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Abstract

Fourier analysis is quite effective for obtaining results in analytic number theory. In particular, it plays

a key role in the study of the complex-analytic properties of the Riemann zeta function ζ(s) =
∑
n≥1 n

−s.

This function, defined as this infinite series, converges absolutely and is holomorphic on the open half-

plane {Re(σ) > 1}. However, it is possible to show that this function can be meromorphically extended

to one defined on the whole complex plane C save for a single pole at s = 1. The proof of this fact

crucially relies on relating ζ(s) to an auxiliary function θ(s) =
∑
n∈Z e

−πn2s whose analytic behavior for

large s is controlled using techniques from Fourier analysis. Motivated by applications such as this, in

this paper, we aim to explain the basics of Fourier analysis of periodic functions, culminating in a proof

that a Fourier series (whose coefficients do not grow too quickly) converges back to its original function.

1 Introduction

At its core, the main goal of Fourier analysis is to provide a canonical representation for periodic functions

which is amenable both to calculations and to theoretic study. This goal is achieved by decomposing any

periodic function f : R ! C as a (possibly infinite) weighted sum of the classic examples of periodic functions:

sin’s and cos’s. For a fixed r ∈ R we say a function f : R ! C is r-periodic if f(x+ r) = f(x) for all x ∈ R.

Hence, given an r-periodic function f , we wish to write something like

f(x) =
∑
n∈Z

[
an sin

(
2πnx

r

)
+ bn cos

(
2πnx

r

)]
(1)

with an, bn ∈ C. There are two common modifications one can make simplify the analysis of such functions.

The first is to assume, without loss of generality, that all functions are 1-periodic. Indeed, if f(x) is r-

periodic, then f(x/r) is 1-periodic and so we lose nothing by assuming that this is the case. With this

assumption in mind, we will call a function simply periodic if it is 1-periodic. The second assumption is to

use Euler’s formula eix = cos(x) + i sin(x) to have exponentials replace sin / cos as our prototypical example

of a periodic function. Indeed, using Euler’s formula, one easily verifies that

an sin (2πnx) + bn cos (2πnx) =

(
bn − ian

2

)
e2πinx +

(
bn + ian

2

)
e−2πinx,

so equation (1) can be written entirely in terms of exponentials. Thus, by assuming all functions under

consideration are 1-periodic and making use of Euler’s formula, our desired equality can be restated as

f(x) =
∑
n∈Z

cne
2πinx (2)
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where f : R ! C is periodic and cn ∈ C. The numbers cn ∈ C above, when the equality holds, are called

the Fourier coefficients of f . Our main theorem in this paper will be to show that this is often possible,

at least when f is assumed continuous. Specifically, we will prove the following.

Theorem 1.1 (The Main Theorem). Let f : R ! C be periodic and continuous. For each n ∈ Z, let

cn =

∫ 1

0

f(x)e−2πinxdx.

Then, the following hold:

(a) We have
∑
n∈Z |cn|

2 ≤
∫ 1

0
|f(x)|2 dx, so cn ! 0. Furthermore, if

∑
n∈Z |cn| converges, then

f(x) =
∑
n∈Z

cne
2πinx

for all x ∈ R with partial sums converging uniformly to f .

(b) Fix any integer k ≥ 2. If cn = O(1/nk) as n ! ∞, then f is continuously differentiable k − 2 times

and the termwise derivatives of
∑
n∈Z cne

2πinx converge uniformly to the derivatives of f . That is, for

m ≤ k − 2, we have

f (m)(x) =
∑
n∈Z

cn(2πin)me2πinx.

2 Intuition for The Main Theorem

We will prove Theorem 1.1 as a series of lemmas in the next section. Before getting started on that though,

a word on intuition: why might one expect equation (2) to hold for any choice of coefficients cn?

The main point is that it serves as an analogue to the situation of expanding elements of a finite-

dimensional vector space in terms of an orthonormal basis. That is, let V be an n-dimensional C-vector

space equipped with a Hermitian inner product (−,−) : V × V ! C, so

• (v, v) ≥ 0 for all v ∈ V .

• (v, w) = (w, v) for all v, w ∈ V where denotes complex conjugation.

• (av + bu, w) = a(v, w) + b(u,w) for all v, u, w ∈ V and a, b ∈ C.

Let {ei}ni=1 ⊂ V be an orthonormal set with respect to this inner product, so (ei, ei) = 1, but (ei, ej) = 0

when i 6= j. Then, orthonormality guarantees that the ei’s are linearly independent, and that fact that

dimV = n then tells us that they form a basis for V . Hence, any v ∈ V can be uniquely written in the form

v =
∑n
i=1 ciei, and furthermore, one see that

(v, ej) =

(
n∑
i=1

ciei, ej

)
=

n∑
i=1

ci(ei, ej) = cj ,

for all j, so v’s coefficients are completely determined by the inner product.

The situation surround equation (2) is completely analogous. The set C(R/Z) of continuous periodic

functions f : C ! R forms a C-vector space under the operations of pointwise addition and scalar multipli-
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cation. One can endow this space with pairing (−,−) : C(R/Z)× C(R/Z) ! C given by

(f, g) =

∫ 1

0

f(x)g(x)dx,

which is easily verified to be a Hermitian inner product. Under this inner product, the functions en(x) =

e2πinx form an orthonormal basis where n ranges over all integers. Indeed, this is a consequence of the facts

that e0(x) = 1, en(x)em(x) = en−m(x), and

∫ 1

0

e2πikxdx =
e2πikx

2πik

∣∣∣∣1
0

= 0

when k 6= 0. Thus, one hopes that {en}n∈Z forms a sort of “basis” for C(R/Z) so that, for any f ∈ C(R/Z),

we may write

f(x) =
∑
n∈Z

cnen(x) =
∑
n∈Z

cne
2πinx where cn = (f, en) =

∫ 1

0

f(x)en(x)dx =

∫ 1

0

f(x)e−2πinxdx.

Of course, C(R/Z) is infinite-dimensional and the above sums are infinite whereas the vector space spanned

the the en’s only includes their finite linear combinations, so this is not immediate. There is something prove

here, and this, up to a certain growth rate condition, is precisely the content of part (a) of Theorem 1.1.

Part (b) of this theorem takes the above equality one step further by giving sufficient conditions for it to

respect derivatives.

3 Proof of The Main Theorem

Now that we have described our main theorem and a little bit of why one might believe it, let’s actually

prove it. Recall from the previous section that C(R/Z) denotes the vector space of periodic, continuous

functions f : R ! C endowed with the Hermitian inner product (f, g) =
∫ 1

0
fg. Also recall that the

functions en(x) = e2πinx form an orthonormal set in this space.

We begin with the inequality
∑
n∈Z |cn|

2 ≤
∫ 1

0
|f(x)|2 dx in part (a) of the main theorem. Using that the

en’s are orthonormal, this will follow almost immediately from the analogous statement for finite-dimensional

vector spaces.

Lemma 3.1 (Bessel’s inequality). Let f : R ! C be periodic and continuous, and let cn =
∫ 1

0
f(x)e2πinxdx.

Then,
∑
n∈Z |cn|

2 ≤
∫ 1

0
|f(x)|2 dx.

Proof. Fix any n ≥ 0 and let Vn = span {e−n, . . . , en, f} ⊂ C(R/Z). Then, dimVn ≤ 2n+ 1 is finite and so,

since e−n, . . . , en are still orthonormal in Vn, we see that

n∑
k=−n

|ck|2 =

n∑
k=−n

|(f, ek)|2 ≤ (f, f) =

∫ 1

0

|f(x)|2 dx.

Because the above holds for all n ≥ 0, we can take the limit as n!∞ to get the desired result. �
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This brings us to the next part of (a) of Theorem 1.1: showing that

f(x) =
∑
n∈Z

cnen(x) =: g(x)

when
∑
n∈Z |cn| converges. As is usual when working in an algebraic structure (such as a vector space), we

would like to reduce to the case when cn = 0 for all n. Let gn(x) =
∑n
k=−n ckek(x). We first claim that

gn ! g uniformly. Indeed, for n > m ≥ 0, we have

|gn(x)− gm(x)| =

∣∣∣∣∣
−m−1∑
k=−n

ckek(x) +

n∑
k=m+1

ckek(x)

∣∣∣∣∣ ≤
−m−1∑
k=−n

|ck|+
n∑

k=m+1

|ck| .

Because
∑
n∈Z |cn| converges, its tails must vanish, i.e. the upper bound above approaches 0 for large n,m

independent of x. Hence, gn(x) ! g(x) uniformly, so g(x) is well-defined and continuous, and f(x) − g(x)

has Fourier coefficients

(f − g, ek) = (f, ek)− (g, ek) = ck − lim
n!∞

(gn, ek) = ck − ck = 0.

Thus, we are reduced to the case when cn = 0.

Remark 3.1. Because of Euler’s formula en(x) = cos(2πnx) + i sin(2πnx), we can write cos(2πnx) =

(en(x) + e−n(x))/2 and sin(2πnx) = (en(x) − e−n(x))/(2i). Hence, if cn = (f, en) = 0 for all n, then

also (f, cos(2πnx)) = 0 = (f, sin(2πnx)) for all n. Furthermore, any polynomial in cos(2πnx), sin(2πnx)

can be rewritten as a (finite) sums of en’s, so also (f, p) = 0 where p is any trigonometric polynomial with

coefficients in Z.

Lemma 3.2. Let f : R ! C be periodic and continuous, and suppose that cn =
∫ 1

0
f(x)e2πinxdx = 0 for all

n ∈ Z. Then, f(x) = 0 for all x ∈ R.

Proof. We will first handle the case where f is real-valued, and then show how to get the general case from

this case. Fix any x0 ∈ R. In order to show that f(x0) = 0, we can equivalently show that f(x + x0) = 0

when x = 0. Hence, we lose no generality in only showing that f(0) = 0. We will proceed by contradiction,

so assume f(0) > 0 (if f(0) < 0 then replace f with −f).

By the remark above this lemma, (f, p) = 0 for all trigonometric polynomials p(x) with integral coeffi-

cients. At the same time f(0) > 0, so if we construct a real-valued such p where p(x) is concentrated around

x = 0, then the fact that f(x) > 0 for x near 0 (by continuity) will force (f, p) =
∫
f(x)p(x)dx =

∫
f(x)p(x)dx

to be nonzero. This is our plan.

First, we need to decide what we mean by “x near 0.” Since f is continuous, we may choose some

δ ∈ (0, 1/2) so that f(x) > f(0)/2 whenever |x| < δ. Let

p1(x) = ε+ cos(2πx)

where ε > 0 is small enough that |p(x)| < 1 − ε/2 whenever δ ≤ |x| ≤ 1
2 .1 On the other hand, since

p1(0) = ε+ 1 > 1 + ε/2, we can use continuity of p1(x) to obtain a positive η < δ such that p(x) ≥ 1 + ε/2

for all x with |x| < η. Now, for any k > 1, set pk(x) = p1(x)k. Finally, since f is continuous, it is bounded

on the compact set [−1/2, 1/2] so we can fix B > 0 large enough that |f(x)| ≤ B for all x ∈ [−1/2, 1/2]. By

1Any ε < 2
3
(1− cos(2πδ)) should work since cos(2πx) ≤ cos(2πδ) for x in this range.
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construction, each pk is a real-valued trigonometric polynomial, so

(f, p) =

∫ 1

0

f(x)pk(x)dx = 0

for all k ≥ 1. At the same time, our various chosen parameters give us the following integral estimates∣∣∣∣∣
∫
δ≤|x|≤ 1

2

f(x)pk(x)dx

∣∣∣∣∣ ≤
∫
δ≤|x|≤ 1

2

|f(x)| |pk(x)|dx ≤ B
(

1− ε

2

)k
∫
η≤|x|<δ

f(x)pk(x)dx ≥ f(0)

2

∫
η≤|x|<δ

pk(x)dx ≥ 0∫
|x|<η

f(x)pk(x)dx ≥
∫
|x|<η

(
f(0)

2

)(
1 +

ε

2

)k
dx =

ηf(0)

2

(
1 +

ε

2

)k
for all k ≥ 1. As k !∞, (1− ε/2)k ! 0 and (1 + ε/2)k !∞ so, combining the three estimates above, we

see that

0 = (f, pk) =

∫ 1

0

f(x)pk(x)dx =

∫ 1/2

−1/2
f(x)pk(x)dx!∞,

a contradiction. Thus f = 0 after all.

When f is not assumed real-valued, we write f(x) = u(x) + i(v) with u, v : R ! R continuous, periodic.

Then, u(x) = 1
2 (f(x) + f(x)) and v(x) = − i

2 (f(x)− f(x)). Hence, the Fourier coefficients of u are

(u, en) =
1

2
((f, en) + (f, en)) =

1

2
((f, en) + (f, e−n)) = 0

since f ’s Fourier coefficients are all 0. Similarly, (v, en) = 0 for all n, so u = v = 0 and hence f = 0 as

well. �

Hence, by the discussion preceding this lemma, we have succeeded in proving part (a) of Theorem 1.1.

Part (b) of that theorem, as we shall soon see, follows from (a) by an induction argument.

Lemma 3.3. Let f : R ! C be periodic and continuous, For each n ∈ Z, let cn =
∫ 1

0
f(x)e−2πnxdx. Suppose

that cn = O(1/nk) for some fixed integer k ≥ 2. Then, f is continuous differentiable k − 2 times and its

derivative can be computed termwise.

Proof. First suppose k = 2. Then, the fact that cn = O(n−2) entails that
∑
|cn| converges, so f =∑

n∈Z cne
2πinx (with the partial sum converging uniformly) by Theorem 1.1(a). Now suppose k ≥ 3 and

that the claim holds for k − 1. Replacing f with f (k−1), we are reduced to showing that f is continuously

differentiable once when k = 3. In this case, let fn(x) =
∑n
m=−n cmem(x), so fn ! f uniformly. By a

general theorem of analysis, to show f ′ exists and that f ′n ! f ′ uniformly, it suffices to show that f ′n has a

uniform limit. Note that

f ′n(x) =

n∑
m=−n

2πimcmem(x) = 2πi

n∑
m=−n

mcmem(x),

so the Fourier coefficients c′m = mcm = (fn, em) of fn (when |m| ≤ n) satisfy c′m = O(m/m3) = O(m−2)

and so are absolutely summable. Thus, lim f ′n =
∑
m∈Z c

′
mem(x) =

∑
m∈Z cme

′
m(x) is a continuous function,

is the uniform limit of f ′n, and hence is equal to f ′. This proves the claim. �
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4 Concluding Remarks

It is worth briefly recapping what we have done. Given a continuous function f : R ! C which is also

periodic, we wanted to be able to express it as an infinite sum

f(x) =
∑
n∈Z

cne
2πinx. (3)

for some appropriately chosen coefficients cn ∈ C. By finding an appropriately large orthonormal set of

periodic, continuous functions en(x) = e2πinx, we were able to guess that one should take

cn = (f, en) =

∫ 1

0

f(x)e−2πinxdx.

We then showed that when the cn’s are absolutely summable, this choice of coefficients does indeed yield (3),

and furthermore, that this is the only choice of coefficients which works in this case. Finally, by applying the

same sort of reasoning to the derivatives f (k) of f , we were able connect the growth rate of the cn’s directly

to the smoothness of f ; namely, we should that cn = O(n−k) =⇒ f has (k − 2) continuous derivatives

which can computed from its Fourier series exactly as one would hope.
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