has rational N -torsion.

The Jacobian J0(N) = Jac(X0(N)) is the universal abelian variety to which X0(N) maps. Hence,
such an A must be a quotient of J0(N).

Remark 19.1. For such A, condition (1) is free. This is because

• X0(N) has a smooth, proper model away from N

• =⇒ J0(N) has good reduction away from N

• Good reduction passes to quotients ◦

Goal (Today). Show that (2) is also free. We will show

• the minimal regular model of X0(N) at N is ‘nice enough’

• Deduce from this that J0(N) has completely toric reduction

• “Completely toric reduction” descends to quotients

Most of the work will be in the first step. The second will involve a theorem of Raynaud which we
will employ as a black box. The third step is below
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Proposition 19.2. Let K/Qp be a finite extension with O = OK and k = O/m. Let A/K be an abelian
variety and consider some quotient abelian variety B of A. If A has completely toric reduction, then so
does B.

Proof. Let f : A! B be the quotient map. The isogeny category is semisimple, so this map has a section
(up to inverting some n), i.e. ∃g : B ! A so that fg = [n] for some n > 0. Let A,B/O be the Néron
models of A,B, so f, g extend to them and we still have fg = [n]. On special fibers, we get A0

k

f
−! B0

k

which is surjective since fg = [n] is surjective. Since Ak is a torus, this implies that the quotient B0
k is Question: Is

it a priori
clear that
multiplica-
tion by n is
surjective on
B0
k?

also a torus. ■

Let’s now explain this theorem of Raynaud allowing us to move from the model to the Jacobian.

Definition 19.3. Let f : X ! S be proper and flat. The Picard functor PicX/S is the sheafification
of S′ 7! Pic(XS′) on the fppf site of S. ⋄

Theorem 19.4 (Murre). If S = Spec k is a field, then PicX/S is representable by a group scheme.

Hence, if S = Spec k, we can define Pic0X/S as the identity component of PicX/S . In general, we define
Pic0X/S ⊂ PicX/S as the subsheaf whose sections land in Pic0Xs/s for each geom pt s! S.

Now suppose S = SpecO with O a dvr, K = FracO, and k = O/m. Further suppose that X is a
curve (fibers pure of dimension 1), and let {Xi} be the set of irreducible components of the special fiber
Xk. Define

di := length (local ring of generic point of Xi) =: multiplicity of Xi in X.

History. There are (at least) two algebraic geometers with the last name Raynaud. There is Michel
Raynaud and there is Michèle Raynaud, and the two of them were married. I think possibly both Raynaud
theorems in this class were proved by Michel, here (Lecture 7 theorem) and here (below). ⊖

Theorem 19.5 (Raynaud). Suppose that

(1) XK is smooth over K

(2) X is regular

(3) gcd(di) = 1

Then, Pic0X/S is represented by a smooth group scheme over O, and it is in fact isomorphic to the identity
component of the Néron model of Jac(XK). In particular, the identity component of the special fiber of
Néron model of Jac(Xk) is Pic0Xk/k

.

(We will be adopting this as a black box)
So now we want to understand the minimal regular model of X0(N).

19.1 The minimal regular model of X0(N)

A natural guess is that the coarse space M0(N) =
∣∣M0(N)

∣∣ is the minimal regular model. It is a flat,
proper model over Z. Furthermore, one can show that the stack is regular over Z. However, taking the
coarse space messes with things, so this is not the minimal regular model (sounds like M0(N) is not even
regular).
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Fact (see Katz-Mazur). M0(N) is regular

The approach to understand these spaces is to pass to a cover of M0(N) which is a scheme so that
this stack (and its coarse space) will be recoverable as quotients by some finite group.

Setup 19.6. Fix a prime p = N > 3. Let ℓ > 3 be another prime and assume l ̸≡ 0,±1 (mod p). Let
G = GL2(Fℓ) and note that

#G = (ℓ2 − 1)(ℓ2 − ℓ) = ℓ(ℓ− 1)2(ℓ+ 1) ̸≡ 0 (mod p)

(To form an invertible matrix, pick a nonzero vector and then pick a vector that’s not a multiple of the
first one).

We’re really only going to be caring about what happens at p, so work over Z[1/(6ℓ)] below. There
will be three spaces of interest

• M0(p) and its coarse space M0(p) = |M0(p)|

• M0(p; ℓ), the moduli space of ECs w/ Γ0(p) and Γ(ℓ)-structures

Since ℓ ≥ 3, the Γ(ℓ)-structure rigidifies things, so this is actually a(n) (affine) scheme M0(p; ℓ) =

M0(p; ℓ). Furthermore, G↷M0(p; ℓ) by moving around the Γ(ℓ)-structure. Finally,28

M0(p) = [M0(p; ℓ)/G] and M0(p) =M0(p; ℓ)/G.

• M(ℓ), the moduli scheme of ECs w/ Γ(ℓ)-structure

There is a natural map M0(p; ℓ)!M0(p) which simply forgets the ℓ structure; this is the quotieht map.

Fact (see Katz-Mazur). M0(p; ℓ) is regular + flat

Proposition 19.7. M0(p; ℓ)Fp
is reduced and Cohen-Macaulay. It is also smooth away from the super-

singular points, but has ordinary nodes29 at the super singular points.

Proof. M0(p; ℓ) = SpecA where A is a regular ring which is flat over Z[1/ℓ] (by the fact). Note that
M0(p; ℓ)Fp

= SpecB where B = A/pA. We’ve killed a non-zero divisor of a regular ring, so B is CM by
commutative algebra. Consider the usual maps i, j : M(ℓ) ! M0(p; ℓ) (i takes kerF and j takes kerV )
along with the usual maps f, g : M0(p; ℓ) ! M(ℓ). Note that i, j are closed immersions (e.g. since fi is
the identity). From these, we see that

M0(p; ℓ)
ord ∼=M(ℓ)ord ⊔M(ℓ)ord

is smooth. Now, commutative algebra tells us that if you have a 1-dimensional thing which is generically
reduced and CM, then it is reduced.

Next, we claim that intersections of images of i, j meet transversely at the supersingular points. Say
x, y ∈ M(ℓ) are super-singular and i(x) = j(y). Pick v ∈ Tx(M(ℓ)) and w ∈ TyM(ℓ). We want to say

28Note below that, since M0(p; ℓ) is affine, we have M0(p) = SpecO(M0(p; ℓ))G
29i.e. the strict (go up to algebraic closure) complete local rings look like kJx, yK /(xy)
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they are linearly independent after being pushed to M(p; ℓ). Suppose we have a linear dependence

αi∗(v) + βj∗(w) = 0.

Apply f∗ and use that fi = id while fj = F (so (fj)∗ = 0). This implies that

αv = 0 =⇒ α = 0.

Similarly, applying g∗ shows βw = 0 =⇒ β = 0.
Finally, let z = i(x) = j(y). We want to show this is a node. Write M0(p; ℓ) = SpecA and M(ℓ) =

SpecC. Let
a : Az ! Cx × Cy

be the ring homomorphism given by (i∗, j∗). Choose uniformizers t ∈ Cx and t′ ∈ Cy. s.t. Ft = (t′)p and
Ft′ = tp (possible, if we work over Fp, since Frobenius interchanges x, y). Note that a is injective since
Az is reduced30 (since A is) and the maps i, j hit both components at z. Let

u = f∗(t)− g∗(t′)p ∈ Az.

Then,
i∗(u) = t− tp

2

and j∗(u) = (t′)p − (t′)p = 0.

Similarly define v := g∗(t′)− f∗(t)p and conclude that

a(u) = (t− tp
2

, 0) and a(v) = (p, t′ − (t′)p
2

)

(note that a(u) is a uniformizer for Cx while a(v) is a uniformizer for Cy). Given any f ∈ max ideal
of Az, a(f) will land in the product of the maximal ideals of Cx, Cy and so we see that we can write
a(f) = F (a(u), a(v)) = a(F (u, v)) for some power series F . Since a is injective, f = F (u, v), so we have
a surjection

kJu, vK↠ Az.

Since a is injective, we see that uv = 0, so we really have kJu, vK /(uv) ↠ Az. This must be injective or
it’d kill a component, so z really is a node. ■

We’d like to do this integrally now.

Proposition 19.8. M0(p; ℓ) is smooth over Z[1/ℓ] away from super-singular points in characteristic p.
The strict complete local ring @ a s-s pt in char p is of the form

W Jx, yK /(xy − p) where W =W (Fp)

is the ring of Witt vectors over Fp.

Proof. Let R be the strict complete local ring at a supersingular point x in characteristic p. We know
that R is regular (since M0(p; ℓ) is regular), flat over Z[1/ℓ], and of dimension 2. Furthermore, R/pR ≃

30Being reduced implies that Az injects into the product of its quotients by minimal primes, and the minimal primes of
Az correspond to irreducible components of A passing through z
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kJx, yK /(xy) by the previous proposition. By Nakayama’s lemma, we get a surjective W Jx, yK ↠ R.
Choose w ∈ R so that xy = pw. Let R′ := W Jx, yK /(xy − pw) which surjects onto R. Note that, as a
W -module, we have

R′ =W ⊕
⊕
i>0

Wxi ⊕
⊕
j>0

Wyj ,

so it is free and hence flat over W . Furthermore, R′/p
∼
−! R/p. Since R is flat over W , we conclude that

R′ ∼
−! R.31 Finally, we need to show that we can take w = 1. We have

R =W Jx, yK /(xy − pw) with maximal ideal m := (x, y, p).

Note that m/m2 is spanned by p, x, y mod pw (the only relation is xy − pw but also xy ∈ m2 so is 0 in
the quotient). If w ∈ m, then pw ∈ m2 which would imply dimm/m2 = 3, contradicting regularity of R
(dimR = 2). Thus, w ̸∈ m/m2, so w ∈ R×, so change x⇝ x/w to get w = 1. ■

Recall 19.9. M0(p) =Mp(p; ℓ)/G = SpecO(M0(p; ℓ))
G. ⊙

Since #G is prime to p, taking invariants (−)G commutes w/ tensoring − ⊗ Fp. Note that −1 ∈ G

acts trivially on M0(p; ℓ) and G = G/{±1} acts faithfully on M0(p; ℓ). Let R be the strict complete local
ring of M0(p) at some point x, and let S be the strict complete local ring of M0(p; ℓ) at some point y
above x (both x, y in char p). The points above x are permuted transitively by G, with stabilizer groups
Aut(x)/{±1} =: H. Thinking about this, this is telling us that

R = SH .

Fact (about elliptic curves in char 3). There are 3 possibilities for H:

(1) If j(x) ̸= 0, 1728, then H = 0

(2) If j(x) = 1728, then can have H = Z/2Z

(3) If j(x) = 0, can have H = Z/3Z

Where H = 0 (e.g. j(x) ̸= 0, 1728), we get R = S and we’re happy.
If H ̸= 0, it acts nontrivially on S.

• Say j(x) = 1728 and H = Z/2Z.

Suppose x is ordinary. Then, (since we’re smooth at S?) we’ll have S = W JxK and H will act by
x 7! −x (if x chosen appropriately). Then, R =W

q
x2

y ∼=W JyK which is again smooth.

Suppose x is supersingular. Then, S = W Jx, yK /(xy − p). Choosing x, y appropriately, H acts
by x 7! −x, y 7! −y. The invariants are generated by X := x2, xy = p, and Y := y2, so R ≃
W JX,Y K /(XY − p2).

• If j(x) = 0 and H = Z/3Z, get R =W
q
x3

y
or R =W Js, tK /(st− p3).

Theorem 19.10. Say x is a point of M0(p) in char p with strict complete local ring R. Then,
31The kernel of R′ ! R must be contained in pR′ = ker(R′ ! R ! R/p). If anything in pR′ vanishes in R, then R would

have p-torsion, but R
×p
−−! R is injective since R is W -flat and W

×p
↪! W is injective
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• If x is not supersingular, then x is a smooth point with R ≃W JxK.

• If x is supersingular, but j ̸= 0, 1728, then x is a regular point with R ≃W Jx, yK /(xy − p)

• If x is supersingular and j = 1728, then R =W Jx, yK /(xy − p2)

• If x is supersingular and j = 0, then R =W Jx, yK /(xy − p3)

Remark 19.11. The cusps are smooth points of X0(p) ◦

These singularities are relatively mild, and can be resolved by a few blow-ups. The result is that you add
a P1 at j(x) = 1728 if x is supersingular and a chain of two P1’s at j(x) = 0 if x is supersingular.

Remark 19.12. Andrew drew a picture at this point, but I’m too lazy to add a copy to these notes, so go
watch the video. ◦

Proposition 19.13. Let’s say C is a curve over an algebraically closed field k. Assume I’m tempted
to say this
or something
like this is
proven in
Liu’s book

(1) C is reduced

(2) all irreducible components of C are P1’s

(3) All singularities of C are simple nodes.

Then, Pic0X/k is a torus

Proof Sketch. If you have a line bundle on C, you can restrict to each irreducible component. On each
component (a P1), the line bundle looks like O(n). So we have an integer parameter for each irreducible
component, and at the points where they meet, you have to specify an element of Gm identifying the two
fibers.

Combinatorially, introduce the graph Γ of C whose vertices are the irreducible components and whose
edges are the singular points (places where components meet). A line bundle on C gives an element of
ZV (Γ) ×GE(Γ)

m . Conversely, an element of this will come from some line bundle. Thus, Pic0 is a quotient
of this, and so a torus.

One can say more, The map ZV (Γ) × GE(Γ)
m ! PicX/k is not injective. To get the trivial bundle,

it better be trivial on each component, so the integer parts have to be 0. To get a nonzero section
of the associated line bundle, you need to assign a number (i.e. section of the trivial bundle) to each
component in a way that respects the gluing. Pictorially, you we have a graph Γ with numbers (the Gm

stuff) on the edges, and it represents a trivial line bundle if you can put numbers on the vertices so that
each edge is the ratio of its vertices. Thinking in terms of simplicial cohomology, one can conclude that
Pic0X/k = H1(Γ,Gm) is a torus with character lattice H1(Γ,Z). ■

This finishes the proof of

Theorem 19.14. J0(N) has completely toric reduction at N .

Recall 19.15 (the proof strategy). The proof strategy was

• Show the minimal regular model of X0(N) has special fiber with P1’s glued at nodes

• A computation showed that Pic0 is a torus

• Theorem of Raynaud implies that Pic0 is the identity component of the special fiber of the Néron
model ⊙
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19.2 Fact from last time

We used this fact from last time, but didn’t give a complete proof, so let’s remedy that.

Theorem 19.16. Let K/Qp be a finite extension with e < p−1. Let O = OK with residue field k = O/m.
Let A be an abelian variety over K with Néron model A/O. Then,

A(K)tors = A(O)tors −! A(k)

is injective.

Proof. Let G0 = A(K)tors ⊂ A a closed subgroup. Let G be its scheme theoretic closure in A, so G is
flat and quasi-finite. Using the Néron mapping property and the valuative criterion of properness, one
can check that G is finite over O. Now, G is a prolongation of G0, but G0 is a constant group scheme, so
it has another prolongation: the constant one. Thus, G must be constant by Raynaud, so G(O) ↪! G(k)

is injective (in fact, an isomorphism) since G is constant. ■

20 Lecture 20: Proof of Mazur’s theorem (part 1)

In this lecture and next, we’ll prove the following theorem.

Theorem 20.1 (Mazur). Let N > 7 be a prime ̸= 13. Then, no elliptic curve over Q has a rational
N -torsion point.

The statement also holds for N = 13, but the proof in that case will be different (we’ll see it in a
couple lectures).

Recall 20.2 (Theorem 18.2). It is enough to find a quotient A of J0(N) s.t. A(Q) has rank 0 and 0 ̸= ∞
in A. Furthermore, if the J-H constituents of A[p](Q) are trivial and cyclotomic, then A(Q) has rank
0. ⊙

Question 20.3. Why exclude 13?

Answer. g(X0(13)) = 0, so its Jacobian is trivial. Recall

g(X0(N)) =

⌊
N

12

⌋
+

 1 if N ≡ −1 (mod 12)

−1 if N ≡ 1 (mod 12)
⋆

Assumption. For this lecture and next, N will be a prime greater than 7 and not equal to 13.

Proposition 20.4. [0]− [∞] is a non-trivial torsion point of J0(N) of order dividing N − 1

Proof. The map X0(N) ! J0(N), x 7! [x] − [∞] is injective. Indeed, if [x] − [∞] = 0 ∈ J0(N), then
[x] − [∞] = div(f) for some f : X0(N) ! P1, but this f would have to be degree 1 and so force
g(X0(N)) = 0, a contradiction. This gives non-triviality.

To see that it’s torsion, recall the modular form ∆(z) = 4E3
4 + 27E2

6 , the unique cusp form of weight
12 for Γ(1) (up to scaling). It has the property that ∆(z) ̸= 0 for z ∈ H (e.g. since it’s the discriminant
of the corresponding elliptic curve), and that ∆(z) = q + . . . , so it vanishes to order 1 at ∞. Hence,

113



∆(Nz) is a weight 12 modular form for Γ0(N) which also doesn’t vanish on the upper half place. Now,
∆(z)/∆(Nz) is a Γ0(N)-invariant function on H, so it descends to a meromorphic function on X0(N).
Since ∆(z) ̸= 0 for z ∈ H, f is holomorphic and non-vanishing on Y0(N), i.e. its divisor is supported at
the cusps. Looking at q-expansions, we have

∆(Nz) = qN + · · · =⇒ ∆(z)

∆(Nz)
= q−(N−1) + . . . ,

so f must have a pole of order (N − 1) at ∞ ∈ X0(N). Since deg div(f) = 0, we conclude that
div(f) = (N − 1)[0]− (N − 1)[∞] so [0]− [∞] ∈ J0(N)[N − 1]. ■

Remark 20.5. Ogg showed that the order of [0]− [∞] is exactly (N − 1)/ gcd(N − 1, 12) ◦

Remark 20.6. Mazur showed that [0]− [∞] generates the entire torsion subgroup of J0(N)(Q) ◦

Recall 20.7. If ℓ ̸= N is prime, get Hecke operator Tℓ acting on many sorts of things, including J0(N). ⊙

Proposition 20.8. Tℓ([0]− [∞]) = (ℓ+ 1)([0]− [∞]).

Proof sketch. Let f, g : X0(Nℓ)⇒ X0(N) be the Hecke correspondence. The space X0(Nℓ) has 4 cusps,
and we can identify

cusps(X0(Nℓ)) = cusps(X0(N))× cusps(X0(ℓ)).

Hence, we will denote a cups on X0(Nℓ) as (x, y) with x, y ∈ {0,∞} (and x corresponding to the
X0(N) part). Note that f is induced by the identity map H ! H, so f(x, y) = x. g is induced by the
multiplication map ℓ : H! H, so also g(x, y) = x. The ramification index of f at (∗, 0) is ℓ and at (∗,∞)

is 1. Now, if x ∈ {0,∞} is a cusp on X0(N), then

f∗([x]) = ℓ[(x, 0)] + [(x,∞)] =⇒ g∗f
∗([x]) = (ℓ+ 1)[x]. ■

Definition 20.9. We’ll say an abelian variety A/Q satisfies condition JH(p) if the J-H constituents of
A[p](Q) are trivial and cyclotomic. ⋄

(Equivalently, the semisimplified reduction of Vp(A) is a sum of trivials and cyclotomics, so JH(p) is
an isogeny invariant condition)

20.1 Special Case

Recall 20.10. J0(N) =
∏
Af (up to isogeny) with product over Galois orbits of normalized eigenforms

f ∈ S2(N) ⊙

Assumption. For most of today, let’s assume all the f ’s have coefficients in Q, so each ‘Galois orbit’
above is a singleton, and each Af is an elliptic curve.

(We’ll deal with the general case next lecture)
We want a quotient of J0(N) satisfying JH(p). There’s a best choice (since we want to keep the cusps

distinct): take A to be the product of all Af ’s that satisfy JH(p) (up to isogeny). Let’s be a little more
careful, so we know A on the nose and not just up to isogeny.
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For an eigenform f ∈ S2(N), let

pf := ker

(
T Tℓ 7!aℓ(f)
−−−−−−! Z

)
.

Recall 20.11. Af = J0(N)/pfJ0(N) ⊙

Let S = {f | Af satisfies JH(p)} and let I :=
⋂

f∈S pf . Finally, set

A := J0(N)/IJ0(N).

Up to isogeny, we have A =
∏

f∈S Af , so A satisfies JH(p). Thus,

Proposition 20.12. A(Q) has rank 0.

Question 20.13. How do we know that A ̸= 0?

Answer. Let p be a prime dividing the order of [0]− [∞] (so p | N − 1 =⇒ p ̸= N). Then, J0(N)(Q)

has a p-torsion point, so J0(N)[p] must have a copy of the trivial representation in it. This copy must
come from some Af [p] for some f ∈ S2(N). Since Af is an elliptic curve, the Weil paring then implies
that Af satisfies JH(p),32 so f ∈ S. ⋆

Lemma 20.14. We have f ∈ S ⇐⇒ aℓ(f) = ℓ+ 1 mod p for all ℓ ̸= N

Proof. Suppose f ∈ S. Then, Af [p] is triv⊕ cyc (up to semisimplification). Thus, aℓ(f) = Tr(Fℓ |
Af [p]) = ℓ + 1 mod p. Conversely, if aℓ(f) = ℓ + 1 mod p for all ℓ, then the character of Af [p] is the
character of triv⊕ cyc, so they must be the same up to semisimplification by group theory. ■

Definition 20.15. The p-Eisenstein ideal is the ideal a of T generated by p and Tℓ − (ℓ + 1) for all
ℓ ̸= N . ⋄

Lemma 20.16. Tℓ/a = Fp, so a is a maximal ideal.

Proof. Take any f ∈ S. The homomorphism T ! T/pf ∼= Z takes Tℓ 7! aℓ(f). Hence, Tℓ − (ℓ + 1) 7!

aℓ(f)− (ℓ+ 1) ∈ (p), so the image of a under this map is not (1), so a ̸= (1). Now, the quotient must be
Fp since every Tℓ becomes an integer (i.e. becomes ℓ+ 1), and we’ve killed p. ■

Lemma 20.17. f ∈ S ⇐⇒ the image of a in T/pf is not (1) ⇐⇒ pf ⊂ a

Proof. The image of a in T/pf = Z is the ideal generated by aℓ(f)− (ℓ+ 1) and p, which is not the unit
ideal iff aℓ(f) ≡ (ℓ+ 1) mod p for all p, i.e iff f ∈ S. Since a is maximal, we get the last equivalence in
the claim. ■

Now we can characterize our ideal I w/o reference to modular forms.

Proposition 20.18.
I =

⋂
p⊂a

p minimal prime

p
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Proof. By definition I =
⋂

f∈S pf . The minimal primes of T are just the pf ’s. Finally, pf ⊂ a ⇐⇒ f ∈ Question:
Why?S. ■

Lemma 20.19. The localization Ia = 0.

This is because Ia is the intersection of the minimal primes of Ta, i.e. is the nilradical of Ta, but Ta

is reduced since T is.
Suppose X is a T-module and every element is killed by a power of p. Then, the action of T extends

to an action of its p-adic completion
T̂p := lim −T/pnT.

This is a complete semi-local ring, so it’s the product of its localizations at maximal ideals. In particlular,
T̂a := lim −T/an is a direct factor of T̂p. Thus, X = Xa ⊕X ′ where X ′ is killed by T̂a. Note

Xa = X[a∞] =
⋃
n≥1

X[an].

Lemma 20.20. J0(N)[a∞]
∼
−! A[a∞]

Proof. Let X = J0(N)[p∞] and Y = A[p∞], so we have a surjection X ! Y . The kernel of this map is
X ∩ IJ0(N) = IX. To see this last equality, pick generators T1, . . . , Tn of I and consider the map

J0(N)n −! J0(N)

(X1, . . . , Xn) 7−!
∑

TiXi.

The image of this map is IJ0(N); since this is a map of abelian varieties, it induces a surjection on
p-power torsion points. This exactly says that X ∩ IJ0(N) = IX. This gives an exact sequence

0 −! IX −! X −! Y −! 0.

Localize at a (and note (IX)a = IaXa = 0), to conclude that Xa
∼
−! Ya. ■

Corollary 20.21. [0]− [∞] ̸= 0 in A.

Proof. Say P = [0]−[∞] ∈ J0(N), and let Q be any nonzero p-torsion multiple of P . Since TℓP = (ℓ+1)P ,
the same is true for Q, so Q ∈ J0(N)[a]. The previous lemma then implies that the image of Q in A is
nonzero, so P ̸= 0 in A as well. ■

Remark 20.22. T⊗Q = Q×Q× . . .×Q, one fact for each eigenform fi. Furthermore, T ⊂ Z×Z× . . .×Z.
Explicitly, T is the subring of Qn generated by tuples (aℓ(f1), . . . , aℓ(fn)).

If there are congruences between the fi’s, then T ⊊ Zn. ◦ TODO: Add
in picture of
SpecT from
lecture

20.2 General Case

In general, Vp(J0(N)) =
∏
Vf,λ with product over pairs (f, λ) where f ∈ S2(N) is a normalized eigenform,

and λ is a prime of the coefficient field Kf of f , above p. The ideal situation would be to take A to be

32Vℓ(Af ) looks like
(
1 ∗

χ

)
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the quotient of J0(N) s.t. VpA is the product of those Vf,λ whose semi-simple reduction is sums of trivial
and cyclotomic.

Warning 20.23. This does not work. It’s possible, for example that J0(N) is a simple abelian variety
(e.g. all normalized eigenforms are Galois conjugate). •

I didn’t really follow Andrew’s description of the idea, but details in-coming next time...
Sounds like we’re getting started this time. Choose p dividing the order of [0] − [∞] in J0(N). Let

a ⊂ T be the ideal generated by p and Tℓ − (ℓ+ 1) for all ℓ ̸= N as before.

Lemma 20.24. T/a = Fp, so a is maximal.

Proof. J0(N)[p] contains copy of trivial representation, so semi-simplified reduction of some Vf,λ must
be triv plus cyclotomic. Hence, aℓ(f) = ℓ+ 1 mod λ, so image of a in T/Pf will be contained in λ. ■

Define
I =

⋂
p⊂a minimal prime

a and A := J0(N)/IJ0(N).

Proposition 20.25. 0 ̸= ∞ in A

(Same proof as before)
We just need rankA(Q) = 0. We will do this next time, essentially by mimicking the proof of Theorem

11.1 from before.

21 Lecture 21: Proof of Mazur’s Theorem (part 2)

Last time we started proving Mazur’s Theorem 20.1.

Theorem 21.1 (Theorem 20.1). Let N > 7, ̸= 13 be prime. No elliptic curve over Q has a rational point
of order N .

Recall 21.2.

• We picked a prime p dividing the order of [0]− [∞] ∈ J0(N)(Q) (so p | (N − 1)).

• We defined the p-Eisenstein ideal a ⊂ T, generated by p and Tℓ − (ℓ+ 1) for all ℓ ̸= N

• We set
I :=

⋂
minimal prime p⊂T

p⊂a

p and A := J0(N)/IJ0(N).

• To prove Theorem 21.1, it suffices to show that rankA(Q) = 0.

• Last time we treated the case where all the eigenforms of level N have Q-coefficients. In that case,
this A satisfies the JH(p) condition and we could apply Theorem 11.1. ⊙

Today we handle the general case. Theorem 11.1 won’t apply, but it’s proof will basically go through
in the current situation. We’ll show that A(Q)a is finite, and then an easy commutative algebra argument
will show that A(Q) is finite.

Let’s recall the strategy of the proof of Theorem 11.1.
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Recall 21.3. A group scheme over Z or Z[1/N ] is admissible if

(1) It is finite + flat away from N ;

(2) It is q.finite + étale away from p;

(3) There exists a filtration (over Z[1/N ]) with quotients all either Z/pZ or µp

(plus some technical hypotheses) ⊙

Recall 21.4 (Proposition 11.7). If G/Z satisfies (1) +(2) and JH(p), then it’s admissible ⊙

Recall 21.5. Let G/Z be admissible. We defined

• ℓ(G) = logp(#G)

• δ(G) = ℓ(GQ)− ℓ(GFN
)

• α(G) = # of Z/pZ’s in filtration for G (over Z[1/N ])

• hi(G) = logp
(
#Hi

fppf(SpecZ, G)
)

We proved (Proposition 11.14)
h1(G)− h0(G) ≤ δ(G)− α(G). ⊙

Recall 21.6 (Proof Sketch of Theorem 11.1). We start with an abelian variety A/Q with

• good reduction away from N

• completely toric reduction at N

• A[p] satisfying JH(p)

Let A/Z be the Néron model of A. Then, A[p] is admissible, and so A[pn] is admissible for all n. We
then showed that δ(A[pn]) ≈ α(A[pn]) so the difference h1(A[pn]) − h0(A[pn]) is bounded as n ! ∞.
The term h0(A[pn]) is itself bounded (since it’s A(Q)[pn]) and so the h1 term is itself bounded. Now, we
basically (not literally) have an injection A(Q) ↪! lim −H1

fppf(Z,A[pn]) with the RHS finite. ⊙

We want to carry out the same idea in the present setting. We’ll have that A[pn] localized at a is
admissible, and then be able to bound H1

fppf(Z,A[an]) and conclude that some a-part of A1(Q) is finite. TODO:
Make sure
this is the
right expres-
sion

21.1 Proving A(Q) has rank 0

Notation 21.7. We take N, p, a, I and A all as in Recall 21.2. We write d for the Zp-rank of T̂a, and we
let e be the idempotent of T̂p which projects onto T̃a. Let let A/Z be the Néron model of A

Proposition 21.8. A[pn]a is admissible

(This is the image of e applied to A[pn])
It is enough to show that A[pn]a satisfies JH(p) (by Proposition 11.7).

Lemma 21.9. A[pn]a satisfies JH(p)
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Proof. We have A[pn]a ⊂ A[am] for some m. The exact sequences (below, k is the number of generators
for a)

0 −! A[a] −! A[am] −! A[am−1]⊕k

reduces us to the case of showing that V := A[a](Q) satisfies JH(p).
We know Tℓ acts on V by ℓ+ 1. By Eichler-Shimura (Theorem 17.2) we know Frobenius at ℓ ̸= p,N

satisfies
0 = F 2

ℓ − (ℓ+ 1)Fℓ + ℓ = (T − ℓ)(T − 1)

on V . Hence, the only generalized eigenvalues of Fℓ on V are 1, ℓ. This suffices to prove what we want
(by the below lemma). ■

Lemma 21.10. Let V be an Fp-representation of Gal(Q/Q) s.t. the generalized eigenvalues of Fℓ are 1

and ℓ for almost every prime ℓ. Then, the only constituents of V are triv,cyc.

Proof. Let W = V ⊕ V ∨(1) (twisting by 1 is tensoring with cyc). If m is the matrix of Frobenius Fℓ

on V , then the matrix of Fℓ ↷ V ∨(1) is ℓ (mt)
−1. Consider the Jordan normal form of this (say, after

passing to Fp) matrix: for m, you get a bunch of 1’s and ℓ’s on the diagonal; for (mt)
−1 you get a bunch

of 1’s and (ℓ−1)’s; for ℓ (mt)
−1, all the 1’s have changed to ℓ’s and all the (ℓ−1)’s have changed to 1’s.

Hence,
dim(V1) = dim(V ∨(1)ℓ) and dim(Vℓ) = dim(V ∨(1)1)

where blahλ is the λ-generalized eigenspace of Fℓ on blah. Thus,

dim(W1) = dim(V1) + dim(V ∨(1)1) = dim(V1) + dim(Vℓ) = dim(V )

and similarly dim(Wℓ) = dim(V ). In other words, the character ofW is the character of triv⊕ dim(V ) ⊕ cyc⊕ dim(V ),
so we must have W ss = triv⊕ dim(V ) ⊕ cyc⊕ dim(V ). ■

This proves that A[pn]a is admissible. Let’s now compute α of it.

Lemma 21.11. Let G/Q be a p-divisible group w/ action of T̂a whose rational Tate module Vp(G) is
free of rank 2 over T̂a[1/p]. Then,

ℓ(G[pn]) = 2nd+O(1) where d = rankZp
T̂a.

Proof. Let T = Tp(G) be the integral Tate module of G, so ℓ(G[pn]) = length(T/pnT ). Since Vp(G) is
free of rank 2, there’s some finite index T ′ ⊂ T which is free of rank 2 over T̂a, so

2nd+O(1) = length(T ′/pnT ′) +O(1) = length(T/pnT )

(the O(1)’s in the first equality are the same). ■

Corollary 21.12. α(A[pn]a) = nd+O(1)

Proof. To keep things simple, assume p ̸= 2, so α is the # of Z/pZ’s in the Galois representation of
A[pn]a. Recall the action of Tℓ on J0(N)[pn] is self-adjoint w.r.t the Weil paring, and so the same is This was

briefly men-
tioned at
the start of
the proof of
Proposition
17.9

true of any element of T̂p. Let e be the idempotent in T̂p which projects onto T̂a. This is a self-adjoint
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idempotent, and so it must be the case that eJ0(N)[pn] and (1 − e)J0(N)[pn] are orthogonal under the
Weil pairing. Since the Weil pairing is perfect, it must restrict to a perfect pairing on eJ0(N)[pn]. Last
time (Lemma 20.20), we showed that

eJ0(N)[p∞]
∼
−! eA[p∞].

Thus, we conclude that A[pn]a is self-Cartier-dual. Since it’s admissible, it must have equal numbers of
Z/pZ’s and µp’s in it, so

α(A[pn]a) =
1

2
ℓ(A[pn]a) = nd+O(1)

by the previous lemma applied to G = A[p∞]a (so G[pn] = A[pn]a).33 ■

Now we compute δ.

Lemma 21.13. Say we have a p-divisible group G/QN . Let V = Vp(G) be its rational Tate module, and
let Gn be the maximal q.finite étale extension of G[pn] over ZN . Then, See Remark

9.5
δ(Gn) = (dimV − dimV I)n+O(1)

where I ⊂ Gal(QN/QN ) is the inertia subgroup.

Proof. Let T = Tp(G) be the integral Tate module, so

ℓ((Gn)QN
) = len(T/pnT ) = n dim(V ).

Over the special fiber,
Gn(FN ) = Gn(QN )I = (T/pnT )I

by definition of this maximal q.fin étale extension. Hence, ℓ((Gn)FN
) = len((T/pnT )I). Now consider the

exact sequence
0 −! T

pn

−−! T −! T/pnT −! 0.

Taking inertia invariants gives

0 −! T I/pnT I −! (T/pnT )I −! H1(I, T )[pn] −! 0.

The H1 term above is a f.g. Zp-module and so its pn-torsion is bounded. Thus,

len((T/pnT )I) = len(T I/pnT I) + len(H1(I, T )[pn]) = ndim(V I) +O(1)

as desired. ■

We’re now interested in understanding inertia invariants.

Lemma 21.14. Say B/QN is an abelian variety with Néron model B/ZN . Then,

Vp(BFN
) = Vp(B)I .

33Note Vp(G) = Vp(J0(N))a is free of rank 2 over T̂a
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Proof. B[pn] is an étale group scheme over ZN , so every FN points lifts to a Zun
N -point. The Néron

mapping property implies that every Qun
N point of B extends to a Zun

N -point, so

B[pn](FN ) = B[pn](Qun
N ) = B[pn](QN )I ,

and we take the inverse limit over N . ■

Lemma 21.15. Let B/QN be an abelian variety with completely toric reduction. Let U be a summand
of the rational Tate module V = Vp(B). Then,

dim(U I) =
1

2
dim(U).

Proof. Note dim(V ) = 2 dim(B). By the previous lemma, V I = Vp(BFN
). The identity component of

BFN
is a torus, by assumption, so dimVI = dimBFN

= dimB (Tate module of a torus). This proves the
lemma for V .

In general, note thatB has semistable reduction, so Grothendieck’s extension of Néron-Ogg-Shafarevich
(Theorem 9.16) implies that I acts unipotently on V . In fact, there’s a stronger result: for any g ∈ I,
(g − 1)2 = 0 on V . Thus, if U ⊂ V is any Galois-stable submodule (not necessarily a summand), then
(g − 1)2U = 0 for all g ∈ I, so dim(Ug) ≥ 1

2 dim(U). We’d like to extend this from a single element to
the whole group. The image of I is a pro-p group34. The wild part is pro-N , so Iw must act trivially.
Then, the action of inertia factors through the tame quotient It = I/Iw, a pro-cyclic group. If g ∈ It is
a generator, then U I = Ug, so we conclude dim(U I) ≥ 1

2 dim(U).
Now, if V = U1 ⊕ U2, then we must have

dim(V I) =
1

2
dim(V ) and dim(U I

i ) ≥
1

2
dim(Ui) for i = 1, 2.

Since V I = U I
1 ⊕ U I

2 , the inequalities above must be equalities. ■

Remark 21.16. If B = J0(N) (or a quotient of it), then we know Vp(B) =
⊕
Vf,λ with each piece a 2-

dimensional vector space. Since g ∈ I acts unipotently, we must have (g−1)2 = 0 on each (2-dimensional)
piece, so we easily get this stronger fact for the cases we care about. ◦

Remark 21.17. This lemma shows that inertia at N acts unipotently and non-trivially on Vf,λ. This is
an instance of local-global compatibility in the Langlands program. ◦ Andrew said

more about
this, but I’d
be lying if
I said I fol-
lowed com-
pletely

Proposition 21.18. δ(A[pn]a) = nd+O(1)

Proof. We first set up some notation. Let G = A[p∞] and Ga = eG. Let V = Vp(GQ) and Va = eV =

Vp((Aa)Q). Note that G[pn] is the maximal étale q.finite extension of its generic fiber (e.g. by the Néron
mapping property), so (Lemma 21.13)

δ(G[pn]) = (dimV − dimV I)n+O(1).

34V is a Qp-vector space and I is acting via the group of unipotent matrices. This group has a filtration whose successive
quotients are Qp’s
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This property passes to summands, so also

δ(Ga[p
n]) = (dimVa − dimV I

a )n+O(1).

Now, Va is a summand of Vp(A) (or even Vp(J0(N))) and A has completely toric reduction at N , so
(Lemma 21.15) dimV I

a = 1
2 dimVa. Thus,

δ(Ga[p
n]) =

1

2
dim(Va)n+O(1) = dn+O(1)

since Va is free of rank 2 over T̂a ( =⇒ dim(Va) = 2d). Finally, note that Ga[p
n] = A[pn]a. ■

Proposition 21.19. T̂a ⊗T A(Q) is finite.

Proof. Let A0/Z be the identity component of the Néron model. Let Gn := A0[pn]a. Note that α only
depends on the special fiber at p (and A = A0 away from N), so

α(Gn) = α(A[pn]a) = nd+O(1).

δ however can change, but only by the order of the component group, so

δ(Gn) = δ(A[pn]a) +O(1) = nd+O(1).

This tells us that h1(Gn)− h0(Gn) = O(1), but

H0
fppf(Z,Gn) ⊂ A0(Z)[pn] ⊂ A(Q)[pn]

is bounded, so h1(Gn) = O(1) (as n!∞). Now we do the Kummer sequence thing:

0 −! A0[pn] −! A0 pn

−−! A0 −! 0

(exact on the right by completely toric reduction), so we get an injection

A0(Z)⊗ Z/pnZ ↪! H1
fppf(Z,A0[pn]).

Taking inverse limits, we get
A0(Z)⊗ Zp ↪! lim −H1

fppf(Z,A0[pn]).

Applying e, we get
A0(Z)⊗T T̂a ↪! lim −H1

fppf(Z,Gn)

(e moves through everything since it’s just taking a summand), so A0(Z) ⊗T T̂a is finite. We have a
finite-index containment

A0(Z) ↪! A(Z) = A(Q),

and so we win. ■

We still need to deduce finiteness of A(Q) from this.
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Lemma 21.20. Suppose that O is an order in a number field K, and let a ⊂ O be a maximal ideal. Let
M be a f.g. O-module s.t. the completion M̂a =M ⊗O Ôa is finite. Then, M is finite.

(Proof: exercise)

Lemma 21.21. Say M is a f.g. (T/I)-module so that M ⊗T T̂a is finite. Then, M is finite.

Proof. Consider the map
T/I ↪!

⊕
p⊂a⊂T

p minimal

T/p

which has finite cokernel (iso after tensoring with Q). Tensoring up to M gives

M !
⊕
p

M/pM

with finite kernel and cokernel (sum over same primes as above). Since M ⊗T T̂a is finite, same is true
for M/pM , so the previous lemma implies that M/pM is finite for all p in the sum. This then implies
that M is finite. ■

Corollary 21.22. A(Q) is finite.

Last time we showed the two cusps map to different elements in this A, so we may conclude Mazur’s
theorem.

21.2 What’s Left?

We’ve done all the hard work now, but we haven’t done all the work. We need to exclude 13-torsion.
We’ll do this next time, following a paper of Mazur and Tate. We also have to exclude some composite
orders (e.g. there could be 7-torsion, but there shouldn’t be any 49-torsion).

22 Lecture 22: 13 torsion

The goal of today is to prove the following theorem

Theorem 22.1 (Mazur-Tate, this paper). No elliptic curve over Q has a rational point of order 13.

(This case was missed by Mazur’s method since g(X0(13)) = 0)

Notation 22.2. We let X = X1(13), J = Jac(X), both viewed as schemes over Z[1/13]. We let
K = Q(ζ13) (with ζ13 a primitive 13th root of unity), and we let K+ be the maximal real subfield of K.
Finally, we let G = Gal(Q/Q).

Note that theorem 22.1 amounts to the statement that the only rational points of X are the cusps.

22.1 Preliminaries on X1(13)

Recall 22.3. Y1(13) parameterizes pairs (E,P ) where E is an elliptic curve and P ∈ E[13]. ⊙
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Definition 22.4. We haven’t talked about X1(13) before. This parameterizes pairs (E,P ) where E is a
generalized elliptic curve, and P is a 13-torsion point s.t. the group generated by P meets each irreducible
component of E. ⋄

Fact. g(X1(13)) = 2 and g(X0(13)) = 0

If g(X1(13)) = 1, it’d be an elliptic curve, and so there’d be more available methods for getting at its
rational points. Since it’s higher genus, things are a bit trickier.

Fact. X1(13) is actually a scheme, not just a stack

Recall 22.5. X0(13) has two cusps: (1-gon, µ13) and (13-gon, Z/13Z). ⊙

Over each of these cusps, there are 6 points of X1(13) because a group of order 13 has 12 generators
and because (E,P ) ∼= (E,−P ) (via multiplication by −1). The points over (13-gon, Z/13Z) are rational
(each point is actually a rational point) while the points of (1-gon, µ13) are not rational; you need a root
of unity up to ±, so they’re defined over K+. Summarizing

Proposition 22.6. X = X1(13) has 12 cusps, 6/Q and 6/K+.

Note that (Z/13Z)× ↷ X by scaling the point, i.e.

(Z/13Z)× ∋ a : (E,P ) 7! (E, aP ).

Since −1 acts trivially, we get an action of Γ = (Z/13Z)× /{±1}. Given m ∈ (Z/13Z)×, we let γm ∈ Γ

denote its image.

Remark 22.7. On X0(N), there’s the Atkin-Lehner involution (E,G) ⇝ (E/G,E[N ]/G). You might
get a similar thing on X1(N), but you run into the issue that E/ ⟨P ⟩ doesn’t have a natural choice of
N -torsion point. However, if you fix a primitive Nth root of unity, you can take the point which has Weil
pairing (with the original point) that root of unity. ◦

Given ζ ∈ µ13 primitive and (E,P ) ∈ X1(13), there’s a point Q ∈ E[13] so that e13(P,Q) = ζ. This
Q is unique up to translation by P , so (E/ ⟨P ⟩ , image of Q) gives a well-defined point of X1(13).35 This
constructs a map Question:

Is this de-
fined over
Q or over
Q(µ13) =

K?

Answer: It’s
defined over
K+, see e.g.
the discus-
sion in Ku-
bert’s pa-
per on ‘The
method of
mazur and
tate...’

τζ : X ! X.

Remark 22.8. τζ = τζ−1 so τζ makes sense for

ζ ∈ Γ′ := {primitive 13th roots of 1} /(ζ = ζ−1)

(Γ′ just a set). ◦

We have the relations

• γmτζ = τζm

• τζγmτζ−1 = γ−1
m

• τ2ζ = 1

35One has to give a different construction at the cusps
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Staring at this, we see that if ∆ = Γ ∪ Γ′, then this is a group which is isomorphic to the dihedral group
of order 12. Furthermore, G acts on ∆ through its action on µ13, and this action is compatible w/ its
action on XQ.

22.2 Results of Ogg

Note 2. I think these are from this paper.

Proposition 22.9. Let Pi (1 ≤ i ≤ 6) be the rational cusps on X. For i ̸= j, the point [Pi]− [Pj ] ∈ J(Q)

has order 19. Furthermore, all of these generate the same cyclic subgroup of J .

Proof sketch. For 1 ≤ a ≤ 6, define the series

E2,a =
∑′

n≡0 (mod 13)
m≡a (mod 13)

1

(mz + n)2
.

This is a weight 2 Eisenstein series for Γ1(13). They are not modular forms, but the differences φij =

E2,i−E2,j are modular forms of weight 2 for Γ1(13). This allows one to know how many zeros it has, and
then to check that all the zeros of φij lie on the cusps. Thus, Dij = div(φij) is some linear combination
of cusps (Ogg explicitly computes these), and

Dij −Dkl = div

(
φij

φkℓ

)
= 0 ∈ J.

Since gives a bunch of linear relations on the cusps. Ogg writes them down and fiddles with them to
conclude the proposition. ■

Proposition 22.10. J(Q)tors = Z/19Z

“The proof of this is pretty cool.”

Proof. The only points on X/F4 are the 6 rational cusps. This is because no elliptic curve over F4 can
have a point of order 13 (by the Hasse bound). This means the only other possible points could be the 6

cusps over K+, but we know their field of definition and so can see that they are not defined over F4.36

So we know #X(F2) = #X(F4) = 6. Now, we appeal to the following

Lemma 22.11. Suppose X/Fq is a genus 2 curve with Jacobian J = Jac(X). Then,

#J(Fq) = −q + 1

2
#X(Fq2) +

1

2
(#X(Fq))

2
.

Proof idea. Use Lefschetz-fixed point. Let V = H1
ét(XFq

,Qℓ) and let F be Frobenius. Then,

#X(Fq) = 1 + q − Tr(F |V ) and #J(Fq) =

4∑
i=0

(−1)i Tr(F |
∧i

V ).

Now one uses Poincaré duality and linear algebra to work out the rest of the proof. ■

362 is completely inert in K = Q(ζ13) since 2 ∈ (Z/13Z)× is a generator, so these cusps in char 2 should be defined over
F
2[K

+:Q] = F26 if I’ve not misled myself
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This tells us that #J(F2) = 19. Now, the map J(Q)tors ! J(F2) is injective away from 2-power
torsion, so the theorem is correct up to 2-power-torsion. To deal with that, use the same strategy in char
3. Over F3, one has #X(F3) = 6. Over F9, it turns out you can have an elliptic curve with a 13-torsion
point, but there’s only one such curve and it has an automorphism group of order 6, so the 12 generators
only give 2 distinct points. Hence, #X(F9) = 8 which, by the lemma, implies that #X(F3) = 19 and we
win. ■

Proposition 22.12. The image of X(C) in J(C) (via P 7! [P ] − [P6]) meets J(Q)tors only at the 6

cusps.

Proof idea. Suppose that [P ]− [P6] ∈ J(Q)tors. Then, you can write [P ]− [P6] = n([P1]− [P6]) for some
n (since we just computed the torsion subgroup). Thus,

[P ]− n[P1] + (n− 1)[P6] = div(f)

for some function f on X. One shows that this can’t happen unless n = 1 or something. ■ Unclear to
me how to
finish

Corollary 22.13. To prove Theorem 22.1, it is enough to show that rank J(Q) = 0.

22.3 rank J(Q) = 0

Proposition 22.14. J is a simple abelian variety

Proof. Suppose we have an exact sequence (in the isogeny category?)

0 −! J1 −! J −! J2 −! 0

with J1, J2 elliptic curves (since dim J = 2). Since J has a Q-point of order 19, so does J1 or J2 (since
19 is prime). However, an elliptic curve over Q can’t have a rational point of order 19.37 ■

Remark 22.15. γ2 generates Γ = (Z/13Z)× /{±1}. ◦

Proposition 22.16. The action of γ2 on J satisfies x2 − x+ 1 = 0.

Proof. First γ2 satisfies x6 − 1 = 0, but not xd − 1 = 0 for d < 6 since it generates Γ (and #Γ =

6). Furthermore, if γ2 satisfies some polynomial, then it must satisfy some irreducible factor of that
polynomial (since J is simple). Now, we factor

x6 − 1 = (x− 1)(x+ 1)(x2 + x− 1)(x2 − x+ 1).

The first 3 factors all divide some xd − 1 with d < 6, so γ2 can only satisfy the last one. ■

The ring Z[γ2]/(γ22 − γ2 + 1) ∼= Z[ζ3] acts on J via endomorphisms defined over Q. Over K+,

D :=
Z[∆]

(γ22 − γ2 + 1)

37We proved this in the previous lectures. However, there’s a simpler argument in this case. We know J has good reduction
away from 13, so J1, J2 do as well. Hence, we can reduce mod 2 and apply the Hasse bound to get a contradiction.

126



acts on J (Z[∆] the group algebra). This thing is actually an order in a simple algebra, so D⊗Q ∼=M2(Q).
This shows that this action is faithful (it can’t factor through anything) and that J is not simple over
K+ (since its endomorphism ring over K+ contains an M2(Q)).

Let V = J [19](Q), a 4-dimensional vector space over F19. Both G,∆ act on V , and they do so
compatibly. The prime 19 splits in Z[ζ3] (since 19 ≡ 1 (mod 3)), so we may write 19 = ππ with
π, π ∈ Z[ζ3] (a PID). Write

Vπ := ker(π | J) and Vπ := ker(π | J)

so V = Vπ ⊕ Vπ. Both of these summands are stable by G,Γ, but they are interchanged by the τ’s.

Proposition 22.17. The Weil pairing on V induces Cartier duality between Vπ and Vπ.

Proof. Since the Weil paring is perfect on V = Vπ ⊕ Vπ, it suffices to show that each summand is
self-orthogonal. Note that, for x, y ∈ V , we have

(γ2x, γ2y) = (x, y)

(by functoriality of the Weil pairing). Now, γ2 acts on Vπ via multiplication by some primitive 6th root
of unity ζ ∈ F19. Thus,

(x, y) = (γ2x, γ2y) = (ζx, ζy) = ζ2(x, y) =⇒ (x, y) = 0

for x, y ∈ Vπ. ■

Let V (1) ⊂ V be J(Q)tors, a 1-dimensional F19-vector space. This will be stable by γ2, so V (1) ⊂ Vπ

or V (1) ⊂ Vπ. Assume wlog that V (1) ⊂ Vπ.
Let V (γ) = {v ∈ V : av = γav for all a ∈ Γ} where we identify Γ = Gal(K+/Q). Γ′ interchanges

V (1), V (γ), so we must have V (γ) ⊂ Vπ and 1-dimensional.
Finally, let V (χ) = F19 with Galois action given by the (mod 19) cyclotomic character. The dual of

the inclusion V (1) ↪! Vπ is a surjection Vπ ↠ V (χ).

Proposition 22.18. The sequence

0 −! V (γ) −! Vπ −! V (χ) −! 0

is exact.

Proof. We have exactness on the left and right for free. By dimension counting, exactness in the middle
just amounts to the composition being 0. The action of G on V (γ) factors through Gal(K+/Q) (and
nothing smaller), while the action of G on V (χ) factors through Gal(Q( 3

√
1)/Q) (and nothing smaller),

so V (γ) ̸≃ V (χ). As they’re both 1-dimensional, any map between them (e.g. the composite) must be
0. ■

Now we get to the actual proof that J(Q) has rank 0. It will be enough to show that the map
π : J(Q) ! J(Q) is surjective. This is because J(Q) is a f.g. module over OQ(ζ3) (a Dedekind domain,
and even a PID) so if multiplication by the non-unit π ∈ OQ(ζ3) is surjective, then J(Q) = J(Z[1/13])
better be finite.
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Consider the diagram

J(Z[1/13]) J(Z[1/13]) H1
fppf

(
Z
[

1
13

]
, J [π]

)
J(Q13) J(Q13) H1

fppf (Q13, J [π])

π

ρ

π

To show that the top π map is surjective, it suffices to show (1) that π : J(Q13) ! J(Q13) is surjective
and (2) ρ : H1

fppf
(
Z
[

1
13

]
, J [π]

)
! H1

fppf (Q13, J [π]) is injective. This follows from a simple diagram chase.

Claim (1) Write J /Z13 for the Néron model of J , and let

N := ker (J (Z13)! J (F13)) ,

a pro-13 group. Consider the sequence Compare
Corollary
8.220 N J (Z13) J (F13) 0

0 N J (Z13) J (F13) 0

π π π

Since π | 19 (19 = ππ) and N is pro-13 the left vertical map must be an isomorphism. Thus, by the snake
lemma, the middle vertical map is surjective (keep in mind J (Z13) = J(Q13)) iff the right vertical map
is. Note that J (F13) is finite, so π is surjective on it iff it’s injective on it. A second application of the
snake lemma shows that this is the case iff the middle vertical π is injective, i.e. we only need show that

0 = ker (π|J (Z13)) = J [π](Q13) = V D
π ,

where D ⊂ G is the decomposition group at 13. Now, we use the exact sequence

0 −! V (γ) −! Vπ −! V (χ) −! 0,

so it’s enough to show that the D-invariants of the outside guys are 0. Note that V (γ) is a faithful
representation of Gal(K+/Q) and that 13 ramified in K+, so the decomposition group is nontrivial
there and hence V (γ)D = 0. Similarly, V (χ) is a faithful representation of Gal(Q(ζ19)/Q) and the
decomposition group at 13 there is nontrivial (since 13 ̸≡ 1 (mod 19)), so V (χ)D = 0 as well. This proves
claim (1).

Claim (2) We now want to show that

ρ : H1
fppf

(
Z
[
1

13

]
, J [π]

)
! H1

fppf (Q13, J [π])

is injective.
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Proposition 22.19. There is an exact sequence of group schemes over Z[1/13]:

0 −! E −! J [π] −! µ19 −! 0

with E a finite, étale group scheme that becomes trivial over Z[1/13, ζ13].

Proof. Let E be the Zariski closure of V (γ) in J [π]. We know that V (γ)|Q(ζ13) is trivial, so E|Z[1/13,ζ13]
is trivial as well by Raynaud. The quotient J [π]/E is generically V (χ) (i.e. it is that over Q) and so we
must have J [π]/E = µ19 by Raynaud again. ■

We draw another diagram

H1
fppf(Z[1/13], E) H1

fppf(Z[1/13], J [π]) H1
fppf(Z[1/13], µ19)

H1
fppf(Q13, J [π]) H1

fppf(Q13, µ19)

ρ ρ′

In order to show that ρ is injective, it will suffice to show that ρ′ is injective and that the top left group
H1

fppf(Z[1/13], E) = 0 vanishes.
Note that Kummer theory tells us that

H1
fppf(Z[1/13], µ19) ≃ coker

(
(Z[1/13])× (−)19

−−−! (Z[1/13])×
)

= Z[1/13]×/
(
Z[1/13]×

)19
and that

H1
fppf(Q13, µ19) ≃ Q×

13/(Q
×
13)

19.

The map between these two is the obvious map. Note that Z[1/13]× = {±13n} and that −1 = (−1)19 is
a 19th power. The map

Z[1/13]×/
(
Z[1/13]×

)19
! Q×

13/(Q
×
13)

19

is injective since 13n is a 19th power in Z iff it is in Q13.
Now we need to show that H1

fppf(Z[1/13], E) = 0. Note that E is an étale group scheme, so
H1

fppf(Z[1/13], E) = H1
ét(Z[1/13], E). Furthermore, E trivializes after adjoining a 13th root of unity,

and one has
H1

ét(Z[1/13], E) = H1
ét(Z[1/13, ζ13],Z/19Z)Gal(K/Q)

(K = Q(ζ13)).

Let’s explain the above equality. Let G be a finite, abstract group, and let G be its associated constant There’s
probably a
shorter ex-
planation,
but this is
the best I
could muster

group scheme. Let X π
−! Y be a G-torsor (e.g. a Galois cover with Galois group G), so in particular

X ! Y is finite étale + surjective. Associated to the composition of functors

Sh(Y ) G-Mod Ab
H0(X,π∗(−))

H0(Y,−)

(−)G
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is the Grothendieck spectral sequence (group cohomology on the outside)

Epq
2 = Hp(G,Hq(X,π∗F )) =⇒ Hp+q(Y,F )

for any F ∈ Sh(Y ). This gives rise to the low-degree exact sequence

0 −! H1(G,H0(X,π∗F )) −! H1(Y,F ) −! H1(X,π∗F )G −! H2(G,H0(X,π∗F )) −! H2(Y,F ).

Now, say that F is represented by a finite, flat group scheme over Y , and suppose that gcd(#G,#F ) = 1.
Then,

H1(G,H0(X,π∗F )) = 0 = H2(G,H0(X,π∗F ))

since you’re taking group cohomology where the group and the module have coprime orders. Thus, in
this case,

H1(Y,F )
∼
−! H1(X,π∗F )G

as desired. In the present scenario, we’re in luck since #Gal(K/Q) = 12 is coprime to #E = 19.

Thus, it is enough to show that H1
ét(Z[1/13, ζ13],Z/19Z) = 0. This group has a nice interpretation

as the group of Z/19Z-torsors over Z[1/13, ζ13], i.e. abelian extensions L/Q(ζ13) of degree 19 which are
unramified away from the (unique) prime λ (of K) above 13.38 This we can understand using class field
theory.

Such extensions are seen by the ray class group with modulus λ. This sits into an exact sequence

K×
λ −! (ray class group) −! Cl(K) −! 0

The group K×
λ is prime to 19 and also 19 ∤ #Cl(K), so all maps (ray class group) ! Z/19Z are trivial,

and we conclude that H1
ét(Z[1/13, ζ13],Z/19Z) = 0.

22.4 What’s left?

At this point, we’ve ruled out all the primes we need to rule out, but there are still some composite
numbers left. We still have to rule out e.g. 25, 49 and so on. Next time we’ll talk about things like that.

Note 3. There’s a nice bit of discussion about the history of this stuff near the end of the lecture that I
didn’t bother writing down, but that’s probably worth listening to.

23 Lecture 23: Finishing up

This is the last lecture. We will give an overview of how one finishes the proof of Mazur’s Theorem 1.4.

Theorem 23.1 (Mazur’s Theorem, Conjecture of Ogg). Let G be a finite group. Then, there exists
an elliptic curve E/Q with E(Q)tors ≃ G iff

38Unless I’ve confused myself, such torsors are in bijection with surjections πét
1 (SpecZ[1/13, ζ13]) ↠ Z/19Z, and this

is where the description in terms of number fields comes from (πét
1 (SpecZ[1/13, ζ13]) is the Galois group of the maximal

extension L/Q(ζ13) unramified away from 13)
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• G = Z/nZ for 1 ≤ n ≤ 10 or n = 12; or

• G = Z/2Z× Z/nZ for some n ∈ {2, 4, 6, 8}

So far, we have proved the following:

Theorem 23.2 (Mazur, Mazur-Tate). If N > 7 is prime, then no E/Q has a rational point of order N .

This rules out all the primes we want to rule out, but there are some composite values we still need
to take care of.

Remark 23.3. Say E/Q is an elliptic curve. Then, from the structure of E(C)tors and from the Mordell-
Weil, we know it’s a finite product of two cyclic groups, i.e.

E(Q)tors ∼=
Z
nZ

× Z
mZ

where n | m.

By the Weil pairing, n ∈ {1, 2}. This is because this group has Z/nZ × Z/nZ = E(C)[n] inside of it,
and so Q must contain µn(C), the image of the Weil pairing. The only roots of unity in Q are ±1, so
n ≤ 2. ◦

Given what we have and the above observations, we still need to

• exclude N -torsion for N ∈ {14, 15, 16, 18, 20, 21, 24, 25, 27, 35, 49}

• exclude Z/2Z× Z/10Z and Z/2Z× Z/12Z

• show there exists elliptic curves with torsion subgroups each of the allowed G

23.1 Excluding (most of) the remaining N-torsion

For the first step, we’re trying to show that there’s no points on X1(N) except the cusps. This is a curve,
possibly of high genus.

Slogan. A good strategy for finding the Q-points on a curve is to find a map down to an elliptic curve.

It so happens that for any of these values, X0(N) has genus 1 and rank 0, so in those cases, we get a
lot kinda easily.

Remark 23.4. All these small cases (and more) were done by Kubert before Mazur proved his theorem. ◦

Proposition 23.5. Suppose N ∈ {11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 46, 49}. Then, no E/Q has a point
of order N .

Proof Sketch. In these cases, X0(N) has genus 1. Standard methods will show that X0(N)(Q) has rank
0.39 Then, it’s easy to compute the torsion points of X0(N)(Q), and this is all points. If all these points
are cusps, you’re done.

However, it’s not always the case that all the points on X0(N)(Q) are cusps, so what do you do in this
case? Let x1, . . . , xn be the non-cusp Q-points of X0(N). Each of these xi is represented (non-uniquely,

39Nowadays, this direction of BSD is known, so you can just compute the L-function and show it’s nonvanishing at
s = 1 by computing a few decimal places. You can alternatively do it by descent (the same sort of strategy as done in the
13-torsion case)
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since X0(N) is a coarse space) by some (Ei, Gi) with Ei/Q elliptic and Gi an N -cyclic subgroup. Suppose
we have some y ∈ Y1(N)(Q) corresponding to some (E,P ). Then, y 7! xi for some i which implies that
EC ≃ (Ei)C, i.e. E,Ei are twists of each other. Thus, one needs to show that no twisted form of these
Ei’s have an N -torsion point.

Since Ei admits a cyclic N -isogeny, we have an exact sequence

0 −! (Z/NZ) (αi) −! Ei[N ] −! (Z/NZ) (βi) −! 0

with αi, βi : GQ ! (Z/NZ)× some characters.

Assumption. Suppose for simplicity that the Ei are not CM, so the only twists are quadratic twists.

Let E(d)
i be the dth quadratic twist of Ei. Then, we have

0 −! (Z/NZ) (αiχd) −! E
(d)
i [N ] −! (Z/NZ) (βiχd) −! 0,

and we want to know there are no Galois invariants in the N -torsion of E(d)
i , i.e. that αi is not a quadratic

character (i.e. α2
i ̸= 1) and also that β2

i ̸= 1 if the extension splits. To do this, one just computes this
character αi for each i and checks that it’s not quadratic.

The CM case is a little different, but can also be handled. ■

Example (N = 21). X0(N)(Q) has 4 cusps and 4 non-cusps in this case. The non-cusps correspond to
the elliptic curves

y2 = x3 + 45x− 18

y2 = x3 − 75x− 262

y2 = x3 − 1515x− 46106

y2 = x3 − 17235x− 870894

These are all 4 non-CM. One needs to check that none of their twists have 21-torsion points, e.g. one can
show that dy2 = x3 + 45x− 18 never even has a 3-torsion point. △

Example (N = 27). X0(N)(Q) has one non-cusp point in this case, given by

y2 + y = x3 − 30x− 5

which has CM by
√
−27. △

Fact. There exists non-cuspidal Q-points on X0(N) (with genus 1) iff

N ∈ {11, 14, 15, 17, 19, 21, 27} .

Remark 23.6. For N ∈ {11, 14, 15}, X1(N) itself has genus g = 1. Furthermore, X1(N) is isogenous to
X0(N), and so must have rank 0. Hence, you can just compute the points on it directly and see that
they’re all cusps. ◦
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Remark 23.7. Only really need Proposition 23.5 for N ∈ {20, 21, 24, 27, 49}. For these values on N , the
only ones with non-cuspidal Q-points on X0(N) are N = 21, 27, so you really only need to do something
special for the 5 curves appearing in the two earlier examples. ◦

23.2 Excluding Z/2Z× Z/{10, 12}Z

Lemma 23.8. Say E(Q) ⊃ Z/2Z× Z/2Z (resp. Z/2Z× Z/4Z). Then, there exists an isogeny E 2
−! E′

s.t. E′ admits a cyclic isogeny of degree 4 (resp. degree 8).

Proof. Choose P ∈ E(Q) of order 2, and Q ∈ E(Q) be an independent point of order 2 (resp. 4). Consider
f : E ! E1 killing P and g : E ! E2 killing Q. Consider the dual f∨ : E1 ! E. One can show that
f∨(E1[2]) ∋ P . Consider the composition gf∨ : E1 ! E2. This is does not kill all the 2-torsion which Question:

How?

Answer:
ff∨ : E1 !

E1 is mul-
tiplication
by 2, so
f∨(E1[2]) ⊂
ker f = ⟨P ⟩.
Since ker f∨

has order 2
and E1[2]

has or-
der 4, we
must have
f∨(E1[2]) =

ker f = ⟨P ⟩.

forces it to by cyclic. ■

Proposition 23.9. E(Q) ̸⊃ Z/2Z× Z/10Z,Z/2Z× Z/12Z

Proof. By lemma, there exists a 2-isogeny E ! E′ s.t. E′ admits a cyclic isogeny of degree 4 or 8.
Making use of the extra factor of Z/5Z or Z/3Z, E′ will in fact admit a cyclic isogeny of degree 20 or
degree 24, and so E′ will define a (non-cuspidal) Q-point on X0(20) or X0(24), contradicting the work in
the previous section. ■

23.3 Excluding everything left: N-torsion for N ∈ {16, 18, 25, 35}

We’ll just make a few comments on these cases.

23.3.1 16-torsion

This was done by Lind in 1940. Kubert says this is ’easy’, but the only reference seems to be Lind’s 1940
thesis which is apparently not easily accessible.

TODO: Try
to do this
yourself

Remark 23.10. In this case, X1(16) has genus 2 while X0(16) has genus 0, so you can’t try mapping to
an elliptic curve. There are none.40 ◦

23.3.2 18-torsion

In this case, g(X0(18)) = 0 and g(X1(18)) = 2, so again, no elliptic curve you can map to. Kubert
handles this case in his paper using a Mazur-Tate type argument. He shows J1(18)(Q)tors = Z/21Z
meeting X1(18) only at the cusps. Hence, it suffices to show this Jacobian has rank 0.

To do this, he observes that γ5 ∈ (Z/18Z)× satisfies the equation γ22 + γ2 + 1 = 0 on J1(18). In the
ring this defines, 7 factors as 7 = ππ. Now one does π-descent to show that J1(18) has rank 0.

23.3.3 25-torsion

Another Mazur-Tate type argument, but a little more complicated. In this case, g(X1(25)) = 12 and
g(X0(25)) = 0. This is a high genus, so you’d like to cut it down a little. Kubert uses a quotient curve
of genus g = 4, and then runs Mazur-Tate there.

40e.g. if X1(16) mapped to an elliptic curve E, then E would have conductor dividing 16, and so appear as a factor of
J0(16) by the modularity theorem
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23.3.4 35-torsion

g(X0(35)) = 3. Note that we have an Atkin-Lehner involution for each prime factor of 35, so can consider
E = X0(35)/w5. This is an elliptic curve. One shows that it has rank 0, and that all the preimages of
torsion points are cusps.

Remark 23.11. Kubert does this very explicitly, writing down equations for X0(35) and for the involution
w5 and whatnot. ◦

23.4 Showing the allowable groups do occur

First suppose 4 ≤ N ≤ 10 or N = 12. Then, X1(N) has genus 0, and it has a Q-point (e.g. a cusp), so
X1(N) ∼= P1

Q. Thus, X1(N)(Q) is infinite, so Y1(N)(Q) is infinite, so you get elliptic curves w/ N -torsion
(note X1(N) is a fine moduli space for these values).

When N = 2, 3, X1(N) is only a coarse moduli space, but that’s fine since it’s easy to write down
curves with 2- or 3-torsion points.

Remark 23.12 (2-torsion). E : y2 = f(x) with f(a) = 0 for some a ∈ Q. Then, (0, a) ∈ E[2](Q) ◦

Remark 23.13 (3-torsion). E : y2 + axy + by = x3. Then, (0, 0) ∈ E[3](Q) (recall Lecture 14) ◦

The above shows there exists elliptic curves which have N -torsion. We would like this to be the full
torsion subgroup. We’ll get back to this in a minute.

Remark 23.14. ForN ∈ {4, 6, 8}, can consider the moduli space Y of E’s w/ injections Z/2Z×Z/NZ ↪! E,
and then compactify this to some curve X. In these cases, X has genus 0 and a Q-point given by a cusp,
so we get E/Q s.t. E(Q) ⊃ Z/2Z× Z/NZ. This X is a fine moduli space since N ≥ 4.

For Z/2Z×Z/2Z, just pick some cubic f(x) with 3 distinct rational roots, and look at y2 = f(x). ◦

This shows we can get everything we want as a subgroup. Let’s see an example of how to show they
can be the full torsion subgroup.

Example (Z/5Z). We want to show ∃E w/ E(Q)tors ∼= Z/5Z. By what we’ve done, the only problem
would be if every E s.t. E(Q) ⊃ Z/5Z also satisfies E(Q) ⊃ Z/10Z. That is, we’re sad if

Y1(1)! Y1(5)

is surjective on Q-points. This map extends to

X1(10) P1

X1(5) P1

=

3

=

and no map P1 ! P1 of degree > 1 will be surjective on Q-points. △

The key point to constructing the allowable subgroups is that the relevant moduli curves are genus 0.
One can in fact write down what the universal families are very explicitly.

Example. The universal curve over Y1(4) is

Et : y
2 + xy − ty = x3 − tx2 with (0, 0) ∈ Et[4]
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where t is the parameter on X1(4) ∼= P1. △

For each of the 15 allowable groups (at least the ones where the moduli problem is a scheme), you
can write down the universal family.

23.5 Audience Question (showing no twists of a curve have 3-torsion)

In the example of excluding 21-torsion points, Andrew remarked that he could show that

y2 = x3 + 45x− 18

(and all of its quadratic twists) have no 3-torsion points.

Question 23.15 (Audience, asked much earlier in the lecture). How does one go about showing, by hand,
that

dy2 = x3 + 45x− 18

has no 3-torsion points for all d?

You might worry that there are infinitely many d, but it turns out to not be that bad. The trick is to
consider the universal curve.

Say you have some curve like y2 = x3 + ax + b (w/o CM), and you want to show that no quadratic
twist has any 3-torsion. You can write down the universal elliptic curve with 3-torsion. There’s a little
catch which is that Y1(3) is a coarse space, not a fine one, but there’s only one point with automorphisms:
the thing that has CM by Z[ζ3]. This doesn’t really matter since our curve does not have CM. Hence,
Y1(3) \ {this one point} is a scheme which supports a universal curve. One can write it down and make
a change of variables to put it in the form

y2 = x3 + f(t)x+ g(t)

with f a linear polynomial and g a quadratic one. If dy2 = x3 + ax+ b has a 3-torsion point, then it will
be isomorphic to a member of this family. Changing (x, y)⇝ (x/d, y/d2) shows this curve is isomorphic
to

y2 = x3 + d2ax+ d3b.

Now, for a, b fixed and d varying, the question is: does this curve ever appear in the family y2 =

x3 + f(t)x+ g(t)? That is, does there exists u, t ∈ Q such that

d2a = u4f(t) and d3b = u6g(t)?

This would force
a3/b2 = f(t)3/g(t)2.

This is some explicit polynomial in t, and it turns out that for the a, b we started with, it doesn’t have
any solutions.
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24 List of Marginal Comments

o There’s been progress on this since 2013, see e.g. this survery. This conjecture is known if you
let N depend on the rank of Jac(C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

o Question: For ℓ ∤ #ker f? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
o Abelian varieties are projective. We won’t prove this. . . . . . . . . . . . . . . . . . . . . . . . 20
o Potentially this is in his book on algebraic groups and class fields . . . . . . . . . . . . . . . . . 22
o Remember: For analyzing Galois H1’s in general, often useful to extend K to a field L whose

Galois group acts trivially on the module, and then look at the inflation-restriction sequence 23
o Question: Why does this imply that it’s not reduced? . . . . . . . . . . . . . . . . . . . . . . . 29
o Answer: Multiplication by p (or pr) is not separable, so Frobenius factors through it. Hence,

the kernel of Frobenius is a subgroup of Gn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
o Apparently, this (rather, it’s extension to finite, flat commutative groups over a general base)

was proved by Deligne on the bus going to his year of service in the Belgian army, and the
extension to the non-commutative case remains unsolved (except over fields) . . . . . . . . . 35

o At around this point, the recording becomes less useful than before . . . . . . . . . . . . . . . . 35
o Notes from here to the end of the lecture directly from the course site instead of the recording 35
o Note G1 has to be étale-local since we’re looking at p-torsion e.g. since (over k) the only simple

étale-étale groups are Z/ℓZ with ℓ ̸= p (e.g. by Corollary 6.15) . . . . . . . . . . . . . . . . . 37
o Remember: The connected-étale sequence does not exist over arbitrary bases . . . . . . . . . . 38
o K/Qp is characteristic 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
o I think the main point should be to apply Burnside’s lemma and use the fact that 0 ∈ V gives

an orbit of size 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
o and to be separable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
o I was too lazy to add the picture here, but not too lazy to do it later on, so see Figure 2 . . . . 53
o This says that A = η∗A as sheaves on the (small) smooth site over SpecR (here, η : SpecK ↪!

SpecR is the generic point). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
o See e.g. this or this . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
o References include Milne’s notes or Kleiman’s article, I guess . . . . . . . . . . . . . . . . . . . 60
o TODO: Convince yourself this makes sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
o We’ll see in a bit, that this is equivalently requiring A[p]/Z to be admissible . . . . . . . . . . . 61
o By Theorem 5.31, this implies that G is finite étale over Z[1/(pN)] . . . . . . . . . . . . . . . . 62
o I guess M an Fp[ΓQ]-module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
o As in Corollary 5.23 (All group schemes in char 0 are smooth) . . . . . . . . . . . . . . . . . . 62
o fppf descent tells you that an fppf Gm-torsor is the same thing as a line bundle . . . . . . . . . 64
o Question: Why use A0[pn] instead of A[pn]? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
o Answer: Andrew answers this. Keep reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
o TODO: Be less lazy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
o This uses 3 being invertible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
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o If X is a stack, X is a scheme, and X ! X is a morphism representable by schemes, then X

must be a scheme (since X ≃ X×X X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
o I’m not 100% sure this is the correct definition. I feel like usually one lets this fiber product be

an algebraic space in general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
o Question: Does the coarse space of a stack X always represent the sheafification of the functor

S 7! |X(S)|? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
o Answer: No, see e.g. here and/or here . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
o Question: Is it clear that this is affine? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
o Answer: The map Y ! Y (p) is certainly quasi-finite. I suspect it’s not too hard to check that

it’s proper using the valuative criterion. Assuming this, Y is finite over Y (p) and so affine
(since Y (p) is). Hence, Y0(N) is affine too . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

o The convention below is the one Mazur uses in his paper. It sounds (see video for Lecture
18) like this convention is backwards from the standard one, so we’ll later use the opposite
convention for naming the cusps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

o Question: Why does this correspond to contracting the components not meeting H? . . . . . . 90
o Answer: See e.g. Theorem 6.7/1 of ‘Néron Models’ by Bosch, Lutkebohmert, Raynaud. The

vague intuition is that OE(nH) is the trivial bundle when restricted to any component not
meeting H, and so sends those components to Proj(

⊕
n≥0 O) = ProjSym∗ O = SpecO . . 90

o Question: Is flatness easy to show? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
o The kernel of Frobenius is always picking out the non-étale Γ0(p)-structure, even for standard

n-gons (it gives the µp), see I think Proposition 6.6 . . . . . . . . . . . . . . . . . . . . . . . . 91
o I think it may be enough for only one of f, g to be a cusp form . . . . . . . . . . . . . . . . . . 93
o Question: How do we know every homomorphism T! C is realized as the eigenvalues of some

eigenform? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
o Answer: See aside . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
o Note that this g is simply the composition of f with the Atkin-Lehner involution at p . . . . . 98
o Question: Why? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
o Answer: This is by cancellation theorem. fi is a closed immersion and f is separated (i.e. the

diagonal of f is a closed immersion), so i must be a closed immersion too . . . . . . . . . . . 99
o Two characters agreeing at almost all Frobenii, so get this by Chebotarev . . . . . . . . . . . . 101
o Question: Why is #G = N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
o Answer: G is the kernel of the map f : E[N ]! Φp to the component group of EFp

. Since EFp
is

a (the smooth locus of a) Néron n-gon, Φp is cyclic, so f has non-trivial kernel. Furthermore,
f has non-trivial image by Step 2. Since N is prime, the claim follows. . . . . . . . . . . . . . 105

o Remember: In a Γ0(N)-structure (E,G), G must meet every irreducible component of each
fiber of E/S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

o Question: Is it a priori clear that multiplication by n is surjective on B0
k? . . . . . . . . . . . . 108

o I’m tempted to say this or something like this is proven in Liu’s book . . . . . . . . . . . . . . 112
o Question: Why? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
o TODO: Add in picture of SpecT from lecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
o TODO: Make sure this is the right expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
o This was briefly mentioned at the start of the proof of Proposition 17.9 . . . . . . . . . . . . . 119
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o See Remark 9.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
o Andrew said more about this, but I’d be lying if I said I followed completely . . . . . . . . . . 121
o Question: Is this defined over Q or over Q(µ13) = K? . . . . . . . . . . . . . . . . . . . . . . . 124
o Answer: It’s defined over K+, see e.g. the discussion in Kubert’s paper on ‘The method of

mazur and tate...’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
o Unclear to me how to finish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
o Compare Corollary 8.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
o There’s probably a shorter explanation, but this is the best I could muster . . . . . . . . . . . . 129
o Question: How? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
o Answer: ff∨ : E1 ! E1 is multiplication by 2, so f∨(E1[2]) ⊂ ker f = ⟨P ⟩. Since ker f∨ has

order 2 and E1[2] has order 4, we must have f∨(E1[2]) = ker f = ⟨P ⟩. . . . . . . . . . . . . . 133
o TODO: Try to do this yourself . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
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F -isomodule, 35
F -module, 33
G-torsor, 63
Γ(N)-structure, 80
Γ0(N)-structure, 86, 90
Γ0(N)-structure for a generalized elliptic curve

E/S, 89
Γ1(N)-structure, 86
F-module scheme, 40
θ-function, 16
j-invariant, 7
nth roots of unity, 27
p-Eisenstein ideal, 115
étale, 28
multiplicity of Xi in X, 108

Abel-Jacobi map, 57
abelian scheme, 54
abelian variety, 14
additive group, 27
additive reduction, 45
admissible, 62
admissible filtration, 62
anti-symmetric, 20
Appell-Humbert, 15
Atkin-Lehner involution, 97

bad reduction, 45
Bernoulli number, 76

Cartier dual, 30
CM, 9
coarse space, 87
cokernel, 26
commutative, 25
complex multiplication, 9
condition JH(p), 114
connected-étale sequence, 29
constant group scheme, 27
correspondence, 96
cusp form, 73, 78
cusps, 70

cyclotomic character, 10

degree, 5, 17
Deligne-Mumford stack, 85
Diudonné module, 35
divisor, 5
divisor class group, 5
dual abelian variety, 21
dual isogeny, 8

Eichler-Shimura Theorem, 98
Eisenstein series of weight k, 76
elementary admissible group, 63
elliptic, 71
elliptic curve, 6
elliptic curve/S, 80
extension of zero, 51

family of elements of Pic0(X) over T , 58
fppf G-torsor, 63
Frobenius, 32
Frobenius map, 6
fundamental, 41

generalized elliptic curve, 88
genus formula, 72
genus formula for nodal curves, 92
good reduction, 45, 54
group object, 24
group scheme, 26

Hasse bound, 2, 12
Hecke correspondence, 96
Hecke eigenform, 93
height 1, 34
Herbrand’s theorem, 107
Hodge decomposition for curves, 55
homomorphisms, 25
Hopf algebra, 26

identity component, 28
inflation-restriction sequence, 23
invariant, 33
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isogeny, 7, 17
isogeny category, 24

Jacobian, 56, 60

kernel, 25
Kummer sequence, 23, 60

length, 63
level N , 77

Mazur’s Theorem, 130
Mazur’s theorem, 1
minimal, 44
minimal regular model, 52
minimal Weierstrass model, 44
modular form of weight k, 73
modular form of weight k for Γ, 77
modular function, 73
Mordell-Weil, 22
multiplicative group, 27
multiplicative reduction, 45
Multiplicity One Theorem, 94

Néron mapping property, 54
Néron model, 52, 54
Néron-Ogg-Shafarevich Criterion, 49
Néron-Ogg-Shafarveich, 54
Néron-Sevri group, 15
normalized, 93
normalized Eisenstein series of weight k, 76

order, 27, 71
ordinary, 13
ordinary nodes, 109

Petersson inner product, 93
Picard functor, 108
Poincaré bundle, 21
Poincaré reducibility, 23
polarization, 18
potentially good reduction, 46
potentially multiplicative reduction, 46
pre-admissible, 62

principal divisor, 5
principal polarization, 18
prolongation, 39
property UP, 39

Quasi-finite, 50

Raynaud F-module scheme, 40
regular model, 52
Riemann form, 15
Riemann hypothesis, 12
Riemann-Roch, 6
Rigidity Lemma, 19

semi-stable reduction, 45
Semi-stable reduction theorem, 55
semi-stable reduction theorem, 46
semistable reduction, 54
simple, 24
split multiplicative reduction, 45
stack, 84
standard n-gon, 88
Strong Multiplicity One, 102
supersingular, 13
symmetric, 20
system of eigenvalues, 93

Tate module, 10
Theorem of the cube, 19
Theorem of the square, 21
toric rank, 54
twisted forms, 80

unipotent rank, 54

Verschiebung, 33

weak Mordell-Weil, 23
Weil number, 12
Weil pairing, 18, 36
wild inertia quotient, 55

Yoneda Lemma, 25

zeta function, 13
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