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Abstract

Elliptic curves – smooth curves of genus 1 – exhibit many interesting geometric and arithmetic

properties, and so have long been studied by geometers. As is common in mathematics, instead of

always studying these objects “one curve at a time,” it has proven fruitful to study many of them at

once. In particular, there exists a well-developed theory of holomorphic families of elliptic curves, given as

maps π : X ! C from a surface X onto a base curve C such that the generic fiber π−1(c) ⊂ X is smooth

of genus 1. A surface X admitting such a map π : X ! C is called an elliptic surface, and one generally

breaks the study of these surfaces into a local theory – concerned primarily with the possible singular

fibers of π, the possible degenerations of a family of elliptic curves – and a global theory – concerned

primarily with the geometry of the surface X itself, including determining its numerical invariants and

the existence or lack thereof of a section of π. The goal of this paper is to give a detailed account of the

local theory of these elliptic surfaces. In particular, we will given an account of Kodaira’s [9] classification

of singular fibers of elliptic surface, supplemented with many examples.
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1 Introduction

The main subject of this paper is the local study of elliptic surfaces. Here, an elliptic surface X over a

base curve C is a surface equipped with a projection map π : X ! C such that π−1(c) is an elliptic curve

– i.e. a smooth curve of genus 1 – for all but finitely many c ∈ C. A natural question one can ask is,

“what do the fibers π−1(c) look like when they are not smooth?” Put another way, “what are all the ways

a holomorphic family of elliptic curves can degenerate?” This question originally answered by Kodaira [9]

who gave a complete classification of the possible singular (i.e. non-smooth) fibers of an arbitrary elliptic

fibration. After covering the basics of the theory of compact, complex surfaces, we will describe and give

a proof of Kodaira’s classification followed by a detailed analysis of explicit constructions of various elliptic

surfaces.

We have attempted to keep the exposition both readable and satisfactorily detailed. However, the study

of complex surfaces is amenable to a wide array of viewpoints and contains many deep theorems, so some

concessions have been made. There are a number of theorems which are useful for our goals, but whose

proofs are nevertheless outside of the scope of this text. For these theorems, we have omitted proving

them ourselves, but have provided references where one may look up their proofs. As far as the treatment of

complex surfaces is concerned, we have maintained a largely algebraic viewpoint, but, when doing so provides

a simpler proof or offers a useful alternative perspective, occasionally forego an algebraic argument for a more

topological/geometric treatment of some results. This is especially apparent in Chapter 3. Finally, while we

have attempted to keep of the level of exposition accessible throughout, there are a few instances where we

have opted to include comments which are more technical than the surrounding material, but which offer

another perspective from which to see things. These comments will be labelled as Technical Asides in the

text.

As far as content is concerned, in Chapter 2, we give an overview of the basics of complex surface theory.

There is much material which could potentially be covered this chapter, but we have striven to largely restrict

it to the gems of the theory – such as the Riemann-Roch Theorem for Surfaces – and to the aspects especially

need for our later study of elliptic surfaces – such as the determination of the singularities arising from cyclic

quotients, Theorem 2.3.10. We begin it in Section 2.1 by introducing the category of complex spaces which

contains smooth, complex manifolds, but also more general objects such as the types of degenerate spaces

appearing as singular fibers. After introducing these, in Section 2.2, familiarize ourselves with some of the

basic tools of surface theory: divisors and intersection theory. In Section 2.3, we introduce the study of

singular surfaces with a focus on the particular types of singularities which will come up when studying

elliptic surfaces. The only reason this section precedes Section 2.4 is because that section will briefly need to

use the language of blowups; other than that one dependency, the two can be read in any order. In Section

2.4, we extend the previous section by providing a set of definitions and results which allow us to consider

all (possibly non-smooth) curves C ⊂ X embedded in a surface X on equal footing. Finally, in Section 2.5,

we study general properties of fibrations which will come up in the next two chapters.

In Chapter 3, before diving into the material on elliptic surfaces, we see how to tools and techniques

developed in Chapter 2 can be applied to the study of a simpler class of surfaces: the ruled surfaces. The

purpose of this is twofold. On one hand, it gives the reader a chance to better internalize some of the

material of the previous chapter, and on the other hand, it provides an example of the global study of a class

of surfaces before we initiate our local study of elliptic surfaces in Chapter 4.

Finally, Chapter 4 contains the main content of this paper. We begin in Section 4.1 by providing the

basic definitions and context one needs to study elliptic surfaces. We then dive immediately into Kodaira’s
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classification result, giving a complete proof of it in Section 4.2. This will utilize much of the material

covered in Chapter 2. Of note, it will crucially involve appealing to Zariski’s lemma to relate the fibers of a

fibration to a certain family of graphs, the extended Dynkin diagrams. After this is all explained, Section

4.3 constructs and analyzes many examples of elliptic surfaces.

1.1 Common Notation and Conventions

Here is a list of some notational choices made throughout this paper. Most of these are standard and many

of them – especially those which are less standard – will be reintroduced when they are first encountered in

the text.

Notation Description

Ab the category of abelian groups.

Ab(X) the category of abelian sheaves on a space X.

Mod(X) the category of OX -modules on a ringed space X with structure sheaf OX .

Γ(F ) = Γ(X,F ) the global sections of a sheaf F on a space X.

Hi(F ) = Hi(X,F ) the ith sheaf/derived functor cohomology group of a sheaf F on a space X.

Ȟ
i
(F ) = Ȟ

i
(X,F ) the ith Čech cohomology group of a sheaf F on a space X.

hi(F ) the dimension dimC Hi(X,F ) of the ith cohomology group of a sheaf F .

OX the structure sheaf of a ringed space X.

mx the maximal ideal mx ⊂ OX,x of the stalk OX at the point x.

E(E ) the total space of the vector bundle corresponding to the locally free sheaf E .

E (x) the fibre E (x) = E x⊗OX,x/mx of a locally free sheaf above a point x ∈ X.

Xs the fiber π−1(s) ⊂ X above a point s ∈ S under a map π : X ! S.

[C] the fundamental homology class [C] ∈ HdimC(X;Z) of a submanifold C ⊂ X.

[C]∗ the Poincaré dual [C]∗ ∈ HdimX−dimC(X;Z) of [C] where C ⊂ X and X compact.

C ∼ D denotes that two divisors C,D are linearly equivalent, i.e. OX(C) ' OX(D).

e(x) the function e(x) = exp(2πix)
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2 Background Material

2.1 Complex Spaces

To begin, we shall define the category in which we will work. In this document, we will be concerned

with certain families of complex manifolds. These will be given in the form of a proper, holomorphic map

f : X ! S which corresponds to the family {f−1(p) : p ∈ S} of spaces. Most members of this family will

be manifolds, but there will be some number singular fibers which can be thought of as different ways for

this family to degenerate. In order to study these degenerate members, we need to work with spaces more

general than manifolds, and so we introduce the category of complex spaces. While manifolds are spaces

that look locally like open balls, we will only require complex spaces to look locally like vanishing locus of a

(set of) holomorphic function(s) on a ball.

Recall 2.1.1. A ringed space is a pair X = (|X| ,OX) consisting of a topological space |X| along with a

sheaf OX of (commutative) rings on it. The space |X| is called the underlying (topological) space of X,

and OX is called its structure sheaf

Example. Let B ⊂ Cn be an open ball with structure sheaf OB of holomorphic functions, and let {fi}i∈I ⊂
Γ(B,OB) be a collection of (global) holomorphic functions. Let I be the subsheaf of OB generated, as an

OB-module, by the fi, so

I (U) =

{∑
i∈I

cifi|U : ci ∈ OB(U) and ci = 0 for all but finitely many i

}
.

Now, let |Y | = {z ∈ B : fi(z) = 0∀i ∈ I} and let OY = OB/I , a sheaf supported on |Y |. Then, the ringed

space Y = (|Y | ,OY ), denoted V (fi)i∈I , is a prototype for the types of spaces we will study.

Definition 2.1.1. If Y is a ringed space isomorphic to V (fi)i∈I for some collection {fi}i∈I of holomorphic

functions on an open ball in Cn, then we call Y a closed analytic subspace of B.

Definition 2.1.2. A complex space is a Hausdorff ringed space X = (|X| ,OX) which is locally isomorphic

to closed analytic subspaces. That is, we can over |X| by open sets U ⊂ |X| such that (U,OU ) is a closed

analytic subspace, where OU = OX |U is the restriction of the structure sheaf on X. Note that, if X is

complex space, then its structure sheaf OX is a sheaf of C-algebras since this is the case for closed analytic

subspaces.

In order to completely specify the category of complex spaces in which we will work, we need to know

not only the objects, but also the morphisms.

Recall 2.1.2. Given a continuous map f : X ! Y , and a sheaf F on X, one obtains the pushforward/di-

rect image sheaf f∗F on Y . For an open subset V ⊂ Y , one has f∗F (V ) = F (f−1(V )).

Recall 2.1.3. Given two ringed spaces X = (|X| ,OX) and Y = (|Y | ,OY ) a morphism of ringed spaces

f = (|f | , f̃) is a pair consisting of a continuous map |f | : |X| ! |Y | and a morphism f̃ : OY ! |f |∗OX of

sheaves on |Y |.

Notation 2.1.3. If X = (|X| ,OX) is a ringed space, we will often denote its underlying space still by X

instead of by |X|. Similarly, if f = (|f | , f̃) is a morphism of ringed spaces, then we will let f also denote

the underlying map |f | on topological spaces.
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Notation 2.1.4. Given a sheaf (of sets, rings, groups, etc.) F on a topological space X, its set (ring, group,

etc.) of global section may be denoted using any of the following 3 notations

F (X) = Γ(X,F ) = H0(X,F ).

Starting in Section 2.2, we will prefer the latter two.

Definition 2.1.5. Let X,Y be complex spaces. A morphism of complex spaces f : X ! Y is a

morphism of ringed spaces such that the map f̃ : OY ! f∗OX is a morphism of sheaves of C-algebras.

Morphisms of complex spaces are also called holomorphic or analytic maps. Isomorphisms of complex

spaces are similarly called biholomorphic maps.

Complex spaces along with holomorphic maps form our main category of interest. In studying a complex

space X, we will be interested in a number of sheaves on X, but we will not be interested in just any sheaf on

X. We will focus our attention on sheaves of OX -modules on X, and in particular, those which are “locally

of finite presentation” in the following sense.

Definition 2.1.6. Let X be a complex space, and let F be an OX -module. We say that F is coherent if

there exists an open cover {Ui}i∈I of X along with local exact sequences

O⊕riUi
−! O⊕siUi

−! F |Ui −! 0

of OUi-modules, where ri, si ∈ Z. This essentially says that, as an OUi-module, F |Ui is generated by si

generators satisfying ri relations.

Coherent sheaves are robust in the sense that coherence is preserved under many operations one naturally

encounters. For example, one may pull a coherent sheaf on Y back to one on X along a holomorphic map

X ! Y .

Definition 2.1.7. Let f : X ! Y be a holomorphic map and let F be an OY -module. Its analytic inverse

image (or analytic pull-back) is the sheaf

f∗F := f−1F ⊗f−1OY OX ,

where f−1 denotes formation of the usual inverse image sheaf.

Remark 2.1.1. It is true in general that for a continuous map f : X ! Y , the functor f−1 : Ab(Y )! Ab(X)

(Here, Ab(X) is the category of abelian sheaves on X) is exact e.g. because (f−1F )x = Ff(x) for any

F ∈ Ab(Y ) and x ∈ X, and because exactness can be checked on stalks. Similarly, for a holomorphic map

f : X ! Y , the functor − ⊗f−1OY OX : Ab(X) ! Ab(X) of tensoring with OX is right exact because this

can be checked on stalks where it reduces to the fact that tensoring with a fixed module is right exact.

Combining these observations, for a holomorphic map f : X ! Y , the analytic pullback functor |f | :

Mod(Y ) ! Mod(X), where Mod(Y ),Mod(X) are the categories of OY - and OX -modules, respectively, is

right exact. Because coherence is defined by the existence of right exact sequences, and because pulling back

commutes with restricting to an open subset, we arrive at the following.

Proposition 2.1.1. Let f : X ! Y be a holomrophic map, and let S be a coherent OY -module. Then,

f∗S is a coherent OX-module.
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If X is a complex space, and U ⊂ X is an open set, then there is a single, natural complex structure

on U . In particular, we give U the structure sheaf OU = OX |U . The story for closed sets is a little more

complicated.

Example. Let ∆ ⊂ C be the open unit disk, and let f1, f2 : ∆ ! C be the holomorphic functions given

by f1(z) = z and f2(z) = z2. Then, Y1 = V (f1) and Y2 = V (f2) are both closed analytic subspaces of

∆ supported on the point 0 ∈ ∆. However, they are not isomorphic as complex spaces since, for example,

Γ(Y1,OY1) = C, but Γ(Y2,OY2) is 2-dimensional over C.

For closed complex subspaces, more important than the underlying closed set is the defining sheaf of

ideals. Let X be a complex space, and let I ⊂ OX be a coherent OX -sheaf of ideals. Then, Y = (|Y | ,OY )

is a complex space where |Y | = supp(OX/I ) = {x ∈ X : (OX/I )x 6= 0} and OY = OX/I . Such a Y is

called a (closed) complex subspace of X. Such a subspace naturally comes with an exact sequence

0 −! I −! OX −! OY −! 0.

Definition 2.1.8. A closed embedding ι : Y ↪! X of one complex space into another is an isomorphism

from Y onto a closed complex subspace of X. In other words, it is a topological embedding whose map

ι̃ : OX −! ι∗OY on sheaves is surjective. The ideal sheaf of the corresponding closed subspace of X is

I := ker ι̃.

Definition 2.1.9. If X is complex space and A ⊂ X is a closed set, then A is called a closed analytic

subset if there exists a closed embedding Y ↪! X with image A.

Now, general complex spaces can have irregular geometric properties. We mentioned in the beginning

that complex places were introduced to allow the study of spaces with singularities. In addition to this,

the example of the closed analytic space V (z2) given before showed that general complex spaces can count

points, and even closed analytic subspaces, with multiplicity. In order to distinguish spaces which avoid

these, and other, examples of potentially bad behavior, we make the following definitions.

Definition 2.1.10. Let (X,OX) be a ringed space. We say it is reduced if the stalks OX,x are reduced

rings (i.e. have no nilpotents) for all x ∈ X. This is equivalent to requiring that OX(U) be reduced for all

open U ⊂ X.

Example. The space V (z) ⊂ ∆ considered before was reduced, but V (z2) ⊂ ∆ was not.

There is a natural process by which one takes an arbitrary complex space X and from it produce a

reduced complex space Xred. Let R ⊂ OX be the sheafification of the presheaf

U 7−! {f ∈ OX(U) : fn = 0 for some n ≥ 0} .

Then, Xred = (|X| ,OX/R) is called the reduction of X.

Proposition 2.1.2. Let X be a complex space. Then, its reduction Xred comes with a natural map Xred ! X

which is final among maps from reduced complex spaces to X. That is, if f : Z ! X is a holomorphic map

with Z reduced, then f factors as Z
fred−−! Xred ! X.

Proof. The canonical map Xred ! X is the identity X = X on topological spaces, and the natural quotient

map OX ! OX/R on sheaves, where R is the sheafification of the presheaf

F : U 7−! {f ∈ OX(U) : fn = 0 for some n ≥ 0} .
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To show that this is final among maps from reduced complex spaces to X, let f : Z ! X be any holomorphic

map with Z reduced. For any open U ⊂ X, f has an induced map

OX(U)! f∗OZ(U) = OZ(f−1(U))

at the level of sheaves. Since Z is reduced, OZ(f−1(U)) has no nilpotents, so the map OX(U) ! f∗OZ(U)

vanishes on F (U) ⊂ OX(U) and hence factors as OX(U) ! OX(U)/F (U) ! f∗OZ(U). Thus, f gives rise

to a map X/F ! f∗OZ of presheaves. By sheafifying, we can turn this into a map OXred
= X/R ! f∗OZ of

sheaves. Combining this sheaf map with f ’s underlying map on topological spaces gives rise to a holomorphic

map fred : Z ! Xred. By construction, we have that f factors as Z
fred−−! Xred ! X. �

Definition 2.1.11. A complex space X is called irreducible if for any decomposition X = E ∪ F of X as

a union of two closed subspaces, we have X = E or X = F . The irreducible components of X are its

maximal (with respect to inclusion) irreducible subspaces.

Definition 2.1.12. Let X be a complex space. A point x ∈ X is called regular or smooth if it has an

open neighborhood x ∈ U ⊂ X such that (U,OU ) ' (B,OB) for some open ball B ⊂ Cn. If x ∈ X is not

smooth, then we call it singular.

Remark 2.1.2. A complex space is a complex manifold iff it is smooth at every point.

Example. Complex projective space Pn = CPn is an important example of a complex manifold. It can be

covered by the open sets Ui = {[z0 : z1 : · · · : zn] ∈ Pn : zi 6= 0} ' Cn given by the non-vanishing of a single

homogeneous coordinates each, so every point has a neighborhood biholomorphic to a ball in Cn.

Definition 2.1.13. Let X be a reduced complex space, and fix a point x ∈ X. The local dimension

dimxX is the Krull dimension of the local ring OX,x. If x is regular with X looking like a ball B ⊂ Cn

near x, then dimxX = n. The dimension of X, denoted dimX, is defined to be maxx∈X dimxX when this

exists. If all the local dimensions are equal, say to d, then we say that X is of pure dimension d. If X is

not reduced, then we define dimX = dimXred.

Example. Irreducible complex spaces are of pure dimension.

Definition 2.1.14. A curve is a complex space X with Xred of pure dimension 1. If X is furthermore

smooth, then we call it a Riemann surface. Similarly, a (non-Riemann) surface is a complex space with

Xred of pure dimension 2.

Example. A 1-dimensional complex manifold is the same thing as a Riemann surface, and a 2-dimensional

complex manifold is a smooth surface.

Definition 2.1.15. A point x in a reduced complex space X is called normal if the local ring OX,x is

integrally closed (in its fraction field). We call X normal if all its points are.

Example. Let X = Cn. Because holomorphic functions are analytic, for any point x ∈ X, the stalk OX,x

can be identified with the ring

C {x1, x2, . . . , xn} ⊂ C Jx1, x2, . . . , xnK

of power series convergent on some disk (depending on the power series in question). This ring is integrally

closed. This is a consequence of the fact that C Jx1, x2, . . . , xnK is integrally closed along with the holomorphic

implicit function theorem. Hence, Cn is normal.
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Remark 2.1.3. If X is a complex space and x ∈ X is a normal point of local dimension 1 – i.e. OX,x is

integrally closed and has Krull dimension 1 – then OX,x is a discrete valuation ring. In particular, this

means that OX,x is a (local) PID and, letting π ∈ OX,x be a generator of the maximal ideal, any nonzero

element s ∈ OX,x has a unique valuation, denoted ordx(s) = ordOX,x(s) ∈ Z≥0, which is the largest power e

of π such that x ∈ (πe). The generator π of the maximal ideal is called a uniformizer or local parameter.

Proposition 2.1.3. Let X be a reduced complex space. Then, it has a normalization X̃ = Xnorm which is

a complex space with a finite, surjective holomorphic map νX : Xnorm ! X which is final among maps from

normal spaces to X.

Proof. [6, Chapter 8] �

Remark 2.1.4. As a consequence of the above proposition, if X is a reduced complex space with normalization

ν : X̃ ! X, then the map ν is an isomorphism away from X’s non-normal points. Indeed, if S ⊂ X is

its set of non-normal points, then X \ S is a normal space with an inclusion map X \ S ↪! X. Since the

normalization is final among such maps, this inclusion factors as X \ S ↪! X̃ � X. The image of the first

map misses ν−1(S) by definition, so we really have a composition

X \ S ↪! X̃ \ ν−1(S)� X \ S

giving the identity X \ S = X \ S. This shows that X̃ \ ν−1(S) maps isomorphically onto X \ S.

The final notion from the general theory of complex spaces which we will need is the notion of “base

change.” This provides a way to, given a map C ′ ! C, pull back a space over C to one over C ′ in a universal

fashion. We will describe the general phenomenon in more detail, but first we make note of the two cases

that will feature most heavily. We always start with a space X
π
−! C over C, i.e. a holomorphic map with

codomain C, and a map f : C ′ ! C to C. The first common case is when f is the inclusion of a point

f : {c} ↪! C. In this case, “pulling X back along f” amounts to restricting π to c, and so the base change

is simply the fiber π−1(c) with a natural complex structure as a subspace of X. In the second common use

case, we think of X
π
−! C as a family of spaces over C, and our goal is to construct a family of spaces over

a related base C ′. In instances when we take this perspective, almost every space in the family X ! C,

i.e. almost every fiber π−1(c), will be diffeomorphic to the same differentiable manifold Σ. In this case, the

basechange X ′ of X along f is a family X ′ ! C ′ of spaces of C ′, almost all of which are diffeomorphic to

the same Σ. In this one, base change allows us to construct new holomorphic families of Σ’s (e.g. of elliptic

curves when Σ is a torus) from old ones.

Proposition 2.1.4. Let π : X ! C and f : C ′ ! C be holomorphic maps. Then, there exists a space X ′,

called the basechange of X ! C along f and denoted X ′ = X ×C C ′, along with projection morphisms

π∗f = f ′ : X ′ ! X and f∗π = π′ : X ′ ! C ′ making it final among spaces fitting into the below commutative

diagram.

X ×C C ′ X

C ′ C

π∗f

f∗π π

f

That is, for any complex space Y with morphisms Y ! X and Y ! C ′ making the outer square below
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commute, there exists a unique map Y ! X ×C C ′ such that the whole diagram below commutes.

Y

X ×C C ′ X

C ′ C

π

f

Finally, the underlying topological space of X ×C C ′ is

X ×C C ′ = {(x, c′) ∈ X × C ′ : π(x) = f(c′)} .

The space X ×C C ′, along with its maps to X and C ′, is sometimes called the fiber product of X and C ′

above C or the pullback of X ! C along f instead.

Proof. [3, Corollary 0.32] �

Remark 2.1.5. When C ′ = {∗} is a single point with structure sheaf O∗ = C, the fiber product X ×∗ Y of

any two spaces over C ′ is the usual direct product X ×∗ Y = X × Y with its natural complex structure.

We will see basechanges in Section 2.5 where we will be interested in fibers (i.e. base changes along the

inclusions of a point) of maps X ! C. In that section, we will provide a direct construction of the fibers

as subspaces of X. In Chapter 4, we will see base changes more substantially; in particular, we will build

“more complicated” elliptic surfaces out of “simpler” ones by base changing along suitable maps.

These definitions provide a robust language for talking about the various complex spaces we will en-

counter. The concepts of reduced and irreducible spaces will be especially useful, and will in particular be

convenient for describing various (effective) divisors of a complex surface.

2.1.1 Important Results Concerning Complex Spaces

In addition to having this language of complex spaces, it will be prove useful to have access to some fun-

damental results in the theory of complex spaces. For this purpose, we record the results below and give

references to their proofs. The first result, Stein factorization, will tell us that analytic maps factor as one

with connected fibers followed by one with finite fibers.

Definition 2.1.16. A continuous map f : X ! Y is called proper if f−1(K) is compact for every compact

K ⊂ Y .

Example. If X is compact and Y is Hausdorff, then every continuous map is automatically proper.

Theorem 2.1.5 (Stein factorization). Let X,Y be complex spaces and let f : X ! Y be a proper analytic

map. Then f admits a unique facotrization as

X
g
−! Z

h
−! Y

such that

(i) g : X ! Z is a proper surjective holomorphic map with connected fibers and g∗OX = OZ .
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(ii) h is a finite holomorphic map.

Furthermore, if X is normal, then Z is too.

Proof. [6, Ch. 10, Sect. 6] �

For the remaining results, we will need the notion of a higher direct image sheaf. Briefly, given a morphism

f : X ! Y of complex spaces, the pushforward functor f∗ from OX -modules to OY -modules is left exact,

and so is the 0th functor in a infinite family f∗i of right derived functors from OX -modules to OY -modules,

called the higher direct image functors. Intuitively, f∗i can be though of as a way of forming a “relative

cohomology theory” for the map f : X ! Y (as opposed have cohomology defined on an individual space).

These functor are treated more carefully in Appendix A, but for now, we will be content with knowing they

exist and observing their role in the below theorems.

Theorem 2.1.6 (Grauert’s direct image theorem). Let X,Y be complex spaces, and let f : X ! Y be

a proper analytic map. Then, for every coherent sheaf S on X and integer i ≥ 0, the (higher) direct image

sheaf f∗iS is also coherent.

Proof. [6, Ch. 10] �

Corollary 2.1.7 (Finiteness theorem of Cartan-Serre). Let X be a compact complex space, and let S

be a coherent sheaf on X. Then, Hi(X,S ) is finite dimensional for all i ≥ 0.

Proof. Fix any i ≥ 0. We will first show that Hi(X,S ) is finite dimensional. Let f : X ! {y} be the map

to the one point space whose structure sheaf is Oy = C. Then, y is a complex space (it is the space V (z)

from an earlier example), so Grauert’s theorem applies to f . In particular, the sheaf f∗iS = Hi(X,S ) is

coherent on y, which means that we have an exact sequence

Cr −! Cs −! Hi(X,S ) −! 0

for some s, r. In particular, Hi(X,S ) is finite dimensional. �

Corollary 2.1.8 (Remmert’s Mapping Theorem). Let X,Y be redueced complex spaces with a proper,

analytic map f : X ! Y . If A ⊂ X is a closed analytic subset, then so is f(A) ⊂ Y .

Proof. Let ι : Z ↪! X be a closed embedding. We wish to show that f(ι(Z)) ⊂ Y is a closed analytic

subset. Note that the morphism f ◦ ι : Z ! Y comes equipped with morphism f̃ ◦ ι : OY ! f∗ι∗OZ .

Because ι,f are both proper, Grauert’s theorem tells us that f∗ι∗OZ is coherent on Y , so the 2-out-of-3

principle then tells us that I := ker f̃ ◦ ι is a coherent sheaf of ideals. It is clear from the construction that

supp(OY /I ) = f(ι(Z)), so the claim holds. �

Definition 2.1.17. Let f : X ! Y be a proper, holomorphic map between reduced complex space. Then,

a coherent sheaf S on X is called flat over Y if Sx is a flat OY,f(x)-module for all x ∈ X.

Notation 2.1.18. Let F be a (locally free) sheaf on a space X. Then, for a point x ∈ X the fibre of F

above x is denoted F (x) := Fx ⊗OX,x OX,x/mx where mx ⊂ OX,x is the maximal ideal at x.

Theorem 2.1.9. Let X,Y be reduced complex spaces, and let f : X ! Y be a proper holomorphic map. Let

S be a coherent sheaf on X which is flat over Y . Then, if the function

Y 3 y 7−! dimC Hq(Xy,Sy)
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is constant, we have that f∗qS is locally free on Y . Moreover,

(f∗qS )(y) ' (f∗qS )y ⊗OY,y

OY,y
my

' (f∗qS )y
my · (f∗qS )y

∼
−! Hq(Xy,Sy)

where my ⊂ OY,y is the maximal ideal at y ∈ Y . In particular, the rank of S∗q is hq(Xy,Sy).

Proof. [2, Ch. I, Thm. 8.5] �

Definition 2.1.19. Let S be a coherent sheaf on a compact complex space X. We can define its Euler

characteristic to be

χ(S ) = χ(X,S ) =

∞∑
i=0

(−1)ihi(X,S ),

where hi(X,S ) = dim Hi(X,S ), whenver this sum is finite.

2.2 Divisors and Intersection Numbers

2.2.1 Divisors

Setup. Fix a complex manifold X of dimension 2, i.e., a compact (smooth) surface. We wish to introduce

some basic tools in the study of the geometry of X which we will see throughout the remainder of this text.

We begin by fixing the notation for many of the important sheaves on X.

Notation 2.2.1. Let

• TX denote the (holomorphic) tangent bundle of X.

• O×X or O∗X denote the sheaf of nonvanishing holomorphic functions on X.

• ΩiX =
∧i

ΩX denote the sheaf of holomorphic i-forms on X. In particular, Ω0
X ' OX and

Ω1
X ' T ∨X .

• ωX ' Ω2
X denote the canonical (line) bundle on X.

• NY/X denote the normal bundle of a complex submanifold Y ↪! X, which is defined by the following

sequence

0 −! TY −! TX |Y −! NY/X −! 0.

Note that NY/X is a sheaf (supported) on Y .

Attached to these sheaves are certain numerical invariants of interest.

Definition 2.2.2. The arithmetic genus of X is pa(X) = χ(OX)− 1. Its geometric genus is pg(X) =

dim H0(X,ωX). For 0 ≤ p, q ≤ 2, the Hodge numbers of X are hp,q(X) = dim Hq(X,ΩpX).

Now, one often studies a space by studying certain vector bundles on it. The line bundles on a space

are particularly amenable to study because they form not only a set, but indeed a group under the oper-

ation of tensoring. Hence, we will let PicX denote the group of line bundles on X, and we hope to gain

some understanding of this object. For studying this group, it will be useful to give it a cohomological

interpretation.

Notation 2.2.3. Given a sheaf F on X, let Ȟ
k
(F ) = Ȟ

k
(X,F ) denote its kth Čech cohomology group.

10



Recall 2.2.1. Let GLn(OX) denote the sheaf of holomorphic maps to GLn(C). Then, there is a bijection

between the Čech cohomology group Ȟ
1
(X,GLn(OX)) and the set of isomorphism classes of rank n vector

bundles over X. This is shown, for example, in [1, Ch. 7]. In particular, because Ȟ
1
(X,F ) ' H1(X,F ) for

any abelian sheaf F on X, we have that PicX ' H1(X,O×X).

Notation 2.2.4. Let L ∈ PicX be a line bundle on X. By default, we think of this as an invertible

sheaf on X, but we may sometimes want to reason about L ’s underlying space. In such case, we may use

E(L ) to denote this space, so in particular, E(L ) is a complex space equipped with a holormophic map

pL : E(L )! X giving it the structure of a line bundle in the geometric sense.

The main utility of this result is that it allowws us to fit PicX into exact sequences from which we can

extract information about it. This is mainly exploited through use of the exponential exact sequence

0 −! ZX −! OX
e
−! O×X −! 0

of sheaves on X, where ZX is the constant sheaf with stalks isomorphic to Z, and e is the exponential map

sending a section f ∈ OX(U) to its exponential exp(2πif) ∈ O×X(U) (here U ⊂ X is any open set). Exactness

of the above sequence can be checked on stalks where one can make use of the fact that on a simply connected

domain it is possible to construct holomorphic logarithms. From the existence of this short exact sequence

of sheaves, we get a long exact sequence in cohomology

· · · −! H1(X,Z) −! H1(X,OX) −! H1(X,O×X)
δ
−! H2(X,Z) −! · · ·

The map δ : H1(X,O×X) −! H2(X,Z) above can be identified with the map c1 : PicX −! H2(X,Z) taking

a (holomorphic) line bundle its (underlying topological line bundle’s) first Chern class.

Technical Aside 2.2.1. As there are numerous perspectives from which one can understand Chern classes,

there are also numerous possible proofs of this fact. It is not hard to show that the map δ above is functorial.

Taking advantage of this, if you are familiar with classifying spaces, then one possible proof is to use the

classifying map f : X ! P∞ = BU(1) for a given line bundle L ∈ PicX, along with the inclusion map

ι : P1 ↪! P∞ (which induces an isomorphism on H2) to reduce to the case that X = P1 and L = OP1(−1) is

the tautological line bundle. Then, one can simply calculate δ(OP1(−1)) explicitly to see that it agrees with

c1(OP1(−1)).

At this point, we still have not given many methods of constructing line bundles. The main source of

line bundles lies in their connection to codimension 1 submanifolds.

Definition 2.2.5. A hypersurface H ⊂ X is a (non-empty) closed subset of X where every point p ∈ H
has a connected open neighborhood U in X such that H ∩ U is the zero set of a non-constant holomorphic

function on U .

Definition 2.2.6. A divisor D on X is a formal sum D =
∑∞
i=1 diDi where di ∈ Z and {Di} is a collection

of irreducible hypersurfaces which is locally finite, i.e. every p ∈ X has a neighborhood U meeting only

finitely many of the Di. We say that D is finite if in fact di = 0 for all but finitely many i ∈ N. We say D

is effective if di ≥ 0 for all i. We let DivX denote its group of divisors. We define the support of D to be

suppD =
∞⋃
i=1
di 6=0

Di.
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Remark 2.2.1. If X is compact, then any divisor is a finite (formal) sum of irreducible hypersurfaces as

opposed to just a locally finite one.

Remark 2.2.2. Let S, T be irreducible hypersurfaces in X. Then, one should think of S as a reduced,

irreducible complex space, of S+T as a reduced but not irreducible complex space, and 2S as an unreduced

complex space.

Definition 2.2.7. Let f : X ! Y be a holomorphic map between connected, complex manifolds. If

D ∈ Div Y such that f(X) 6⊂ suppD, then f∗(D) ∈ DivX is defined to be the divisor obtained by lifting

the local equations for the irreducible components of D. In particular, if f : X ! P1 is a non-constant map

to the projective line, then the divisor

(f) := f∗(0−∞)

is called the principal divisor associated to f .

Remark 2.2.3. Pick some finite D ∈ DivX. We will show that D defines a line bundle OX(D) on X. Write

D =
∑n
i=1 diDi. Our construction will satisfy

OX(D) '
n⊗
i=1

OX(Di)
⊗di

where, for a line bundle L and integer d < 0, we write L ⊗d to denote (L ∨)⊗|d| where L ∨ is L ’s dual

bundle. Put another way, our construction D  OX(D) will give a group homomorphism DivX ! PicX,

and so it suffices to define OX(D), assuming that D is itself an irreducible hypersurface. Let {Uα}α∈A be

an open cover of X such that D ∩ Uα = {fα = 0} for some fα ∈ OX(Uα) for all α ∈ A. Then, OX(D) is

formed by gluing together the trivial line bundles {Uα × C}α∈A according to the transition functions

ταβ : Uα ∩ Uβ ! C×, x 7!
fβ(x)

fα(x)
.

That is, for x ∈ Uα ∩ Uβ and z ∈ C we identify (x, z) ∈ Uα × C with (x, ταβ(x)z) ∈ Uβ × C.

Remark 2.2.4. If D ∈ DivX is the finite divisor D =
∑
diDi, then, on an open cover {Uα}α∈A such that

Di =
{
f

(i)
α = 0

}
for all i and all α, OX(D) is determined by the transition functions

ταβ : Uα ∩ Uβ ! C×, x 7!
∏(

f
(i)
β (x)

f
(i)
α (x)

)ni
.

As such OX(D) has a canonical (global) meromorphic section s : X ! OX(D) given locally by

s|Uα(x) =
∏(

f (i)
α

)di
which is moreover holomorphic if D is effective. When D is effective, we will sometimes denote this section

as 1D ∈ H0(X,OX(D)) since it corresponds to the image of 1 ∈ H0(X,OX) under the natural inclusion

OX ↪! OX(D).

Remark 2.2.5. Let s : X ! L be a meromorphic section of a line bundle L on X, and let {Uα} be an

open cover of X which trivialized L . Then, sα := s|Uα is identifiable with a meromorphic map Uα ! C, i.e.

holomorphic map Uα ! P1. We can glue together the principal divisors (sα) ∈ Div(Uα) in order to form a
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divisor (s) ∈ DivX which satisfies L ' OX((s)).

Remark 2.2.6. Let C ⊂ X be an irreducible hypersurface. Then, OX(−C) ' IC is identifiable with the

ideal sheaf of C in X. Similarly, if D =
∑n
i=1 diDi is an effective divisor, then OX(−D) is identifiable with

a subsheaf of ideals in OX , and so D can also be considered as an analytic subspace of X.

Remark 2.2.7. Every line bundle L on a compact, complex surface X is of the form L = OX(D) for some

divisor D ∈ Div(X). In particular, there exists a divisor KX ∈ Div(X) such that ωX = OX(KX). Any such

divisor will be called a canonical divisor on X.

We will mainly interact with divisors in relation to their connection to line bundles. Motivated by this,

we say two divisors D,E are linearly equivalent if OX(D) ' OX(E). This is the case iff there exists a

holomorphic function f : X ! P1 such that D − E = (f), so D and E are related by a “family f∗(s) of

divisors above the projective line P1.”

Notation 2.2.8. Given a divisor D ∈ DivX, we let |D| denote the set of effective divisors linearly equivalent

to D. This set is naturally isomorphic to the projective space P(H0(X,OX(D))).

Notation 2.2.9. Because of the natural homomorphism DivX ! PicX, we will often use divisors directly

in notation originally defined only for line bundles. Of note, if D ∈ DivX is a divisor, then we set

χ(D) = χ(OX(D)) hi(D) = hi(OX(D)) = dimC Hi(OX(D))

2.2.2 Intersections, Riemann-Roch, and Adjunction

One of the benefits of working in dimension 2 is the presence of a robust intersection theory. Given two

distinct irreducible curves C,D ⊂ X in a compact, smooth surface, their intersection C ∩ D is necessarily

a finite set of points, and the number i(C;D) of such points, counted with multiplicity, tells us about how

to two curves are situated in relation to each other. By Poincaré duality, these curves have corresponding

cohomology classes [C]∗, [D]∗ ∈ H4−2(X;Z) = H2(X;Z), and the number i(C;D) corresponds to their cup

product [C]∗ ^ [D]∗ ∈ H4(X;Z) under the natural isomorphism H4(X;Z) ' Z coming from the complex

structure on X. Since the formation of i(C;D) corresponds to taking cup products, we see that we can

get a well-defined intersection number for any pair of divisors on X by sending the pair D =
∑
diDi and

E =
∑
eiEi to

i(D;E) :=
∑
i,j

diei([Di]
∗ ^ [Ei]

∗) ∈ H4(X;Z) ' Z.

Using the relation between divisors and line bundles, we can extend the above to allow for intersections

between line bundles or between a line bundle and a curve. From another perspective, given two line

bundles L ,L ′, we can define their intersection number to be c1(L ) ^ c1(L ′) ∈ H4(X;Z) ' Z, the cup

product of their first Chern classes. These two viewpoints agree with each other. Indeed, we have the

following.

Theorem 2.2.1. Let D ∈ Div(X) be a divisor on a compact smooth surface X, and let [D]∗ ∈ H2(X;Z)

denote its corresponding cohomology class coming from Poincaré duality. Then,

c1(OX(D)) = [D]∗

as cohomology classes.
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Proof. This is shown in [7, Ch. 3, Sec. 3]. �

This allows us to unambiguously define intersection numbers of pairs of divisors and/or line bundles.

Definition 2.2.10. Given two divisors D,E ∈ Div(X) on a compact smooth surface X, we will denote their

intersection number by

D · E := f ([D]∗ ^ [E]∗) = f (c1(OX(D)) ^ c1(OX(E))) ∈ Z

where f : H4(X;Z)
∼
−! Z is the natural isomorphism coming from the complex structure on X. Similarly, if

L ,L ′ are line bundles, then we define

L ·L ′ := f (c1(L ) ^ c1(L ′)) ∈ Z,

and D ·L := f (c1(L ) ^ [D]∗) ∈ Z.

Notation 2.2.11. In practice, we will often drop the · in the above notation, opting to write e.g. DE ∈
Z instead of D · E ∈ Z. We will similarly often drop the ^ when forming cup products, writing e.g.

c1(L )c1(L ′) ∈ H4(X;Z) instead of c1(L ) ^ c1(L ′) ∈ H4(X;Z).

The main utility of intersection theory in the context of studying complex surface lies in its connection

to cohomology. That is, we will soon see that we can gain bounds on the sizes of the cohomology groups of

a line bundle L on X in terms of L ’s intersections with other divisors/line bundles. In particular, we will

prove a Riemann-Roch theorem for surfaces mirroring the one for curves.

Recall 2.2.2 (Riemann-Roch for Curves). Let D ∈ DivC be a line bundle on a smooth curve (i.e.

Riemann surface) C. Then,

χ(OC(D)) = χ(OC) + degD,

and χ(OC) = 1− g where g = dim H1(C,OC) is the genus of the curve.

To prove a similar result for surfaces, we would like to make use of the above for curves. Hence, we need

a way of relating divisors on a surface to those on a curve. We will have two main techniques for doing so:

intersecting with a curve, and adjunction. Before expanding on these techniques, we remark that there is

an alternate description of intersection numbers which can be more convenient for calculations. We describe

this now in the case of intersections between irreducible curves.

Definition 2.2.12. Let C,C ′ be distinct irreducible curves on a smooth, compact surface X, and fix a point

x ∈ C ∩ C ′. If f, g ∈ OX,x are (germs of) local equations for C,C ′, respectively, at x, then we define the

local intersection number of C and C ′ and x to be

ix(C;D) := dimC OX,x/(f, g).

Theorem 2.2.2. If C,C ′ are distinct irreducible curves on a smooth, compact surface X, then

C · C ′ =
∑

x∈C∩C′
ix(C;D).

Proof. [2, Ch. II, sect. 10] �
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We will see this point of view in our next result. Recall that we want a “Riemann-Roch for Surfaces,”

and that we aim to use the usual Riemann-Roch for curves as part of our process of attaining an analogue

for surfaces. In order to relate line bundles of surfaces with those on curves, we first prove the following.

Lemma 2.2.3. Let A be a discrete valuation ring2 with uniformizer π ∈ A and residue field k = A/(π). Let

s ∈ A be any nonzero element. Then, ordA(s) = dimk A/(s).

Proof. Let e = ordA(s), so (s) = (π)e ⊂ A. If e = 0, then s ∈ A× is a unit so A/(s) = A/A = 0 is

0-dimensional and the claim holds. Hence, assume e ≥ 1 so that A/(s) = A/(π)e. Then, we can filter A/(π)e

via

0 = (π)e/(π)e ( (π)e−1/(π)e ( · · · ( (π)/(π)e ( A/(π)e,

so dimk A/(π)e is the sum of the dimensions of the successive quotients in the filtration above, i.e.

dimk
A

(π)e
=

e−1∑
n=0

dimk

(
(π)n/(π)e

(π)n+1/(π)e

)
=

e−1∑
n=0

dimk
(π)n

(π)n+1
.

Finally, dimk(π)n/(π)n+1 = 1 by Nakyama’s lemma since (π)n is generated as a module (i.e. ideal) over the

local ring A by a single element. Since there are e terms in the above sum, we conclude that dimk A/(s) =

e = ordA(s) as claimed. �

Theorem 2.2.4. Let D ∈ DivX be a divisor on a smooth, compact surface, and let C ⊂ X be a smooth,

irreducible curve. Then,

D · C = deg(OX(D)|C).

Proof. First note that, by linearity, we may assume that D is an irreducible curve as well. Let s : X !

E(OX(D)) be the canonical holomorphic section constructed in Remark 2.2.3. This restricts to a meromor-

phic section s|C : C ! E(OX(D)|C) of OX(D)|C . Thus, OX(D)|C = OC((s|C)) where (s|C) is its associated

divisor. By construction, supp(s|C) ⊂ C ∩ D, so we only need to determine the multiplicty at each point.

Fix a point x ∈ C ∩ D and let f, g ∈ OX,x be local equations for C,D, respectively. Note that, by con-

struction, viewing s as an element s ∈ H0(X,OX(D)), its stalk x is sx = g ∈ OX,x. Thus, the order of

vanishing ordx(s|C) of s|C at x ∈ C ∩ D is given by the valuation of sx = g in the (local) valuation ring

OC,x = OX,x/(g). Thus, by the lemma above,

ordx(s|C) = ordOC,x(sx) = dimC OC,x/(s) = dimC OX,x/(f, g) = ix(C;D).

Hence,

deg(s|C) =
∑

x∈C∩D
ix(C;D) = C ·D

as claimed. �

Notation 2.2.13. In the situation of the above theorem, we let OC(D) ∈ PicC denote the restriction

OX(D)|C . With this notation, the above theorem can be stated succinctly as deg OC(D) = CD.

This gives a way of gaining control over restrictions of line bundles from a surface X to one of its embedded

curves C. However, in addition to restricting line bundles on X, there is a second natural way to obtain a

2See Remark 2.1.3
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line bundle on C. Namely, one can consider its canonical bundle ωC , and so one can hope to relate this to

data on X. This is done by means of the adjunction formula which provides a formula for ωC in terms of

the line bundles ωX and OX(C).

Lemma 2.2.5. Let C ⊂ X be a smooth curve in a smooth, compact surface. Then, the normal bundle NC/X
of C in X can be identified with the line bundle OC(C) = OX(C)|C .

Proof. Note that we have an exact sequence

0 −! TC −! TX |C −! NC/X −! 0.

Taking duals, we obtain the sequence

0 −! N ∨C/X −! ΩX |C −! ΩC −! 0.

At the same time, there is an exact sequence 0 −! IC/I 2
C

d
−! ΩX |C −! ΩC −! 0 where IC is the ideal

sheaf of C ⊂ X and d is the differential map. Thus, N ∨C/X ' IC/I 2
C , but also IC = OX(−C) and

OX(−C)/OX(−2C) = OX(−C)⊗OX OX/OX(−C) = OX(−C)⊗ OC = OC(−C),

so NC/X ' OC(C) as claimed. �

Theorem 2.2.6 (Adjunction Formula). Let C ⊂ X be a smooth curve in a smooth, compact surface.

Then,

ωC ' ωX ⊗ OX(C)|C ' ωX(C)|C

where ωX(C) := ωX ⊗ OX(C).

Proof. Once again consider the exact sequence

0 −! N ∨C/X −! ΩX |C −! ΩC −! 0.

Taking determinants of each vector bundle above, and noting that most of them are rank 1, we see that

ωX |C ' N ∨C/X ⊗ ωC .

Since N ∨C/X ' OX(−C)|C , the claim follows from tensoring both sides with OX(C)|C . �

Corollary 2.2.7 (Genus Formula). Let C ⊂ X be a smooth curve in a smooth, compact surface, and let

g(C) denote the genus of C. Then,

2g(C)− 2 = (KX + C)C = KXC + C2,

where KX ∈ DivX is a canonical divisor.

Proof. The adjunction formula shows that ωC = ωX ⊗OX(C)|C . Taking degrees of both sides and applying

Theorem 2.2.4 gives the desired result. �

This gives our second way of relating line bundles on an embedded curve to data on the ambient surface.

Combining these will allow us to prove our Riemann-Roch analogue for surfaces.
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Theorem 2.2.8 (Riemann-Roch for Surfaces). Let D =
∑
diDi be a divisor on a compact, smooth

surface X. Then,

χ(OX(D)) =
1

2
D(D −KX) + χ(OX).

Proof. We must make one concession in our proof. So far, we only have Riemann-Roch for smooth curves,

but the Di are only assumed irreducible. In a later section on embedded curves, we will show that Riemann-

Roch for curves actually holds verbatim for non-smooth, irreducible curves as well. Granting this for now,

we proceed with the proof.

We proceed by induction on
∑
|di|. If this sum is 0, then OX(D) = OX and the claim is apparent. Hence,

assume the claim holds for D′, and let C be an irreducible curve. We need to show that it then holds for

D′ ±C. We start with the case D = D′ −C. Tensoring the exact sequence 0! OX(−C)! OX ! OC ! 0

by OX(D′) gives

0 OX(D) OX(D′) OC(D′) 0 .

Now, appealing to induction, adjunction, and Riemann-Roch on C, we get

χ(OX(D)) = χ(OX(D′))− χ(OC(D′))

=

[
1

2
D′ · (D′ −KX) + χ(OX)

]
− [deg(D′ |C) + (1− g(C))]

=

[
1

2
D′ · (D′ −KX) + χ(OX)

]
+

[
1

2
(KX + C) · C − C ·D′

]
=

1

2
D(D −K) + χ(OX)

which completes the D = D′ − C case. The D = D′ + C case is handled complete analogously. �

The Riemann-Roch theorem is the main method to gain control over the sizes hi(OX(D)) of cohomology

groups of line bundles. In practice, one is usually mostly interested in the number h0(OX(D)) of holomorphic

sections of a line bundle. With this quantity in mind, Riemann-Roch by itself is often insufficient. In order

to gain finer control on sizes of these cohomology groups, we will accept without proof both Noether’s

formula and Serre duality which, respectively, give a formula for χ(OX) and make the group H2(OX(D))

less mysterious.

Theorem 2.2.9 (Noether’s formula). Let X be a compact, smooth surface. Then,

χ(OX) =
1

12

(
K2
X + χtop(X)

)
where χtop(X) =

∑4
k=0(−1)k dim Hk(X;R) is X’s topological Euler characteristic.

Proof. [7, Ch. 4, Sect. 6] �

Theorem 2.2.10 (Serre Duality). Let X be a smooth, compact manifold of dimension n, and let E be a

vector bundle on X. Then, for all i, we have

hi(E ) = hn−i(E ∨⊗ωX).

Consequently, hi(E ) = 0 whenever i > n.

Proof. [12] �
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Corollary 2.2.11. Let D be a divisor on smooth, compact surface X. Then,

h0(D) + h0(KX −D) ≥ 1

2
D(KX −D) + χ(OX).

Proof. Riemann-Roch for surfaces gives

h0(D) + h2(D) ≥ h0(D)− h1(D) + h2(D) = χ(OX(D)) =
1

2
D(D −KX) + χ(OX).

Now apply Serre duality to see that h2(D) = h0(KX −D). �

Remark 2.2.8. The inequality form of Riemann-Roch given in the above corollary is how the theorem is

often applied in practice. It is commonly the case that one of h0(D), h0(KX − D) above will vanish, and

this vanishing can commonly be shown by finding an irreducible curve C ⊂ X such that DC < 0 (or

(KX −D)C < 0). Indeed, if h0(D) > 0, then there must exist an effective divisor E linearly equivalent to D

such that EC = DC < 0. Because pairings between distinct irreducible curves are always non-negative this

is possible only if C ⊂ suppE and C2 < 0. Hence, if we know that C2 ≥ 0, we can conclude that h0(D) = 0.

There is another immediate application of Riemann-Roch which is sometimes useful and which will close

out this section. We can easily show that the intersection pairing L ·L ′ between two line bundles can be

calculated completely in terms of dimensions of various cohomology groups. This viewpoint is sometimes

simpler to work with than thinking in terms of cup products or local intersection numbers.

Lemma 2.2.12. Let L ,L ′ be line bundles on a smooth, compact surface X. Then,

L ·L ′ = χ(OX)− χ(L )− χ(L ′) + χ(L ⊗L ′).

Proof. For notational convenience, write L = OX(D) and L ′ = OX(D′). Now, expand the right hand side

of the desired equality and apply Riemann-Roch for surfaces to each summand to get

χ(OX)− χ(L )− χ(L ′) + χ(L ⊗L ′) = χ(OX)−
[

1

2
D(D −KX) + χ(OX)

]
−
[

1

2
D′(D′ −KX) + χ(OX)

]
+

[
1

2
(D +D′)(D +D′ −KX) + χ(OX)

]
=

1

2
DD′ +

1

2
D′D

= DD′

= L ·L ′,

where, above, there was much cancellation in the second equality. �

The above lemma will play an important role in the section on Ruled surfaces where it will be used to

understand the canonical divisor for a large class of surfaces. This covers all the basic results one needs from

intersection theory. In order to avoid future issues with dealing with the existence of non-smooth spaces (like

the one that came up when proving Riemann-Roch), we devote the next two sections to studying singular

surfaces and (possibly singular) embedded curves.
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2.3 Singularities

While complex manifolds constitute the nicest class of complex spaces, it is not possible to avoid singular

spaces altogether. In cases where a singular space X arises, one often wishes to find a related space X̃ which

is a “resolution of singularities” or “desingularization” of X. This means X̃ is smooth and comes equipped

with a morphism π : X̃ ! X which is an isomorphism away from the singularities of X, i.e. if S ⊂ X is its

singular set, then X̃ \ π−1(S)
π
−! X \ S is an isomorphism.

Within the context of surfaces, i.e. 2 dimensional complex spaces, the basic tool in the formation of such

desingularizations is the process of blowing up a surface at a point, the subject of the below subsection.

After introducing this process, we will study a class of singularities which feature prominently in our later

local study of elliptic fibrations, namely the Hirzebruch-Jung strings.

2.3.1 Blowups

One way to motivate the blowups is their application to resolving singularities of curves embedded in surfaces.

Consider, for example, the cuspidal cubic E : y2 = x2(x+1) whose real points are pictured in Figure 1. This

Figure 1: The real points of the cuspidal cubic y2 = x2(x+ 1)

curve has a singularity at the origin (0, 0) evidenced by its two separate tangent directions at this point. In

order to resolve this singularity, we would like to replace the origin by (at least) 2 points, one for each of the

direction from which the curve passes through it. This is exactly the idea of blowing up a surface (in this

case, the complex plane C2). You pick a point and replace it with a copy of P1 representing all the possible

tangent directions of a curve passing through that point. This description characterizes the blow up.

Proposition 2.3.1. Let X be a (possibly singular or even non-reduced) complex space, and let p ∈ X be a

smooth point of local dimension 2, so p has a neighborhood isomorphic to an open ball B ⊂ C2. Then, there

exists a complex space BlpX, called the blowup of X at p, with a canonical map

π : BlpX ! X

such that E := π−1(p), which we call the exceptional curve of the blowup, is isomorphic to P1 and π

restricts to an isomorphism BlpX \ E
∼
−! X \ {p}.

Because the characterization of the blowup is entirely local, in order to prove this proposition, it suffices

to construct Bl0 C2, the blowup of the plane at the origin. To construct BlpX is general, we simply take a
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coordinate neighborhood U ⊂ X centered at p – i.e. we fix an isomorphism φ : U
∼
−! B taking U to the unit

ball B ⊂ C2 such that φ(p) = (0, 0) – and then let

BlpX = (X \ {p}) ∪
U\{p}

Bl0B,

the result of gluing Bl0B to X \ {p} along Bl0B \ π−1(0) ' U \ {p} where π : Bl0B ! B is the canonical

map. In other words, BlpX fits into the following push out diagram

U \ {p} Bl0B

X \ {p} BlpX

π−1◦φ

Hence, we turn to giving this construction. In fact, we will give two constructions. Either is fine individually

for the construction of general blowups (and really, they are one in the same), but seeing both helps one

more easily recognize blow ups in the wild.

Construction 2.3.1. Let x, y be coordinates on C2, and let X,Y be homogeneous coordinates on P1. Then,

Bl0 C2 ⊂ C2 × P1 is given as the the zero set of the equation

Bl0 C2 : xY − yX = 0.

Indeed, by restricting the projection map pr1 : C2 × P1 ! C2, we obtain a natural projection map π :

Bl0 C2 ! C2, ((x, y), [X : Y ]) 7! (x, y) with

π−1(0, 0) =
{

((x, y), [X : Y ]) ∈ C2 × P1 : (x, y) = (0, 0) and xY = yX
}

= 0× P1 ' P1.

At the same time, away from the origin, π has an inverse s : C2 \ 0 ! Bl0 C2 \ (0 × P1) given by s(x, y) =

((x, y), [x : y]).

Construction 2.3.2. Let p : L! P1 be the tautological line bundle on P1,3 that is

L =
{

((x, y), `) ∈ C2 × P1 : (x, y) ∈ `
}
⊂ C2 × P1,

and p is simply the restriction of the projection map C2×P1 ! P1. Let π : L! C2 be the restriction of the

projection map C2 × P1 ! C2. Then, L ' Bl0 C2. Indeed, π−1(0, 0) ' P1 since every element of P1 passes

through the origin by definition, and we have an isomorphism s : C2\0! L given by s(x, y) = ((x, y), [x : y])

much like last time.

Combining either construction with the discussion preceding them proves Proposition 2.3.1 in general.

Now that we have blowups, we will prove some key theorems regarding their intersection theory. This will,

unsurprisingly, be strongly related to the intersection theory of the base space, so we begin by understanding

how divisors on the base pull back to divisors on the blowup.

Let X be a smooth surface, let X̂ = BlpX
π
−! X be its blowup at a fixed point p ∈ X, and let E = π−1(p)

be the exceptional curve.

Definition 2.3.1. Let C be an irreducible curve passing through p with multiplicity m. Then, the closure

3We’re calling this L and not OP1 (−1) because one usually thinks of the latter as a sheaf, not a topological space
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π−1(C \ {fp}) of the preimage of C \ {p} is an irreducible curve Ĉ ⊂ BlpX called the strict transform of

C.

Proposition 2.3.2. As divisors, π∗C = Ĉ +mE.

Proof. Because the blowup map is an isomorphism away from p, we must have supp(π∗C) \ E = π−1(C \
{p}) = Ĉ\E from which we conclude that π∗C = Ĉ+kE for some k ∈ Z. Now, the fact that C passes through

p with multiplicity m means exactly that we can find local coordinates x, y near p, say on a neighborhood

U , such that, C ∩ U is given as the zero set of a function

f(x, y) =
∑
d≥m

fd(x, y)

with fd homogeneous of degree d, and fm 6= 0. Now, let Û ⊂ U × P1 be the vanishing set of xY − yX = 0

where X,Y are homogeneous coordinates on P1. Hence, Û can be viewed as an open subset of X̂ containing

E. Near the point q = (p, [1 : 0]) ∈ Û we can take the functions x and t = Y/X as local coordinates since x

is a coordinate on U near p, t is one on P1 near [1 : 0], and y = xt is determined by these two. Hence, near

q, π∗f has the form

(π∗f)(x, t) = f(x, xt) =
∑
d≥m

fd(x, xt) =
∑
d≥m

xdfd(1, t) = xm

fm(1, t) +
∑
n≥1

xnfm+n(1, t)

 . (1)

Since E, in these coordinates, is given as the vanishing set of x and x divides the above equation with degree

exactly m, we see that k = m. �

Since the pullback of any curve C ⊂ X not containing p is necessarily isomorphic to C, we understand

the entire pullback map π∗ : PicX ! Pic X̂. We now prove finer results on the intersection theory in X̂.

Proposition 2.3.3. With the same setup as before,

(1) E2 = −1.

(2) For D,D′ ∈ PicX, we have

(π∗D) · (π∗D′) = DD′, E · (π∗D) = 0.

As a consequence, if Ĉ is the proper transform of C, then also

(π∗D) · Ĉ = (π∗D) · (π∗C −mE) = (π∗D) · (π∗C) = D · C.

(3) There is an isomorphism PicX ⊕ Z ∼
−! Pic X̂ given by (D,n) 7! π∗D + nE.

(4) KX̂ = π∗KX + E

Proof. We will prove these one at time.

(1) We will start with the claim that E2 = −1 which, because E ' P1, is equivalent to the claim that

the normal bundle OX̂(E)|E =: OE(E) corresponds to the tautological line bundle OP1(−1) under the

identification E ' P1. Since this claim is local, we may assume for the time being that X = C2,
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so X̂ =
{

(v, `) ∈ C2 × P1 : v ∈ `
}
⊂ C2 × P1 is the total space of OP1(−1). Let q : X̂ ! P1 be the

projection map, and let L = q∗OP1(−1) be the line bundle on X̂ whose total space is

q∗X̂ =
{

((v, `), (v′, `′)) ∈ X̂ × X̂ : ` = `′
}
,

and whose bundle map L ! X̂ is projection onto the first factor. In other words, we have a pullback

square

q∗X̂ X̂

X̂ P1

q

q

Then, L has a (holomorphic) section t ∈ H0(L ) which, when viewed as a map t : X̂ ! q∗X̂, is given

by t(v, `) = ((v, `), (v, `)). The zero set of this section is
{

(v, `) ∈ X̂ : v = 0 ∈ `
}

= E, and t visibly

vanishes with multiplicity one, so OX̂(E) ' L ' q∗OP1(−1). Since the map q|E : E ! P1 is an

isomorphism, this shows that OE(E) is identified with OP1(−1). Thus, E2 = deg(OE(E)) = −1 as

claimed.

(2) By linearity, it suffices to check these formulas for irreducible divisors, so let C,C ′ ⊂ X be irreducible

curves. We will first show that E · (π∗C) = 0. Write π∗C = Ĉ + mE where m ∈ Z is the (possibly

zero) multiplicity with which C passes through p. Looking back at equation (1), we see that, in the

notation of that equation, Ĉ was given by

Ĉ : 0 = fm(1, t) +
∑
n≥1

xnfm+n(1, t),

where E is line E : 0 = x. Hence, determining their intersection corresponds solving the equation

defining Ĉ when x = 0. Since all terms of degree greater than m vanish, we see that this equation has

m = deg fm(1, t) many zeroes along the line x = 0, i.e. Ĉ meets E in m points, so EĈ = 0. Thus,

E · (π∗C) = EĈ +mE2 = m−m = 0.

Finally, (π∗C) · (π∗C ′) = CC ′ simply because π is a degree 1 map.

(3) We first show surjectivity. Let C ⊂ X̂ be an irreducible curve on the blowup. We have three cases.

(1) C ∩ E = ∅. In this case, C = π∗π(C) is in the image of this map. (2) C ∩ E = E. In this case,

C = E is in the image of this map. (3) C ∩ E is a finite set of points. In this case, C is the strict

transform of π(C), so C = π∗(C) −mE for some m ∈ Z and hence is in the image of this map. This

shows surjectivity. For injectivity, suppose π∗D + nE is trivial. Intersecting with E, we get −n = 0,

so π∗D is trivial. Now restricting to X̂ \ E and noting that Pic(X̂ \ E) ' Pic(X \ {p}) ' PicX (this

last map sends an irreducible curve on X \ {p} to its topological closure in X), we see that D must

itself be trivial, so the map under investigation is injective as well.

(4) We know from (3) that KX̂ = π∗D + nE for some D ∈ DivX and n ∈ Z. Restricting to X̃ \ E and

from there to X \ {p} like before, we see that D = KX is the canonical divisor on X. We now apply

the adjunction formal to E ⊂ X̂ to get that

OP1(−2) ' ωE ' ωX̂ ⊗ OX̂(E)|E ' OE((n+ 1)E) ' OP1(−(n+ 1)),
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and so n = 1 as claimed.

�

Corollary 2.3.4. Let C ⊂ X be a curve passing through p with multiplicity m, and let Ĉ ⊂ X̂ be its strict

transform. Then Ĉ2 = C2 −m2. In particular, if m = 1, we have C2 = Ĉ2 + 1.

Proof. Write π∗C = Ĉ +mE. Then,

C2 = (π∗C)2 = (Ĉ)2 + 2mĈE +m2E2 = (Ĉ)2 + 2m2 −m2 = (Ĉ)2 +m2.

�

We motivated blowups by claiming they assist in the resolution of singularities of curves embedded in

(smooth) surfaces. This is indeed the case, but blowups also play a role resolving surfaces which are them-

selves singular. We shall give an example of this by resolving the (cyclic) quotient singularities C2/(Z/nZ).

Example (C2/(Z/2Z), an A1 singularity). Let i : C2 ! C2 denote the reflection (x, y) 7! (−x,−y), and let

G = 〈i〉 ' Z/2Z be the group of automorphisms of C2 generated by i. Then, the surface X = C2/G has

a single singularity at the point p = [(0, 0)], the image of the origin under the natural projection C2 ! X.

This is because this is the only point fixed by i. In order to resolve this singularity, we extend i to the

blowup Bl0 C2 =
{

(x, y;X : Y ) ∈ C× P1 : xY − yX = 0
}

, and then show that (Bl0 C2)/G is smooth. This

extension is given by

i : (x, y;X : Y ) 7! (−x,−y : −X;−Y ) = (−x,−y : X : Y ) .

Thinking of Bl0 C2 as the tautological line bundle on P1, we see immediately that i fixes the fibers of the

natural map Bl0 C2 ! P1, so the quotient (Bl0 C2)/G will be a fibre bundle over P1 with fibers C/G ' C,

i.e. it will again be a line bundle. More concretely, the map

f : Bl0 C2 −! C× P1

(x, y;X : Y ) 7−! (x2, y2;X : Y )

descends to an isomorphism

(Bl0 C2)/G
∼
−! L :=

{
(x, y;X : Y ) ∈ C× P1 : xY 2 − yX2 = 0

}
.

Now, the projection p : L ! P1 makes L a line bundle over P1 and one can check that its sheaf of sections

is OP1(−2). Indeed, this has a meromorphic section

s : P1 ! L, [X : Y ] 7!
(
X2/Y 2, 1;X : Y

)
which has a double pole at at [0 : 1] and no other poles or zeros, so L’s sheaf of sections is OP1((s)) = OP1(−2).

Given this, much in the same way we showed the zero section/exceptional divisor of OP1(−1) = Bl0 C2 has

self-intersection −1, one shows that the F := {(x, y;X : Y ) ∈ L : x = y = 0} ' P1 has self-intersection −2.
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All in all, we’ve formed a square of surfaces

Bl0 C2 L

C2 C2/G

π g

where the vertical maps are isomorphisms away from a single point on the base, C2/G is singular, and L

is smooth. Hence, L is a resolution of singularities for C2/G, and since F 2 = −2 (and F ' P1) where

F = g−1([(0, 0)]), we say that the singularity in C2/G is resolved by a (−2)-curve.

Remark 2.3.3. The example above is fairly representative of how one calculates the resolution of C2/(Z/nZ)

in general, when Z/nZ acts by component-wise multiplication with (ζ, ζ−1) for a primitive n root of unity ζ.

To simplify things, you first blow up the plane and lift the action there. Then, when n > 2, you observe that

the quotient of this blowup still has some singularities remaining, but these are somehow “milder.” You can

then resolve these using the same technique of blowing up the space before quotienting, and you eventually

end up with a nonsingular surface resolving C2/(Z/nZ) via some chain of blowups. To keep the resolution as

simple as possible, you end by “blowing down” any curves in your resolution that look like the exceptional

divisor of a blowup (this being possible will be justified by Theorem 2.3.8), and you will find that you end up

resolving the singularity by a chain (of length n− 1) of P1’s, each with self-intersection −2. For this reason,

the original singularity (the image of the origin in C2/(Z/nZ)) is called an An−1 singularity.

We will encounter these An singularities briefly when constructing some specific elliptic surfaces towards

the end of these notes. Since the main difficulties in resolving these singularities in general is present already

in the cases of small n, we will contend ourselves with only going through the details for the cases n = 2

above and n = 3 below.

Example (C2/(Z/3Z), an A2 singularity). Let ζ ∈ C× be a primitive 3rd root of unity, and let i :

C2 ! C2 denote the map (x, y) 7! (ζx, ζ−1y). Then, G := 〈i〉 ' Z/nZ is a group of automorphisms

of C2 with no fixed points except the origin (0, 0). Hence, the quotient X = C2/G is a surface with

a single singularity which we wish to resolve. First note that i lifts to a map on the blowup Bl0 C2 ={
(x, y;X : Y ) ∈ C× P1 : xY − yX = 0

}
which is given by

i : (x, y;X : Y ) 7! (ζx, ζ−1y; ζX : ζ−1Y ).

This map has two isolated fixed points at p = (0, 0; 1 : 0) and q = (0, 0; 0 : 1), so the quotient Bl0 C2/G

is still singular. Let us investigate its singularities. Near p (i.e. on the open where X 6= 0), the functions

x, t := Y/X give coordinates on Bl0 C2. In these coordinates, the map i is given by

(x, t) 7!

(
ζx,

ζ−1Y

ζX

)
= (ζx, ζ−2t) = (ζx, ζt).

Hence, near p, i acts by multiplication by ζ in both coordinates. Since we have the same factor in both

coordinates, repeating the same type of argument as in the previous example (i.e. resolving the singularity

p produces on Bl0 C2/G by first blowing up Bl0 C2 at p and then taking the quotient of that space under

its lifted action of G), we see that the singularity p produces in Bl0 C2/G is resolved by attaching an

OP1(−3) ' OP1(−1)/G near p whose zero section will have self-intersection −3. Similarly, the action near q

looks like multiplication by ζ−1 in both coordinates and so it also leads to a singularity resolved by a copy
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of P1 with self-intersection −3. Finally, since p, q lived on the exceptional divisor of Bl0 C2, we have shown

that the singularity of C2/G can be resolved by a surface f : Y ! X such that f−1([(0, 0)]) consists of 3

copies of P1 meeting with the dual graph in Figure 2. In this figure, each node represents a copy of P1, two

−1−3 −3

Figure 2: The dual graph of a non-minimal resolution of the singularity in C2/(Z/3Z)

nodes share an edge if the corresponding P1’s intersect (necessarily in exactly 1 point by construction), and

each node is labelled by its self-intersection number. The middle P1 has self-intersection −1, and so looks

like the exceptional curve of a blowup. It is a fact that we will soon see that in such a situation, there in fact

exists a smooth surface Z equipped with a blowup map g : Y ! Z. The resolution map f : Y ! X clearly

factors through g : Y ! Z since f collapses the P1 that g collapses, so Y ! Z represents another, smaller,

resolution of X’s singularity. The spaces we have considered fit in the below diagram.

Blp,q(Bl0 C2) Y

Bl0 C2 Z

C2 X

g

f

h

Now, h−1([(0, 0)]) consists of 2 copies of P1, since it comes from collapsing one of the P1’s in f−1([(0, 0)]),

and, as a consequence of Corollary 2.3.4, each of these P1’s has self-intersection −2. Thus, h−1([(0, 0)]) has

the dual graph shown in Figure 3.

−2 −2

Figure 3: The dual graph of a minimal resolution of an A2 singularity.

2.3.2 More on Singularities

In this section, we introduce the concept of bimeromorphic maps, and study some of the types of surface

singularities that will come up in these notes. The point of bimeromorphic maps is that they present

a more lenient notion of equivalence of complex spaces than biholomorphism; in particular, the concept

of a bimeromorphic map captures the relationship between a singular space and any space resolving its

singularities.

Definition 2.3.2. Let X,Y be irreducible surfaces. A proper, holomorphic, surjective map π : X ! Y is

called bimeromorphic if there are discrete subsets T ⊂ X and S ⊂ Y such that π : X \ T ! Y \ S is

biholomorphic. If X,Y are furthermore normal, a bimeromorphic correspondence between X,Y is a

triple (Z, π1, π2) where Z is an irreducible, normal surface and π1 : Z ! X,π2 : Z ! Y are bimeromorphic

maps.

Example. The blowup BlpX ! X of a surface at a point is the quintessential example of a bimeromorphic

map.
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Remark 2.3.4. If X1  Z1 ! X2  Z2 ! X3 are two bimeromorphic correspondences, then there exists a

surface Z fitting into the below diagram

Z

Z1 Z2

X1 X2 X3

We can take Z to be a well-chosen component of the normalization of the fiber product Z1 ×X2
Z2.

Definition 2.3.3. We call two surfaces bimeromorphically equivalent if there is a bimeromorphic cor-

respondence between them. The above remark shows that this is an equivalence relation.

Singularities on surfaces often arise from bimeromorphic maps which contract curves to points. Consider,

for instance, a bimeromorphic map π : X ! Y withX,Y normal. In this case [5], there exists a discrete subset

S ⊂ Y such that π|π−1(Y \S) is biholomorphic and π−1(y) is a curve in X for every y ∈ S. In this case, the

points y ∈ S are called fundamental points for π, and the curves π−1(y) are called exceptional curves

for π. In general, a compact, reduced, connected curve C on a smooth surface X is called exceptional if

there is some bimeromorphic map π : X ! Y for which it is exceptional. This may seem like a hard property

to detect intrinsically, but it is possible by the following theorem of Grauert.

Theorem 2.3.5 (Grauert’s criterion). A reduced, compact connected curve C with irreducible components

Ci on a smooth surface is exceptional if and only if the intersection matrix (CiCj) is negative definite.

Proof. [4] �

Inspired by Grauert’s criterion, as well as our earlier discussion of blow ups, we remark that the simplest

examples of exceptional curves are the following.

Definition 2.3.4. A (−1)-curve is a smooth rational curve with self-intersection −1.

Proposition 2.3.6. An irreducible curve C ⊂ X in a smooth surface is a (−1)-curve iff

C2 < 0 and KXC < 0.

Proof. (!) Let C ⊂ X be a (−1)-curve so C2 − 1. By the genus formula, we have

−2 = 2g(C)− 2 = KXC + C2 = KXC − 1,

and so KXC = −1 < 0.

( ) Assume instead that C2 < 0 and KXC < 0. Appealing to the genus formula again, we see that

2g(C) − 2 = KXC + C2 < 0. Since g(C) ≥ 0, we see that this is possible if and only if g(C) = 0, so C is

smooth rational. Since KXC and C2 are both strictly negative and their sum is KXC+C2 = 2g(C)−2 = −2,

we conclude furthermore that KXC = C2 = −1, so C is a (−1)-curve. �

The canonical source of (−1)-curves is given by blowups of points on surfaces. In fact, every (−1)-curve

arises in this fashion as is made precise by the following two results.
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Theorem 2.3.7. Let X be a nonsingular surface, E ⊂ X a (−1)-curve and π : X ! Y the map contracting

E. Then, y = π(E) is nonsingular on Y .

Proof. [2, Ch. III, Theorem 4.1] �

Theorem 2.3.8. Let X,Y be smooth surfaces and let π : X ! Y be a bimeromorphic map such E :=

π−1(y) ⊂ X is an irreducible curve for some y ∈ Y . Then, near E, π is equivalent to blowing up a

neighborhood of y.

Proof. Since the contraction of E is local, we may assume that Y ' C2 and so has global coordinates. Let

u, v be coordinates on Y centered at y. Let U = {u = 0} ⊂ Y and V = {v = 0} ⊂ Y . Furthermore, let

U = π−1(U \ {y}) and V = π−1(V \ {y}) be the proper transforms of U and V , respectively, in X. Note

that {y} = U ∩ V = {u = 0 and v = 0} so U ∩ V ⊂ E. Consider now any x ∈ U ∩E. The local intersection

number between U and π∗(V ) = V + E is

ix(U, π∗(V )) = ordx(π∗(v)|U ) = ordy(v|U ) = 1

where the first equality comes from applying Lemma 2.2.3 to the dvr OU,x = OX,x/(π∗(U)) which shows

that

ordx(π∗(v)|U ) = dimC OU,x/(π
∗(v)|U ) = dimC OX,x/(u, π

∗(v)) = ix(U, π∗(v))

where u is a local equation for U ⊂ X. Since π∗(V ) = V + kE for some k and U · E > 0 by construction,

we conclude that U · V = 0, i.e. that they are disjoint. Furthermore, U = {u = 0} passes through y with

multiplicity one, so U ∩E is a single point and U ·π∗(V ) = U ·E = 1. Thus, k = 1. We can reason similarly

with V in place of U to see that

U · E = 1 U · V = 0 V · E = 1,

Recall that u is a local equation for U , and let v be a local equation for V . Shrinking X is necessary to

these local equations become global, we have a meromorphic map φ = u/v : x 7! [u(x) : v(x)] from X ! P1.

This map is defined everywhere since U · V = 0 and the restriction φ|E : E ! P1 is an isomorphism since

it is degree 1 as U · E = 1 = E · V . Thus, we see that the product map π × φ : X ! Y × P1 maps X

isomorphically onto

Y = {(y, [X : Y ]) : u(y)Y − v(y)X = 0} ⊂ Y × P1,

the result of blowing up Y at y. �

Remark 2.3.5. Inspired by the above theorem, we call the result of contracting a (−1)-curve a blowdown.

Taking on the mindset that bimeromorphic correspondences are intended to model desingularizations of

surfaces, we hope to find, in each bimeromorphic equivalence class, a “best” or “simplest” smooth surface.

By the preceding theorems, any (smooth) surface containing a (−1)-curve is not a good candidate for the

simplest smooth surface in its bimeromorphic equivalence class since it is blown up from an even “simpler”

smooth surface. This motivates the following definition.

Definition 2.3.5. A smooth surface is called a minimal if it does note contain any (−1)-curves. If a

smooth, minimal surface X is bimeromorphically equivalent to a singular surface Y , then we call X the

minimal desingularization of Y .
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Remark 2.3.6. By successively contracting any (−1)-curves, you can show than any compact, smooth surface

is bimeromorphically equivalent to a minimal one. It is a fact [2, Ch. I, Theorem 9.1(iv)] that each blowdown

reduces the second Betti number by 1, and so there can only be finitely many (−1)-curves to start with.

Now that we have gained an understanding of (−1)-curves, we move on to another type of singularity:

the Hirzebruch-Jung strings. These will feature more heavily towards to end of this document during the

construction of some examples of elliptic surfaces.

Definition 2.3.6. A Hirzebruch-Jung string is a union C =
⋃r
i=1 Ci of smooth rational curves Ci such

that

• C2
i ≤ −2 for all i

• CiCj = 1 if |i− j| = 1

• CiCj = 0 if |i− j| ≥ 2

We visualize this as a path of length r with vertices labeled by the self-intersections ei = C2
i . See, for

example, Figure 4. If r = 1 and e1 = −2, then we call C a (−2)-curve.

e1 e2 . . . er

Figure 4: A visualization of a Hirzebruch-Jung string

Definition 2.3.7. A Hirzebruch-Jung string of length r with self-intersections ei = −2 for all i is called a

singularity of type Ar. In particular, a singularity of type A1 is a (−2)-curve.

In the case of Hirzebruch-Jung strings with self-intersections other than −2, there is a way of notating

them that is more concise than listing out the various numbers ei. This alternate description comes from

gathering the ei into a continued fraction. For the sake of brevity, we will not cover the story here in detail,

but an account of it can be found in [2, Ch. III, Sect. 5].

Notation 2.3.8. We will denote the continued fraction

b0 +
b1

a1 +
b2

a2 +
b3

. . .
an−1 +

bn

an

simply by

b0 +
b1

a1

+
b2

a2

+
b3

a3

+ · · ·+
bn

an
.

Theorem 2.3.9. Let C =
⋃r
i=1 Ci be a Hirzebruch-Jung string and let ei = C2

i . Write

n

q
= |e1| −

1

|e2|
− · · · −

1

|er|
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where 0 < q < n are coprime and the RHS denotes a continued fraction. Then, the singularity obtained by

contracting C is isomorphic to the unique singularity lying over 0 ∈ C3 in the normalization of the surface

W =
{

(w, z1, z2) ∈ C3 : wn = z1z
n−q
2

}
Proof. [2, Ch. III, Theorem 5.2]. �

Definition 2.3.9. As a consequence of the theorem above, the singularity only depends on n, q, and so is

called the singularity of type An,q.

For our purposes, it is most important to know that these singularities appear when taking quotients of

surfaces by cyclic groups. The local picture is as follows.

Any linear action Z/nZ y C2 can be put in the form

k ·

(
u1

u2

)
=

(
e(q1k/n)u1

e(q2k/n)u2

)

with 0 ≤ q1, q2 < n. These numbers {qi}2i=1 are called the weights of the operation, and they are unique

up to reordering. The quotient C2/(Z/nZ) will contain a singularity of type An,q for some n, q ∈ Z which

are determined by the following theorem.

Theorem 2.3.10. Let Z/nZ act on C2 as above. Assume that q1 6= 0 6= q2 and gcd(n, q1, q2) = 1. For

i = 1, 2, let

di = gcd(n, qi) n = nidi qi = pidi

m = gcd(n1, n2)

p′i = unique integer with pip
′
i ≡ 1 (mod m) and 0 < p′i < m

q = unique integer with q ≡ p1p
′
2 (mod m) and 0 < q < m

Then, the image of (0, 0) ∈ C2 in the quotient C2/(Z/nZ) is a singularity of type Am,q.

Proof. [2, Ch. III, Proposition 5.3]. �

Corollary 2.3.11. If G is a finite cyclic group acting on a smooth surface X, then the quotient X/G has

only singularities of Hirzebruch-Jung type.

Remark 2.3.7. If Z/nZ acts on C2 with weights q1 = q2 = 1, then the resulting singularity is of type An,1

which is to say that it is resolved a single smooth rational curve C ' P1 with self-intersection C2 = −n.

Remark 2.3.8. On the opposite end of the spectrum, if the Z/nZ acts on C2 with weights (q1, q2) = (1,−1),

then the resulting singularity is of type An−1, which is to say that it is resolved by a string of (n−1) smooth

rationals Ci ' P1, each of self-intersection −2. We saw this explicitly for n = 2 and for n = 3 at the end of

the Section 2.3.1.

2.4 Curves Embedded in Surfaces

This came up already in the section on divisors – most notably in the proof of Riemann-Roch – but for

studying curves in surfaces, it will be useful to be able to simultaneously treat smooth curves and merely
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irreducible (or just reduced, or even just embedded) curves on an equal playing field. This will come up in

our study of fibrations where, for example, by appealing to certain numerical invariants shared by all fibers,

we will be able to use knowledge of the general, smooth fiber to gain knowledge of the singluar fibers. This

will result from the tension between two types of genera – the arithmetic and geometric genera – which are

equal exactly when a curve is smooth and which we will introduce in this section.

2.4.1 The Arithmetic Genus and Other Invariants

Setup. Let X be a smooth, compact surface.

Definition 2.4.1. An embedded curve C ⊂ X is a 1-dimensional analytic subspace locally defined a single

equation. As such, there is a natural 1-1 correspondence between embedded curves and effective divisors.

Remark 2.4.1. Because we are assuming X is compact in this section, any embedded curve C ⊂ X is

automatically also compact since it is closed in a compact set.

Our goal in this section is to provide a language/toolset for all embedded curves which behaves as one

expects when C is smooth (i.e. a Riemann surface). To start with, for C ⊂ X a smooth curve, we have the

notions of a canonical bundle ωC and a normal bundle NC/X , both on C, which we previously computed in

terms of data on X. The end results of these computations were formulas which did not depend on C being

smooth, and so we adopt them for general embedded curves.

Notation 2.4.2. As usual, for ι : C ↪! X an embedded curve, and D ∈ DivX a divisor on X, we let

OC(D) := OX(D)|C = ι∗OX(D) denote the restriction of OX(D) to C.

Definition 2.4.3. Let C ⊂ X be an embedded curve. We define its normal bundle to be OC(C) and its

canonical bundle to be ωC := ωX ⊗ OX(C)|C .

The above definitions may seem somewhat artificial, but these objects on arbitrary embedded curves

actually maintain many of the nice properties they have for smooth curves. Of note, we will see soon that,

essentially by definition, the Genus Fomrula contains to hold for an appropatiely defined notion of genus,

and more surprisingly, embedded curves satisfy Serre duality.

Theorem 2.4.1 (Serre Duality for Embedded Curves). Let C ⊂ X be an embedded curve. Then, there

is a perfect pairing

H1(E )⊗H0(E ∨⊗ωC) −! C

whenever E is locally free. In particular, h0(E ) = h1(E ∨⊗ωC). Furthermore, hi(E ) = 0 for all i > 1.

Proof. [2, Ch. II, Thm. 6.1]. �

Remark 2.4.2. Because of its role in Serre duality, the sheaf ωC on an embedded curve C ⊂ X is sometimes

also called the dualizing sheaf .

In order to really have a unified account of all embedded curves, in addition to Serre duality, we will need

Riemann-Roch to still hold as well. We will prove that it does by reducing to the case of smooth curves,

but before we do that, to even state Riemann-Roch in general, we need a notion of degree of line bundles on

embedded curves.

Recall 2.4.1. Any reduced complex space S has a unique normalization S̃ which is a normal space with a

map ν : S̃ ! S that is final among all maps from normal spaces to X. In particular, if S is a curve, then its

normalization S̃ is smooth, and so a Riemann surface.
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Definition 2.4.4. Let C ⊂ X be an embedded curve, and write C =
∑r
i=1 niCi ∈ Div(X) with ni > 0

and Ci irreducible. Let νi : C̃i ! Ci be the normalization of the ith irreducible component of C, and let

L ∈ PicC be a line bundle on C. Then, we defined the degree of L to be

deg L =

r∑
i=1

ni · deg (ν∗i (L |Ci)) .

Remark 2.4.3. Let C ⊂ X be reduced with normalization ν : C̃ ! C. Let L be any line bundle, and let

L̃ = ν∗L . Then, from [2, Ch. II, Sect. 3], we see that

deg(L̃ ) = deg(L ) χ(L̃ ) = χ(ν∗L̃ ) χ(OC̃) = χ(ν∗OC̃)

We will take these equalities for granted without proof.

Our strategy for proving Riemann-Roch will be twofold: we will first prove it for reduced curves by

reduction to the smooth case, and then we will prove it for general curves by reduction to the reduced case

(using induction). The input needed for reducing to the smooth case, aside from the equalities in Remark

2.4.3, is the fact that the cokernel OC/ν∗OC̃ is supported on a discrete subset of C. For reducing from

the general case to the reduced case, the main input we will need is a way to relate line bundles on a(n)

(effective) divisor C = A+B to those on A,B respectively. These two inputs are collected in the following

two remarks.

Remark 2.4.4. Let C ⊂ X be a reduced embedded curve with normalization ν : C̃ ! C. Recall that

ν is an isomorphism away from C’s (finitely many) non-normal points. With this in mind, consider the

normalization sequence

0 −! OC −! ν∗OC̃ −! S −! 0.

Because OC ! ν∗OC̃ is an isomorphism almost everywhere, the cokernel S := coker(OC ! ν∗OC̃) is

concentrated4 at the singular points of C. In particular, since S is supported on a finite set of points,

h1(S ) = 0 while

h0(S ) =
∑
x∈C

dimC Sx =
∑
x∈C

dimC(ν∗OC̃/OC)x.

Remark 2.4.5. Let C = A+B be a sum of two effective divisors on X. Then, we get an exact sequence

0 −! OA(−B) −! OC −! OB −! 0

called the decomposition sequence for C = A+B. To see this, note that we have a homomorphism

0 OX(−C) OX OC 0

0 OX(−B) OX OB 0

of short exact sequences. Applying the snake lemma to it then shows that

ker(OC ! OB) ' coker(OX(−A−B)! OX(−B)) = OA(−B),

4has nonzero stalk only at
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from which we get the decomposition sequence.

Theorem 2.4.2 (Riemann-Roch for Embedded Curves). Let C ⊂ X be an embedded curve, and let

L ∈ PicC be a line bundle on C. Then,

χ(L ) = χ(OC) + deg L .

Proof. First suppose that C is reduced with normalization ν : C̃ ! C. Let L̃ = ν∗L , a line bundle on the

smooth curve C̃. Hence, Riemann-Roch for smooth curves combined with Remark 2.4.3 gives

deg L = deg(L̃ ) = χ(L̃ )− χ(OC̃) = χ(ν∗L̃ )− χ(ν∗OC̃).

Now, tensoring the normalization sequence with L gives rise to

0 −! L −! ν∗L −! ν∗OC̃/OC −! 0

with the last term unchanged because ν∗OC̃/OC , ν∗L̃ /L are both line bundles on the discrete set of singular

points of C, and so isomorphic. Hence,

χ(L ) = χ(ν∗L )− χ(ν∗OC̃/OC) = deg L + χ(ν∗OC̃)− χ(ν∗OC̃/OC) = deg L + χ(OC),

as desired.

We now proceed inductively, so write C = A + B with A,B effective and Riemann-Roch holding for

them. Tensor the decomposition sequence for C = A+B with L to get

0 −! L |A ⊗ OA(−B) −! L −! L |B −! 0.

Hence, χ(L ) = χ(L |B) + χ(L |A ⊗ OA(−B)) and similarly χ(OC) = χ(OB) + χ(OA(−B)). By induction,

i.e. Riemann-Roch on A,B, we see that

χ(L |B) = deg(L |B) + χ(OB)

χ(L |A ⊗ OA(−B)) = deg(L |A ⊗ OA(−B)) + χ(OA)

= deg(L |A) + deg(OA(−B)) + χ(OA)

= deg(L |A) + χ(OA(−B))

Finally, it is clear by definition that deg(L ) = deg(L |A) + deg(LB), so we finally get that

χ(L ) = χ(L |B) + χ(L |A ⊗ OA(−B))

= (deg(L |B) + χ(OB)) + (deg(L |+A) + χ(OA(−B)))

= (deg(L |A) + deg(L |B)) + (χ(OB) + χ(OA(−B)))

= deg L + χ(OC),

as claimed. �

Remark 2.4.6. This almost completes the proof of Riemann-Roch for surfaces. In addition to Riemann-

Roch for embedded curves, we also need a version of Theorem 2.2.4 for embedded curves, i.e. we need
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that CD = deg(OX(D)|C) when C is not assumed smooth. We will obtain this below after introducing the

arithmetic genus of a curve.

So far, we have seen how facts about smooth curves extend to possibly singular curves embedded in

surfaces. However, we have introduced no techniques or invariants differentiating a singular irreducible

curve from a smooth one, or even better, for measuring how far from being smooth a given singular curve

is. To remedy situation, we introduce the geometric and arithmetic genera of an embedded curve.

Definition 2.4.5. Let C ⊂ X be a reduced, embedded curve. Then, the genus g(C̃) of its normalization is

called its geometric genus while its arithmetic genus, denoted g(C), is given by the formula

g(C) = 1− χ(OC) = 1 + χ(ωC).

These coincide when C is smooth.

Remark 2.4.7. Let C ⊂ X be a reduced embedded curve with normalization ν : C̃ ! C. We wish to compare

g(C̃) and g(C). Recall the normalization sequence

0 −! OC −! ν∗OC̃ −! S −! 0

whose cokernel S := coker(OC ! ν∗OC̃) is concentrated at the singular points of C. It gives rise to the

equality

χ(ν∗OC̃) = χ(OC) + χ(S ) = χ(OC) + h0(S ).

Because χ(ν∗OC̃) = χ(OC̃), we conclude from this that

g(C) = g(C̃) + h0(S ),

and since S is concentrated at a finite number of points, we have

h0(S ) =
∑
x∈C

dimC Sx =
∑
x∈C

dimC(ν∗OC̃/OC)x.

Hence, g(C) ≥ g(C̃) with equality if and only if S = 0, i.e. if and only if C is smooth. Furthermore, the

difference g(C)− g(C̃) = h0(S ) gives us a measure for how singular C is.

Corollary 2.4.3. If C ⊂ X is an embedded curve with arithmetic genus g(C) = 0, then C is necessarily

smooth and C ' P1.

Proof. This follows immediately from Remark 2.4.7 since 0 = g(C) ≥ g(C̃) ≥ 0, so g(C) = g(C̃) = 0 which

implies C = C̃ ' P1. �

Now that we have a measure for the singularity of an embedded curve, we will prove a generalization

of Theorem 2.2.4, as promised earlier. Our strategy will be to reduce the general case to the smooth case

already handled earlier. In order to do so, we will show that normalization C̃ of an embedded cure C ⊂ X

can itself be embedded into a surface X̃ with a well-understood map X̃ ! X, restricting to the normalization

map ν : C̃ ! C. In fact, we will show that X̃ is given a finite sequence of blow-ups of X. Pulling a line

bundle OX(D) back along this map will give the reduction to Theorem 2.2.4. Now that we know the strategy,

let us implement it.
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Theorem 2.4.4. Let C ⊂ X be a singular, reduced, embedded curve. Then, by blowing X up a finite number

of times, we can obtain a map X̃ ! X such that the proper transform of C is smooth, and so is necessarily

C’s normalization.

Proof. The strategy behind the proof is simple: we will show that each blow up of X at a singular point of

C gives rise to a proper transform Ĉ which is less singular. With that said, let x ∈ C ⊂ X be a singular

point of C, and let X̂ = BlxX with projection map π : X̂ ! X. Let m be the multiplicity with which C

passes through x, and note that, since x is a singular point of C, we necessarily have m ≥ 2. Let Ĉ ⊂ X̂ be

the proper transform of C, so C and Ĉ have the same normalization, C̃. Let ν : C̃ ! C and ν̂ : C̃ ! Ĉ be

their respective normalization maps. Then, we have a sequence

OC ↪! π∗OĈ ↪! π∗ν̂∗OC̃ = ν∗OC̃

of inclusions of sheaves on C. Now, recall that we measure how singular C is using the non-negative integer

h0(ν∗OC̃/OC) =
∑
p∈C

dimC
(
ν∗OC̃/OC

)
p
.

Since Ĉ
π
−! C is an isomorphism away from x ∈ C, we see that

dimC
(
ν∗OC̃/OC

)
p

= dimC
(
ν∗OC̃/π∗OĈ

)
p

for all p 6= x as (π∗OĈ)p = OC,p. However,

dimC
(
ν∗OC̃/OC

)
x

= dimC
(
ν∗OC̃/π∗OĈ

)
x

+ dimC
(
π∗OĈ/OC

)
x
,

so

h0(ν̂∗OC̃/OĈ) = h0(ν∗OC̃/π∗OĈ) = h0(ν∗OC̃/OC)− dimC
(
π∗OĈ/OC

)
x
.

Thus, if dimC(π∗OĈ/OC)x > 0, then Ĉ is less singular than C. Since our measure of singularity is a

non-negative integer, it can only decrease finitely many times, and so we would indeed obtain a smooth

proper transform after finitely many blow-ups. Since m > 1, it is easy to see that π∗OĈ/OC 6= 0 and so

has nonzero dimension. For example, letting U ⊂ X be a neighborhood of x small enough that π−1(U) is

disconnected – i.e. there are two points of Ĉ above x lying in two different components of π−1(U) – we have

π∗OĈ(U) = OĈ(π−1(U)) = OĈ(V1) ⊕ OĈ(V2) where V1, V2 ⊂ π−1(U) are disjoint opens covering π−1(U).

Thus, (0, 1) ∈ OĈ(V1) ⊕ OĈ(V2) = π∗OĈ(U) is an element whose germ at x does not lie in OC,x, and so

which gives a nonzero element of (π∗OĈ/OC)x. Therefore, the claim holds. �

Corollary 2.4.5. Theorem 2.2.4 holds for non-smooth embedded curves as well. That is, if C ⊂ X is an

embedded curve and D ∈ DivX is a divisor, then

C ·D = deg(OX(D)|C).

Proof. By Theorem 2.4.4, there exists a exists a morphism π : X̃ ! X, obtained as a finite sequence of

blowups, such that the proper transform C̃ of C under this morphism is smooth. First note that π∗OX(D) =

OX̃(π∗D), essentially by definition and, since π|C̃ : C̃ ! C is C’s normalization map, also deg OX(D)|C =

deg OX̃(π∗D)|C̃ by definition. Since X̃ is obtained by repeated blowups, repeated application of part (2) of
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Proposition 2.3.3 shows that C̃ · (π∗D) = C ·D. Combining this all with Theorem 2.2.4 applied to C̃ ⊂ X̃,

we see that

deg OX(D)|C = deg OX̃(π∗D)|C̃ = C̃ · (π∗D) = C ·D

as desired. �

Remark 2.4.8. At this point, we have now finished the proof of Riemann-Roch for surfaces.

Returning to our discussion of arithmetic genera, while linearly equivalent curves may have different

geometric genera, the arithmetic genus is more “stable,” depending only on the homology class of the curve

C ⊂ X. This is a consequence of the genus formula still holding for general embedded curves.

Theorem 2.4.6. Let C ⊂ X be a reduced embedded curve. Then,

2g(C)− 2 = deg (ωX ⊗ OX(C)|C) = (KX + C)C

where g(C) denotes its arithmetic genus.

Proof. By Riemann-Roch, deg(ωC) = χ(ωC)−χ(OC), but by Serre duality, χ(OC) = −χ(ωC), so deg(ωC) =

2χ(ωC) = 2g(C)− 2. Finally, deg(ωC) = deg (ωX ⊗ OX(C)|C) by definition. �

Remark 2.4.9. The genus formula above allows us to define the arithmetic genus of an arbitrary divisor

D ∈ Div(X) via

2g(D)− 2 = deg(ωX ⊗ OX(D)|D) = (KX +D)D.

With this definition, we see that we can relate the genus of a reducible (i.e. not irreducible) divisor D = A+B

to those of its components. Indeed,

2g(D)− 2 = KX(A+B) + (A+B)2 = (KXA+A2) + (KXB +B2) + 2AB = 2g(A) + 2g(B) + 2AB − 4,

and so

g(D) = g(A+B) = g(A) + g(B) +AB − 1. (2)

2.4.2 Ordinary Double Points

There is one particular type of curve singularity we will encounter later on: the ordinary double point which

is also known as a node. It will arise in Section 4.3.2 where we will analyze a particular family of elliptic

curves degenerating to a nodal curve, and then use this family to construct other families of elliptic curves

with different types of degenerations. When carrying this out, it will be helpful to have a local normal form

for a curve with such a singularity. Therefore, in this short section, we produce such a normal form.

Consider an irreducible curve C ⊂ X embedded in a smooth, compact surface X. Let p ∈ C be a fixed

point, and let f ∈ OX,p be a local equation for C near p. Since X is smooth, we can find a neighborhood

U ⊂ X of p isomorphic to the unit ball in C2. In particular, on U we can find coordinates x, y ∈ Γ(U,OX)

centered at p (i.e. {p} = {x = 0 and y = 0} ⊂ U). Hence, OX,p ' OU,p ' OC2,(0,0) and f can be identified

with a (convergent) power series in the two variables x, y centered at (0, 0).

Recall 2.4.2. Write f(x, y) =
∑
d≥0 fd(x, y) as a power series with fd(x, y) a homogeneous polynomial of

degree d. The least d such that fd 6= 0 is called the multiplicity of p in C. If p is of multiplicity 2, then

we call it a double point.
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Assume now that p is a double point of C so f(x, y) =
∑
d≥2 fd(x, y). The degree 2 part f2(x, y) =

ax2 + bxy + cy2 is a nonzero homogeneous polynomial in two variables. All such polynomials factor as a

product of degree 1 homogeneous polynomials in two variables, so we can write

f2(x, y) = (α1x+ β1y)(α2x+ β2y)

with (αi, βi) 6= (0, 0) ∈ C2 for i = 1, 2. If [α1 : β1] 6= [α2 : β2] ∈ P1, then we call p an ordinary double

point or node. Geometrically, this means that C has two distinct tangent vectors at p. Algebraically, this

means we can perform the following change of variables

u =
(α1x+ β1y) + (α2x+ β2y)

2
v =

(α1x+ β1y)− (α2x+ β2y)

2i

in order to rewrite f2 as

f2(u, v) = u2 + v2.

This also gives us our normal form. We would like to promote the above equality from simply holding for

f2 to one holding for all of f . Since every monomial in u, v of degree at least 3 contains x2 or y2, we may

write f(u, v) = u2φ1(u, v) + v2φ2(u, v) where φ1(0, 0), φ2(0, 0) 6= 0. Finally, we change variables once more

by letting s = u
√
φ1 and t = v

√
φ2, so in these coordinates we have

f(s, t) = s2 + t2.

This is our local normal form. In the end, we have proven the following.

Theorem 2.4.7. Let C ⊂ X be an irreducible curve in a smooth surface X, and let p ∈ C be an ordinary

double point (i.e. a node). Then, there exists coordinates x, y on X near p such that, near p, C is given as

the vanishing set of the function

f(x, y) = x2 + y2.

2.5 Fibrations

Setup. Let X be a connected, smooth surface (not necessarily compact), S a smooth connected curve (again,

not necessarily compact), and f : X ! S a proper, surjective holomorphic map. Assume furthermore that

f is connected, i.e. f−1(p) is connected for all p ∈ S.

Remark 2.5.1. Our reason for not requiring compactness in this section is to prepare for later giving an

account of the local theory of elliptic surfaces. In particular, the final chapter of this book will involve many

fibrations of the form X ! ∆ where the base ∆ = {z ∈ C : |z| < 1} is not compact.

Upon seeing this setup, one may reasonably ask why this is enough for a section titled “fibrations.” That

is, one may wonder why the map f : X ! S is not explicitly assumed to be a topological fibration. The

reason is that this is automatic from Ehresmann’s lemma.

Lemma 2.5.1 (Ehresmann). Let f : M ! N be a smooth map between smooth manifolds. If f is proper,

surjective, submersion, then f is a locally trivial fibration, i.e. a fibre bundle. In particular, all the fibers of

f are diffeomorphic.

Proof. [11, Theorem 4.1] �
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Recall 2.5.1. Given a holomorphic map f : X ! Y , a point x ∈ X is a critical point if df = 0 at x, and

a point p ∈ S is a critical value if p = f(x) for x a critical point. Here df : TX ! TY denotes the induced

map between tangent spaces.

In order to apply the above in our current setting, note that by Theorem 2.1.8, the critical values of f

form an analytic subset of S since, after choosing local coordinates, the condition that df = 0 is given by the

vanishing of a holomorphic function. Because dimS = 1 and not every point is critical, the critical points

must form a 0-dimensional analytic subset, i.e. a discrete set.

Corollary 2.5.2. Away from a finite set of points Σ ⊂ S, the map f : X ! S considered in the setup gives

X the structure of a smooth fibre bundle over S. That is, there exists a finite set Σ ⊂ S such that the map

f : X \ f−1(Σ)! S \ Σ is a smooth fiber bundle.

Proof. The map f is holomorphic and hence smooth when X,S are viewed as real manifolds. Since we

explicitly assumed that it was proper and surjective, we only need to show that it is a submersion. Since

dimS = 1, df is surjective at a point x ∈ X iff it is nonzero there. By the remark above the claim, the set

Σ ⊂ S of images of points x ∈ X such that dfx = 0 is discrete and closed. Since S is compact, this makes it

finite. �

If s ∈ S with Is ⊂ OS its ideal sheaf, the fibre Xs above s is the curve f−1(s) on X with sheaf of

ideals f∗(Is) (i.e. IXs ' f∗(Is) so OXs = OX/f∗(Is)). Put another way, Xs is the fibre product

Xs X

{s} S

f

where the structure sheaf on {s} is simply the residue field Os = OS,s/ms. This fibre Xs is singular if

and only if s is a critical value, so almost all fibres are smooth. Furthermore, since all smooth fibres are

diffeomorphic (by Ehresmann), they all have the same genus.

We will occasionally encounter fibrations where the base space can be embedded back in the total space.

To make discussing these linguistically easier when they arise, we recall the following terminology.

Recall 2.5.2. A section of the map f : X ! S is a map s : S ! X such that f ◦ s = IdS . We may

sometimes also refer to just the image C := s(S) ⊂ X of s in X as a section of f .

Non-example. Write Xs =
∑
niCi with each Ci irreducible. If n = gcd{ni} > 1, then Xs is a multiple fibre

and no section s : S ! X of f can exist. Indeed, if one did exist, we would have n | XsC where C = s(S),

so XsC > 1. However, XtC = 1 for a generic fiber, so we also get XsC = 1 since all fibers are homologous,

but this is a contradiction.

2.5.1 Invariants of a Fibrations

Our goal in this section is to prove some general facts about fibrations which will be useful in our later study

of elliptic fibrations. Of note are Zariski’s lemma and the existence of relatively minimal models. We begin

with a simple observation. Given a fiber Xs ⊂ X, we can consider its fundamental class [Xs]
∗ ∈ H2(X;Z)

in cohomology, where we have [Xs]
∗ = f∗[s]∗ ([s]∗ ∈ H2(S;Z)), so

X2
s = [Xs]

∗ ^ [Xs]
∗ = f∗[s]∗ ^ f∗[s]∗ = f∗([s]∗ ^ [s]∗) = 0
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since [s]∗ ^ [s]∗ ∈ H4(C;Z) = 0. Hence, every fiber has self-intersection 0.

Remark 2.5.2. The fact that the cohomological fundamental class [Xs]
∗ ∈ H2(X;Z) is the pullback of

the cohomological fundamental class [s]∗ ∈ H2(S;Z) of the point s above which Xs is a fiber shows that

[Xs]
∗ = [Xt]

∗, as cohomology classes, for all s, t ∈ S. This is simply because any two points s, t ∈ S

are homologous and so their Poincaré duals [s]∗, [t]∗ ∈ H2(S;Z) are equal. In particular, this shows that

c1(OX(Xs)) ∈ H2(X;Z) is independent of s, so all fibers behave the same way under the intersection pairing.

We can in fact say something slightly stronger, and in the process obtain an alternate proof that fibers

have zero self-intersection.

Lemma 2.5.3. The normal bundle OXs(Xs) of each fibre is trivial.

Proof. For notational convenience, let F = Xs be the fiber above s. Start with the exact sequence

0 −! TX/S −! TX −! f∗TS −! 0

where TX/S is defined as the above kernel. Then, TX/S |F ∼= TF since f∗TS |F = f |∗FTs is trivial. Hence,

letting i : F ↪! X be the inclusion, the normal bundle sequence 0 −! TF −! TX |F −! NF/X −! 0

becomes

0 −! i∗TX/S −! i∗TX −! i∗f∗TS −! 0

where, necessarily, i∗f∗TS ∼= NF/X since they are cokernels of the same map. Now, i∗f∗TS = f |∗FTs is

trivial, so we win. �

Corollary 2.5.4. X2
s = 0 for any fiber of X.

Proof. X2
s = deg(OXs(Xs)) = 0. �

Corollary 2.5.5. The canonical/dualizing sheaf of a fiber Xs is ωXs ' ωX |Xs , the restriction of the canonical

bundle on X.

Proof. Depending on whether the curve Xs is smooth or not, by adjunction or by definition, we have

ωXs ' ωX |Xs ⊗ OXs(Xs) ' ωX |Xs

since we have just shown that the normal bundle OXs(Xs) is trivial. �

Remark 2.5.3. As a consequence of Theorem 2.4.6, the arithmetic genus of a fiber is independent of the

point it lies over. Indeed, by that theorem, for any s ∈ S, we have

2g(Xs)− 2 = KXXs +X2
s = KXXs,

butKXXs is independent of s because all fibers are homologous. Hence, g(Xs) = 1
2 (KXXs+2) is independent

of s as well.

Example. Let ∆ ⊂ C be the complex unit disk, and let

X =
{

([z0 : z1 : z2] , s) ∈ P2 ×∆ | z2z
2
1 = (z0 − 1)(z2

0 − sz2
2)
}
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with projection map π : X ! ∆. Then, π is a fibration whose generic fiber is smooth elliptic, butX0 = π−1(0)

is (isomorphic to) the nodal rational given by the projective closure of {y2 = x2(x − 1)} ⊂ C2. Thus, the

geometric genus of Xs is 1 if s 6= 0, but it is 0 if s = 0.

2.5.2 Intersection Theory on Fibers

We will next state and prove Zariski’s lemma. The brunt of the proof relies on general facts concerning

bilinear forms, so after stating the lemma, we will take a detour to prove these fact before proving Zariski

itself.

Lemma 2.5.6 (Zariski’s lemma). Let Xs =
∑
niCi, ni > 0, Ci ⊂ X irreducible, be a fibre of the fibration

X ! S. Then, we have

(a) CiXs = 0 for all i.

(b) If D =
∑
miCi, m ∈ Z, then D2 ≤ 0.

(c) D2 = 0 holds in (b) iff D = rXs, r ∈ Q.

Zariski’s lemma gives quite strong restrictions on the intersection theory of the components of a fiber.

In particular, it tells us that the intersection matrix (CiCj)i,j associated to a fiber is negative semi-definite

with 1-dimensional kernel spanned by the fiber itself. It is these restrictions which will be the main force

allowing us to classify singular fibers of elliptic surfaces later on. For now, we aim to prove Zariski, and as

alluded to before, will do so by briefly studying general symmetric bilinear forms.

With that said, we now briefly turn to the theory of symmetric bilinear forms. In the preceding discussion,

the fiber Xs =
∑
niCi gives rise to a vector space with basis {Ci} and bilinear form given by Q(Ci, Cj) =

CiCj . Part (a) of Zariski’s lemma shows that this form has nontrivial kernel (it contains Xs), and the fact

that Xs is connected (i.e. CiCj 6= 0 when i 6= j) show that this form is “simple” in the sense that it is not

the direct sum of two other bilinear forms. These facts restrict the structure of this form, and in particular,

imply that it is negative semi-definite with a 1-dimensional kernel, i.e. that (b) and (c) above hold. We will

show this in 3 steps.

Lemma 2.5.7. Let Q be a symmetric, bilinear form on the (real or rational) vector space V , and let

q(v) = Q(v, v). Fix a1, . . . , an ∈ V s.t. Q(ai, aj) ≤ 0 for all i 6= j. Then,

(i) If Q(v, v) = 0 for v =
∑
i ciai, we have Q(w,w) = 0 as well with w =

∑
i |ci| ai.

(ii) If Q is non-degenerate and there exists a linear T : V ! V with T (ai) > 0 for all i, then {a1, . . . , an}
are linearly independent.

Proof. The relation Q(ai, aj) ≤ 0 for i 6= j implies that

q
(∑

|ci| ai
)
≤ q

(∑
ciai

)
since q

(∑
ciai

)
=
∑
i,j

cicjQ(ai, aj),

so (i) is clear. Now, assume q non-degenerate. Then, if we write
∑
i ciai = 0, we get by (i) that

q (
∑
i |ci| ai) = 0 =⇒

∑
i |ci| ai = 0. Thus,

∑
i |ci|T (ai) = 0, but this implies that |ci| = 0 since

T (ai) > 0. �

Lemma 2.5.8. Let Q be a symmetric bilinear form on V given by the matrix {qij} such that
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(a) qij ≤ 0 for i 6= j

(b) there is no partition {1, . . . , n} = I t J with I 6= ∅ 6= J and i ∈ I, j ∈ J =⇒ qij = 0.

(c) Q ≥ 0

Then, the kernel K of Q has dimension 0 or 1. If dimK = 1, then K is generated by a vector with strictly

positive coordinates.

Proof. Let a1, . . . , an be a basis for V . Suppose that v =
∑
i ciai ∈ K.5 By the previous lemma, we see that∑

i |ci| ai ∈ K as well, so Q (
∑
i |ci| ai, aj) =

∑
i qji |ci| = 0 for all j. Now, let I = {i : ci 6= 0}. If j 6∈ I, we

have qij |ci| ≤ 0 for i ∈ I and qij |ci| = 0 for i /∈ I, so qij = 0 for j /∈ I and i ∈ I. By (b), this means that

I = ∅ of I = {1, . . . , n}. Thus, for any 0 6= v ∈ K, it must be the case that all of V ’s coefficients are nonzero.

Thus, we have 0 = dim(K ∩ {xi = 0}) ≥ dimK − 1 so dimK ≤ 1, so we win. �

Lemma 2.5.9. Let Q be a symmetric bilinear form on V given by the matrix {qij} such that

(a) qij ≤ 0 for i 6= j.

(b) there is no partition {1, . . . , n} = I t J with I 6= ∅ 6= J and i ∈ I, j ∈ J =⇒ qij = 0.

(c) The annihilator N of Q contains some v = (v1, . . . , vn) with vi > 0 for all i.

Then, Q ≥ 0 with 1-dimensional annihilator (necessarily generated by v).

Proof. Let e1, . . . , en be the basis for V , so eiej = qij and v =
∑n
i=1 viei. Note that

0 = v · ei = viqii +
∑
i 6=j

vjqij ≤ viqii =⇒ qii ≥ 0.

Now, let fi = viei, so q′ii := f2
i = v2

i qii ≥ 0 and q′ij := fi · fj = vivjqij ≤ 0 for i 6= j. Furthermore, for i fixed,

0 = v · fi =

∑
j

fj

 · fi =
∑
j

q′ij .

Now, consider some x =
∑n
i=1 xifi ∈ V with xi ≥ 0 for all i. Then,

x · x =
∑
i,j

xixjq
′
ij

=
∑
i

xi

∑
j

xjq
′
ij


=
∑
i

xi

xi∑
j

q′ij +
∑
j 6=i

(xj − xi)q′ij


=
∑
i

xi

∑
j 6=i

(xj − xi)q′ij


5Since Q ≥ 0, this is equivalent to q(v) = 0. This is because, for λ ∈ Q and w ∈ V , we have 0 ≤ q(v−wλ) = q(w)−2λQ(v, w)

but λ can be really big, so we must have Q(v, w) = 0.
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=
∑
i,j

xi(xj − xi)q′ij

The term q′ij appears twice above, once with coefficient xi(xj − xi) and once with coefficient xj(xi − xj), so

x · x =
∑
i<j

(
2xixj − x2

i − x2
j

)
q′ij = −

∑
i<j

(xi − xj)2q′ij ≥ 0.

By the same logic, if xi ≤ 0 for all i, then we get that x ·x ≥ 0. Finally, for general x, we can write x = p−n
where, after relabeling the fi’s if necessary, p =

∑m
i=1 pifi and n =

∑n
j=m+1 njfj with pi, nj ≥ 0. In this

case, we have x2 = x · x = p2 + n2 − 2p · n, but it’s clear from assumption (a) that p · n ≤ 0, so x2 ≥ 0,

making Q positive semi-definite. Once we know this, it follows from the previous lemma that dimN = 1

generated by v. �

With our 3 steps complete, we end our foray into symmetric bilinear forms, and return to complex

geometry. In particular, we are now ready to prove Zariski’s lemma. For the reader’s convenience, we restate

the theorem.

Lemma 2.5.10 (Zariski’s Lemma). Let Xs =
∑
niCi, ni > 0, Ci ⊂ X irreducible, be a fibre of the

fibration X ! S. Then, we have

(a) CiXs = 0 for all i.

(b) If D =
∑
miCi, m ∈ Z, then D2 ≤ 0.

(c) D2 = 0 holds in (b) iff D = rXs, r ∈ Q.

Proof. Part (a) follows from Lemma 2.5.3 since CiXs = deg(OCi(Xs)), but OCi(Xs) is the restriction of

the trivial bundle OXs(Xs). Given this, the rest of the claims now follow from Lemma 2.5.9 applied to −Q
where Q is the bilinear form on

⊕
QCi induced by the intersection form on H2(X;Z). Indeed, (b) says

exactly that −Q is positive semi-definition while (c) says that it has a 1-dimensional annihilator. �

It occasionally occurs that the fibration π : X ! S will have some non-reduced fibers. In these cases, we

would like to be able to reason about the fiber Xs by considering instead its reduction (Xs)red. When doing

so, the following lemma showing that (Xs)red corresponds to a torsion line bundle will come in handy.

Definition 2.5.1. A singular fiber Xs =
∑
niCi is called a multiple fibre (of multiplicity n) if n =

gcd{ni} > 1. In this case, Xs = nF with F another effective divisor on X.

Lemma 2.5.11. Let S = ∆ ⊂ C be the unit disk, and let X0 = nF be a multiple fiber with multiplicity n.

Then, OX(F ) and OF (F ) are both torsion of order n.

Proof. First note that X is not compact since it surjects onto the non-compact space ∆. By looking at the

exponential exact sequence, we see that the Picard group Pic ∆ fits into an exact sequence

H1(∆,O∆) −! Pic ∆ −! H2(∆;Z) = 0,

but H1(∆,O∆) = 0 as well, so Pic ∆ = 0. Hence, O∆(0) ' O∆ is trivial, and so is OX(X0) = π∗O∆(0).

This shows that OX(F ) is torsion of order dividing n as OX(F )⊗n = OX(nF ) = OX(X0) is trivial, so

let m be the order of OX(F ) in PicX. Then, h0(OX(−mF )) ≥ 1, so there is a holomorphic function on X
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vanishing along F to order m ≤ n. We will show that n is the least nonzero order to which a holomorphic

function on X can vanish, and so m = n. Let f ∈ H0(OX) be any holomorphic function vanishing along F .

Note that, by Theorem 2.1.9, the push forward π∗OX is a locally free sheaf on ∆ of rank h0(Xs,OXs) = 1,

i.e. a line bundle. Since Pic ∆ = 0, this means that π∗OX ' O∆ and that the natural map O∆ ! π∗OX is

an isomorphism. Thus, every holomorphic function on X is pulled back from one on ∆, so f = g ◦π for some

g ∈ H0(O∆). Consequently, f vanishes to order n ord0(g) ≥ n along F . Therefore, we must have m = n, so

OX(F ) is torsion of order n as claimed.

We now consider OF (F ). Since OF (nF ) = OF (X0) = OX(X0)|F , we see that OF (F ) is torsion of order

dividing n. To see that its order actually is n, we will need the fact that, possibly after shrinking the base

∆, the restriction maps Hi(X,Z)! Hi(F,Z) are bijective. This is a consequence of [2, Ch. I, Theorem 8.8]

which says that F is a deformation retraction of some open around it. Combining this with the exponential

exact sequences for X and F , we arrive at the following commutative diagram

H1(X;Z) H1(X,OX) PicX H2(X;Z)

H1(F ;Z) H1(F,OF ) PicF H2(F ;Z)

ZN

∼

c1

∼

c1

We now diagram chase. First note that OX(F ) ∈ PicX is torsion while H2(X;Z) is torsion-free, so

c1(OX(F )) = 0 and hence OX(F ) is the image of some α ∈ H1(X,OX). Let m be the order of OF (F ),

so mα|F ∈ ker
(
H1(F,OF )! PicF

)
. Hence, there’s some cF ∈ H1(F ;Z) mapping onto mα|F which we can

pull back to a c ∈ H1(X;Z). Now, by [2, Ch. II, Proposition 2.1], the map H1(F ;Z)! H1(F,OF ) is injective,

so the composition H1(X;Z) ! H1(X,OX) ! H1(F,OF ) is injective as well. Now, since nα = 0 ∈ PicX,

its the image of some d ∈ H1(X;Z), but d and (n/m)c (recall that m | n) both have the same image in

H1(F,OF ), so d = (n/m)c. Hence, mα must be the image of c in H1(X,OX). By exactness, this means that

mα has trivial image in PicX, i.e. that OX(mF ) is trivial. Since OX(F ) has order n, we conclude that

m = n. �

Remark 2.5.4. Lemma 2.5.11 will play a key role in classifying the possible multiple fibers in elliptic surfaces.

2.5.3 Minimal Fibrations

Definition 2.5.2. Let f : X ! S, g : Y ! S be two (connected) fibrations. We call them bimero-

morphically equivalent if there exists a bimeromorphic correspondence between then respecting the

fibrations, i.e. if there is a surface Z bitting into a commutative diagram

Z

X Y

S

f g

where dashed lines are meant to indicate that the maps are (bi)meromorphic.
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Definition 2.5.3. A fibration which has no (−1)-curves in any of its fibers is called relatively minimal.

Proposition 2.5.12. If the genus of the general fiber is strictly positive, then X
f
−! S factors through a

unique nonsingular surface Y with Y ! S relatively minimal.

Proof. We blow down all (−1)-curves contained in fibres Xs, and repeat this until they’re all gone (this

requires finitely many blow downs in each fiber). This Y is uniquely determined unless some fibre Xs

contains two intersecting (−1)-curves C1, C2. Then, (C1 +C2)2 ≥ 0 with (C1 +C2)2 = 0 only if (C1, C2) = 1.

By Zariski, (C1 +C2)2 ≤ 0 so indeed C1C2 = 1 and (C1 +C2)2 = 0. Again, appealing to Zariski, this further

implies (C1 + C2)2 = qXs for some q ∈ Q, so C1, C2 are the only irreducible curves in Xs and actually

Xs = n(C1 + C2) for some n ∈ Z. Hence, for the (connected) general fibre Xt, we have

KXXt = nKX(C1 + C2) = −2n.

Hence, n = 1 and the general fibre is rational. This is because the genus formula gives g(Xt) = 1+ 1
2Xt(KX+

Xt) = 1 + 1
2XtKX , so XtKX = 2g(Xt)− 2 ≥ −2. �

Hence, in later discussions, we may safely assume that all fibers under consideration are relatively mini-

mal.
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3 Ruled Surfaces

3.1 Ruled Surfaces and Projective Bundles

Our main objects of interest in this document will be elliptic surfaces, which are, briefly, surfaces π : X ! C

fibered over a curve such that the generic fiber is smooth of genus 1. Before studying this, it will prove

instructive to look at the case of fibered surfaces whose generic fiber is smooth of genus 0 instead; these are

the so-called ruled surfaces which we study in this section. The material here is not logically necessary for

the later material of elliptic surfaces, but it is a good warm up and offers a view of a different set of complex

geometric techniques than those we will see when studying elliptic surfaces. Briefly put, our later study of

elliptic surfaces will be “local” in nature, focusing on the behavior of individual (singular) fibers. Here, we

will be more concerned with the “global structure” of ruled surfaces.

Definition 3.1.1. A ruled surface π : X ! C is a smooth surface X equipped with a fibration π over a

smooth curve C such that the generic fiber Xc = π−1(c) is (smooth) of genus 0.

3.1.1 Ruled Surfaces are Projectivizations of Vector Bundles: First Proof

The first fundamental result is that ruled surfaces always arise as the projectivization of a vector bundle on

the base curve. We will give two proofs of this fact, but will first remind the reader how to projectivize a

vector bundle. Let C be a smooth curve, and let p : E ! C be a (holomorphic) vector bundle of rank n.

By restricting p to a trivializing open cover {Uα} of C, we see that p is determined by its set of transition

functions

ταβ : Uα ∩ Uβ ! GLn(C)

which describe how to form E by gluing trivial bundles. Given this data, we form the projectivization P(E)

of E by letting it be the P(Cn) = Pn−1–bundle P(E) ! C whose transition functions are the reductions

ταβ : Uα ∩ Uβ ! PGLn(C) of those of E. When rankE = 2, P(E) is a P1 bundle over C and hence a ruled

surface. The converse holds as well.

Theorem 3.1.1. Let π : X ! C be a ruled surface. Then, there exists a rank 2 vector bundle E on C such

that P(E) ' X, and the following diagram commutes

P(E) X

C

∼

As mentioned above, we will give two proofs of this theorem. The first will be cohomological in nature,

deriving the result from something akin to the exponential exact sequence. Because this proof is potentially

somewhat opaque, we will also give a second, more topological proof of this fact. The topological proof will

be noticeably more involved, but will elucidate more of the structure of ruled surfaces than the algebraic one

does.

Cohomological proof of Theorem 3.1.1. We will actually show the stronger claim that any Pn-bundle is the

projectivization of some rank (n+1) vector bundle. Let GLn(OC),PGLn(OC) denote the sheaves of holomor-

phic maps from C to GLn(C) or PGLn(C), respectively. While these sheaves are, in general, not abelian, the

fact that they are sheaves of groups is alone enough to define Ȟ
1
, Čech cohomology in degree 1. Because they
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are only sheaves of groups, they do not have any higher cohomology and their Ȟ
1
’s are merely pointed sets,

not groups. Mimicking the proof that H1(C,O×C ) classifies line bundles, one can show that H1(C,GLn(OC))

classifies vector bundles of rank n and H1(C,PGLn(OC)) classifies Pn−1-bundles. The sheaves fit a sequence

0 −! O×C −! GLn(OC) −! PGLn(OC) −! 0

whose exactness is readily checked on stalks. This induces the exact sequence

H1(C,O×C ) −! Ȟ
1
(C,GLn(OC)) −! Ȟ

1
(C,PGLn(OC)) −! H2(C,O×C )

of (pointed) cohomology sets. At the same time, the usual exponential exact sequence in cohomology includes

0 = H2(C,OC) −! H2(C,O×C ) −! H3(C,Z) = 0,

where H2(C,OC),H3(C,Z) = 0 because C is only 1 (complex) dimensional. By exactness, this shows that

H2(C,O×C ) = 0 as well. As such, the map H1(C,GLn(OC)) ! H1(C,PGLn(OC)), which coincides with the

projectivization map E 7! P(E), is surjective. �

This gives one proof of Theorem 3.1.1. The strategy for the other proof, which is more direct and

topological, is to explicitly construct the vector bundle E. It will end up being given as the push-forward

of a line bundle on the total space associated to a (holomorphic) section of the ruling. The argument will

proceed in several steps, the first couple of which are aimed at showing that a section even exists.

3.1.2 Ruled Surfaces are Projectivizations of Vector Bundles: Second Proof

Let π : X ! C be a ruled surface. We aim to construct a vector bundle E such that X ' P(E), and we claim

that E is the pushforward of a section of π. Hence, we first show the existence of such a section. Before

beginning, note that since any given fiber of π has arithmetic genus 0, all of the fibers of π are smooth, and

so π is a topological fibration.

Remark 3.1.1. Since P1 ! X ! C is a fibration, we get a long exact sequence

· · · −! πn+1(C) −! πn(P1) −! πn(X) −! πn(C) −! πn−1(P1) −! · · ·

in homotopy. This shows that π1(X) ' π1(C), so H1(X) ' H1(C) ' Z2g(C). By [2, Ch. IV, Thm. 3.1], a

compact surface is Kähler iff its first Betti number is even. Hence, all ruled surfaces are Kähler.

Lemma 3.1.2. There exists a topological (i.e. continuous) map s : C ! X such that π ◦ s = IdC .

Proof. We will provide a rather topological proof of this fact, using that C can be given the structure of a

CW-complex and then constructing this topological section s : C ! X one cell at a time. For the duration of

this proof, let X ≈ Y denote that X is homeomorphic to Y . Also, since C will be viewed as a CW-complex,

let Ck denote its k-skeleton. Note that the morphism X
π
−! C gives X the structure of a P1-bundle over C,

and P1 ≈ S2, a sphere.

Since C is a smooth curve, it is a topological surface and so can be given the structure of a 2-dimensional

CW-complex with a single 0-cell e0 ∈ C. Let s0 : {e0} ! X be any map such that π(s0(e0)) = e0. This

gives a section for C0 = {e0}, C’s 0-skeleton.
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We now move onto C’s 1-skeleton. Let e1 ⊂ C be any 1-cell with attaching map φ : ∂e1 ! C0 where

∂e1 ≈ S0 is the boundary of e1. Consider the restriction π|e1 : X|e1 ! e1 of π where X|e1 := π−1(e1). Since

e1 is contractible and X|e1 ! e1 is an S2-bundle, there must be a commutative diagram

X|e1 S2 × e1

e1

∼

π|e1
pr2

so, after identifying X|e1 ≈ S2 × e1, sections can be identified with maps to S2 and extending the section

s0 : C0 ! X to a section C0 ∪ {e1} ! X|e1 amounts to extending the composition ∂e1 φ
−! C0

s0−! S2 to

a map e1 ! S2. This is possible if and only if ∂e1 φ
−! C0

s0−! S2 is nullhomotopic, but this is obviously

the case since the image of this map is already a single point. Thus, we can extend s0 to a section over e1.

By simultaneously carrying this process out for all 1-cells, we obtain a section s1 : C1 ! X of π over C’s

1-skeleton.

Finally, we need to extend s1 to a section over C’s 2-skeleton (i.e. over all of C). As before, let e2 ⊂ C

be any 2-cell with attaching map φ : ∂e2 ! C1. By considering the restriction π : |e2 : X|e2 ! e2 of π and

again noting that e2 is contractible, we can once again identify X|e2 ≈ S2× e2 so sections of π over e2 again

correspond to maps e2 ! S2. In particular, extending the section s1 : C1 ! X to one over C1∪{e2} amounts

to extending the composition ∂e2 φ
−! C1

s1−! S2 to a map e2 ! S2, and this is again possible if and only if

∂e2 φ
−! C1

s1−! S2 is nullhomotopic. The image of this map is no longer a single point, but ∂e2 ≈ S1, so this

composition represents an element in π1(S2), the fundamental group of S2. Since S2 is simply connected

(π1(S2) = 0), this composition is necessarily nullhomotopic, and so we may extend s1 to a section over e2.

Performing this simultaneously for all 2-cells of C, we obtain our desired section s : C = C2 ! X of π. �

Technical Aside 3.1.1. Readers familiar with homotopy theory may find the following observation interesting.

The main point of the proof of the above lemma is the following: since C is a CW-complex, constructing

a section s : C ! X only involves taking a map Sk ! P1 – from a sphere to a fiber of π : X ! C –

and extending it to a map ek+1 ! P1 from the (k + 1)-cell the original Sk bounded. Furthermore, since C

is 2-dimensional as a CW-complex, every sphere encountered had dimension strictly less than 2, so we can

always form the extension as P1 is path-connected and simply connected (you can form the extension exactly

when the original map Sk ! P1 is nullhomotopic). More generally, if p : E ! B is any topological fibration

such that B is an n-dimensional CW-complex, and the (homotopy type of the) fiber F is (n− 1)-connected

(i.e. πi(F ) = 0 for all i < n), then one can construct a section s : B ! E of p. We will not need this fact

beyond the single case handled explicitly in Lemma 3.1.2.

Corollary 3.1.3. There exists a holomorphic line bundle L on X such that L |F ' OF (1) for any fiber

F ' P1 of π.

Proof. Part of the exponential exact sequence in cohomology looks like

H1(X,O×X)
c1−! H2(X;Z) −! H2(X; OX).

We claim that H2(X; OX) = 0, so the map c1 above is surjective. To see this, let KX be a canonical divisor,

and let F ' P1 be any fiber. The adjunction formula tells us that

OF (−2) = ωF ' ωX ⊗ OX(F )|F = OX(KX + F )|F ,
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so −2 = (KX + F )F = KXF . Suppose ωX = OX(KX) has a nonzero holomorphic section σ, and write

(σ) = D + nF where suppD does not contain F as a subspace and D is effective. Then, −2 = FKX =

F (D + nF ) = FD contradicts effectivity of D, so σ cannot exist. As a consequence h0(ωX) = 0. By

Serre duality, we then get h2(OX) = h0(ωX) = 0 as well, so the first Chern map c1 : PicX ! H2(X;Z) is

surjective. The preceding lemma produces a topological section S ⊂ X of π, so we can take L to be any

holomorphic line bundle with c1(L ) equal to S’s fundamental class [S] ∈ H2(X;Z) in cohomology. �

With this, we have almost everything we need in order to show that every ruled surface has a holomorphic

section. Since we have produced a line bundle L such that deg L |F = 1 for any fiber F , one wishes to

simply take a divisor D ∈ DivX such that OX(D) ' L and conclude that D must be a section since DF = 1

for all fibers F . However, there is an issue with this. We have no guarantee that this divisor D is effective;

equivalently, we do not know if L has any holomorphic sections. To overcome this, we will show that if we

twist L by a sufficiently high power of OX(F ), then we do get a line bundle coming from a (holomorphic)

section of π. This technique of producing a section of a line bundle by twisting it by high powers of a simple

divisor will be used repeatedly in this chapter.

Lemma 3.1.4. Let D ∈ Div(X) be any divisor such that DF = 1 for a fiber F . Then, D ∼ S + nF for

some section S ⊂ X and integer n where ∼ denotes linear equivalence.6

Proof. For each n ∈ Z, let Dn = D+nF . As before, let KX be a canonical divisor, and note that, since F is

a fiber, we have F 2 = 0 and KXF = −2, the latter a consequence of adjunction. We then get the equalities

D2
n = D2 + 2n DnF = 1 DnKX = DKX − 2n

Hence, by Riemann-Roch for surfaces,

h0(Dn) + h0(KX −Dn) ≥ χ(OX(Dn)) =
1

2
Dn(Dn −KX) + χ(OX) = χ(OX(D)) + 2n.

Furthermore, (KX − Dn)F = −3 < 0 so h0(KX − Dn) = 0 as no effective divisor can have negative

intersection with a fiber. Thus, for n sufficiently large, we have h0(Dn) > 0, i.e., there exists some effective

divisor E with E ∼ Dn. In particular, EF = 1 which, because E is effective, forces E to be of the form

E = S +mF for some section S and integer n ∈ Z. Hence, D ∼ S + (m− n)F as desired. �

Corollary 3.1.5. π : X ! C has a holomorphic section.

Proof. Apply the theorem above to the line bundle L guaranteed by Corollary 3.1.3. �

This gives the existence of a holomorphic section S ⊂ X. Note that OX(S) is flat over C in the sense that

OX(S)x ' OX,x is a flat OC,f(x)-module for all x ∈ X. This, combined with the fact that Xc ' P1 for all

c ∈ C, shows that the hypotheses of Theorem 2.1.9 apply to π, and so we may conclude that E := π∗OX(S)

is a locally free sheaf on C. By the same theorem, the rank of E is

rank E = h0(F,OX(S)|F ) = h0(P1,OP1(1)) = χ(OP1(1)) = 1 + χ(OP1) = 2

6This lemma is incorrect as stated. What’s true is that D ∼num S + nF is numerically equivalent to a divisor of this form,
and this suffices for all the uses of this lemma.
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where F above is any fiber, the last equality is Riemann-Roch for curves, and the second to last equality is a

consequence of Serre duality since h1(OP1(1)) = h0(OP1(−3)). Let p : E ! C be the vector space associated

to the sheaf E . We claim that P(E) ' X as complex spaces over C.

To show this it will be good to know a little about the structure of P(E).

Definition 3.1.2. Let q : E ! C be a rank 2 vector bundle on a smooth curve C, and let p : P(E)! C be

the corresponding natural map. Consider the line bundle p∗E on P(E). It has a sub-line bundle, called the

tautological subbundle, OP(E)(−1) given by

OP(E)(−1) = {(e, `) ∈ E × P(E) : q(e) = p(`) and e ∈ `} ⊂ p∗E,

which fits into the diagram

OP(E)(−1) p∗E E

P(E) C

⊂
q

p

Dually, the tautological quotient bundle OP(E)(1) is defined via the short exact sequence

0 −! OP(E)(−1) −! p∗E −! OP(E)(1) −! 0.

Note that rank OP(E)(1) = rank p∗E − rank OP(E)(−1) = 1.

Remark 3.1.2. The above construction works for vector bundles of arbitrary rank on any base space. In

the case that E = Cn+1 × {∗} is the rank (n + 1) vector bundle on the 1-point space, we naturally have

P(E) ' Pn with OP(E)(−1) corresponding to OPn(−1). Furthermore, in this case, also OP(E)(1) corresponds

to OPn(1). To see this latter point, note that, in this case, OP(E)(1) is defined by

0 −! OP(E)(−1) −! Cn+1 × Pn −! OP(E)(1) −! 0,

so taking determinants shows that OP(E)(1) ⊗ OP(E)(−1) ' OP(E), so OP(E)(1) and OP(E)(−1) are dual to

each other. Since OP(E)(−1) corresponds to OPn(−1), we conclude that OP(E)(1) corresponds the dual bundle

OPn(1).

The utility of these tautological (line) bundles is that the role they play in defining maps to P(E). The

space P(E) satisfies two universal properties. According to one, given a map f : X ! C, factoring it through

P(E), i.e. writing it as a composition X ! P(E)
p
−! C, is equivalent to specifying a line subbundle of f∗E.

According to the other, such a factorization corresponds to a quotient bundle of f∗E (whose rank is one less

than rankE). In our application of interest – constructing an isomorphism X
∼
−! P(π∗OX(S)) for a ruled

surface π : X ! C with section S – we will be able to find a natural quotient bundle of π∗π∗OX(S), and so

we only state and prove the universal property which is given in terms of quotients.

Theorem 3.1.6 (Universal Property of Projectivized Vector Bundles). Let E be a rank 2 vector

bundle on a curve C, and let π : X ! C be a complex space over C. A morphism f : X ! P(E), fitting into
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the below commutative diagram, is the same thing as a quotient line bundle of π∗E.

X P(E)

C

f

π p

Furthermore, if Q is the quotient line bundle of π∗E giving rise to f , then f∗OP(E(1) ' Q.

Proof. First consider a morphism f : X ! P(E). From this, one obtains the line bundle f∗OP(E)(1). Because

f∗ is right exact (i.e. preserves surjections), we can pull back the natural map p∗E � OP(E)(1) along f to

get a map π∗E = f∗p∗E � f∗OP(E)(1) which shows that f∗OP(E)(1) is indeed a line quotient bundle of

π∗E.

In the other direction, given a surjection π∗E � L with L ∈ PicX a line bundle, we get the map

f : X ! P(E) given by

f : x 7! ker (E(π(x))� L (x))

where L (x) denotes the fiber above x (and similarly for (π∗E)(x) = E(π(x))), and pr2 : π∗E ! E is the

natural map. This map lands in P(E) because ker(π∗E � L ) is a line bundle, so pr2 ker((π∗E)(x)! L (x))

is a 1-dimensional linear subspace of E(x).

All that remains is to show that these two constructions are inverse to each other. To do this, we will

show that if L is a quotient of π∗E giving rise to the morphism f : X ! P(E), then f∗OP(E)(1) ' L .

Indeed, we have a homomorphism of exact sequences (recall f∗p∗E = π∗E)

f∗OP(E)(−1) π∗E f∗OP(E)(1) 0

0 K π∗E L 0

α γ

where f∗OP(E)(−1) = {(x, e, `) ∈ X × E × P(E) : f(x) = ` and e ∈ `} and the map α exists because the

map f∗OP(E)(−1) ! π∗E given by (x, e, `) 7! (x, e) lands in ker(π∗E ! L ) since, by definition of f , we

have

(x, e, `) ∈ f∗OP(E)(−1) =⇒ e ∈ ` = f(x) = ker (E(π(x))� L (x)) ,

and this implies that (x, e) ∈ ker((π∗E)(x)! L (x)). Once we know α exists, we get γ by a simple diagram

chase. Then, the snake lemma gives us an exact sequence

kerα −! 0 −! ker γ −! cokerα −! 0 −! coker γ −! 0.

This immediately shows that coker γ = 0. Furthermore, α is surjective by definition, so cokerα = 0 which

gives ker γ = 0 as well. Thus, γ is an isomorphism.

Finally, start with a morphism f : X −! P(E) and let L = f∗OP(E)(1). Then, L gives rise to a

morphism fL : X −! P(E) and, by the previous paragraph, f∗L OP(E)(1) ' L ' f∗OP(E)(1). From this, we

may conclude that f = fL . �

Corollary 3.1.7. Let E be a rank 2 vector bundle on a curve C. A section s : C ! P(E) of P(E) ! C is

the same thing as a quotient line bundle of E.

With our foray into projectivized vector bundles complete, we return to our earlier goal of showing that
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every ruled surface is such a space. Let π : X ! C be a ruled surface with holomorphic section S ⊂ X. Recall

that E := π∗OX(S) is a rank 2 locally free sheaf on C, and that we have claimed that P(E) ' X where E is

the vector bundle corresponding to E . Note that we have a natural morphism π∗ E = π∗π∗OX(S)! OX(S)

which we claim is surjective (and hence gives a map X ! P(E)). We can check surjectivity on the fibers

(π∗π∗OX(S))(x) = (π∗OX(S))(π(x))! (OX(S))(x) where, by Theorem 2.1.9, we have

(π∗OX(S))(π(x)) H0(Xπ(x),OX(S)|Xπ(x)
) H0(P1,OP1(1))

(OX(S))(x) H0(x,OX(S)|x) H0(x,Cx)

∼ ∼

∼ ∼

from which we see that π∗π∗OX(S)! OX(S) corresponds, on fibers, to the above restriction map which is

certainly surjective. Hence, it gives rise to a morphism f : X ! P(E), commuting with their projections

onto C, which we claim is an isomorphism. Again, it suffices to check this on each fiber, so let p : P(E)! C

be the projection map, and fix any c ∈ C. Note that, by Remark 3.1.2, OP(E)(1)|p−1(c) corresponds to OP1(1)

under any identification p−1(c) ' P1, and, since S is a section, OX(S)|π−1(c) also corresponds to OP1(1)

under any identification π−1(c) ' P1. By Theorem 3.1.6, we have f∗OP(E)(1) ' OX(S), so restricting to the

fibers over c, f∗OP(E)(1)|p−1(c) ' OX(S)|π−1(c), i.e. f carries OP1(1) to OP1(1) after identifying the fibers

with P1. This says exactly that f is a degree one map P1 ! P1, so f is an isomorphism fiberwise and hence

one globally. This completes our second argument that every ruled surface is of the form P(E) for some rank

2 vector bundle on C.

3.2 The Geometry of General Ruled Surfaces

Setup. Let C be a smooth curve. Fix a rank 2 vector bundle E over C, let X = P(E), and let π : X ! C be

the natural projection. Furthermore, let OX(1) denote the tautological quotient bundle and let H ∈ DivX

be a divisor with OX(H) ' OX(1).

Goal. The goal of this section is to calculate many of the fundamental invariants of X. In particular, we

aim to determine its Hodge numbers, the structure of its Picard group, and a representative for its canonical

divisor class.

We begin by recalling the various details of the geometry of X described in the previous subsection.

Recall 3.2.1.

(1) By Remark 3.1.1, X is Kähler with first Betti number b1(X) = 2g(C) twice the genus of the base

curve. Hence, h0,1(X) = g(C) = h1,0(X).

(2) In the proof of Corollary 3.1.3, we showed that h0,2(X) = 0 = h2,0(X).

(3) Combining (1) and (2) above, we get that the Hodge diamond for X is

1

g(C) g(C)

0 b2(X) 0

g(C) g(C)

1
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We determine b2(X) later in this section.

(4) We used adjunction in our proof of Corollary 3.1.3 to show that KXF = −2 for any fiber F and

canonical divisor KX .

(5) The definition of the tautological quotient bundle given in Definition 3.1.2 entails that HF = 1 for

any fiber F . Indeed, by definition, the restriction OX(1)|F coincides with the construction of the

tautological quotient bundle arising from the trivial fibration C2 × {∗} ! {∗} which, as we saw in

Remark 3.1.2, is simply OP1(1).

(6) Combining (5) above with Lemma 3.1.4 shows that H ∼ S+nF for some section S of π : X ! C and

some n ∈ Z.

It is straightforward from all of this to determine the structure of the Picard group of X. Much like when

we calculated a canonical divisor on blowups, having a description of PicX will be tremendously useful in

determining a divisor for ωX .

Theorem 3.2.1. Let F ∈ DivX be any fiber. Let h = c1(OX(1)) and f = c1(OX(F )) ∈ H2(X;Z). Then,

(1) PicX ' Z[H]⊕ π∗ PicC.

(2) H2(X;Z) ' Zh⊕ Zf .

Proof.

(1) Let D′ ∈ DivX be any divisor, and let D = D′ −mH where m = D′F ∈ Z. We claim that D is the

pullback of a divisor on C. To show this, we will twist D by fibers until it becomes (linearly equivalent

to something) effective and the claim becomes clear. With that said, let Dn = D + nF for any n ∈ Z.

Then, recalling that F 2 = 0, HF = 1, and KXF = −2, one computes

D2
n = D2 DnF = 0 DnKX = DKX − 2n

where KX ∈ DivX is a (fixed) canonical divisor. Hence, Riemann-Roch for surfaces gives

h0(Dn) + h0(KX −Dn) ≥ 1

2
Dn(Dn −K) + χ(OX) =

1

2
(D2 −DK) + χ(OX) + n = χ(OX(D)) + n.

At the same time, (KX −Dn)F = −2 < 0, so KX −Dn cannot be linearly equivalent to any effective

divisor, i.e. h0(KX − Dn) = 0. This means that h0(Dn) ≥ χ(OX(D)) + n is strictly positive for n

sufficiently large. Hence, for a fixed large n, we may write Dn ∼ E where E is an effective divisor.

Since EF = DnF = 0, we must have that E is a sum of fibers of π (any non-fiber irreducible

component in E would intersect F with positive multiplicity), but this exactly says that E is the

pullback of a divisor on C. Thus the same is true for Dn ∼ E and so also for D = Dn − nF .

Hence, D′ = D + mH ∈ π∗ PicC ⊕ ZH as desired. Since the latter is a subgroup of PicX, this gives

PicX ' ZH ⊕ π∗ PicX.

(2) The exponential exact sequence gives

PicX
c1−! H2(X;Z) −! 0,
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so H2(X;Z) is a quotient of PicX. Since any two points of C have the same cohomology class in

H2(C;Z), we see by (1) that H2(X;Z) is generated by h, f . To finish, we only need to show that these

cohomology classes are linearly independent. Pick a, b ∈ Z such that ah + bf = 0. Multiplying both

sides by f , we get that a = 0, so bf = 0. Now, multiplying by h, we see that b = 0 as well, so h, f are

indeed linearly independent. �

Corollary 3.2.2. The Hodge diamond of Xis

1

g(C) g(C)

0 2 0

g(C) g(C)

1

and its topological Euler characteristic is χtop(X) = 4− 4g(C) = 4(1− g(C)).

Before we can use this to actually calculate KX , we will need a couple lemmas about vector bundles on

curves. By Theorem 3.2.1 above, we know KX ∼ aH + π∗D for some a ∈ Z and D ∈ Div(C). We will

determine a and D by applying adjunction to a fiber of X and a section of X. In the process of doing this,

we will want to know H2 ∈ Z which will in turn be calculated using the exact sequence

0 −! OX(−1) −! π∗E −! OX(1) −! 0.

However, performing this calculation will require the below lemmas on rank 2 vector bundles on curves.

Lemma 3.2.3. Let E be a vector bundle on a smooth curve C. Then, there exists a divisor D ∈ DivC such

that E (D) := E ⊗OCOC(D) has a holomorphic section. In fact, we can take D to be of the form D = np for

some n ∈ Z≥0 and p ∈ C.

Proof. Fix any point p ∈ C, and note that we have an exact sequence 0 ! OC(−p) −! OC −! Cp −! 0

where Cp is the skyscraper sheaf supported at p (equivalently, Cp = Op is the structure sheaf of the point

p). Tensoring this exact sequence with E (p) – and noting that Cp ⊗OC E (p) is a rank r := rankE vector

bundle on a point and so trivial – we get the sequence

0 −! E −! E (p) −! C⊕rp −! 0.

Hence, h0(E (p))− h1(E (p)) = χ(E (p)) = χ(E ) + χ(C⊕rp ) = χ(E ) + r where h1(C⊕rp ) = 0 either because it is

supported on a 0-dimensional subspace or because it is flasque. As such, an easy induction argument shows

that

h0(E (np)) ≥ h0(E (nP ))− h1(E (np)) = χ(E (np)) = χ(E ) + nr

for every n ∈ Z≥0. Hence, the claim holds when we take D = np for n large enough. �

Corollary 3.2.4. Let E be a rank 2 vector bundle on a smooth curve C. Then, there exists line bundle

L ,M on C fitting into a short exact sequence

0 −! L −! E −!M −! 0,

i.e. E is an extension of M by L .
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Proof. By the previous lemma, we can find some divisor D ∈ DivC such that h0(E (D)) > 0. Fix a nontrivial

holomorphic section s ∈ H0(E (D)). Then, s defines a map OC ! E (D) which we can think of equivalently

as a map E ∨(−D) ! OC from E (D)’s dual bundle. The image of this map is a torsion-free submodule of

OC , i.e. an ideal, so of the form OC(−E) for a divisor E ∈ DivC. Let L = ker(E ∨(−D) ! OC(−E)), so

we have an exact sequence 0! L ! E ∨(−D)! OC(−E)! 0. Dualizing this sequence and then tensoring

with OC(−D) gives

0 −! OC(E −D) −! E −! L ∨(−D) −! 0,

so the claim holds. �

Corollary 3.2.5 (Riemann-Roch for Rank 2 Vector Bundles on Curves). Let E be a rank 2 vector

bundle on a smooth curve C. Note that det E =
∧2 E is a line bundle, and define the degree of E to be

deg(E ) := deg (det E ). Then,

χ(E ) = deg(E ) + 2χ(OC).

Proof. Fix line bundles L ,M ∈ PicC such that we have an exact sequence

0 −! L −! E −!M −! 0.

Hence, det E 'M ⊗L so deg(E ) = deg L +deg M . Furthermore, applying Riemann-Roch for (line bundles

on) curves, we have

χ(E ) = χ(L ) + χ(M ) = (deg L + χ(OC)) + (deg M + χ(OC)) = deg E +2χ(OC).

Hence, the claim holds. �

We may now return to our goal of understanding the geometry of the ruled surface X = P(E)
π
−! C

where E is the vector bundle corresponding to a locally free sheaf E of rank 2 on C. Our only remaining

task is to determine ωX ∈ PicX. Recall that (Theorem 3.2.1), we can write ωX ' OX(1)⊗a ⊗ π∗OC(D)

for some a ∈ Z and D ∈ PicC, so our only job is to determine a and D. To do so, we will first make one

simplifying remark.

Remark 3.2.1. In Section 3.1.2, we showed that there exists a section S ⊂ X of X ! C such that X '
P(π∗OX(S)). Hence, we may safely assume that E in the preceding paragraph is E = π∗OX(S). This has

the benefit that we know from the discussion at the end of Section 3.1.2 that OX(1) ' OX(S). Furthermore,

with this choice of E , H0(C,E ) = H0(X,OX(S)) 6= 0, so contains a section σ ∈ H0(C,E ) corresponding to

canonical section of 1S ∈ H0(X,OX(S)) (constructed in Remark 2.2.4). Thinking of σ as a holomorphic

map C ! E, we can compose with the natural map E ! P(E) = X to see that σ induces a section C ! X

of π : X ! C. The image of this section is exactly S. At the same time, σ ∈ H0(C,E ) gives rise to

a map OC ! E and the cokernel E /σOC of this map is the quotient line bundle of E corresponding to

C
σ
−! E ! P(E) (Recall Corollary 3.1.7), so we have an exact sequence

0 −! OC
σ
−! E −! E /σOC −! 0,

and, again by Corollary 3.1.7, since σ (viewed as a section C ! P(E) = X of π) corresponds to E /σOC ,

we have σ∗OX(1) ' E /σOC . Taking determinants of the exact sequence above, we also conclude that

σ∗OX(1) ' det E . This fact will be very important below.
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Theorem 3.2.6. With notation as in the preceding paragraph, we have h2 = deg(E ) and

ωX ' OX(−2S)⊗ π∗ (ωC ⊗ det E ) .

Hence, c1(ωX) = −2h+ (deg E + degωC) f = −2h+ (deg E +2g(C)− 2) f .

Proof. Let L ,M be line bundles on C giving rise to an exact sequence 0 ! L ! E ! M ! 0. Pulling

this back along π, we get an exact sequence 0! π∗L ! π∗ E ! π∗M ! 0. Note that, by Lemma 2.2.12,

0 = (π∗L ) · (π∗M ) = χ(OX)− χ(π∗L )− χ(π∗M ) + χ(π∗L ⊗ π∗M )

= χ(OX)− χ(π∗ E ) + χ(π∗ det E ). (3)

Now, consider the sequence

0 −! OX(−1) −! π∗ E −! OX(1) −! 0.

Because the RHS of (3) only depends on π∗ E , we immediately see that OX(−1) · OX(1) = 0. Letting

e = c1(det E ) ∈ H2(C;Z), the fact that OX(1)⊗OX(−1) ' detπ∗ E = π∗ det E shows us that c1(OX(−1)) =

π∗e− h. Hence,

0 = c1(OX(−1))c1(OX(1)) = (π∗e− h)h = h · π∗e− h2.

Since, by our simplifying remark, OX(1) ' OX(S) for some section S, we also have

h · π∗e = deg(π∗ det E |S) = deg(det E ) = deg(E ),

since π|S : S ! C is an isomorphism sending π∗ E to E . Thus,

h2 = h · π∗e = deg E

as claimed.

We now determine ωX . By Theorem 3.2.1, we may write ωX ' OX(aS)⊗ π∗OC(D) for some a ∈ Z and

D ∈ DivC. Applying the genus formula to a fiber F ⊂ X, we see that

−2 = 2g(F )− 2 = KXF + F 2 = KXF = (aH + π∗D)F = a.

We next apply adjunction to S to see that

ωS ' ωX ⊗ OX(S)|S ' OX(−S + π∗D)|S .

Let σ : C
∼
−! S be the inverse of π|S : S

∼
−! C. Pulling back the above along σ, and noting that σ∗OX(S)|S '

det E by the end of Remark 3.2.1, we see that

ωC ' (det E )∨ ⊗ OC(D).

Thus, OC(D) ' ωC ⊗ det E . Combining this with our earlier calculation that a = −2 shows that

ωX ' OX(−2S)⊗ π∗(ωC ⊗ det E )
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as claimed. This finishes the proof. �

Technical Aside 3.2.1. The calculation that c1(OX(−1))c1(OX(1)) = 0 performed above can be reformulated

as the vanishing of the second Chern class c2(π∗ E ) of π∗ E . Indeed c2(π∗ E ) = π∗c2(E ) = 0 since E is a

bundle on a 1-dimensional space, and the existence of the short exact sequence 0 ! OX(−1) ! π∗ E !

OX(1)! 0 shows that 0 = c2(π∗ E ) = c1(OX(−1))c1(OX(1)).

3.3 Ruled Surfaces over P1

Now that we have spent a considerable amount of time studying the structure of general ruled surfaces, we

will shift focus slightly by taking a look at some specific ruled surfaces. In this section, we will briefly look

at the Hirzebruch surfaces, the surfaces ruled over P1. We will first show that every ruled surface over P1 is

of the form Σn := P(OP1 ⊕OP1(n)) for some n ∈ Z which we will then show is unique (i.e. we will show that

Σn 6' Σm if n 6= m).

Remark 3.3.1. If E is a vector bundle on a curve and L is a line bundle on it, then P(E) ' P(E ⊗ L).

Thinking of bundles in terms of their transition functions, it is clear that P(E) and P(E ⊗L) have the same

transition functions since they differ by an element of PGL1(C) = 1.

In light of this remark, to show that every ruled surface over P1 is of the form P(OP1 ⊕OP1(n)), it suffices

to show that every rank 2 vector bundle over P1 splits as a sum of line bundles.

Proposition 3.3.1. Let 0! L ! E !M ! 0 be an extension of line bundles M ,L on a smooth curve

C. Then, there exists a cohomology class α ∈ H1(C,L ⊗M∨) with the property that this sequence splits –

i.e. E = L ⊕M – if and only if α = 0.

Proof. Tensor the sequence with M∨ to get an exact sequence

0 −! L ⊗M∨ −! E ⊗M∨ φ
−! OC −! 0

which splits iff the original sequence does. Note that a splitting map s : OC ! E ⊗M∨ is identified with a

global section of E ⊗M∨ whose image under φ is the unit section 1C ∈ H0(OC). With this in mind, consider

the cohomology sequence

H0(E ⊗M∨)
φ
−! H0(OC)

∂
−! H1(L ⊗M∨).

Our original sequence splits iff 1C is in the image of φ above, but imφ = ker ∂, so it splits iff α := ∂(1C) ∈
H1(L ⊗M∨) vanishes. This proves the claim. �

Technical Aside 3.3.1. Readers familiar with homological algebra may find find the following explanation

of this proposition more conceptual or illuminating. Mirroring the construction of the ExtiR functors on

R-modules, one can derive the Hom(F ,−) functor (here F is any OX -module) to get Exti(F ,−) =

ExtiOX (F ,−) functors of OX -modules. Just as with modules, isomorphism classes of extensions of M

by L turn out to be in bijection with elements of Ext1(M ,L ). Furthermore, when M is locally free we

have Ext1(M ,L ) ' Ext1(OX ,L ⊗M∨), but since Hom(OX ,−) = Γ(−) is naturally isomorphic to the

global sections functor, their right derived functors coincide, i.e. Ext1(OX ,L ⊗M∨) ' H1(X,L ⊗M∨),

so this latter group also classifies extensions of M by L .

Corollary 3.3.2. Every rank 2 vector bundle on P1 splits as a sum of line bundles.

55



Proof. Let E be a rank 2 locally free sheaf on P1. Note that if L is a line bundle on P1, then deg(E ⊗L ) =

deg E + deg L , so by tensoring E with an appropriate line bundle, we may assume that deg E ∈ {0,−1}. By

Riemann-Roch, we have h0(E ) ≥ χ(E ) = deg E +2 ≥ 1, so E has some nonzero section s ∈ H0(E ). Hence,

there exists an exact sequence

0 −! OP1(k1) −! E −! OP1(k2) −! 0

with k1 ≥ 0.7 Furthermore, k1 + k2 = deg E since OP1(k1) ⊗ OP1(k2) ' det E . By the theorem above, the

splitting of this sequence is controlled by a cohomology class in H1(OP1(k1 − k2)) = H1(OP1(2k1 − d)) where

d = deg E . Since k1 ≥ 0 and d ≤ 0, we see 2k1 − d ≥ 0, so h1(OP1(2k1 − d)) = h0(OP1(−2− (2k1 − d)) = 0.

Thus, E ' OP1(k1)⊕ OP1(k2). �

This completes the argument that all ruled surfaces over P1 are of the following form.

Definition 3.3.1. The ruled surface Σn := P(OP1 ⊕ OP1(n))! P1 is called the nth Hirzebruch surface.

Theorem 3.3.3. The Hirzebruch surfaces Σn are minimal if n 6= 1, and Σn ' Σm =⇒ n = m.

Proof. We will prove both parts of this theorem by showing that Σn contains a unique curve B with negative

self-intersection and that B2 = −n. Thus, Σn 6' Σm for n 6= m and Σn is minimal when n 6= 1 since it

contains no (−1)-curves.

Reusing notation from the previous subsection, let F,H ∈ Pic Σn be the classes of a fiber and of the

tautological quotient bundle, respectively. By Theorems 3.2.1 and 3.2.6, we know Pic Σn = ZF ⊕ ZH with

F 2 = 0, FH = 1, and H2 = deg(OP1 ⊕ OP1(n)) = n. Let s : P1 ! Σn be the section corresponding to the

quotient OP1 ⊕ OP1 ! OP1 , and let B = s(C) ⊂ Σn. Then, B ∼ H + rF for some r ∈ Z. We have

HB = deg(OΣn(1)|B) = deg(s∗OΣn(1)) = deg(OP1),

so 0 = HB = H(H + rF ) = H2 + rHF = n + r. Hence, r = −n and B2 = (H − nF )2 = n − 2n = −n.

Therefore, we just need to show B is the only curve with this property.

Let C ⊂ Σn be any other curve (i.e. C 6= B). Then, C ∼ aH + bF for some a, b ∈ Z. We have

a = CF ≥ 0. Since C,B are distinct curves, we also have

0 ≤ CB = (aH + bF )B = bFB = b.

Thus, C2 = (aH + bF )2 = a2n+ 2ab ≥ 0, so B really is the unique curve with negative self-intersection. �

Since Σ1 is not minimal, one may wonder what surface serves as its minimal model. Determining this

will be the last thing we do this section.

Example (An alternate construction of Σ1). Pick any point p ∈ P2 and let S = Blp P2. Note that we have

a rational map P2 99K P1, “projection away from p”, which sends any point q 6= p of P2 to the unique line

passing through p and q. This map is not defined at p, but it naturally extends to a morphism S ! P1

which now gives S the structure of a ruled surface over P1. Since S contains a (−1)-curve by construction,

we conclude by the theorem above that S ' Σ1. Hence, P2 is a minimal model for Σ1.

7The proof of Corollary 3.2.4 shows that the line bundle L in its statement has a section when E does since L is the dual
of an ideal sheaf (and ideal sheaves correspond to the negatives of effective divisors
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4 Elliptic Surfaces

In this chapter, we finally fulfill our promise of carrying out the local study of elliptic surfaces. Recall that

in the case of ruled surfaces, the fact that the generic fiber had (arithmetic) genus 0 automatically forced

every fiber to be smooth. In the case of elliptic surfaces, the generic fiber has (arithmetic) genus 1, and so

particular, or “special”, fibers may lower geometric genus, i.e. some fibers may be singular. The main goal

of this chapter is to completely classify all the possible singular fibers that may arise on elliptic surfaces.

The classification we provide will be geometric/combinatorial, stated in terms of the possible layouts of the

irreducible components of the fibers. There also exists a more algebraic classification, given in terms of a

certain “monodromy” map which measures how (smooth) fibers “twist” as they are “transported around a

given (singular) fiber.” Towards the end of this chapter, we will determine this monodromy for some types

of singular fibers in detail, and then give a brief overview of how one calculates the monodromy for the

remaining cases.

4.1 Definitions

Definition 4.1.1. An elliptic surface is an analytic spaceX equipped with a holomorphic map π : X −! C

from a complex surface X to a smooth curve C such that the general fiber of π is a smooth connected curve

of genus one. The map π is also called an elliptic fibration, and sometimes called the structure map of

X.

In this definition, we refrained from saying that the general fiber of π : X ! C is an elliptic curve,

because “elliptic curves” come with a specified choice of a basepoint; however, not all elliptic surfaces have

a section s : C ! X. Furthermore, we will often call the total space X itself an “elliptic surface” with the

implicit understanding that it comes with an auxiliary map π : X ! C.

Definition 4.1.2. Given an elliptic surface π : X ! C, we say a curve in X is vertical for π if it is

contained within a fiber of π. Otherwise, we call it horizontal.

Remark 4.1.1. An elliptic surface is relatively minimal if and only if it has no vertical (−1)-curves. Fur-

thermore, relatively minimal elliptic surfaces are not necessarily minimal; they may contain horizontal (−1)-

curves.

It will be useful to know that elliptic fibrations are preserved under basechange. This is because per-

forming suitable basechanges8 can sometimes let you deduce properties of complicated elliptic surfaces from

those of simpler ones.

Lemma 4.1.1. Let π : X ! C be an elliptic surface, and let f : C ′ ! C be a surjective map of (not

necessarily compact) curves. Then, the pullback f∗π : X ×C C ′ ! C ′ is an elliptic surface as well.

Proof. For notational convenience, let X ′ = X ×C C ′ and let π′ : X ′ ! C ′ denote the natural projection

map. We need to show that the generic fiber X ′c′ = (π′)
−1

(c′) (c′ ∈ C ′) is smooth of genus one. We will do

this by showing that X ′c′ ' Xf(c′) for all c′ ∈ C ′. Fix any c′ ∈ C ′, and let c = f(c′) ∈ C. In order to show

X ′c′ ' Xc, it suffices to show that Xc satisfies the universal property of X ′c′ , i.e. that Xc is the base change

of X ′ ! C ′ along the inclusion {c′} ↪! C ′.

8Recall Proposition 2.1.4
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It is worth noting that proofs like this are best oneself since it can be hard to clearly describe the logic

textually, but we will attempt to do so nevertheless. With that said, consider any space Y with a map

Y ! C ′ making the below commute

Y X ′

{c′} C ′

π′

where there is a unique map Y ! {c′} since {c′} is given the structure sheaf Oc′ = C. Since f(c′) = c, we

can extend this diagram into the one below

Y X ′ X

{c′} C ′

{c} C

π′

π

f

and so we obtain a unique map Y ! Xc respecting their maps to X and {c}. In order to conclude that

Xc ' X ′c′ we need to show Xc has maps Xc ! X ′ and Xc ! {c′} respected by this map Y ! Xc. There

is only one map Xc ! {c′}, so there is nothing to show here. We get a map Xc ! X ′ using X ′’s universal

property since we have natural maps Xc ! {c′} ! C ′ and Xc ! X which both become the constant map

to c ∈ C when pushed to C. This gives rise to the desired map Xc ! X ′. By construction (i.e. the

uniqueness/naturality of everything), the maps Y ! {c′} and Y ! Xc ! {c′} agree (this is unsurprising

since any space has a unique map to {c′}) as do the maps Y ! X ′ and Y ! Xc ! X ′, so Xc really is

the base change Xc ' X ′ ×c′ C ′ =: X ′c′ . Pictorially, the proof is encapsulated in the following commutative

diagram (the dashed maps exist by universal properties).

Y

Xc X ′ X

{c′} C ′

{c} C

π′

π

f

�

Before diving into the classification of singular fibers of elliptic surfaces, we will give a concrete example,

exhibiting that singular fibers may in fact exist.

Example (A smooth elliptic surface with singular fiber). Let ∆ = {z ∈ C : |z| < 1} be the complex unit

disk, and let

X =
{

([z0 : z1 : z2] , s) ∈ P2 ×∆
∣∣ z2z

2
1 = z3

0 − sz0z
2
2

}
,

with structure map π : X ! ∆ given by the natural projection. Then, X is visibly elliptic, and its smoothness

58



follows from the fact that there is no point p ∈ X at which all 4 derivatives

∂f

∂z0
= 3z2

0 − sz2
2

∂f

∂z1
= −2z2

∂f

∂z2
= −2sz0z2 − z2

1

∂f

∂s
= −z0z

2
2

vanish, where f(z0, z1, z2, s) = z3
0 − sz0z

2
2 − z2z

2
1 . However, the fiber X0 = π−1(0) above 0 is not smooth as

it is isomorphic to the cuspidal cubic given by the projective closure of {y2 = x3} ⊂ C2. When we classify

singular fibers, this will be an example of a singular fiber of type II.

While many types of singular fibers can occur, they are constrained by the facts that they must have

arithmetic genus 1 and, by Zariski’s Lemma, must come from a negative semi-definite bilinear form. These

will allow us to give a combinatorial description of all possible singular fibers in terms of so-called extended

Dynkin diagrams. Afterwards, one can verify that each possible type does indeed occur by constructing

various examples.

From here on out, unless otherwise stated, assume any map denoted π : X ! C or π : X ! ∆ is an

elliptic fibration, and in the latter case, that ∆ ⊂ C is the open unit disk. Assume furthermore that all

elliptic fibrations under consideration are smooth and relatively minimal.

4.2 Classification of Fibers

The classification on singular fibers rests on showing a connection between (fibers of) elliptic fibrations and

a certain explicit family of graphs known as the extended Dynkin diagrams. We have already done half the

work in determining this classification. The point is the following: given a fiber F =
∑
niCi (ni > 0 and Ci

irreducible) of an elliptic fibration π : X ! C, the intersection form on X induces a symmetric bilinear form

B on the Q-vector space V =
⊕

QCi with basis {Ci}. To this form, we will associate a graph G encoding

information about B. Now, recalling Zariski’s lemma, this form is necessarily negative semi-definite with

one-dimensional kernel. In the reverse direction, to any graph G, it is possible to associate a vector space VG

equipped with a bilinear form, and the graphs whose associated forms are semi-definite with one-dimensional

kernel are exactly the extended Dynkin diagrams. Once we show this, we will have our classification rather

quickly.

This classification was first carried out by Kunihiko Kodaira [9], but our treatment of it most closely

follows the account given in [10] by Rick Miranda.

The first half of the classification – showing that fibers give rise to negative semi-definite symmetric

bilinear forms with one-dimensional kernel – was already completed when we proved Zariski’s lemma, so we

begin now with the second half: relating fibers to graphs and determining which graphs give rise to negative

semi-definite symmetric bilinear forms with one-dimensional kernel.

Definition 4.2.1. Let F =
∑
niCi (Ci irreducible) be a fiber of an elliptic surface X ! C. Its dual graph

(or incidence graph or the graph associated to the fiber F ) is the graph G = GF with one vertex vi

for each irreducible component Ci of F , CiCj edges joining vi to vj (when i 6= j), 1
2 (C2

i + 2) self-loops on

the vertex vi.

Remark 4.2.1. Using adjunction, we will see later than, when F is the fiber of a relatively minimal elliptic

fibration, then either C2
i = 0 (when F = Ci is irreducible) or C2

i = −2 (when F 6= Ci is reducible). With

this in mind, the formula for the number of self-loops is simply a convenient normalization of C2
i , leading to

a nonnegative integer.
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This provides a link between fibers and graphs. We are interested in knowing precisely which graphs can

arise from this process. Since our main constraints on fibers are summarised by Zariski’s lemma and stated

in terms of intersection products, we make the following dual definition.

Definition 4.2.2. Let G be an undirected graph, possibly with self-loops and/or multi-edges. Let VG be

the Q-vector space whose basis is V (G), the vertices of G. We give VG the symmetric bilinear form with

v2 = −2 + 2# {loops at v} vw = #{edges joining v to w}

where v 6= w are vertices. The space VG, together with this form, is called the bilinear form associated

to G. By analogy with considerations of fibers, we will sometimes also call this G’s intersection form.

Remark 4.2.2. If F is a fiber of an elliptic surface X ! C, then VGF , the bilinear form associated to F ’s

dual graph, is precisely the intersection form on
⊕

QCi, by construction.

Ã0
1

Ã1

1 1

Ãn A cycle of length n+ 1

D̃4

2 11

1

1
D̃n

2 2

1

1

. . . 2

1

1

Ẽ6

3 22

2

11

1
Ẽ7

4 33

2

21 2 1

Ẽ8

6 54

3

42 3 2 1

Figure 5: The extended Dynkin diagrams. The subscript on the name denotes one less than the number of
vertices (e.g. D̃n has n+ 1 vertices). Each vertex is labelled with its multiplicity in a generator of the kernel

of its graph’s associated bilinear form (Every vertex of Ãn has multiplicity 1).

In the overview of our strategy for classifying singular fibers, we claimed that the graphs whose associated

forms are negative semi-definite with one-dimensional kernel – i.e. the graphs which could possibly be dual

graphs of singular elliptic fibers – are exactly the extended Dynkin diagrams. In order to prove this, it is

necessary to first define this class of graphs, so we do so now. An extended Dynkin diagram is any graph
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belonging to the list of graphs given in Figure 5.

Proposition 4.2.1. Let G be an extended Dynkin diagram. Then G’s associated bilinear form VG is negative

semi-definite with one-dimensional kernel.

Proof. Much like in the proof of Zariski, this is seen by applying Lemma 2.5.9 to −VG (the same vec-

tor space but with negated bilinear form). Indeed, (a) of Lemma 2.5.9 is satisfied by −VG since vw =

−#{edges joining v to w} ≤ 0 for any vertices v 6= w. Hypothesis (b) is also satisfied since G is connected

and so in any partition I tJ = V (G) of the vertices (into two nonempty sets), there’s some v ∈ I and w ∈ J
with an edge between them. Finally, hypothesis (c) of Lemma 2.5.9 is satisfied by −VG by verifying that

the vector x0 ∈ VG indicated in Figure 5 (e.g. when G = D̃4, x0 is twice the central vertex plus the sum of

the outer vertices) squares to 0. This is a simple computation for each family of extended Dynkin digrams.

Hence, Lemma 2.5.9 applies and shows that −VG is positive semi-definite with one-dimensional kernel, so

VG is negative semi-definite with one-dimensional kernel. �

In order to take the above proposition a step further – to show that the extended Dynkin diagrams are

the only graphs with this property – we implement a two step strategy. The first step will be to somehow

relate any graph with this property to an extended Dynkin diagram. In fact, we will relate any (connected)

graph to an extended Dynkin diagram by showing that any connected graph contains or is contained in some

extended Dynkin diagram. Once we have shown this, we will have a connection between the intersection form

of a given graph with this desired property and that of some extended Dynkin diagram, so some numerology

with bilinear form – in particular, making use of the fact that the kernel of the form associated to an extended

Dynkin digram has strictly positive coefficients on each vertex – will force graphs with this desired property

to themselves be extended Dynkin diagrams.

We begin with the first step. The proof will require a bit of new notation.

Notation 4.2.3. Let p, q, r ≥ 0 be non-negative integers. Then, we let Tp,q,r denote the 3-spider with

legs of length p, q, and r. That is, Tp,q,r consists of 3 paths of lengths p, q, r, respectively, which are disjoint

except for all sharing the same starting vertex v. An image of T1,2,3 can be found in Figure 6.

v

Figure 6: The graph T1,2,3

Remark 4.2.3. When we say a graph H is contained in another graph G, we mean that H can be obtained

from G by removing some number of vertices, edges, and/or self-loops.

Lemma 4.2.2. Every connected graph is contained in or contains an extended Dynkin diagram. Furthermore,

every connected graph without loops or multiple edges either is contained in or contains an extended Dynkin

diagram without loops or multiple edges.
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Proof. Let G be a connected graph. If G has a loop, then G contains Ã0, and if G has a multi-edge, then G

contains Ã1. Hence, we may assume that G is simple, and so are reduced to proving the part of the lemma

after the word “Furthermore.”

If G contains a cycle, then it contains ÃN for some N , so assume G is a tree. If G has a vertex of degree

4, then it contains D̃4, so assume every vertex has degree at most 3. If G has two vertices of degree 3, it will

contain D̃N for some N . If G has no degree 3 vertex, then every vertex of G has degree at most 2, making

G a path and hence contained in ÃN for some N . Thus, we may and do assume that G has exactly one

vertex of degree 3, i.e. that G is a Tp,q,r graph for some p, q, r ≥ 1. Note that Ẽ6 = T2,2,2, Ẽ7 = T1,3,3, and

Ẽ8 = T1,2,5. Order p, q, r s.t. 1 ≤ p ≤ q ≤ r. If p ≥ 2, then G contains Ẽ6, so assume p = 1. If q ≥ 3, then

G contains Ẽ7, and if q = 1, then G is contained in some D̃N ; hence assume q = 2. Finally, since p = 1 and

q = 2, it’s clear that either G is contained in Ẽ8 or G contains Ẽ8. As such, the claim holds. �

This provides us with a mechanism of relating the intersection form of an arbitrary graph to that of

an extended Dynkin diagram. We now use this to show that if we start with an arbitrary graph G whose

associated form is negative semi-definite with one-dimensional kernel, then in fact G must itself be one of

the extended Dynkian diagrams. As in the proof above, the proof of this fact will handle the cases of Ã0, Ã1

(i.e. of G containing a loop or multi-edge) separately from the general case of simple G.

Theorem 4.2.3. Let G be a connected graph whose associated form is negative semidefinite, with kernel of

dimension one. Then, G is an extended Dynkin diagram.

Proof. First suppose that G has a loop. We then wish to show that G = Ã0, i.e. that G must only have a

single vertex. Let v ∈ V (G) be a vertex with a loop, and let w ∈ V (G) be any vertex adjacent to v. Recall

that v2 = −2 + 2#{loops at v}, so since v2 ≤ 0 by assumption, we must actually have that v2 = 0 and v

has only a single loop. In order to show that v is the only vertex of G, it suffices to show that vw = 0 from

which it will follow that v = w (so v is connected to nothing other than itself). Observe that for k ∈ Q, we

have

0 ≥ (k · v + w)2 = 2k · vw + w2 =⇒ vw ≤ −w
2

2k
≤ 1

k

since w2 ≥ −2. Taking k = 2, for example, we see that vw < 1, so vw = 0 which proves that G = Ã0 in this

case. As we shall shortly see, the remaining cases are handled similarly, ultimately resting on considering an

expression of the form (2v + w)2 where v, w ∈ VG.

Now, assume G has no loops, but suppose it has multiple edges joining say v to w, i.e. vw ≥ 2. We wish

to show that G = Ã1. First note that

0 ≥ (v + w)2 = v2 + 2vw + w2 = −4 + 2vw =⇒ vw ≤ 2,

so there are exactly two edges joining v to w and (v + w)2 = 2vw − 4 = 0. Proceeding as in the previous

case where we knew v2 = 0 for an edge with a loop, suppose that u is a vertex other than v, w and observe

that

0 ≥ (2(v + w) + u)2 = 4(vu+ wu) + u2 = 4(vu+ wu)− 2 =⇒ vu+ wu ≤ 1

2
=⇒ vu,wu = 0,

so u is connected to neither v nor w. Since G is connected, this is a contradiction, so v, w must be the only

two vertices and G = Ã1.
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We may now suppose that G is simple, and so contains or is contained in a simple extended Dynkin

diagram. First suppose that G contains an extended Dynkin diagram D, and let x0 ∈ VD ⊂ VG denote its

square zero class. Because x0 has a positive coefficient on all the vertices of D, we must have V (G) = V (D).

Indeed, if u is a vertex of G but not of D then, repeating the arguments made above, we see that

0 ≥ (2x0 + u)2 =⇒ x0u < 1 =⇒ x0u = 0,

so u is not adjacent to any vertex in D. Since this applies to any u not in D and since G is connected, we

conclude that V (G) = V (D). Because G has no multiple edges, this then implies that G = D.

Finally, if G is contained in a (simple) extended diagram D, then the generator x of the kernel of VG

must be a multiple of the square zero class x0 of D. Since x0 has a strictly positive coefficient on all the

vertices of the diagram, G must contain all those vertices, and so, since G has no multiple edges, we again

see that G = D. �

We have now shown that the extended Dynkin diagrams are exactly the graphs whose intersection forms

are negative semi-definite with one-dimensional kernel! This means have finished most of the hard work

of obtaining Kodaira’s classification. In particular, it is clear now, by combining Zariski’s Lemma with

Theorem 4.2.3, that any fiber of an elliptic fibration gives rise to some extended Dynkan diagram! However,

this mapping is not quite injective (e.g. any irreducible fiber, singular or not, corresponds to Ã0). Hence,

we need to determine which geometric situations can give rise to a given extended Dynkin diagram. This is

described in Table 1 and proven in Theorem 4.2.5.

Type Description Dual Graph

I0 Smooth elliptic curve Ã0

I1 Rational curve with a node, i.e. an ordinary double point Ã0

I2 Two smooth rational curves meeting transversely at two point Ã1

In, n ≥ 3 n smooth rational curves meeting in a cycle Ãn−1

mIn Topologically an In, but appearing with multiplicity m Ãn−1

I∗n n+ 5 smooth rational curves with dual graph D̃n+4 D̃n+4

II Rational curve with a cusp Ã0

II∗ Nine smooth rationals meeting with dual graph Ẽ8 Ẽ8

III Two smooth rationals meeting at one point with multiplicity 2 Ã1

III∗ Eight smooth rationals meeting with dual graph Ẽ7 Ẽ7

IV Three smooth rationals meeting at one point Ã2

IV∗ Seven smooth rationals meeting with dual graph Ẽ6 Ẽ6

Table 1: Kodaira’s table of singular elliptic fibres.

The following technical lemma will be needed at the end of the proof of Kodaira’s classification.

Lemma 4.2.4. Let X0 be a fiber of π : X ! C of multiplicity m, and write X0 = mF . If F is simply

connected, then m = 1.
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Proof. By Lemma 2.5.11, this will follow from showing that PicF is torsion-free. Note that the exponential

exact sequences gives rise to the exact sequence

H1(F ;Z) = 0! H1(F ; OF )! PicF ! H2(F ;Z)! 0,

but H1(F,OF ) is a vector space, hence torsion free, and H2(F ;Z) ' Z since F is compact, connected, so

PicF is the extension of something torsion free by something torsion free. This implies that PicF is torsion

free. �

Theorem 4.2.5 (Kodaira’s Classification of Singular Fibers of Elliptic Fibrations). The only

possible fibers for a smooth minimal elliptic surface are those listed Table 1.

Proof. Write a fiber X0 as mF with m ∈ Z the multiplicity of X0, and write F =
∑
riCi. If F is irreducible,

then, since its arithmetic genus is one, its either a smooth elliptic curve (type I0 if m = 1), a nodal rational

curve (type I1 if m = 1), or a cuspidal rational curve (type II if m = 1). Hence, assume F reducible.

By the adjunction formula, KXXη = 0 for a general fiber Xη. Since mF = X0 is a fiber, we see that

m ·KXF = 0 =⇒ KXF = 0 as well, so

0 =
∑

riCiKX =
∑

ri
(
2g(Ci)− 2− C2

i

)
.

We claim that all the coefficients 2g(Ci)− 2−C2
i are non-negative. Indeed, if CiKX = 2g(Ci)− 2−C2

i < 0,

then

−2 ≤ 2g(Ci)− 2 < C2
i ≤ −1

(rightmost inequality coming from Zariski’s lemma), so we would have g(Ci) = 0 (making Ci smooth rational)

and C2
i = −1, contradicting minimality. Now, since each ri > 0, we must have 2g(Ci)− 2− C2

i = 0 so Ci is

smooth rational with self-intersection −2. Finally, let G be the dual graph to the fiber F which must be one

of the extended Dynkin diagrams (but not Ã0). If G is Ã1, then F must be either I2 (if the two components

meet at two points) or III (if they meet at one point with multiplicity 2). If G is Ã2, then F is either I3

(if the components meet in a cycle) or IV (if they all meet at one point). In all other cases, there is no

ambiguity to how the components meet, and we obtain the types IN , N ≥ 4 (ÃN−1), I∗N (D̃N+4), and the

types IV∗, III∗, II∗ (Ẽ6, Ẽ7, and Ẽ8).

This completes the analysis when m = 1. If m 6= 1, then F must not be simply connected by the previous

lemma, so only F = In, n ≥ 0 are allowed. This gives the types mIn and so we finish. �

4.3 Local Monodromy

Now that we have a list of potential singular fibers, we seek to understand some properties of (smooth,

relatively minimal) elliptic surfaces near each type of fibration. In particular, because our base curve is

necessarily smooth, the local picture always looks like a fibration π : X ! ∆ whose only nonsingular fiber is

X0 = π−1(0). Hence, the restriction X \X0
π
−! ∆ \ {0} is a fibre bundle by Ehresman’s lemma. As a general

fact, such a situation gives rise to an action of the fundamental group π1(∆ \ {0}) ' Z of the base on the

homology H1(Xs) of a nearby nonsingular fiber. Indeed, since X \X0 ! ∆ \ {0} is a locally trivial fibration,

a loop γ ∈ π1(∆ \ {0}) induced a continuous map Lγ : F ! F where F = π−1(γ(0)) and Lγ(x) = γ̃(1) for

the unique lift γ̃ : [0, 1]! X \X0 of γ : [0, 1]! ∆ \ {0} based at x – i.e. π ◦ γ̃ = γ and γ̃(0) = x. This map

then naturally induces a map H1(Xs)! H1(Xs) on homology.
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Technical Aside 4.3.1. One can think of this induced action more algebraically/sheaf theoretically. Letting

f = π|X\X0
! ∆ \ {0} be the restriction of π, Proposition A.3 shows that the sheaf f∗1ZX\X0

on ∆ \ {0}
is locally constant, and its stalk at a nonzero point s ∈ ∆ is H1(Xs;Z). By the discussion following that

proposition, this sheaf then gives rise to an action of π1(∆ \ {0}) on H1(Xs;Z). Because Xs is a compact

curve, Poincaré duality allows us to identify H1(Xs) ' H1(Xs) and so f∗1ZX\X0
equally gives rise to an

action on homology, which agrees with the one described above topologically.

Definition 4.3.1. Let π : X ! ∆ be an elliptic fibration with smooth fibers except possibly above 0 ∈ ∆,

and let γ ∈ π1(∆ \ {0}) ' Z be the generator circling the origin once in the counterclockwise direction.

Then, the automorphism T = Tγ : H1(Xs) ! H1(Xs) induced by γ acting on homology is called the local

monodromy around 0.

The aim of this section is to calculate local monodromy for many of the types of singular fibers appearing

in Kodaira’s classification. In order to keep the section a reasonable length, we will not give detailed

calculations of the monodromy of all types of singular fibers. However, we will say a few words concerning

the types not handled here at the end. Our strategy for calculating these monodromy actions comes from

expanding the arguments outlined in [2, Ch. V, Sect. 8–10].

Since our fibrations are elliptic, after choosing a basis for H1(Xs) ' Z2, we may identify the local

monodromy map with a matrix T ∈ GL2(Z), and so we will present the results of our calculations in

the form of matrices. Note that, viewed as a matrix, monodromy is only defined up to conjugation (with

ambiguity coming from the choice of basis of H1(Xs)). The strategy for performing these calculations will

depend on the type. The types In are special in that they are so-called “stable fibrations”. For our purposes,

this simply means the only singularities on the singular fibre are ordinary double points which, because they

have a canonical local form, can be dealt with explicitly. For the remaining types of singular fibres, one

calculates their monodromy somewhat indirectly by realising them as arising in a quotient of a stable elliptic

fibration by a cyclic group.

4.3.1 Monodromy around an ordinary double point

Setup. Let f : X ! ∆ be a fibration of a surface X over the unit disk ∆ = {z ∈ C : |z| < 1}. Assume that

X0 = f−1(0) is the only singular fibre of f and that X0 is reduced with no singularities other than ordinary

double points.

The goal of this section is to describe, mostly without proof, how to determine the monodromy action

in this case. We will see that it is controlled by the existence of a number of “vanishing cycles,” homology

classes in Xs which degenerate to a singular point of X0 as s! 0.

Let p(i) ∈ X0 be an ordinary double point. Since X0 = {f = 0} ⊂ X, by Theorem 2.4.7, there are

coordinates (x, y) near p(i) such that f(x, y) = x2 + y2. Let B(i) be the ball B(i) =
{
|x|2 + |y|2 ≤ 1

}
of

radius 1, and let B
(i)
t = B(i) ∩ f−1(t), its fiber over t ∈ ∆. For each nonzero t ∈ ∆, the fiber B

(i)
t is smooth

and contains the circle

S
(i)
t =

{
(x, y) ∈ B(i) : x2 + y2 = t, |x|2 + |y|2 = |t|

}
=
{(
a
√
t, b
√
t
)
∈ B(i) : (a, b) ∈ R2 and a2 + b2 = 1

}
of radius

√
|t|, where above, we’ve fixed a particular

√
t ∈ C (The choice of

√
t does not affect the S

(i)
t as a

topological space, but does affect its orientation). As t! 0, the circle S
(i)
t contracts to the point p(i) ∈ X0.
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One can imagine formally setting t = 0 in the above description of S
(i)
t to obtain S

(i)
0 = {(0, 0)} =

{
p(i)
}

(recall (x, y) are coordinates on X centered at p(i)). Alternatively, one can think of S
(i)
0 as the result of

taking the topological closure
⋃
t∈∆
t6=0

S
(i)
t ⊂ X of the union of all the S

(i)
t and then looking at its restriction to

the fiber X0 above 0. In this case, we once again have9

S
(i)
0 =

⋃
t∈∆
t 6=0

S
(i)
t ∩X0 = {(0, 0)} = {p(i)}.

In either case, the circles S
(i)
t contract to a point as t ! 0, and so we call S

(i)
t – or rather, its homology

class in H1(Xt;Z) – a vanishing cycle. These vanishing cycles, one for each double point (defined only up

to sign), control the monodromy action by way of the following result.

Theorem 4.3.1 (Picard-Lefschetz Formula). Let β(i) ∈ H1(Xs;Z) represent the vanishing cycle associ-

ated to p(i) ∈ X0. Then, the monodromy map is given by

T (α) = α−
∑
i

(α · β(i))β(i),

where α ∈ H1(Xs;Z) and α · β(i) denotes their intersection number.

Proof. [14, Section 3.2] �

The proof of this theorem is reasonably involved, so including it would detract too much from the goal

of seeing examples of performing monodromy calculations. For this reason, we have omitted the proof here,

and instead recommend reading it in the book by Voisin.

4.3.2 Singular Fibers of Type In

We now have enough tools under our belt to compute a few examples. We start with the simplest of cases:

an elliptic fibration with no singular fibers.

Example (Type I0). Let z : ∆ ! H be a holomorphic function from the unit disk to the upper half plane

H = {z ∈ C : Imz > 0}, and let Z× Z act on C×∆ via

(m,n) · (c, s) = (c+m+ nz(s), s).

Form the quotient X = C × ∆/Z × Z which is a non-singular surface fibred over ∆. By construction

Xs ' C/(Z⊕ Zz(s)) is an elliptic curve. The monodromy here is trivial because X ! ∆ is a fibration with

contractible base.

The next example will be a little more interesting. Before getting to it, recall that there exists an analytic

isomorphism j : H/ SL2(Z) ! C from the moduli space of smooth elliptic curves to C such that j(z) = 0 if

z is in the same orbit as e( 1
6 ) = exp(2πi/3) under the SL2(Z)-action, and j(z) = 1 if z is in the same orbit

9If you have a sequence of points (xn, yn) ∈
⋃
S
(i)
t such that (x, y) := lim(xn, yn) ∈ X0 (i.e. f(x, y) = x2 + y2 = 0), then

lim f(xn, yn) = 0 so also, by definition of the S
(i)
t ’s, |x|2 + |y|2 = lim(|xn|2 + |yn|2) = 0, so (x, y) = (0, 0).
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as i. Explicitly, given an elliptic curve of the form E : y2 = 4x3 − g2x− g3, we have

j(E) =
g3

2

g3
2 − 27g2

3

.

The fact that the denominator is nonzero turns out to be equivalent to smoothness of E. With this in

mind, given an elliptic fibration π : X ! S, we define its period map (or functional invariant) to be

J(s) = j(Xs).

Remark 4.3.1. Consider a fibration in Weierstrass normal form

X =
{

([z0 : z1 : z2] , s) ∈ P2 ×∆ | z0z
2
2 = 4z3

1 − g2(s)z2
0z1 − g3(s)z3

0

}
,

for holomorphic g2, g3 : ∆! C, then,

J(s) =
g2(s)3

g2(s)3 − 27g3(s)2
,

with Xs non-singular if and only if g3
2(s) 6= 27g2

3(s).

Example (Type I1). Let X be as in the previous remark with g2(s) = 3− s and g3(s) = 1− s, so

X =
{

([z0 : z1 : z2] , s) ∈ P2 ×∆ | z0z
2
2 = 4z3

1 + (s− 3)z2
0z1 + (s− 1)z3

0

}
.

We first show that X is non-singular. Consider the function F (z0, z1, z2, s) = 4z3
1+(s−3)z2

0z1+(s−1)z3
0−z0z

2
2

whose partials are

∂F
∂s = z2

0z1 + z3
0

∂F
∂z2

= −2z0z2

∂F
∂z1

= 12z2
1 + (s− 3)z2

0
∂F
∂z0

= 2(s− 3)z0z1 + 3(s− 1)z2
0 − z2

2

which only all vanish when (z0, z1, z2) = 0, and so never all vanish at a point of X = {F = 0}. Thus, X

is non-singular. We claim also that X0 = {F0 := F (·, ·, ·, 0) = 0} is an irreducible rational with node at[
1 : − 1

2 : 0
]
, and that Xs is non-singular elliptic for s 6= 0. This last bit can be verified by looking at the

functional invariant

J(s) =
(3− s)3

s(27− 18s− s2)

whose denominator vanishes only when

s(27− 18− s2) = 0 ⇐⇒ s = 0 or s = −9± 6
√

3,

but the latter values do not lie in the unit disk. Returning to X0, its partials are

∂F0

∂z0
= −6z0z1 − 3z2

0 − z2
2

∂F0

∂z1
= 12z2

1 − 3z2
0

∂F0

∂z2
= −2z0z2

which all vanish at [z0 : z1 : z2] = [1 : − 1
2 : 0] and nowhere else. This is the only singular point of X0, so

we only need to show that it is a node to verify that X0 is of type I1. Indeed, X0 is the (projectivization of

the) curve E : y2 = 4x3 − 3x− 1 = (2x+ 1)2(x− 1) which is visibly a nodal cubic.
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Finally, we wish to calculate the monodromy which we claim is given by

T =

(
1 1

0 1

)
.

For real s ∈ ∆ (i.e. s ∈ (0, 1)), the polynomial fs(x) = 4x3+(s−3)x+(s−1) has three real roots s1 < s2 < s3

since its discriminant is nonzero for such s and since it has 3 real roots when s = 1. As s! 0, we see that

s1, s2 ! − 1
2 and s3 ! 1 since these are the roots of f0(x) = (2x− 1)2(x+ 1). Now, consider the projection

p : ([z0 : z1 : z2], s) 7! (z1 : z0) (which is a rational map, not a morphism). For a fixed s 6= 0, this exhibits

Xs as a double cover of P1 = {[0 : 1]} ∪ C ramified at s1, s2, s3, and ∞ = [0 : 1]. Let a = p−1([−∞, s1]) and

b = p−1([s1, s2]), two simple closed loops in Xs. From our earlier remark on the roots of fs, we see that b is

a vanishing cycle. Furthermore, a, b generate H1(Xs) ' Z2. To see that they are linearly independent it is

enough to note that their intersection number a · b is ±1 since they meet in a single point. Hence, given a

vanishing linear combination na+mb = 0 ∈ H1(Xs) (with n,m ∈ Z), we have

0 = (na+mb) · b = ±n =⇒ 0 = na+mb = mb =⇒ m = 0,

so n = m = 0. Above, we used b2 = 0 since its fundamental cohomology class [b]∗ ∈ H1(Xs;Z) lives in

odd-dimensional cohomology, so [b]∗ ^ [b]∗ = −[b]∗ ^ [b]∗ which makes b2 a torsion element of Z. Thus, a, b

give a basis for H1(Xs), and Picard-Lefschetz shows that T (b) = b− (b2)b = b while T (a) = a− (a · b)b. In

order to completely determine the monodromy action, we only need to calculate a · b.
We will do this rather explicitly. Let E =

{
(z1, z2) ∈ C2 : z2

2 = 4z3
1 + (s− 3)z1 + (s− 1)

}
= “Xs ∩ C2”

be an affine slice of the projective curve Xs. In these coordinates, the projection p above becomes the

map E ! C given by p(z1, z2) = z1. Letting (x1, y1, x2, y2) = (Rez1, Imz1,Rez2, Imz2) denote the real and

imaginary parts of z1, z2, we can express E in real coordinates as

E =

{
(x1, y1, x2, y2)

∣∣∣∣∣x2
2 − y2

2 = 4x3
1 + (s− 3)x1 + (s− 1)− 12x1y

2
1

2x2y2 = y1(12x2
1 − 4y2

1 + s− 3)

}
⊂ R4.

We are interested in calculating the intersection number between the curves a = p−1((−∞, s1]) and b =

p−1([s1, s2]). As both of these are contained in ER := p−1(R), y1 = 0 on a, b. That is, on the part of E we

care about, we have 2x2y2 = 0, so x2 = 0 or y2 = 0. Furthermore, since x2, y2 vary continuously with x1,

the coordinate that must be 0 can only change over branch points, e.g. if x2 = 0 over any point in a not

lying over s1, then x2 = 0 on all of a. Recall that

fs(x1) = 4x3
1 + (s− 3)x1 + (s− 1).

Since x2
2 − y2

2 = fs(x1) on a and fs(x1)! −∞ as x1 ! −∞, we see that x2 = 0 on all of a. Similarly, that

fs(x) is increasing near s1 (since −y2
2 = fs(x) < 0 when x < s1 but fs(s1) = 0), let’s us see that y2 = 0 on

all of b. All together (i.e. using that y1 = 0 = x2 on a), this means that a = p−1((−∞, s1]) is given by

a =

{
(x1, y1, x2, y2)

∣∣∣∣∣−y2
2 = 4x3

1 + (s− 3)x1 + (s− 1) = fs(x1)

y1 = x2 = 0

}
⊂ R4,

so we can think of (the “front half” of) a as the curve α(t) =
(
t, 0, 0,

√
−fs(t)

)
and (the “top half” of) b as
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the curve β(t) =
(
t, 0,

√
fs(t), 0

)
. Using these parameterizations, we can calculate the tangent vectors of a, b

at their point of intersection q := (s1, 0, 0, 0), and use this to determine a·b. With the given parameterization,

the (unit/normalized) tangent vector to a at q is

lim
t!s−1

α′(t)

‖α′(t)‖
= lim
t!s−1

(
1, 0, 0,− 1

2f
′
s(t)/

√
−fs(t)

)
√

1− 1
4f
′
s(t)

2/fs(t)
.

Since10

−1

2
lim
t!s−1

f ′s(t)√
−fs(t)

√
1− 1

4f
′
s(t)

2/fs(t)
= −1

2
lim
t!s−1

f ′s(t)√
1
4f
′
s(t)

2 − fs(t)
=
− 1

2f
′
s(s1)√

1
4f
′
s(s1)2

= −1,

and

lim
t!s−1

(
1− 1

4

f ′s(t)
2

fs(t)

)−1/2

= 0

we see that the normalized tangent vector to a at q, in more standard notation, is − ∂
∂y2

∣∣∣
q
. Similarly, the

normalized tangent vector to b at p is

lim
t!s+1

β′(t)

‖β(t)‖
= lim
t!s+1

(
1, 0, 1

2f
′
s(t)/

√
fs(t), 0

)
√

1 + 1
4f
′
s(t)/fs(t)

= lim
t!s+1

(1 +
1

4

f ′s(t)

fs(t)

)−1/2

, 0,
1

2

f ′s(t)√
fs(t) + 1

4f
′
s(t)

, 0


= (0, 0, 1, 0).

In more standard notation, it is ∂
∂x2

∣∣∣
q
. Finally, the tangent space TqE to E at q = p−1(s1) has (ordered)

basis ∂
∂x2

∣∣∣
q
, ∂
∂y2

∣∣∣
q

while we have just shown that the intersection a · b gives rise to the (ordered) basis

− ∂
∂y2

∣∣∣
q
, ∂
∂x2

∣∣∣
q
. Since this is the same orientation as that on TqE (i.e. since, in

∧2
TqE, we have − ∂

∂y2

∣∣∣
q
∧

∂
∂x2

∣∣∣
q

= ∂
∂x2

∣∣∣
q
∧ ∂

∂y2

∣∣∣
q
), we conclude that a · b = 1.

Now that we have calculated a · b = 1, Picard-Lefschetz shows that T (a) = a − (a · b)b = a − b, and we

previously saw that T (b) = b. Recalling that the monodromy matrix is only defined up to conjugation, in

order to obtain the particular matrix that is standard to write down in the case of type I1, we use the basis

{b,−a}. In this basis, our monodromy matrix is

T =

(
1 1

0 1

)

as claimed.

This covers types I0 and I1. In order to ensure this section has finite length, instead of continuing

this pattern of bumping the index by one with each example, we will handle the cases In for all n ≥ 2 at

10Below, we use −fs(t) > 0 for t < s1, fs(s1) = 0, and f ′s(s1) > 0. The last fact is true because fs is strictly increasing near
s1.
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once. With many examples of these monodromy calculations, the main difficulty lies not in determining the

monodromy itself, but in constructing a fibration with a singular fiber of a given type. For type In, we are

partially luckily, because these can be constructed from a fibration of type I1, which we constructed above,

by taking (square, cube, etc.) “roots” of the I1 fibration. However, while the construction itself is easy to

give, we will see that verifying that it gives a fiber of type In still takes some time.

Example (Type In). Let f : X ! ∆ be an elliptic fibration with a single singular fiber X0 = f−1(0) of

type I1, and let δn : ∆! ∆, s 7! sn be the nth power map. Consider the below commutative diagram

X(n) X ′′ X ′ X

∆ ∆ ∆ ∆

τ′′

f(n)

τ(n)

τ′

f ′′

τ

f ′ f

δn

where X ′ = X×∆ ∆ is the fibre product, X ′′ is the normalization of X ′, and X(n) is the minimal desingular-

ization of X ′′, which we claim has a singular fibre of type In. We first describe the singularity in the fibre X ′′0

of X ′′ above 0 ∈ ∆. Let p ∈ X0 be the double point. so, by Theorem 2.4.7, near p we have coordinates (x, y)

such that f(x, y) = x2 + y2. Hence, near the unique point (p, 0) ∈ X ′ = {(z, s) ∈ X ×∆ : f(z) = δn(s)}
above p, the fibre product is isomorphic to the affine surface

S :=
{

(s, x, y) : sn = x2 + y2
}
⊂ C3,

Because the above surface is normal11 the same is true about X ′′, i.e. near its unique point q ∈ X ′′ over

p ∈ X, it is isomorphic to S. Now, S has a singularity of type An−1 at (0, 0, 0) but is otherwise nonsingular.

To make showing this slightly easier, we perform the change of variables u = x+ iy and v = x− iy in order

to rewrite S as

S ' {(s, u, v) : sn = uv} ⊂ C3.

Now, for ζ ∈ C× a primitive nth root of unity, g : C2 ! C2, (a, b) 7! (ζa, ζ−1b) the canonical action giving

rise to an An−1 singularity (recall Remark 2.3.8), and G = 〈g〉, we have an isomorphism

φ : C2/G −! S

[(a, b)] 7−! (ab, an, bn)

whose inverse is
ψ : S −! C2/G

(s, u, v) 7−!
[(
u1/n, v1/n

)]
This shows that S has an An−1 singularity at (0, 0, 0) and consequently, that X ′′ has one at q, its unique

point over the double point p ∈ X0. The point q lies in X ′′0 = (τ ◦ τ′)−1
(X0) and, because it is an An−1

singularity, is resolved under τ′′ by a string C2, . . . , Cn of (−2)-curves. Letting C1 = (τ′′)
−1

(X ′′0 \ {q}) be

the proper transform of X ′′0 , we have that

X
(n)
0 =

(
f (n)

)−1

(0) = mC1 +

n∑
i=2

Ci

11To avoid interrupting the flow of things, we will show this below the current example
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C2 C3
. . . Cn

Figure 7: The dual graph of (τ′′)
−1

(q)

for some m > 0, and we know CiCj when i, j ≥ 2. We claim that m = 1, that C1C2 = C1Cn = 1, and that

C1Ci = 0 for all i ∈ {3, . . . , n − 1}, showing that X ′′0 is of type In (i.e. showing the Ci meet in a cycle of

length n). Indeed, for any j ∈ {3, . . . , n− 1}, we have

0 = X
(n)
0 Cj = mC1Cj +

n∑
i=2

CiCj = mC1Cj + Cj−1Cj + Cj+1Cj + C2
j = mC1Cj + 1 + 1− 2 = mC1Cj .

Since m > 0, we conclude that C1Cj = 0. Similarly,

0 = X
(n)
0 C2 = mC1C2 − 2 + 1 = mC1C2 − 1.

Since m > 0 and C1C2 ∈ Z, we conclude that m = C1C2 = 1. Finally, C1Cn = 1 as well since

0 = X
(n)
0 Cn = C1Cn + 1− 2 = C1Cn − 1.

Thus, the dual graph to X ′′0 is a cycle of length n, making it a singularity of type In.

Finally, we calculate its monodromy. For this, note that we have the following commutative diagram

X(n) \X(n)
0 X ′ \X ′0 X \X0

∆ \ {0} ∆ \ {0} ∆ \ {0}

∼

δn:s7!sn

so, as far as monodromy is concerned, we may think of X(n) as simply being an n-fold cover of X \X0. As

such, the action of a generator γ ∈ π1(∆ \ {0}) on X(n) is just n times its action on X. More formally, the

local monodromy T : H1(Xs)! H1(Xs) of X(n) is given by the matrix

T =

(
1 1

0 1

)n
=

(
1 n

0 1

)
.

We now fulfill a promised made in a footnote by showing that the surface S considered in the previous

example is a normal complex space. The proof of this fact will be more “algebraic” than most of the

arguments in this section, but it is good to include for completeness.

Lemma 4.3.2. Let S =
{

(s, x, y) : sn = x2 + y2
}
⊂ C3. This surface is normal.

Proof. Let OC3 denote the sheaf of holomorphic functions on C3, and let I ⊂ OC3 be the ideal sheaf

generated by f(s, x, y) = x2 + y2 − sn, so OS = OC3/I . Hence, for any point p ∈ S, we have

OS,p = OC3,p/Ip ' C {s, x, y} /(x2 + y2 − sn),

so we only need show this latter ring is integrally closed. where C{s, x, y} is the ring of convergent power

series in 3 variables.
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Let F = FracC {s, x}, and let E = F JyK /(y2−(sn−x2)) = F [y]/
(
y2 −

(
sn − x2

))
, a quadratic extension

of F . Note that any element α ∈ E can be written in the form α = g+hy with g, h ∈ F , and so satisfies the

polynomial

(X − (g + hy))(X − (g − hy)) = X2 − 2gX + (g2 − h2(sn − x2)) ∈ F [X].

Hence, α = g + hy ∈ A is integral over R := C Js, xK if and only if both 2g ∈ R and g2 − h2(sn − x2) ∈ R.

Since 1
2 ∈ R, we see that we have g ∈ R and so h2(sn − x2) ∈ R as well, when α is integral over R. If

h ∈ FracR has a nontrivial denominator, then h2(sn−x2) will too. This is because (sn−x2) is not a square

in the UFD R, so some irreducible π ∈ R divides it with odd multiplicity, but every irreducible in R divides

(the denominator of) h2 with even multiplicity. Thus, α ∈ E is integral over R iff g ∈ R and h ∈ R iff

α ∈ R[y]/(y2− (sn− x2)) ' OS,p. Therefore, OS,p is the integral closure of R in E, and so it itself integrally

closed. This proves that S is normal. �

The above lemma officially finishes off our monodromy calculations for elliptic fibres of type In, so we

may now move on to other fibre types.

4.3.3 Singular Fibers of Type III and I∗n

The Picard-Lefschetz formula, which was the main workhorse behind computing monodromy for fibers of

type In, no longer applies for any of the other types; it is specific to calculating the monodromy around an

ordinary double point. For the remaining fiber types, the strategy for calculating monodromy is in a sense

“dual” to the strategy used to calculate monodromy around a fiber of type In, n > 1, in the previous section.

In that case, we were able to realize a fibre of type In as, essentially, a pullback of a fiber of type I1 along

the nth power map δn : ∆ ! ∆, s 7! sn. This allowed us realize the monodromy around a fiber of type In

as the nth power of the monodromy around a fiber of type In.

For the remaining fiber types, we do the opposite. It is a fact ([2, Ch. III, Sect. 10] combined with

Lemma 4.1.1) that every fiber type can be realized as a quotient of a fiber of type In, for some n, acted

on by a cyclic group G. Morally, for each fiber type, if you pull it back along the nth power map for an

appropriately chosen n, you end up with a fiber of type Ik for some k. Miraculously, for most of the remaining

fiber types, you can arrange it so that this pullback has no singular fibers (is type I0); in other words, most

remaining fiber types can be realized as the quotient of an elliptic surface with no singular fibers acted on

by some cyclic group. We will see how this can play out in the following example.

The only remaining (reduced) fiber type which cannot be realized as the quotient of one of type I0 is the

type I∗n when n ≥ 1. Instead, this is most easily constructed as the quotient of a fiber of type I2n. We will

perform this construction, and subsequent monodromy calculation, after doing so for type III below.

Example (Type III). Let z : ∆! C be the holomorphic map z(s) = i+is2

1−s2 , and note that

z(is) =
i− is2

1 + s2

i

i
=
s2 − 1

i+ is2
= − 1

z(s)
.

Let Y be the surface Y = C×∆/(Z⊕ Z) where Z⊕ Z acts by

(m,n) · (c, s) = (c+m+ nz(s), s),

so in particular, Y0 = C/(Z ⊕ Zi). Note that Y has an automorphism µ : Y ! Y induced by the map
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(c, s) 7!
(
− c
z(s) , is

)
= (cz(is), is) on C×∆. This is well-defined on Y because

µ((m,n) · (c, s)) = (−n,m) · µ(c, s)

for any m,n ∈ Z and (c, s) ∈ C×∆. Let G = 〈µ〉 ' Z/4Z by the cyclic group of automorphisms generated

by µ, let Y ′ = Y/G, and let p : Y ! Y ′ be the natural quotient map. Y ′ is smooth away from the images of

points of P ∈ Y with non-trivial isotropy subgroups GP = {σ ∈ G : σ(P ) = P}, so we begin our investigation

of it by finding these fixed points.

Every non-trivial subgroup of G is generated by µ or µ2, so we really only care about the fixed points of

these two elements. We begin with µ. Any fixed point (c, s) of µ must satisfy s = is, and so have s = 0.

Since z(0) = i and µ(c, 0) = (ic, 0), any fixed point must also satisfy

c− ci = m+ in =⇒ c =
(m− n) + i(m+ n)

2

for some m,n ∈ Z. Thinking of (c, 0) as an element of Y0 = C/(Z ⊕ Zi), we see that c gives a well-defined

class in ( 1
2Z⊕

1
2Zi)/(Z⊕ Zi), and so there are at most 4 unique points of Y fixed by µ. These are

P1 = (0, 0) P2 =

(
1 + i

2
, 0

)
P3 =

(
i− 1

2
, 0

)
P4 = (i, 0)

We see immediately that P1 = P4, P2 = P3, and P1 6= P2 (as elements of Y , not C×∆), so Y has two points

with isotropy subgroup G ' Z/4Z. One can similarly find the fixed points of µ2 which leads them to

Q1 = (0, 0) Q2 =

(
1

2
, 0

)
Q3 =

(
i

2
, 0

)
Q4 =

(
1 + i

2
, 0

)
Here, we have that Q1 = P1 and Q4 = P2 are the µ-fixed points we already found, so Q2 6= Q3 are the only

points on Y with isotropy subgroup
〈
µ2
〉
' Z/2Z.

Referring back to Theorem 2.3.10 (in either case, the weights are (1, 1) since µ looks like multiplication

by i in both slots), we can see that the points P1, P4 give rise to two A4,1 singularities, p(P1) 6= p(P4).

However, the points Q2, Q3 have the same image p(Q2) = p(Q3) ∈ Y ′, and so give rise to a double A1 = A2,1

singularity. This is to say that we can resolve Y ′’s singularities by a smooth surface Y ! Y ′ which has

(distinct) smooth rationals with self-intersection −4 above p(P1), p(P4) and a double smooth rational with

self-intersection −2 above p(Q2) = p(Q3). The spaces defined so far fit into a diagram like so

C×∆

Y Y ′ X Y

∆ ∆ ∆ ∆

p

π π′ π

q

δ4:s 7!s4

where X is a relatively minimal model of Y , obtained by blowing down all (−1)-curves in its fibers.

Because Y \ Y 0 ' Y ′ \ Y ′0 , the only (−1)-curves of Y are contained in the fiber Y 0 above 0. By the

remarks on how Y resolves Y ′’s singularities, we know that Y 0 = q∗Y ′0 + 2B + D1 + D2 with B,D1, D2

smooth rational, B2 = −2 and D2
1 = D2

2 = −4. Hence, any (−1)-curve in Y 0 must originate from Y ′0 . We
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claim that Y ′0 is a (singular) rational curve of multiplicity 4, so q∗Y ′0 = 4C with C ⊂ Y 0 smooth rational.

To see this, consider the map f = π′ ◦ p : Y ! ∆, P 7! π(P )4, so Y ′0 = p(f−1(0)). Now, f−1(0) ⊂ Y is the

analytic subspace whose ideal sheaf is

If−1(0) := f∗(I0) = π∗(δ∗4(I0)) = π∗(I 4
0 ) = (π∗(I0))4 = I 4

Y0
,

where I0 ⊂ O∆ is the ideal sheaf of 0 ∈ ∆ and IY0
= π∗I0 is the ideal sheaf of the fiber Y0 of π. This shows

that Y ′0 = p(f−1(0)) is the curve p(Y0) with multiplicity 4. Since Y0 has genus 1, the arithmetic genus of p(Y0)

is at most 1, but since p(Y0) is singular, its geometric genus is strictly less than its arithmetic genus, so p(Y0)

has geometric genus 0, i.e it is rational. Hence, Y ′0 really is rational of multiplicity 4 as claimed. As such,

Y 0 = 4C+2B+D1+D2 with B,D1, D2 as before and C ' P1. Note that, in addition to the self-intersections

B2 = −2 and D2
1 = D2

2 = −4, we have that CB = CD1 = CD2 = 1 while BD1 = BD2 = D1D2 = 0.

Combining these with the fact that (Y 0)2 = 0, one sees that C2 = −1. Returning to our formation of the

minimal desingularization X of Y ′, we have just shown that C, the proper transform of Y ′0 under the map

q : Y ! Y ′, is the unique (−1)-curve on Y . The result of blowing it down, followed by blowing down all

new (−1)-curves that arise, is shown in the sequence of incidence graphs in Figure 8. Hence, we do indeed

4(−1)

1(−4) 2(−2) 1(−4)

1(−3) 1(−3)

2(−1)
1(−2)

1(−2)

Figure 8: The incidence graphs obtained by successively blowing down the (−1)-curves of Y 0. Each line
represents in rational curve in the fiber above 0. A line labelled “m(s)” indicates that the corresponding
copy of P1 appears with multiplicity m and has self-intersection s. To go from one graph to the next, we
blowdown the (−1)-curve and then adjust self-intersections in accordance with Corollary 2.3.4. The end
result is two smooth rationals meeting at a double point.
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end up with a fibration X ! ∆ with a single singular fibre of type III (two smooth rationals meeting at a

double point).

With all that out of the way, calculating monodromy should now be simple. The purpose of the majority

of the work done above was to construct a smooth elliptic fibration so as to identify which type in Kodaira’s

table we are going to calculate the monodromy for. However, the monodromy action is calculated from

the data of the spaces away from the singular fibers. That is, we throw away the fiber above 0 in order to

get a well-defined monodromy. Hence, the monodromy of X ! ∆ agrees with that of Y ′ ! ∆. Put more

rigorously, because we have a commutative diagram

Y ′ \ Y ′0 X \X0

∆ \ {0}

∼

whose horizontal arrow is an isomorphism, the monodromy of X agrees with that of Y ′ = Y/G. To calculate

the monodromy of Y ′, first let ∆∗ = ∆ \ {0}, Z = Y \ Y0 and Z ′ = Y ′ \ Y ′0 for notational convenience, and

then note that we have a commutative diagram

Zs Z ′s4

G Z Z ′

G ∆∗ ∆∗

p

π π′

δ4

whose rows and columns are fiber sequences. Above we’ve fixed a basepoint z = (c, s) ∈ Z (e.g. s ∈ ∆∗

and c ∈ C/Z ⊕ Zz(s)) and the map G ! Z sends µk 7! µk(z) ∈ Z where µ : Z ! Z is the automorphism

generating G. Keep in mind that ∆∗ is homotopy equivalent to S1, and let γ ∈ π1(∆∗, s4) be the generator

circling the origin once counterclockwise. Then, γ lifts to a map γ̃ : [0, 1]! ∆∗ from γ̃(0) = s to γ̃(1) = is.

Recall that Z is fibered trivially over ∆∗, i.e. topologically π : Z ! ∆∗ is equivalent to the natural projection

T ×∆∗ ! ∆∗ where T ∼= S1 × S1 is a torus.12 Thus, the map Lγ̃ : Zs ! Zis induced by γ̃ acts trivially on

homology. More specifically, we have a commutative diagram

T T

Zs Zis

Z ′s4 Z ′s4

∼

Lγ̃

∼

Lγ

which will allow us to compute γ’s monodromy action of Z ′s4 . For a ∈ C and s ∈ ∆, let γa;s : [0, 1]! C×∆

12If you take T = C/(Z⊕ Zi), then an explicit equivalence f : Z ! T ×∆∗ is given by

f(c, s) =

(
c+

i− z(s)
z(s)− z(s)

(c− c), s
)

since this sends Z⊕ Zz(s) to Z⊕ Zi, is bijective, and commutes with the projections Z, T ×∆∗ ⇒ ∆∗.
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Figure 9: A visualization of how the basis α, β of H1(Z ′s4 ;Z) transforms under monodromy when s = 1+i
2 .

On the left we show α, β’s lifts to C×{s}. On the right, we show their lifts to C×{is} as well as the images
Lγ̃(α), Lγ̃(β) of their lifts (to s) under the monodromy map induced by γ̃.

denote the path γa;s(t) = (ta, s), i.e.

γa;s is the “straight line path from 0 to a in C× {s}”.

Then13, α = [γ1;s] = [γz(is);is] and β = [γz(s);s] = [γ−1;is] generate H1(Z ′s4 ;Z). Using the commutative

diagram above, one sees that Lγ̃ sends

γ1;s 7−! γ1;is and γz(s);s 7−! γz(is);is,

where we’ve abused notation by identifying these paths with their images in Z. This action is visualized in

Figure 9. Thus, on homology, Lγ sends α 7! −β and β 7! α, so the monodromy matrix in the basis {α, β} is

T =

(
0 1

−1 0

)
,

finally completing the calculation.

The example of type III exhibits all the techniques one needs to calculate the monodromy around all of

the remaining fiber types with the single possible section of type I∗n (for n ≥ 1). As was noted earlier, in this

case, one has to take the quotient of a fiber of type I2n instead of one of type I0, so there is a bit of extra

difficulty in carrying out the initial construction. However, as we will soon see, once this construction has

been made, verifying that you obtain a fiber of the expected type and calculating its monodromy are both

done analogously to the work above.

Example (Type I∗n, n ≥ 1). Let Y
p
−! ∆ be an elliptic fibration with a single non-smooth fiber, whose type

is I1, let δ : s 7! s2n be the (2n)th power map on ∆, and consider the spaces Y ′, Y (2n) where Y ′ = Y ×∆ ∆

is the pullback of Y ! ∆ along δ and Y (2n) is the minimal desingularization of Y ′. Hence, we have a

13[γ1;s] = [γz(is);is] since µ(1, s) = (z(is), is) and [γz(s);s] = [γ−1;is] since µ(z(s), s) = (−1, is).
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commutative diagram

Y (2n) Y ′ Y

∆ ∆ ∆

τ′

p(2n)

τ

p′ p

δ

and Y (2n) is a fibration with a singular fiber of type I2n. We seek to construct an involution ι(2n) : Y (2n) !

Y (2n), so that the quotient Y (2n)/(y ∼ ι(y)) has fiber of type I∗n. First note that there is an involution

ι′ : Y ′ ! Y ′ given by negating both factors: Y and ∆. More formally, there is a (fiber-preserving) map

ι : Y ! Y which negates each fiber14 so we get a map ι′ : Y ′ ! Y ′ given by ι′ : (y, s) 7! (ι(y),−s) where

Y ′ = {(y, s) ∈ Y ×∆ : p(y) = δ(s)} which is well-defined since δ(s) = s2n = δ(−s). To see that this map

is holomorphic we use the universal property of fiber products (recall Proposition 2.1.4) to realize that ι′ is

simply the map Y ′ ! Y ′ induced by the compositions

Y ′
τ
−! Y

ι
−! Y and Y ′

p′

−! ∆
s7!−s
−−−−! ∆,

and so is holomorphic. Clearly ι′ ◦ ι′ = IdY . Thus, we are interested in lifting ι′ to an involution ι(2n) :

Y (2n) ! Y (2n). In particular, since τ′ : Y (2n) ! Y ′ is an isomorphism away from the singular point y0 of

Y ′0 = (p′)
−1

(0), we are interested in lifting ι′ to an involution around Y
(2n)
0 =

(
τ(2n)

)−1
(0). For this, recall

from our original construction of a fiber of type I2n that near y0 the surface Y ′ looks like the affine surface

S =
{

(s, u, v) ∈ C2 : s2n = uv
}
' C2/((x, y) ∼ (ζx, ζ−1y)),

where ζ ∈ C× is a primitive (2n)th root of unity, and y0 corresponding to the singular point of type A2n−1 in

S. In this local picture, the involution Y ′
ι′
−! Y ′ constructed above is given on S by (s, u, v) 7! (−s,−u,−v)

or (x, y) 7! (−x,−y) depending on which description you like better. Recall from Remark 2.3.3 that this

A2n−1 singularity can be resolved by a sequence of blow ups. Since the map ι′ is locally given by negating

each coordinate, it is possible to successively lift it to each blow up encountered in the process of resolving

this singularity, and so obtain our desired lifted involution ι(2n) : Y (2n) ! Y (2n). Doing this, one sees that,

writing Y
(2n)
0 =

∑2n
i=1 Ci (with CiCj = 1 if i − j ≡ ±1 (mod 2n) but CiCj = 0 otherwise for i 6= j), the

involution ι(2n) interchanges Ci and C2n+2−i (when 1 < i < n + 1) and has two fixed points on each of C1

and Cn+1. Let Y = Y (2n)/{Id, ι(2n)}, so we have a commutative diagram

Y (2n) Y X

∆ ∆ ∆

f

p(2n) p π

δ2:s7!s2

where X is a relatively minimal model of Y . Since ι(2n) identified the (2n − 2) “central” (−2)-curves

C2, C2, . . . , Cn, Cn+2, Cn+3, . . . , C2n+2 ⊂ Y (2n)
0 in pairs, these give rise to (n− 1) copies of P1, C ′2, . . . , C

′
n ⊂

Y 0. In addition to these, we have the images C ′1, C
′
n+1 ⊂ Y 0 of C1, Cn+1 ⊂ Y

(2n)
0 , respectively, which are

also copies of P1. Furthermore, these curves C ′1, . . . , C
′
n+1 meet each other in a path, not a cycle, since

C ′1C
′
n+1 = 0 unless n = 1 (when n = 1, the two points where C1 and C2 meet are identified in the quotient,

14Thinking of Y as the explicit example given before

Y =
{

([z0 : z1 : z2] , s) ∈ P2 ×∆ | z0z22 = 4z31 + (s− 3)z20z1 + (s− 1)z30
}

this is just the (holomorphic) map ([z0 : z1 : z2] , s) 7! ([z0 : z1 : −z2] , s).
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so C ′1C
′
2 = 1). We claim that each of these (n+ 1) copies of P1 occur with multiplicity 2 within Y 0. Indeed,

Y 0 = p−1(0) = f
((
δ2 ◦ p(2n)

)−1
(0)
)

and
(
δ2 ◦ p(2n)

)−1
(0) ⊂ Y (2n)

0 has ideal sheaf

I(δ2◦p(2n))
−1

(0)
=
(
p(2n)

)∗
(δ∗2I0) =

((
p(2n)

)∗
(I0)

)2

= I 2

Y
(2n)
0

,

so Y 0 is the curve f(Y (2n)) with multiplicity 2. That is,

Y 0 = 2
(
C ′1 + C ′2 + C ′3 + · · ·+ C ′n + C ′n+1

)
.

On each of C ′1 and C ′n+1 there are two singular points arising from the fixed points of ι(2n). Since this

involution stems from a map which negated each coordinate (in terms of Theorem 2.3.10, there is only one

possible nonzero weight of a Z/2Z action), we see that the singularities it gives rise to are each of type A1,

i.e. are each resolved by a single (−2)-curve. Hence, X arises from Y by attaching 4 distinct (−2)-curves

B1, B2 (meeting C ′1) and D1, D2 (meeting C ′n+1). Letting X0 = π−1(0) be the central fiber, this means

that15

X0 = B1 +B2 + 2
(
C ′1 + C ′2 + C ′3 + · · ·+ C ′n + C ′n+1

)
+D1 +D2

with B2
1 = B2

2 = D2
1 = D2

2 = −2. We claim that also (C ′i)
2 = −2 for all i, so X is relatively minimal. Indeed,

X0 is smooth, so

0 = X0C
′
i = 2(C ′i−1C

′
i + C ′i+1C

′
i) + 2(C ′i)

2 = 4 + 2(C ′i)
2 (2 ≤ i ≤ n)

0 = X0C
′
1 = B1C

′
1 +B2C

′
1 + 2(C ′1)2 + 2C ′2C

′
1 = 4 + 2(C ′1)2

0 = X0C
′
n+1 = D1C

′
n+1 +D2C

′
n+1 + 2C ′nC

′
n+1 + 2(C ′n+1)2 = 4 + 2(C ′n+1)2.

Hence (C ′i)
2 = −2 for all i as claimed. This makes X relatively minimal. Since the Ci’s met in a path, and

we adjoined two (−2)-curves to each end of that path, we see that X0 is indeed of type I∗n, i.e. its dual graph

is D̃n+4, pictured in Figure 10. Now all that remains is to perform the monodromy calculation. To ease

C ′1 C ′2

B1

B2

. . . C ′n C ′n+1

D1

D2

Figure 10: The dual graph D̃n+4 of a singular fiber of type I∗n.

notation, let ∆∗ = ∆ \ {0}, let Z = Y (2n) \ Y (2n)
0 , and let Z ′ = X \X0 ' Y \ Y 0. Also, let q : Z ! ∆∗ be

the restriction of the map p(2n) : Y (2n) ! ∆, and let q′ : Z ′ ! ∆∗ be the restriction of the map π : X ! ∆.

15Below we’re abusing the notation C′i by identifying a curve on Y 0 with its strict transform in X
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These spaces fit into the commutative diagram

Zs Z ′s2

G Z Z ′

G ∆∗ ∆∗

f

q q′

δ2:s7!s2

whose rows and columns are fiber sequences. Here G =
〈
ι(2n)

〉
' Z/2Z, we have fixed a basepoint z ∈ Z,

and the map G ! Z sends ι
(2n)
k 7! ι

(2n)
k (z) ∈ Z where ι

(2n)
0 = Id and ι

(2n)
1 = ι(2n). Let s = q(z), let

γ ∈ π1(∆∗, s2) be the loop circling the origin once counter clockwise. Then, γ lifts along δ2 to a path

γ̃ : [0, 1]! ∆∗ from γ̃(0) = s to γ̃(1) = −s. The maps Lγ̃ : Zs ! Z−s and Lγ : Z ′s2 ! Z ′s2 can be compared

via the following commutative square.

Zs Z−s

Z ′s2 Z ′s2

Lγ̃

gs g−s

Lγ

Let α, β ∈ H1(Zs;Z) be a basis so the monodromy T of Zs sends

T (α) = α and T (β) = 2nα+ β.

Note that Z = Y (2n) \ Y (2n) ' Y ×∆ ∆∗ is literally a fiber product, so

Z =
{

(y, t) ∈ Y ×∆∗ : p(y) = t2n
}
,

and we see that Lγ̃(y, t) = (y,−t). Thus, letting α′ = gs,∗(α), β′ = gs,∗(β) ∈ H1(Z ′s2 ;Z) be a basis, we get

that α′ = −g−s,∗(Lγ̃(α)), and so Lγ,∗(α
′) = −α′. Furthermore, the path 2γ ∈ π1(∆∗, s2) lifts to a loop 2̃γ

on ∆∗ based at s which circles the origin once. Combining these two remarks, in terms of monodromy, we

get that the monodromy action T ′ ∈ GL2(H1(Z ′s2 ;Z)), when written as a matrix in the basis {α′, β′}, must

satisfy

T ′

(
1

0

)
=

(
−1

0

)
and (T ′)2 =

(
1 2n

0 1

)
.

Writing T ′ =

(
a b

c d

)
, the first condition shows (a, c) = (−1, 0), while the second condition says

(
1 2n

0 1

)
= (T ′)2 =

(
−1 b

0 d

)2

=

(
1 bd− b
0 d2

)
.

Since d2 = 1, we know d = ±1, but also b(d− 1) = 2n 6= 0, so d = −1. Hence, −2b = 2n, so b = −n. Thus,

the monodromy matrix for a singular fiber of type I∗n is

T ′ =

(
−1 −n
0 −1

)
= −

(
1 n

0 1

)
.
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4.3.4 Remarks on the Remaining Fiber Types

We would like to end by giving some indication of how one would go about calculating the monodromy

action for the remaining fiber types. For some more details, beyond what it given here, we recommend [2,

Ch. V, Sect. 9–10].

For type mIn, the fiber is topologically equivalent to one of type In, so the monodromy matrix is again

T =

(
1 n

0 1

)
,

up to conjugation. However, knowing this alone does not guarantee that fibers of this type exist. We will

give a way to construct fibers of type mI0 in Table 2 below, but for general mIn (i.e. when both n 6= 0 and

m 6= 1), we recommend the book by Barth et al. for a construction.

For the remaining fiber types, include I∗0, the calculation can proceed completely analogously to how we

calculated the monodromy around a fiber of type III. One starts with a fibration Y = C×∆/Z⊕Zz(s)! ∆

with only smooth fibers for some appropriately chosen holomorphic map z(s). This z(s) is chosen such that

a cyclic group G = 〈µ〉 acts on Y , and after resolving Y/G’s singularities and blowing down its vertical

(−1)-curves, one can determine the fiber type of the resulting relatively minimal elliptic surface X. Then,

since X was constructed by quotienting a trivial fibration, its monodromy is not too difficult to calculate. A

possible choice of z(s) along with a map µ : C×∆! C×∆ inducing a generator of G is given in Table 2.

In this table, recall that e(x) = exp(2πix).

Type z : ∆! C µ : C×∆! C×∆

mI0 s 7! sm (c, s) 7!
(
c+ 1

m , e
(

1
m

)
s
)

I∗0 s 7! s2 (c, s) 7! (−c,−s)

II s 7! e(1/3)−e(2/3)s2

1−s2 (c, s) 7!
(
− c
z(s) , e

(
1
6

)
s
)

II∗ s 7! e(1/3)−e(2/3)s4

1−s4 (c, s) 7!
(

c
z(s)+1 , e

(
1
6

)
s
)

III∗ s 7! i+is2

1−s2 (c, s) 7!
(

c
z(s) , is

)
IV s 7! e(1/3)−e(2/3)s2

1−s2 (c, s) 7!
(
− c
z(s)+1 , e

(
1
3

)
s
)

IV∗ s 7! e(1/3)−e(2/3)s
1−s (c, s) 7!

(
c
z(s) , e

(
1
3

)
s
)

Table 2: Functions used to construct elliptic fibrations with singular fibers of various types.

The complete list of monodromy matrices (which we recall are only defined up to conjugacy) is shown

in Table 3. As a final mathematical remark, one sees from Table 3 that, assuming one is concerned with a

reduced fiber, the monodromy action completely determines the singular fiber type.

80



Type Monodromy Matrix

I0

1 0

0 1


In

1 n

0 1


mIn

1 n

0 1


I∗n

−1 −n
0 −1


II

 1 1

−1 0


II∗

0 −1

1 1


III

 0 1

−1 0


III∗

0 −1

1 0


IV

 0 1

−1 −1


IV∗

−1 −1

1 0



Table 3: The monodromy matrices for each type of singular elliptic fiber.
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Appendices

A Higher Direct Image Sheaves and Locally Constant Sheaves

In this appendix, we cover the basics of a particular topic from sheaf theory: higher direct image sheaves.

These give a sort of relative cohomology attached to a morphism X ! Y , where we think of normal sheaf

cohomology as being attached to the unique map X ! pt to the 1-pt space (with trivial structure sheaf).

These higher direct image sheaves show up from time to time in this document, so this appendix serves as

a place to get acquainted with some of their facets. Before defining and studying higher direct images, we

recall some basic definitions.

Recall A.1. A ringed space is a pair X = (|X| ,OX) consisting of a topological space |X| along with a

sheaf OX of (commutative) rings on it. The space |X| is called the underlying (topological) space of X,

and OX is called its structure sheaf

Recall A.2. For a continuous map f : X ! Y between ringed spaces and a sheaf F on X, one obtains a

sheaf f∗F on Y , called the pushforward/direct image sheaf , given on an open U ⊂ Y by

f∗F (U) = F (f−1(U)).

Recall A.3. Given two ringed spaces X = (|X| ,OX) and Y = (|Y | ,OY ) a morphism of ringed spaces

f = (|f | , f̃) is a pair consisting of a continuous map |f | : |X| ! |Y | and a morphism f̃ : OY ! |f |∗OX of

sheaves on |Y |.

Example. If |X| is a complex manifold, then we can take OX to be its sheaf of holomorphic, C∞, or

continuous functions to C, depending on how much structure we want OX to see. That is, for U ⊂ |X| open,

we can set

OX(U) = {f : U ! C : f is “nice”}

where we choose “nice” to mean one of holomorphic, C∞, or continuous.

Example. If f : X ! {x} is the map to a one-point space and F is any sheaf on X, its direct image f∗F

is simply its global sections f∗F (x) = F (f−1(x)) = F (X).

Fix a continuous map f : X ! Y between ringed spaces. The operation of pushing forward gives a

functor f∗ : Ab(X) ! Ab(Y ) between the categories of abelian sheaves on X,Y . This functor is left exact

which follows from the easily checkable fact that it preserves kernels, i.e. for any F ,G ∈ Ab(X) and F ! G ,

we have

f∗ ker(F ! G ) = ker (f∗F ! g∗G ) .

Because the category of abelian sheaves has enough injectives [8, Ch. II, Corollary 2.3], by abstract nonsense,

f∗ has right derived functors Rif∗ : Ab(X)! Ab(Y ) so that, among other things,

(1) for any exact sequence 0! A ! B ! C ! 0 of abelian sheaves on X, there is a corresponding long

exact sequence

0! f∗A ! f∗B ! f∗C ! R1f∗A ! R1f∗B ! R1f∗C ! R2f∗A ! · · ·

of abelian sheaves on Y .
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(2) if F ∈ Ab(X) is an injective sheaf, then Rif∗F = 0 for all i ≥ 1.

Definition A.1. The sheaves Rif∗ constructed above are called the higher direct image sheaves of f

and, for notational convenience, are also denoted f∗i = Rif∗.

Technical Aside A.1. As one does when studying sheaf cohomology, one can show that f∗iG = 0 for all

i ≥ 1 if G is flasque (and not necessarily injective), and then use this to show that the derived functors of f∗

are the same regardless of whether you view it as a functor Ab(X)! Ab(Y ) between categories of abelian

sheaves or as as a functor Mod(X)! Mod(Y ) between categories of modules over the structure sheaf. The

point is that flasque sheaves are acyclic for f∗ (i.e. f∗iG = 0 for i ≥ 1 if G flasque) when viewed as either

abelian sheaves or as OX -modules. This means that given a sheaf F ∈ Mod(X) (so also F ∈ Ab(X)), a

flasque resolution of F is an acylic resolution for f∗ in either category, and so can be used to compute the

derived functors of f∗ for either category.

We claimed earlier that these higher direct image sheaves could be thought of as a relative cohomology

theory so we now make this precise by showing that f∗iF is essentially a sheaf of cohomology groups. As a

warmup, note that if Y = {y} is a point then Ab(Y ) ∼= Ab, the category of abelian groups, and the functor

f∗ : Ab(X)! Ab(Y ) ∼= Ab is simply the global sections functor F 7! Γ(X,F ). Hence, in this case, f∗ and

Γ have the same right derived functors which means that f∗iF = Hi(X,F ) for all F ∈ Ab(X). In general,

we have the below result.

Proposition A.1. Fix an integer i ≥ 0 and a sheaf F ∈ Ab(X). Let H i(F ) ∈ Ab(Y ) be the sheafification

of the presheaf

U 7−! Hi(f−1(U),F |f−1(U))

with the natural restriction maps. Then, f∗iF 'H i.

Proof. When i = 0, the result holds by definition of f∗0 = f∗. For larger i, we will dimension shift. Let F

be any abelian sheaf on X and embed it F ↪! G into a flasque sheaf. Let Q = G /F be the cokernel of this

embedding, so we have an exact sequence

0 −! F −! G −! Q −! 0.

Using that both higher direct images and cohomology vanish for flasque sheaves, and that G |U is flasque for

any open U ⊂ X, this exact sequence gives rise to the commutative diagram

0 f∗F f∗G f∗Q f∗1F 0

0 H 0(F ) H 0(G ) H 0(Q) H 1(F ) 0

whose rows are exact. Above, the dashed map exists by appealing to the universal property of cokernels

(note that f∗1F = coker(f∗G ! f∗Q)) and is an isomorphism by the 5 lemma since all solid maps are

isomorphisms. As F was arbitrary, this shows that f∗1F ' H 1(F ) for all abelian sheaves on X. Now,

pick i ≥ 2 and assume we know f∗(i−1)F ' H i−1(F ) for all F ∈ Ab(X). Fix any specific F , and note

that the short exact sequence we looked at in the beginning of this proof now gives rise to the commutative
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diagram

0 f∗(i−1)Q f∗iF 0

0 H i−1(Q) H i(F ) 0

whose rows are again exact. The solid vertical map exists and is an isomorphism by the inductive hypoth-

esis. Because all maps between nonzero objects above are isomorphisms, the dashed map exists and is an

isomorphism too. This completes the proof. �

The above proposition suggests a potential connection between these higher direct image sheaves f∗iF

and the cohomology Hi(f−1(y),F ) of the fiber above a point y ∈ Y . Indeed, one may be tempted to believe

that (f∗iF )y = Hi(f−1(y),F ) in general. While this is not always the case, it is true when f is sufficiently

nice. In fact, more than this will be true in the cases we care about. To prove the next result, it will be

helpful to know when sheaf cohomology coincides with singular cohomology so we may appeal to homotopy

invariance. In this vain, we recall the following.

Notation A.2. Let X be a topological space, and let A be an abelian group. Then, we let AX denote the

corresponding constant sheaf on X.

Theorem A.2. Let X be a paracompact, Hausdorff, locally contractible topological space. Then, for any

abelian group A, Hi(X,AX) ' Hi
sing(X;A).

Proof. [13, Ch. 6] shows that Čech cohomology agrees with singular cohomology in this case. Combine

this with the fact [1, Theorem 7.4.9] that Čech cohomology agrees with sheaf cohomology on paracompact,

Hausdorff spaces. �

Proposition A.3. Assume that X,Y are paracompact, Hausdorff, and locally contractible. Let f : X ! Y

be a fibre bundle, and let A ∈ Ab be an abelian group. Then, the sheaves f∗iAX are locally constant and

(f∗iAX)y ' Hi(f−1(y), A) for any y ∈ Y .

Proof. Fix any y ∈ Y and let U 3 y be a contractible, trivializing neighborhood around y, so f−1(U) ' U×F
where F = f−1(y) is the fiber and there exists a homotopy ht : U ! U from the identity h0 = IdU to the

constant map h1 = y. We can lift ht to a deformation retraction h̃t : U × F ! U × F, h̃t(a, b) = (ht(a), b)

from U × F onto {y} × F ∼= F . Hence,

Hi(f−1(U), AX) ' Hi
sing(U ;A) ' Hi

sing(F ;A) ' Hi(F,AX).

Because this holds for any contractible, trivializing open in Y , because these form a basis of opens in U ,

and because sheaves are determined by what they do on a basis, we see that proposition A.1 shows that

f∗iAX |U ' Hi(F,A)
U

is constant with stalks Hi(f−1(y), A). Hence, f∗iAX is locally constant with the

claimed stalks. �

The main utility of showing that the pushforward of a constant sheaf along a fibre bundle is locally

constant is that this endows us with the ability to transport cohomology classes between fibers. Namely, in

general, if you have a locally constant sheaf F on a space Y , then this automatically gives rise to an action

π1(Y, y) y Fy of the fundamental group of Y on the stalks of F . In the situation of the proposition above,

this means that the fundamental group of the base of a fibre bundle acts on the cohomology groups of the
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fibers. This is the monodromy action studied towards the end of this document. The construction of this

action proceeds as follows.

Let F be a locally constant sheaf on a locally simply connected topological space Y , and let γ : [0, 1]! Y

be a loop. Then, because F is locally free and because [0, 1] is compact, we can write γ = γ1γ2 . . . γn as the

composition of n paths γi : [0, 1] ! Y such that im γi lands in an open Ui ⊂ Y on which F |U is constant,

say φi : F |Ui
∼
−! AiU (i = 1, . . . , n). Let y0 = γ(0) and let yi = γi(1) ∈ Ui ∩ Ui+1 for i = 1, . . . , n (here,

Un+1 = U1). Then, we get the composition

Fy0
φ1−! A1

φ−1
1−−! Fy1

φ2−! A2 ! · · ·! An
φ−1
n−−! Fyn .

Since γ is a loop, y0 = y1 = y, so the above actually defines an action of γ on Fy.
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closed analytic subspace, 3

coherent sheaf, 4

complex space, 3

connected morphism, 36

critical point, 37

critical value, 37

curve, 6

decomposition sequence, 31

degree of a line bundle on an embedded curve, 31

degree of a vector bundle, 53

dimension, 6

discrete valuation ring, 7

divisor, 11

double point, 35

dual graph, 59

dualizing sheaf, 30

effective divisor, 11

Ehresmann’s lemma, 36

elliptic fibration, 57

elliptic surface, 57

embedded curve, 30

Euler characteristic, 10

exceptional curve, 19, 26

exceptional curves for π, 26

exponential exact sequence, 11

extended Dynkin diagram, 60

fiber product of X and C ′ above C, 8

fibre/fiber, 37

finite divisor, 11

Finiteness theorem of Cartan-Serre, 9

flat, 9

flat over Y , 9

functional invariant, 67

fundamental points for π, 26

Genus Formula, 16

geometric genus, 10, 33

graph associated to the fiber F , 59

Grauert’s criterion, 26

Grauert’s direct image theorem, 9

higher direct image sheaves, 83

Hirzebruch-Jung string, 28

Hodge numbers, 10

holomorphic, 4

horizontal curve, 57

hypersurface, 11

incidence graph, 59

intersection form, 60

intersection number, 14

irreducible, 6

irreducible components, 6

Kodaira’s Classification of Singular Fibers of

Elliptic Fibrations, 64
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linearly equivalent, 13

local dimension, 6

local intersection number, 14

local monodromy, 65

local parameter, 7

locally finite, 11

minimal desingularization, 27

minimal surface, 27

morphism of complex spaces, 4

morphism of ringed spaces, 3, 82

multiple fibre, 41

multiplicity of p in C, 35

node, 36

Noether’s formula, 17

normal, 6

normal bundle, 10, 30

normalization, 7

normalization sequence, 31

ordinary double point, 36

period map, 67

Picard-Lefschetz Formula, 66

principal divisor, 12

proper, 8

pullback of X ! C along f , 8

pure dimension d, 6

pushforward/direct image, 3

pushforward/direct image sheaf, 82

reduced, 5

reduction, 5

regular, 6

relatively minimal, 43

Remmert’s Mapping Theorem, 9

Riemann surface, 6

Riemann-Roch for Curves, 14

Riemann-Roch for Embedded Curves, 32

Riemann-Roch for Rank 2 Vector Bundles on

Curves, 53

Riemann-Roch for Surfaces, 17

ringed space, 3, 82

ruled surface, 44

section, 37

Serre Duality, 17

Serre Duality for Embedded Curves, 30

sheaf of holomorphic i-forms, 10

sheaf of nonvanishing holomorphic functions, 10

singular, 6

singularity of type Ar, 28

singularity of type An,q, 29

smooth, 6

Stein factorization, 8

strict transform, 21

structure map, 57

structure sheaf, 3, 82

support, 11

surface, 6

tautological line bundle, 20

tautological quotient bundle, 48

tautological subbundle, 48

underlying (topological) space, 3, 82

uniformizer, 7

Universal Property of Projectivized Vector

Bundles, 48

vanishing cycle, 66

vertical curve, 57

weights, 29

Zariski’s lemma, 39
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