
Math 286Y/Z (Algebraic Curves I/II) Notes

Niven Achenjang

Fall 2021/Spring 2022

These are my course notes for “Algebraic Curves” at Harvard. Each lecture will get its own ‘chapter’.
These notes are live-texed and so likely contain many mistakes. Furthermore, they reflect my understand-
ing (or lack thereof) of the material as the lecture was happening, so they are far from mathematically
perfect.1 Despite this, I hope they are not flawed enough to distract from the underlying mathematics.
With all that taken care of, enjoy and happy mathing.

The instructor for this class is Joe Harris. Starting 9/22, MIT’s STAGE seminar was running at the
same time as this class on Wednesdays, so I don’t have notes for those days (during the Fall semester).
Finally, a few of the early lectures were recorded, possibly including some of the ones I missed.
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1 Lecture 1 (9/1/2021)

1.1 Administrative/Class stuff

Note 1. It seems I have trouble connecting to the internet in this classroom...

Lectures MW 10:30 – 11:45
On Fridays, there will be problem solving sessions Friday at the same time and place (probably, still

need to request it).

Remark 1.1. This is a subject which can be dealt with very abstractly, but also very concretely. So we’ll
try to spend a lot of time on algorithmic/concrete objects, see e.g. first homework. ◦

This Friday we’ll go over how to do the types of things on the first homework.
There’s a course assistant Kai Xu who will be grading homeworks and holding section/office hours.
The homework will be weekly and determines your whole grade.
Prereqs hard to say because two perspectives. More on this in a bit...

1.2 Content

The basic objects can be defined in 2 ways

• compact Riemann surfaces

• smooth, projective algebraic curves over C

(always assume connected)

Warning 1.2. ‘projective curve’ means can be embedding in Pn, it does not mean a curve with a given
embedding into Pn •

These two things are the same, e.g.

• Any compact Riemann surface X can be embedded in projective space.

• Given such an embedding X ↪! Pr, its image is algebraic.

• If f : X ! Y is a holomorphic map of Riemann surfaces, then it is in fact also a regular map of the
associated algebraic curves.

The first of these is the most difficult (and is also false in higher dimensions).

Remark 1.3. Say X is a compact Riemann surface. If you want to embed this into projective space, it
best at least support some global meromorphic functions. This is not trivial to prove. Already in the case
of surfaces, there are compact complex 2-manifolds with no non-constant meromorphic functions. ◦

The second and third statements are what’s often called Chow’s Theorem, projective manifolds are
algebraic.

Despite this equivalence, the terminology/notation used in these two perspectives can differ.

Example. On a complex manifold (X,OX), its structure sheaf is a sheaf of holomorphic functions. When
thinking of it as an algebraic curve, we instead endow X with its sheaf OX,alg of algebraic functions. These
are two different sheaves, but (e.g. by Serre’s GAGA) they have the same cohomology: Hi(X,OX) =

Hi(X,OX,alg). △
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Remark 1.4. We will see some constructions in the analytic setting that we can’t perform in the algebraic
setting, so this duality gives us more options. ◦

We’ll probably end up using holomorphic/regular and meromorphic/rational roughly interchangeably.

Example. Here’s the same theorem from both perspectives.

Theorem 1.5. Let X be a compact Riemann surface/smooth projective algebraic curve. Then, f : X ! C
a global holomorphic/regular function must be constant.

Proof. Analytically, this follows from the maximum principle, the modulus of a non-constant holomorphic
function has no maximum. However, X is compact, so |f | better have a maximum.

Algebraically, show that the image of a projective variety under a regular map is again projective. Question: Is
this true?
Does he se-
cretly mean
proper?

Now observe that the only projective subvariety of an affine line is a point. ■

Same theorem, but quite different proofs. △

Remark 1.6 (back to prereqs). There are two points of view, but should only be necessary to be com-
fortable with only one of them (+ being willing to understand some of the other perspective).

Keep in mind Joe will sometimes give proofs using only one of these perspectives, and it won’t always
be your preferred one. ◦

Question 1.7. How much of the theory of smooth varieties can be extended to singular ones?

Say C0 ⊂ Pr is a possibly singular algebraic curve. Then, ∃! smooth projective curve C along with a
map f : C ! C0 which is generically one-to-one (i.e. birational). Inevitably singular curves will crop up
in our work, but we’ll be able to recover smooth curves from them. Where does this resolution C ! C0

of singularities come from?
In the algebraic setting, just take the normalization. In the analytic setting, for all p ∈ C0, there

exists a neighborhood U of p s.t. U \ {p} ≃
⊔
(punctured disk) (can find punctured neighborhood of p

which is a disjoint union of punctured disks2); construct C by completing the punctured disks to discs.

1.3 Linear Systems

Question 1.8. What and why are linear systems?

The starting point is the transition from curves in projective space to abstract curves (ca. early
1900s). After making this transition, it is natural to ask: given an abstract curve C, how can we describe
all maps f : C ! Pr to projective space? These maps will be described by linear systems.

There’s a problem here. To give a map C ! Pr, we’d really like functions on C. There are no
(non-constant) holomorphic functions on C, so those aren’t helpful. Instead, we’ll introduction meromor-
phic/rational functions. If we considered all meromorphic functions at once, we’d get a space of functions
which is too big to be super useful; we’d get M(C) = K(C) the field of all meromorphic/rational func-
tions, so we’ll look only at functions with bounded singularities (and get f.dim vector spaces).

2something something Weierstrass preparation something something. See example on homework/Friday problem session.
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Start with a Riemann surface C, and fix your favorite points {pi}ki=1. We’ll look at functions with poles
of bounded order at these points, but which must be holomorphic elsewhere. So fix integers m1, . . . ,mk,
and consider the space

{f ∈ M(C) : f holomorphic on C \ {p1, . . . , pk} and ordpi
(f) ≥ −mi} .

These are the sorts of spaces of functions we’ll be working with.

Remark 1.9. If mi < 0, then we’re not actually allowing a pole at pi. We’re requiring a zero (of order at
least −mi) there. ◦

Definition 1.10. A divisor D on C is a formal finite linear combination of points, D =
∑

mαpα. We
will call D effective if mα ≥ 0 for all α. ⋄

Remark 1.11. An effective divisor on C is the same thing as a 0-dimensional subscheme of C. ◦

We won’t actually need much scheme theory in this class it seems.
Given a divisor D, we associate the space

L (D) := {f ∈ M(C) : ordpα
(f) ≥ −mα} = {f ∈ M(C) : (f) +D is effective} ,

where for f ∈ M(C) we define its divisor to be (zeros/poles of f are isolated so only f.many)

(f) =
∑
p∈C

ordp(f) · p.

We call such divisors principal divisors.

Definition 1.12. Two divisors D,D′ are linearly equivalent, denoted D ∼ D′, if D − D′ = (f) for
some f ∈ M(C). ⋄

Remark 1.13. If D,D′ are linearly equivalent, then we get an iso

·f : L (D)
∼
−! L (D′)

via multiplication by f . ◦

Definition 1.14. Given a divisor D =
∑

mαpα, its degree is

degD :=
∑

mα. ⋄

Claim 1.15. If f ∈ M(C), then deg(f) = 0, i.e. global meromorphic functions have the same number
of zeros and poles.

Proof. Analytically, use the residue theorem applied to the meromorphic differential df
f . The residue of

this differential at a point is the order of f at the point, and residue theorem says the sum of residues is
0.

Algebraically, think of f as giving a map f : C ! P1, and then (f) = f∗(∞ − 0) so deg(f) =

ddeg(∞− 0) = 0 where d is the degree of f the function, not (f) the divisor.
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Alternatively algebraically, choose a map π : C ! P1 and consider the induced norm map K(C)
Nm
−−!

K(P1). Use this to reduce to case of P1 (e.g. deg(f) = deg(Nm f), up to some constant).3 ■

Question 1.16. What does this have to do with maps f : C ! Pr?

Pr is kinda tricky because it doesn’t actually have coordinates. To get around this, choose a hyperplane
H ⊂ Pr, so H ∩ f(C) will be finitely many points.

Assumption. Always assume maps to Pr are non-degenerate, i.e. their image is not contained in a
hyperplane.

After making this choice, can take the divisor D = f−1(H). Now, choose homogeneous coordinates
X0, . . . , Xr on Pr so that H = V (x0). Then, we can think of f as coming from the map Question:

What does
X1/X0

mean as
a func-
tion on C?
Do we se-
cretly mean
(X1/X0) ◦ f
or some-
thing?

C \ f−1(H) −! Ar given by
(
X1

X0
, . . . ,

Xr

X0

)
.

Note that this is an r-tuple of functions with bounded singularities (supported on f−1(H)). We get in
this way an r-dim vector space V =

〈
X1

X0
, . . . , Xr

X0

〉
⊂ L (D).

If we chose a different hyperplane H ′ = V (L) (L some linear function), then D′ := f−1(H ′) ∼ D via
the rational function L/X0. This multiplication by this function gives an isomorphism L (D)

∼
−! L (D′)

carrying V onto V ′.
“Let me go one step further, and this is where the trouble starts. I’m gonna dump a whole pile of

trouble on you guys, and then I’m going to leave.” (paraphrase)
Here’s the basic correspondence. Start with an abstract curve C.{

nondeg maps
C ! Pr of degree d

}/
PGLr+1  !

{
(D,V )

∣∣∣∣V ⊂ L (D)

of dim r

}/
linear

equivalence
.

To make things less hairy, we’ll introduce a new object which will incorporate this notion of linear
equivalence.

Say D is a divisor on X. We’ll introduce a sheaf-y version of L (D). This is the sheaf OX(D) defined
on an open set U ⊂ X via

OX(D)(U) = {f ∈ M(U) : ordp(f) ≥ − ordp(D) for all p ∈ U} .

This bounded-order condition is a local one, so might as well consider the whole sheaf instead of just its
global sections OX(D)(X) = L (D).

Fact. As sheaves, OX(D) ≃ OX(D′) ⇐⇒ D ∼ D′.

2 Problem Session (9/3)

Note 2. Fixed my internet woes.

Note 3. Not sure if I’ll always take notes during these problem sessions.
3Something like this, I didn’t quite hear
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Harris said some stuff about the connection between divisors, invertible sheaves, line bundles, and
maps to projective space, but I didn’t bother writing it down.

2.1 Problem 1

Dealing with the affine curve C0 : y2 = x3 + 1. Note that there is a unique way to extend this to a
smooth, projective curve/compact Riemann surface. For example, take the closure in P2 (or P1 × P1),
and then normalize the resulting curve. In this case, the closure of C0 ↪! P2 is already smooth.

Let’s see a more naive way of compactifying this curve. Consider C0 as a two-sheeted cover of the
x-plane, i.e. consider the map π0 : C0 ! A1, (x, y) 7! x. This is branched at the three points −1,−ω,−ω2

where ω is a cube root of unity (these points only have 1 preimage). Consider some big disc ∆r ⊂ C
of radius r (r big enough so that −1,−ω,−ω2 ∈ ∆r). Then, above C \ ∆r, π0 becomes a 2-sheeted
(unbranched) cover of C\∆r ≃ ∆∗ (∆∗ = punctured disk). There are only two different 2-sheeted covers
of a punctured disk4

• ∆∗ ⊔∆∗ ! ∆∗

• ∆∗ ! ∆∗, z 7! z2

In the first case, we compactify by adding 2 points. In the second case, we compactify by adding one
point.

To figure out which case, look at the monodromy. Take a loop in the base, lift it upstairs, and see if
you end up in the same sheet or the other sheet. Note that, for r large, we basically have y2 ≈ x3. As
you loop x around once, its argument increases by 2π. So the argument of x3 = y2 increases by 6π, so
the argument of y increases by 3π, i.e. y gets negated. Thus, we end up in the other sheet, so we’re in
the second case. We only need to add one point to compactify.

After compactifying C0 to C = C0 ∪ {r}, we extend π0 to π : C ! P1 branched at 4 points, the 3
from before + the point at infinity.

Question 2.1. What does C look like topologically?

Split the 4 branch points in CP1 into 2 pairs. Draw arcs A1, A2 connecting each point in a pair. The
preimage of P1 \ (A1 ∪ A2) looks like two disjoint copies (to get from one sheet to another, need a loop
with odd total winding number, but that’s impossible after removing these arcs).

Note 4. Really hard to take notes on this without being able to draw the pictures he’s drawing...

If you take an B transverse to A1, and look at what it does upstairs, then it starts in one sheet and
gets transported to the other sheet. So to go from π−1(P1 \ (A1 ∪ A2)) to all of C, we essentially need
to “identify the points on the boundary of the removed arcs.” To do this, extend arcs to small opens.
Then each P1 \ (A1 ∪A2) upstairs really looks like a sphere with two small balls missing. We identify the
boundaries of these missing pieces of each copy, and end up with a torus.

This manual sort of argument will quickly get hairy as our curves become more complicated, so let’s
see something else. An oriented surface is determined by its genus (equivalently, its Euler characteristic),
so we can just compute this. Triangulate P1 so that each branch point is a vertex in the triangular. Pull

4punctured disk homotopy equivalent to a circle
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this back along π to a triangulation of C. If The original triangulation has V vertices, E, edges, and F

faces, then the one on π will have 2V − 4 vertices (note: 4 branch points), 2E edges, and 2F facts. Thus,

χ(C) = 2χ(P1)− 4 = 0

which is enough to conclude that C is a torus. In general, Riemann-Hurwitz.

Divisor computations Label points p1, p2, p3 = (−1, 0), (−ω, 0), (−ω2, 0) as well as q1, q2 = (0,±1)

and s1, s2 = (2,±3). We want to establish linear equivalences

2p1 ∼ 2p2 ∼ 2p3 ∼ 2r

and other such things.

Example. What’s the divisor of (x + 1)? It’s regular above the x-plane. It has a zero at p1 = (−1, 0).
In fact, it has a double zero there (I missed why). There are no poles above the x-plane, so the only pole
is at r = π−1(∞). Since it must have degree zero, we conclude (x+ 1) = 2p1 − 2r. △

Example. p1 + p2 + p3 ∼ 3r. Want a rational function with zeros at those three points. Why not take
the rational function y? It vanishes at p1, p2, p3 and nowhere else above C ⊊ P1. Hence it must have a
triple pole at r, so (y) = p1 + p2 + p3 − 3r. △

Describing complete linear system We want to describe the complete linear system |p1 + q1|. Recall
p1 = (−1, 0) and q1 = (0, 1). Let’s find all meromorphic functions with (at worst simple) poles at just
these two points, and which are otherwise holomorphic.

We can describe a function with poles at p1, q1, by drawing a line through them, and then taking the
reciprocal of its defining equation, e.g. by considering (y − x− 1)

−1.

Note 5. The guy sitting in front of me keeps sneezing. If I stop taking notes after today, I got covid and
died.

Note that s1 = (2, 3) is also on this line, so(
1

y − x− 1

)
= 3r − p1 − q1 − s1.

Now we want to get ride of that s1, so let’s multiply by a function vanishing at s1. We don’t want the
function we choose to introduced new poles (i.e. great if it had poles only at r), so consider the collection{

αx+ βy + γ

y − x− 1
: 2α+ 3β + γ = 0

}
⊂ L (p1 + q1).

This will give a vector space of functions with poles only at p1, q1.
We can describe this a little more geometrically. The numerator is a general equation of a line L

through s1. Any such line will pass through C in two more points t1, t2. By the above argument, we will
have t1 + t2 ∼ p1 + q1. Thus, any divisor colinear to s1 will give one linearly equivalent to p1 + q1; this
gives a 1-parameter (projective) family of divisors linearly equivalent to p1 + q1.

6



Are there any other divisor equivalent to p1 + q1? A prior, who know? But Riemann-Roch will tells
us that there are no others (i.e. that dimL (p1 + qq) = 2 so dimPL (p1 + q1) = 1).

2.2 Problem 2

Start with C0 : y2 = x6 − 1 in the affine plane. Can check that this is smooth by looking at partial
derivatives. We again want to compactify, so think of this as a two sheeted cover of A1

x, the x-plane.
Then π : C0 ! A1

x is degree 2 with branch points rα := (ωα, 0) for ω = eπi/3 a 6th root of unity
(α = 0, 1, . . . , 5).

Play the same disk game as before. Take some large ∆r (r > 1). What does π−1(A1 \ ∆r) look
like? It will again be a two-sheeted cover, so we only care to know if it’s connected. It’s not. Why, as
x loops around a circle, its argument increases by 2π, so the argument of x6 ≈ y2 goes up by 12π, so
the argument of y goes up by 6π, i.e. y ends up where it started. Thus, this is unramified at ∞, so is
compactify by adding 2 points {p, q} = π−1(∞). Now we have our compact Riemann surface C. What’s
its genus?

Could do the same sort of concrete analysis as before. You would realize C as the union of 2 spheres,
each with three discs removed, such that the boundaries of those disks have been identified. Or you could
use Riemann-Hurwitz. In either case, the upshot is g(C) = 2 (χ(C) = −2).

Linear equivalence calculations Label the points s1, s2 = (0,±i).
The first linear equivalence is p + q ∼ 2rα (for all α). The function x on P1 has a simple pole at

∞ ∈ P1. Thus it has polar divisor p + q on C (p + q = x∗(∞)). The zeros of x are precisely s1, s2, so
(x) = s1 + s2 − p− q. One similarly computes

(x− ωα) = 2rα − p− q

(factor of 2 since rα a branched point).
We also want

∑
rα ∼ 3p+3q. To start, can we find a function with zeros at the points rα = (ωα, 0)?

Yes, y. It’s zeros are exactly the rα’s. It will also have poles above ∞, so it will have poles at p, q whose
order adds up to 6. By looking at local coordinates or arguing via symmetry, the coefficients of p, q better
be the same, so

(y) ∼
∑

rα − 3p− 3q.

Complete linear system Find |r0 + r2 + r4|. Can we find a function with poles at these points. Note
if you take a function like x− 1, it will have a double zero at r0 (since it’s a branch point), so functions
like that are no good. We could try 1/y. This will have simple poles at r0, r2, r4, but will also have poles
at r1, r3, r5. We’d like to kill this odd poles, so multiply by function with zeros there, e.g. by x − ωα

whose divisor is (x− ωα) = 2rα − p− q. Observe(
(x− ω)(x− ω3)(x− ω5)

y

)
= [2(r1 + r3 + r5)− 3p− 3q]−

[∑
rα − 3p− 3q

]
= r1+r3+r5−r0−r2−r4.
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We now have a two-dimensional vector space of functions instead L (r0+r2+r4), spanned by the constant
function 1 and this function above. Are these all? Yes by Riemann-Roch. Riemann-Roch will tells us

dimL (r0 + r2 + r4) ≤ 3 + 1− 2 = 2,

so we must have found everything.

2.3 Problem 3

The curve is now C0 : y3 = x5 − 1.

Remark 2.2. The closure of this curve in P2 is singular. Could take the normalization, but that’s
annoying. ◦

To compactify, let’s consider this as a triple cover of A1
x. To figure out how many points we have

over infinity, take a large disk including all 5 branch points5, and then ask about the preimage of its
complement. It will have 3, 2, or 1 components. Which is it? Same argument argument as before. As
arg(x) increases by 2π, arg(y) increases by 10π/3. So takes 3 trips around to get back to y, so we have
the connected 3-sheeted cover of C \∆r, i.e. we have 1 point above ∞ ∈ P1 with ramification index 3.
Riemann-Hurwitz then tells you that C has genus 4.

3 Lecture 2 (9/8)

Note 6. ∼ 12 minutes late

3.1 Divisors, invertible sheaves, and line bundles

Missed some stuff about linear systems and OC(D) being a line bundle.

Definition 3.1. A linear system on C is a pair (D,V ) with V ⊂ L (D) up to linear equivalence. ⋄

Recall 3.2. The sheaf associated to a divisor D is the sheaf OC(D) given on an open U ⊂ C by

OC(D)(U) = {f ∈ M(U) : ordp f ≥ −mp for all p ∈ U} ,

where D =
∑

mp · p. ⊙

This is locally free of rank 1 (equivalently, invertible) , i.e. for all p ∈ C, there exists neighborhood
U ∋ p and a meromorphic σ ∈ M(U) so that ordp σ = mp for all p ∈ U . Hence, any g ∈ OC(D)(U) can
be written as fσ for some f ∈ OC(U). To get U , just choose a neighborhood around p small enough that
it contains no other points in suppD.

That brings us up to date on what I missed...
Let F be any invertible sheaf on C. For all p, there exists some open U ∋ p and a section σ ∈ F (U)

so that for all τ ∈ F (U), one can write τ = fσ for some σ ∈ OC(U). We define the order of vanishing
of τ ∈ F (U) at p to be ordp(τ) := ordp(f).

5Each branch point will have ramification index 3
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Warning 3.3. If F = OC(D) and σ ∈ F (U), then this is not the same as the order of σ when viewed
as a meromorphic function σ ∈ M(U). The two values differ by mp, where as usual, D =

∑
mp · p. •

Let F again be an invertible sheaf on C. Can choose a cover {Uα} on C so that each OUα
is free

of rank one, generated by σα ∈ F (Uα) (i.e. σα a nonvanishing section). From this we get transition
functions

gαβ := σα/σβ ∈ OC(Uα ∩ Uβ).

These functions determine the invertible sheaf F .
What we’ve said above basically amounts to an equivalence of two sorts of objects (the top two below).

{
invertible sheaf

on C

}

{
linear eq class

of divisors on C

}

{
line bundle

on C

}

These are all three equivalent. What is a line bundle?

Definition 3.4. A line bundle is a complex manifold L along with a projection map π : L! C whose
fibers are complex vector spaces of dimension 1. Furthermore, we require that for all p, there exists a
neighborhood U along with a commutative diagram

π−1(U) U × C

U

∼

⋄

Say L ! C is a line bundle along with two open sets U, V above which it trivializes. Then, on the
overlap U ∩ V we have two different identifications of fibers with C; these will differ by multiplication by
a scalar, so we get (holomorphic) transition functions gUV : U ∩ V ! C× on overlaps. This is the same
data needed to define an invertible sheaf.

Remark 3.5. Can think in terms of line bundles or invertible sheaves as you like. Usually shouldn’t make
much of a difference. ◦

Note both invertible sheaves and line bundles generalize easily to higher dimensions. Can talk about
invertible sheaves or line bundles on varieties of higher dimensions. In fact, we can also extend divisors
to higher dimensional varieties or complex manifolds.

Example. On Pr, there is the invertible sheaf OPr (1) which is associated to the linear equivalence class
of hyperplanes (i.e. zero loci of homogeneous degree 1 polynomials). △
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3.2 Linear series on curves

Definition 3.6. A linear series on a curve C is a pair (L , V ) with L an invertible sheaf and V ⊂ H0(L )

a vector subspace. We say (L , V ) is base-point free if for all p ∈ C, there exists σ ∈ V so that σ(p) ̸= 0

(i.e. in some neighborhood U of p, σ generates L |U ). ⋄

Given a basepoint-free linear series (L , V ), we can then define a (non-degenerate) map

φ : C −! Pr

(at least, can defined such a map up to automorphism of Pr) which can be described in the following
ways

• (concretely) For all p ∈ C, choose an open U ∋ p and a generator τ of L |U . Choose a basis
σ0, . . . , σr for V , and write σi = fiτ with fi : U ! C a regular function. Then we set

φ(p) := [f0(p) : · · · : fr(p)] .

This is concrete, but involves choices, so one has to check that it’s actually well-defined. In partic-
ular, note that changing τ scales the coordinates uniformly (so gives the same element of Pr), and
then being base-point free guarantees fj(p) ̸= 0 for some j.

• (more intrinsically) Given (L , V ) b.p.f, for all p ∈ C, we define

Hp := {σ ∈ V : σ(p) = 0} ∈ PV ∗.

Then can describe φ simply as φ : p 7! Hp.

Exercise.

(a) Verify the above, that the two descriptions of φ are the same.

(b) Suppose (L , V ) is b.p.f. Let W ⊂ V be a subspace (with (L ,W ) also b.p.f). Show there exists a
(rational) map π : PV ∗ 99K PW ∗ making

C PV ∗ PW ∗
φV

φW

π

commute. This π will be projection away from Ann(W ) ⊂ V ∗. Note in particular that W being
base-point free will give PAnn(W ) ∩ φL ,V (C) = ∅.

Question 3.7. When is φ(L ,V ) : C ! Pr an embedding?

Fix an invertible sheaf L . Given a divisor D =
∑

mp · p, we can define a new (invertible) sheaf L (−D)

via
L (−D)(U) := {σ ∈ L (U) : ∀p ∈ U, ordp σ ≥ mp} .

Example.
H0(L (−p)) = sections of L vanishing of p. △
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Notation 3.8. If V ⊂ H0(L ), then we define

V (−D) := V ∩H0(L (−D)).

Exercise. If (L , V ) is b.p.f, so gives φ : C ! Pr, then φ is an embedding if and only if

dimV (−p− q) = dimV − 2 for all p, q ∈ C

(including p = q).

Remark 3.9. Being base point free already gives dimV (−p) = dimV − 1. For intuition in the above
exercise, the condition with p ̸= q says that φ(p) ̸= φ(q) (i.e. φ separates points). The condition with
p = q says that φ is an immersion at p (has nonvanishing derivative, i.e. separates tangent vectors). ◦

3.3 Canonical bundle

There is always one special invertible sheaf/line bundles/linear equivalence class.
Say C is a compact Riemann surface. A holomorphic 1-form (resp. meromorphic 1-form) is

locally given by f(z)dz where f is holomorphic (resp. meromorphic). In a coordinate neighborhood, have
the 1-form dz, and all others are multiples of it by some {holo, mero}morphic function. Given p in this
neighborhood, we define

ordp(ω) := ordp(f).

Note that if ω, η are two one-forms, then their ratio ω/η is a global meromorphic function. Thus, defining

(ω) =
∑
p∈C

ordp(ω) · p,

then (ω) ∼ (η). In this way, we get a well-defined linear equivalence class of divisors, the canonical class.
As a line bundle, this is simply to cotangent bundle; as an invertible sheaf, it’s the sheaf of holomorphic
1-forms. When thinking of it as a divisor (class), we denote it by K or KC .

Here are a couple questions.

Question 3.10.

(1) Given a curve C along with a divisor D of degree d, what can we say about ℓ(D) := dimL (D) =

dimH0(OC(D)) =: h0(OC(D)) = h0(D).

“We now write h0(OC(D)). Originally, it was ℓ(D), but then someone came along and said, ’Why
denote this with 4 strokes [of the pen] when you could use 9?’" (paraphrase)

(2) Given C, does there exists a divisor D of degree d for which h0(D) ≥ r + 1 (for given r).

4 Problem Session (9/10)

Note 7. roughly 3 minutes late
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4.1 Divisor/line bundle/invertible sheaf correspondence

Recall 4.1. We have equivalences

{
invertible sheaf

on C

}

{
linear eq class

of divisors on C

}

{
line bundle

on C

}

In particular, recall a line bundle is a family of lines parameterised by C. ⊙

I think he’s in the middle of talking about constructing line bundles from transition functions. So we
start with an open cover {Uα} of our base curve C, and in each member of the cover, we take a trivial
line bundle Uα × C. Over the overlaps Uαβ := Uα ∩ Uβ , we have two ways of identifying fibers with
C, either view Uαβ as a subset of Uα or as a subset of Uβ . We need to identify these two perspectives
using a linear automorphism of C, i.e. an element of GL1(C) = C×, i.e. for every p ∈ Uαβ , we get some
gαβ(p) ∈ C× giving the desired isomorphism. These identifications are consistent in the sense that

gαβgβγgγα = 1

(on the triple overlap Uαβγ). Such data is called a 1-cocycle. This is exactly the same data needed to
define an invertible sheaf.

Remark 4.2. Every invertible sheaf is the sheaf of sections of some line bundle, and the sheaf of sections
of a line bundle is always an invertible sheaf. ◦

Recall 4.3. Given a divisor D, we can naturally write down the corresponding invertible sheaf

OC(D)(U) = {f ∈ M(U) : (f) +D ≥ 0} . ⊙

You can also go from a divisor straight to a line bundle (via writing down the appropriate transition
functions), but this is maybe a less immediately clear correspondence. Since OC(D) is locally free of
rank 1, there is a cover {Uα} with sections fα ∈ M(Uα) so that (fα) = D in Uα.6 In other words,
OC(D)|Uα

= f−1
α ·OC |Uα

. With this in mind, the line bundle associated to a divisor D is then given
by the transition functions gαβ = fα/fβ .7

An example Say we have a curve C and a point p ∈ C. Consider the inclusion OC(−p) ↪! OC of
invertible sheaves.

Notation 4.4. One may also write Ip/C = OC(−p), thinking of it as the ideal sheaf of p (sheaf of
functions vanishing at p).

6fα is like a local equation for D
7Potentially this is backwards, but that’s not super important.
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Now consider the corresponding line bundles. The line bundle associated to OC(−p) should map to
the trivial bundle C × C corresponding to OC .

Warning 4.5. This map (of line bundles) is not an injection. In the map of line bundles, the fibers of
OC(−p) map isomorphically onto the fibers of OC except the fiber above p ∈ C. This fiber of OC(−p)

gets collapsed to 0. •

So ’injective’ maps of line bundles are the not the same as ’injective’ maps of invertible sheaves.

4.2 Example of computing complete linear systems: Problem 3 on the HW

There are two objectives in these computations: (1) finding linear equivalences (i.e. finding sections
of the appropriate sheaf) and (2) knowing when you’ve found them all. The second part comes from
Riemann-Roch. The first part can be made algorithmic, but in practice, you can usually just play around
with things (he said something like this. I was distracted).

Let C0 = V (y3 − x5 + 1) ⊂ A5 with compactification C. Note that C \ C0 = {r} and that we have
a degree 3 cover π : C ! P1 branched over the 5th roots of unity and over ∞ (each point completely
ramified). Triangulating P1 (with branch points as vertices) and pulling this back to a triangulation of
C, we see that χ(C) = 3χ(P1)− 2(6) = −6 so g(C) = 4.

The next part of the problem asks to show 3rα ∼ 3p and
∑

rα ∼ 5p. These come from the divisors
(x− ωα) = 3rα − 3p and (y) =

∑
rα − 5p.

Now, the question that was actually asked (by the audience): find H0(K), the space of holomorphic
1-forms on C. The space of meromorphic 1-forms is 1-dimensional over M(C), so let’s start with a
meromorphic 1-form and see which multiple of it are holomorphic.

We’ll start with dx. This differential is non-vanishing on A1. Note that, near rα (= (ωα, 0)), π

looks like z 7! z3, so dx will have a double zero at each of these points (i.e. d(z3) = 3z2dz). Hence,
(dx) = 2

∑
rα−???. Now, we could do a local calculation at ∞ to figure out the poles. However, we don’t

have to since it’s a fact that deg(dx) = 2g−2 = 6. Thus, we must have ??? = 4p, i.e. (dx) = 2
∑

rα−4p.
As a consequence,

H0(K) = L
(
2
∑

rα − 4p
)
· dx

(need to cancel out the poles of dx without introducing too many new poles in order to get something
holomorphic).

Note that we can kill the poles of dx by dividing by y (recall (y) =
∑

rα − 5p) in order to get
w0 = dx

y with divisor (w0) =
∑

rα + p. What do we do next? Well, w0 still vanishes at all the rα’s
so can do the same thing: define w1 = dx

y2 . This has divisor (w1) = 6p. Then take w2 = xdx/y2 and
w3 = x2dx/y2. Since x has a triple pole at p (and no other poles), these are also holomorphic. We know
dimH0(K) = g = 4, so we’ve found everything:

H0(K) = span
{
dx

y
,
dx

y2
, x

dx

y2
, x2 dx

y2

}
.

Let’s now look at (g) of this homework problem. Let D = r0 + · · · + r4. We’re first asked to show
h0(KC − D) = 1. We saw above that KC ∼ (dx) = D + p, so KC − D ∼ p. We know h0(O(p)) = 1. Question:

Did I write
down the
wrong thing
when taking
notes? I’m
pretty sure
this just is
not what
(dx) is...

Answer: Im-
plicitly using
that D ∼ 5p

It’s at least one-dimension since it contains the constant function 1; if there were more sections, we could
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get a degree 1 map to P1, forcing C to be rational. Riemann-Roch then gives h0(OC(D)) = 3. We could
even find a basis if we wanted.

Example. Say we have f a meromorphic function with poles at r0, . . . , r4 and otherwise holomorphic.
Consider the meromorphic differential fw0 = fdx/y. This is a holomorphic differential vanishing at p.
From our computation of H0(K), we know the only holomorphic differential vanishing at p are w0, w1, w2,
so fw0 ∈ span {w0, w1, w2}. Equivalently,

f ∈ span
{
w0

w0
,
w1

w0
,
w2

w0

}
= H0(O(D)). △

He explained something about making this algorithmic but I wasn’t paying attention and missed it...

4.3 Something about embeddings? I couldn’t hear the question asked over
the sound of the AC

Say we have (L , V ) with V ⊂ H0(L ) base point free. This gives a map

φ : C −! Pr where dimV = r + 1.

(defined up to linear automorphism of Pr). Fixing a basis σ0, . . . , σr of V , this map is simply φ(c) =

[σ0(p), . . . , σr(p)]. More intrinsically, can think of this as a map φ : C ! PV ∗ sending p 7! {σ ∈ V : σ(p) = 0} =:

Hp.

Question 4.6. What’s the condition that φ is 1-1?

This is simply that Hp ̸= Hq for any pair p ̸= q. In other words, Hp ∩Hq is neither Hp nor Hq. Since
Hp, Hq are both codimension 1 subspaces of V , this is saying that Hp ∩Hq = V (−p− q) is codimension
2, i.e. that dimV (−p− q) = 2.

Question 4.7. What’s the condition that φ is an immersion?

Non-example. The map
A1 −! A2

t 7−! (t2, t3)

is 1-1 but not an immersion (image looks like a cuspidal cubic y2 = x3, i.e. like ≺) ▽

Claim 4.8. The condition that φ be an immersion at p is precisely that dimV (−2p) = dimV − 2.

If φ is not an immersion at p, then every function vanishing at p does so to order ≥ 2.

Proposition 4.9. φ is an embedding ⇐⇒ dimV (−D) = dimV −2 for all degree 2 effective divisors D.

(in particular, this implies V (−p) = dimV − 1 for all p ∈ C).

5 Lecture 3 (9/13)

Note 8. Roughly 7 minutes late
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5.1 Two small items

(1) Homework 2 posted later today, due 9/20. In general, homeworks due on Mondays

(2) Degree of a line bundle/invertible sheaf

Any line bundle can be written as L = OC(D), so can define degL = degD.

Alternatively, in topology/dif geo can associate to any complex vector bundle on a space X its
chern classes ck(L) ∈ H2k(X,Z). In the case of a compact Riemann surface, we have degL =

c1(L) ∈ H2(C;Z) = Z.

5.2 Basic properties: genus, Riemann-Roch, etc.

Genus Let’s define genera (genii? genuses? genes? genies?).
Over the complex numbers, C is a compact Riemann surface, so in particular is an oriented two-

dimensional real surface. Hence it is topologically classed by its topological genus g, essentially its
number of handles. This only works of (connected) curves over C though, so we’d like a more algebraic
definition.

Fact. deg(KC) = 2g − 2

We can define the canonical bundle over any field, so this is the definition we’ll use in general, even
for disconnected curves.

Example. g(P1 ⊔ P1) = −1. △

There’s another definition that works algebraically: g = h0(KC) = 1 − χ(OC). There is one more
definition we want to mention. Say we have an embedding C ↪! Pr. This embedded has an associated
Hilbert polynomial pC , and one can define g = 1− pC(0).

It’s not immediately obvious that all these various characterizations are equivalent, but they are.

Remark 5.1. Eventually, we will have to deal with singular curves, so we’ll eventually need a definition
of genus for them as well. We won’t worry about this just yet. ◦

Riemann-Roch Both Riemann and Roch were 19th century mathematicians, so let’s first state this
theorem in a form closer to how they would have thought about it.

Theorem 5.2 (Riemann-Roch). Let D be a degree d divisor on C. Then,

h0(D) = d− g + 1 + h0(KC −D).

(in particular, h0(KC) = deg(KC)− g + 2 so h0(KC) = g ⇐⇒ deg(KC) = 2g − 2, giving one of the
equivalences from before).

Corollary 5.3. Say degD ≥ 2g − 1. Then, h0(D) = d− g + 1.

Proof. deg(KC −D) < 0 =⇒ h0(KC −D) = 0. ■

Corollary 5.4. Say degD ≥ 2g+1. Then, |D| defines an embedding φD : C ↪! Pr into projective space.
In particular, any curve can be embedding into projective space, as a curve of degree 2g + 1.
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Question 5.5. Can we do better than 2g + 1? Given a curve of genus g, what is the smallest degree of
an embedding of that curve into projective space?

Suppose we have an embedding C ↪! Pr. Consider the exact sequence

0 −! IC/Pr −! OPr −! OC −! 0.

Twisting by m and taking cohomology gives (note r > 1)

0! H0(IC/Pr (m))! H0(OPr (m))
ρm−−! H0(OC(m))! H1(IC/Pr (m))! 0 = H1(OPr (m)).

Definition 5.6. The Hilbert function is hC(m) := rank ρm. ⋄

Think: how many conditions does it take to say a degree m polynomial vanishes on C? This is
dimker ρm.

Theorem 5.7. For m ≫ 0, hC(m) = pC(m) for some polynomial pC .

As a consequence of a theorem of Serre (in FAC) for m ≫ 0, h1(IC/Pr (m)) = 0, i.e. hC(m) :=

h0(OC(m)). We saw earlier that for m ≫ 0, we have h0(OC(m)) = md − g + 1. Put together, this says
that pC(m) = md− g + 1, so in particular 1− pC(0) = g. In general,

this pC is
the Hilbert
polynomial
pC(m) =

χ(OC(m))

Serre Duality Here’s a nice result.

Theorem 5.8 (Serre Duality). There is a perfect pairing

H0(D)⊗H1(K −D) −! H1(K) = C

given by cup products. Hence, H0(D) = H1(K −D)∗, so h1(D) = h0(K −D).

This allows us to give another formulation of Riemann-Roch:

χ(L ) = degL − g + 1 = degL + χ(OC)

for an arbitrary line bundle L . In this form, this generalizes to higher dimensional varieties and higher
rank vector bundles, can get a formula for the Euler characteristic of a vector bundle on a variety in
terms of some function of that bundle and the Euler characteristic of the structure sheaf.8

Remark 5.9. This form of Riemann-Roch (for line bundles on curves) is easy to prove. Taking cohomology
of the exact sequence

0 −! L (−p) −! L −! Lp −! 0

tells you that RR holds for L ⇐⇒ it holds for L (−p), i.e. that χ(L ) = χ(L (−p))+1. Thus, to prove
RR, only need to prove it for a single line bundle. ◦

Riemann-Hurwitz Say we have a (non-constant) map f : C ! X between compact Riemann surfaces.
Let d be the degree of this map, so outside a finite set q1, . . . , qℓ of points of X, this map is a d-sheeted
(unramified) covering space. The points q1, . . . , qℓ (where #f−1(qi) < d) are called branch points.

8Technically, Joe didn’t say all of this, but I’m pretty sure general RR formulas are always of this rough shape
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Remark 5.10. If p ∈ C and q = f(p) ∈ X, then there exists local coordinates z around p and w around
q such that f is given by w = zm for some m. ◦

Definition 5.11. The ramification index of f at p is ram(f, p) = m− 1 with m as above. ⋄

Since there are only finitely many ramification points, we can define the ramification divisor

R =
∑
p∈C

ram(f, p) · p ∈ Div(C)

as well as the branch divisor

B = f∗R =
∑
q∈X

 ∑
p∈f−1(q)

ram(f, p)

 q ∈ Div(X).

Note that at a point q ∈ X, one has ordq B = d−#f−1(q). We also set b = degR = degB.

Theorem 5.12 (Riemann-Hurwitz).

2g(C)− 2 = d(2g(X)− 2) + b.

Proof. (1) Let ω be an meromorphic differential on the target X (so deg(ω) = 2g(X)− 2). Consider the
pullback f∗ω, a meromorphic 1-form on C. What is its divisor? It is

(f∗ω) = f−1((ω)) +R.

The point is that the zeros/poles of ω give zeros/poles of f∗ω, but also even if ω has no zero a point
q, if q is a branch point, then f∗ω will acquire zeros at the ramified points over it (essentially because
dzm = mzm−1dz which has a zero or order m− 1 even though dz does not).

(2) Alternatively, one can play around with triangulations. First triangulate X so that all points in
B are vertices. Say this triangulation has fX faces, eX edges, and vX vertices. Then this pulls back to a
triangulation of C with fC = dfX faces, eC = deX edges, and vC = dvX − b vertices. Taking topological
Euler characteristics, we win. ■

5.3 Canonical Map

Recall the connection between linear series and maps into projective space, essentially{
linear series

on C

}
 !

{ maps
C −! Pr

}
.

Every curve comes equipped with a particular (usually) non-trivial line bundle, the canonical bundle,
and so comes equipped with a natural associated map φK : C ! Pg−1. Given a basis ω1, . . . , ωg of
holomorphic 1-forms, this is the map

φk = [ω1 : · · · : ωg] .
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Before looking at the geometry of this map, we better hope |K| is base-point free. Note that p ∈ C is a
base-point (vanishes at every section of O(K)) iff h0(K − p) = h0(K). Riemann-Roch tells us that

h0(K − p) = 2g − 3− g + 1 + h0(OC(p)).

Remark 5.13. h0(OC(p)) = 1 if g > 0. This is because two independent sections would give a degree 1
map to P1. ◦

Hence (assuming g > 0),
h0(K − p) = g − 1,

so |K| is base-point free.9 Thus, φK is at least a morphism (assume g > 0 from now on).

Question 5.14. Is φK an embedding?

Answer. Yes iff h0(KC −D) = h0(KC)− 2 = g − 2 for all effective divisors D = p+ q on C. ⋆

Another application of Riemann-Roch gives

h0(K −D) = g − 3 + h0(OC(D))

so the question becomes: is h0(OC(D)) equal to 1 or 2?

Claim 5.15. We always have h0(OC(D)) = 1 unless C admits a degree 2 map φD : C ! P1.

(A degree two subspace of L(D) is such a degree 2 map)

Definition 5.16. We say C is hyperelliptic if there exists a degree 2 map f : C ! P1. ⋄

Thus, given a curve C, φK is an embedding or C is hyperelliptic.

Question 5.17. Given a genus g, are there any hyperelliptic curves of genus g? Similarly, are there any
non-hyperelliptic curves of genus g?

In genus ≤ 2, every curve is hyperelliptic. In genus ≥ 3, most curves are not hyperelliptic. We’ll make
this more precise later.

Let’s end with an application of using the canonical embedding.

Question 5.18. Say C is a non-hyperelliptic curve of genus g. Say D = p1 + · · · + pd is an effective
divisor of degree d (say the pi are distinct). Does there exist a meromorphic function on C with at most
simple poles at the points pi (and is holomorphic elsewhere)?

Answer. Think of the curve C as embedding φK : C ↪! Pg−1 canonically. Then the answer is yes iff the
points p1, . . . , pd ∈ C ⊂ Pg−1 are linearly dependent. ⋆

6 Lecture 4 (9/15)

Outline for today
9When g = 0, H0(K) = 0
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• canonical curves + geometric Riemann-Roch

• moduli spaces

• rational spaces

Recall 6.1. We said last time that “most curves of genus ≥ 3 are not hyperelliptic.” What does this
actually mean? The answer will involve moduli spaces. ⊙

“I should warn you that I looked over my notes for the class today, and uh, decided not to do that.”

6.1 Canonical Curves

Let C be a smooth curve of genus g which is non-hyperelliptic, so its canonical bundle is very ample
(given en embedding φK : C ↪! Pg−1 into projective space).

Recall 6.2. The canonical series never has base points if g ̸= 0. ⊙

Remark 6.3. If C is hyperelliptic the canonical map φK : C ! Pg−1 is the hyperelliptic map C
2
−! P1

hollowed by the Veronese embedding P1 ↪! Pg−1, [x : y] 7! [xg−1, xg−2y, . . . , xyg−2, yg−1]. ◦

Let’s talk geometric Riemann-Roch.
Let D = p1 + · · ·+ pd be a degree d divisor with the pi distinct.

Exercise. Think about how to make sense of the following when D has points appearing with multiplicity
> 1.

Identify C with its image in Pg−1. Note that Riemann-Roch says

h0(D) = d− g + 1 + h0(K −D).

What is h0(K −D) thinking of C under its canonical embedding?
First note that every canonical divisor K on C is the intersection of C ↪! Pg−1 with some hyperplane

in Pg−1. We are now asking how many of these hyperplanes contain the points of D. Naively, we’d expect
a (g − d)-dimensional vector space (d linear conditions given by the d points). However, this only holds
if the pi are linearly independent. In general, we have

h0(K −D) = g − d+#linear relations among the pi’s.

Notation 6.4. r(D) := h0(D)− 1 = dim |D| = # linear relations among the points pi. Question:
Why is this
counting
linear rela-
tions?

Recapping, we have obtained

Theorem 6.5 (Geometric Riemann-Roch). Let C be a curve of genus g ≥ 2, and let φ : C ! Pg−1

be its canonical map. Then,
r(D) = d− 1− dimφ(D).

(this holds even if C is hyperelliptic)

Question 6.6. Is C expressible as a 3-sheeted cover of P1?
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Such curves are called trigonal.

Answer. C is trivial iff C ↪! Pg−1 contains 3-colinear points (including e.g. something like 2p+ q where
the tangent to C at p contains q).

Need a divisor of degree 3 which moves in a 1-dimensional linear series. ⋆

6.2 Canonical maps

• In genus g = 0, they don’t exist since h0(K) = 0.

• In genus g = 1, the canonical map φK : C ! P0 is simply collapsing the curve to a point.

• In genus g = 2, φK : C
2
−! P1 is a hyperelliptic map.

From here on, assume the curve is non-hyperelliptic

• In genus g = 3, we get an embedding φK : C ↪! P2 with image a smooth plane quartic curve.

Note that any line in P2 will meet C in 4 points, any 3 of which are collinear. Hence, C is
automatically trigonal.

More geometrically, if these four points are s, p, q, r, then we have p+ q+ r ∼ K− s, and we can see
that there is a 1-dimensional linear series of linear equivalent divisors: consider the lines through
s, i.e. K − s ∼ p′ + q′ + r′ where p′, q′, r′ lie on a line passing through s.

Question 6.7. Is a non-hyperelliptic curve C of genus 4 trigonal?

Start with the canonical embedding φK : C ↪! P3. Note that C is a curve of degree 6. This is not enough
by itself to know much about the equations that define it.

Remark 6.8. The map associated to a linear series is always non-degenerate, the image never lies in a
hyperplane. ◦

Does C lie on a quadric surface? To answer this, consider the restriction map OP3(2) ! OC(2). C Note 6 = 2 ·3
so reason-
able to ex-
pect C to
a lie on a
quadric sur-
face and a
cubic surface

will lie on a quadric surface iff the induced map on global sections is non-injective (an element of the
kernel is a degree 2 polynomial vanishing along C).

Note 9. Joe said some more stuff here, but I couldn’t hear over the sound of the AC.

To figure out if ρ2 : H0(OP3(2))! H0(OC(2)) = H0(2KC) has a kernel, let’s start by computing some
dimensions. Stars and bars tells us that dimH0(OP3(2)) =

(
5
2

)
= 10 while Riemann-Roch tells us that

dimH0(OC(2)) = 12− 4 + 1 = 9.

Thus, C lies on a (unique) quadric surface Q. Why unique? If C lied on two (irreducible) quadrics, then
it’s lie in their intersection, a curve of degree 4. Note that C can’t lie on a reducible quadric. Question:

Why?

Answer:
Because C

does not lie
on a hyper-
plane, so
can’t lie on
a quadric
that’s a
product of
two linear
equations

Does C lie on any (irreducible) cubic surfaces? Look at

ρ3 : H0(OP3(3))︸ ︷︷ ︸
dim=20

−! H0(OC(3))︸ ︷︷ ︸
dim=15

with dimensions as indicated. Thus, C lies on (at least) 5 linearly independent cubics. We know C

lies on Q, so it also lies on the cubics X0Q,X1Q,X2Q,X3Q with the Xi’s coming from H0(OP3(1)) (a
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4-dimensional space). Thus, there must be some other cubic surface S, not containing Q, in which C

lies. Thus, C ⊂ Q ∩ S with Q ∩ S a degree 6 curve by Bezout. That is, C = Q ∩ S is defined by two
independent relations, one quadric and one cubic.

Recall 6.9. We asked if C is trigonal. This is the case iff it contains 3 colinear points. ⊙

Suppose we had 3 collinear points on C. Then, any quadratic polynomial vanishing along C would
vanish at 3 points of that line, and so vanish identically along that line (i.e. the line would lie in the
quadric surface cut out by the polynomial). The converse holds as well: any line in Q will intersect C is
3 (colinear) points.

Fact. If Q is smooth, then Q ∼= P1 × P1 with lines given by the fibers of its two projection maps.

Corollary 6.10. There are two linear series of degree 3 and dimension 1 on C.

Consider the maps C ↪! Q ∼= P1 × P1
pr1
⇒
pr2

P1.

Fact. If Q is singular, then Q is a cone (think x2 + y2 + z2 = 0). In this case, C is expressible as a
3-sheeted cover of P1 in 1 way.

6.3 Moduli problems

Slogan. The objects we work with are often parameterized by some geometric space.

Definition 6.11. A moduli problem consists of two things

• A class of objects (e.g. varieties, sheaves, subvarieties of a given variety, etc.)

• A notion of what it means to have a family of such objects over a given base B. ⋄

Example. Take objects to be {isom classes of smooth, projective curves of genus g}. What is a family
of such things? It is simply a smooth, projective morphism C ! B whose fibers are smooth projective
curves of genus g. △

Example. The objects {curves C ↪! Pr of degree d, genus g}. A family is a subscheme S ↪! B × Pr

(= Pr
B) so that the projection map π : C! B is flat (+ the fibers are curves of degree d and genus g). △

Example. Fix a curve C. Can take objects {effective divisors of degree d on C}. A family here is a
subscheme D ⊂ B × C which is flat over B, and whose fibers are as above. △

Example. Fix curve C. Can take objects {line bundles L of degree d on C}. A family will be a line
bundle L on B × C, more or less...

We want think of a line bundle on B ×C as a family of line bundles on C, parameterized by B. The
fibers Lb are line bundles on C, but they don’t change if L is tensored by the pullback of a line bundle
on B. Hence, we’ll say...

A family here is an element of
line bundle on B × C

⊗π∗(l.b. on B)
,

where π : B × C ! B the projection. △
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Given a moduli problem, we would love to find a variety/scheme M whose points are “naturally” in
bijection with the objects of the moduli problem. We don’t just want any old bijection. We want one
compatible with the notion of families. That is, by “natural”, we mean that given a family over B, we get
a morphism B !M sending b 7! [fiber/b].

This definition of moduli space does not quite work. This condition, it turns out, does not uniquely
determine M . Furthermore, we are wanting the set map b 7! [fiber/b] to be a morphism, but a morphism
of schemes is not determined by the underlying map on topological spaces. Hence, there is more to be
required.

Take 2: require that for any B, we have a natural bijection{
families of objects

over B

}
 ! Hom(B,M).

Taking B = ∗ (= SpecC), a point, this includes that points of M correspond to objects of the moduli
problem. Natural here is in the sense of ‘natural transformation,’ i.e. given a morphism B′ ! B we can
pull families over B back to families over B′, and we want the following diagram to commute

{
families of objects

over B

}
Hom(B,M)

{
families of objects

over B′

}
Hom(B′,M)

.

What we’re saying is that we have two (contravariant) functors Sch! Set given by

B 7! {families/B} and B 7! Hom(B,M),

and M is moduli space iff these two functors are naturally isomorphic. That is, a (fine) moduli space
is a space representing the functor given by your moduli problem.

Example (isom classes of genus g curves). This moduli problem does not have a fine moduli space.
However, there’s the next best thing: a coarse moduli space Mg. More on this later.

When g ≥ 2, this is irreducible of dimension 3g − 3. △

Example (curves C ⊂ Pr of degree d and genus g). There is a (fine) moduli space, the Hilbert scheme
H.

Known to exist, but really mysterious in general. △

Example (divisors of degree d on C). Again, there is a moduli space Cd = Symd C := Cd/Sd. Note it
is easy to quotient a variety by a finite group.

Irreducible of dimension d. △

Example (line bundles of degree d on C). There is a moduli space here too, the Picard variety Picd(C).
Irreducible of dimension g. △
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7 Problem Session (9/17)

7.1 Line bundles on projective space

Fact. On P1, any two divisors of the same degree are linearly equivalent, i.e. there’s a unique line bundle
OP1(d) of degree d.

Fact. Every curve of genus 0 is isomorphic to P1.

Example (tautological line bundle on Pn). Recall Pn = {one-dimensional subspaces ℓ ⊂ Cn+1}. The
tautological line bundle O(−1) has total space

{
(ℓ, v) ∈ Pn × Cn+1 : v ∈ ℓ

}
.

Similarly, O(1) has total space
O(1) = {(ℓ,m) : m ∈ ℓ∗}.

Do these have sections? O(1) does because a section is just a choice of linear functional on each line. To
get one, just choose a linear functional on Cn+1 and then restrict it to each line. O(−1) has no sections,
i.e. no nice way to choose a single point of every line (unless you just always choose 0). △

Let’s get back to P1. The complete linear system |OP1(d)| given an embedding P1 ↪! Pd. Every linear
series of degree d is a subseries of O(d), so the induced map always fits into a diagram

P1 Pd Pn

O(d) project
.

Note that P1 ↪! Pd is the veronese embedding [x : y] 7! [xd : xd−1y : · · · : yd] and the image is a so-called
rational normal curve. Furthermore, there’s only one rational normal curve of a given degree.

7.2 Rational quartics in P3

TODO: Un-
derstand the
geometry in
this example

Consider the map [F0(t) : F1(t) : F2(t) : F3(t)] : P1 ↪! P3 with the Fi’s 4 linearly independent quartic
polynomials with no common zeros. What is the equation defining the image of this map? Given these
Fi’s, what relations do they satisfy?

We can ask, what surfaces in P3 contain these curves? No hyperplanes do, so what about quadrics to
start? Given any quadratic polynomial on P3, applying it to the Fi’s gives a homogeneous polynomial of
degree 8 on P1. On other words, we have a map

H0(OP3(2)) −! H0(OC(2)︸ ︷︷ ︸
OP1 (8)

).

Does it have a kernel? These spaces have dimensions 10 and 9, respectively. Thus, it does have a kernel,
i.e. C ⊂ Q for some quadric surface Q ⊂ P3. Since Q contains a non-deg curve, it is an irreducible
quadric (not a union of planes), so it’s a smooth quadric surface or a cone. Say for now that it’s smooth.

Any smooth quadric surface in P3 is isomorphic to P1 × P1. What is the class of the curve C on
Q ≃ P1 × P1? Since C has degree 4 in P3, it must be of type (2, 2) or type (1, 3) in Q. It turns out that
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it is of type (1, 3). We’ll see this in a bit.
Now look at cubics containing C. Note that dimH0(OP3(3)) = 20 while dimH0(OC(3)) = 13, so C

lies on ≥ 7 linearly independent cubics. Four of these 7 cubics come from the quadric Q (e.g. Q union
a hyperplane). Each cubic surface containing C will intersect Q in C + two lines of type (1, 0) (the
intersection has type (3, 3)).

7.3 Rational quintics in P3

Say C ↪! P3 is genus 0 and degree 5. Does C lie on a quadric surface. In this case, we have h0(OP3(2)) = 10

and h0(OC(2)) = 11, so it’s not immediately clear.
“We don’t have all the tools to answer this yet, but I’ll go over it anyways. This is part of why this

is a terrible homework problem” (paraphrase)
Suppose C ⊂ Q ∼= P1 × P1. Then, C has type (a, b) for some a + b = 5, i.e. type (1, 4) or (2, 3).

When is a curve defined by such a bihomogeneous polynomial rational? If (a, b) = (1, 4), then C is indeed
rational, e.g. consider C ↪! P1 × P1 ⇒ P1 (one of these compositions will be degree 1). This shows that
C can lie on a quadric (choose a general bihomgeneous poly of degree (1, 4). Will cut out a smooth curve
by Bertini-type argument).

Suppose C ⊂ Q with Q now a singular quadric.

Exercise. Get a contradiction.

Hint: look at the blowup of Q at the vertex. This is the Hirzebruch surface F2. Look at possible
divisor classes of curves on it.

Back to the case of Q ∼= P1 × P1 smooth and C of type (1, 4). One ruling will cut out a pencil of
quartic polynomials on C. Choose quadratic polynomials F (t), G(t) on P1. Look at the map P1 7! P3

given by [t0F : t1F : t0G : t1G]. This comes from a pencil of quartics, and we see that the image lies on
the quadric surface WX − Y Z with homogeneous coordinates [X : Y : Z : W ] on P3.

Question 7.1. The above shows we can have rational quintics lying on a quadric surface. Do all of
them? Can we have rational quintic curves not lying on a quadric surface?

At this point, it’d be good to make a dimension count. Everything in sight moves in some moduli
space, so we can compare the sizes of the relevant spaces.

Question 7.2. How many rational qunitics are there?

These are parameterized by (an open subset of) a Hilbert scheme, so it makes sense to talk about the
dimension of this family. Note a rational quintic is the image of a map P1 ! P3 given by a 4-tuple of
homogeneous quintic polynomials. What’s the dimension of the space of degree 5 maps P1 ! P3? There’s
a 6 dimensional vector space of homogeneous polynomials of degree 5, so there’s a 24-dimensional vector
space of 4-tuples of homogeneous polynomials of degree 5. However, the underlying map is invariant under
scaling, so we end up with a 23-dimensional (projective) space of candidate degree 5 maps P1 ! P3. The
actual space of degree 5 maps will be an open in this projective space (so still 23-dimensional). Question:

Why is be-
ing a map
an open con-
dition

Answer:
Not a map
if there’s
a common
zero, so
complement
cut out by
pairwise re-
solvents

Now, we have a map {
degree 5 maps

P1 ! P3

}
−! H

with H the relevant Hilbert scheme. The fibers are ∼= PGL2 and so have dimension 3. Hence, dimH = 20.
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Could alternately think about linear series. These correspond to maps up to automorphic of the target
projective space. One would get a 5-dimensional space of linear series here, corresponding to H /PGL4.
Since dimPGL4 = 15, one would still see dimH = 20.

Now let’s try to compute the dimension of the family of rational quintics that do lie on a quartic.
Call this moduli space K ⊂ H. Observe: if C ⊂ Q, then Q is unique (e.g. by bezout?). Hence, get a
map K −! P9 = {quadrics}. How many rational quintic curves lie on a given quadric Q ∼= P1 × P1. We The smooth

quadrics will
be an open
in the base,
so enough to
look at them

answered this already:

Probably
use adjunc-
tion to show
that if C
has digree
(1, 4) then
it’s won’t be
genus 0

{
rational quintics

on Q

}
= P(bihom poly of bidegree (1, 4) or (4, 1)).

There’s a (10 = 2 · 5)-dimensional vector space of bidegree (1, 4). Thus, the above space is P9 ⊔ P9, a
disjoint union of P9’s. Thus, we conclude that dimK = 18 < 20 = dimH.

Corollary 7.3. There exist rational quintics not lying on a quadric. In fact, the dimension counts show
that for a general rational quintic curve, the map H0(OP3(2))! H0(OC(2)) is injective.

This is true in general. A general rational curve will have the ranks of the above surjection maps
maximal, proved recently (past few years) by Eric Larson.

Joe added some remarks about this giving the Hilbert function of a general rational curve, but that
the possible Hilbert functions of any rational curve are still unknown? Something like this?

Question 7.4 (Audience). How did we rule out bidegree (2, 3)?

Answer. There’s a genus formula for smooth curves C ⊂ P1 × P1 of digree (a, b):

g(C) = (a− 1)(b− 1). ⋆

8 Lecture 5 (9/20)

Today

• moduli spaces + dimension counting

• examples in genus 0, 1

As we move onto curves in P3, a large part of understanding them depends on understanding surfaces
containing those curves. In particular, if we want to understand the canonical bundles of these curves,
the main tool for doing so will be via comparison with the canonical bundles of surfaces containing them.
We’ll see this on Wednesday; in particular, we’ll talk about the adjunction formula. After that, we’ll get
into Jacobians.

8.1 Moduli spaces

4 basic examples

• isom classes of curves of genus g, Mg
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• curves C ⊂ Pr of degree d and genus g, Hilbert scheme H

• divisors on a given curve C

• line bundles on a given curve C

Note that we have not constructed any of these spaces yet. On Wednesday, we’ll start talking about
constructing the bottom two moduli spaces. Constructing Hilbert schemes is difficult and won’t be done
in this class. A fine moduli space of isom classes of genus g curves does not exist.

Recall 8.1. A fine moduli space M has the following property: for any scheme B, there is a natural
bijection

{families/B} ∼
−! Hom(B,M). ⊙

This Mg space we have been alluding to is not a fine moduli space, but it’s close.

Warning 8.2. There exist families C ! B with all fibers isomorphic to a given fixed curve C, but which
are non-trivial, i.e. C ̸∼= C×B. This is a problem because both of these would correspond to the constant
map B !M . •

Warning 8.3. There exists maps B !Mg that do not come from any family. In particular, there is no
universal family over Mg. •

However, if B φ
−! Mg is any map, there always exists a finite, flat map B′ π

−! B so that φ ◦ π does
come from a family. Also, for any families C, C′ ! B so that the corresponding morphisms B !Mg are
the same, then there’s a finite, flat cover B′ ! B so that CB′ ∼= C′

B′ . Can see ex-
amples of
this phe-
nomenon
e.g. in the
book ’Ge-
ometry of
Schemes’

Definition 8.4. The above conditions express that Mg is a coarse moduli space. ⋄

Question 8.5 (Audience). Can we take B′ ! B to be étale?

Answer (I missed some bits). We can’t; it’s exactly the ramification that we need. M1 = A1
j is the

j-line. Whenever there is a family of genus 1 curves C ! B, if the associated j-map B ! A1
j has a zero,

then it must be a zero of order divisible by 3. So to get this phenomenon, we’ll want a map ramified at
0. ⋆

In general, given a moduli problem, we’d like to show a moduli space M exists, and then describe M

(what’s its dimension? Is it irreducible? smooth? projective? etc.). Most of the work describing these
spaces was down over a century before anyone proved they existed (e.g. Mg was proven to exist only in
1969 by Deligne and Mumford). However, much of what we’ll see today was known already to Riemann.

Question 8.6. If you had a compact Riemann surface on your desk, and you wanted to specify it to a
friend – over the phone, or in a letter, or over email – how much bandwidth would you need?

Giving an atlas and a sheaf of functions would work, but that’s a lot of data and not immediately
insightful. However, if you embed in projective space, then it’s just cut out by finitely with equations
with finitely many coefficients, so then you could just specify the relevant coefficients.

Slogan. Abstract curves are hard to get a handle on, but ones given with extra data (e.g. a map to
projective space) are easier to handle.
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Instead of looking directly at Mg, let’s introduce an auxiliary space

Hd,g =
{
(C, f) : C genus g and f : C

d
−! P1 simply branched of degree d

}
.

Definition 8.7. By simply branched we mean that every branch point was exactly one ramification
point over it, with ramification index 2. This is the simplest possible ramification. ⋄

This Hd,g is called a Hurwitz space. Here’s the plan

• Describe Hd,g

• Use the map Hd,g !Mg to describe Mg.

Say we have a point [C
π
−! P1] ∈ Hd,g. By Riemann-Hurwitz, the branch divisor B of π has degree

b = 2d + 2g − 2. Since π is simply branched, this divisor is reduced, i.e. it consists of b distinct points.
In other words, the branch divisor is a unordered b-tuple of distinct points in P1, so we get a map

Hd,g −!

{
unordered b-tuples
of distinct pts in P1

}
=: U

open
⊂ Pb = poly of degree b in P1.

The b-tuples of distinct points correspond to polynomials with no multiple roots, i.e. the complement of
the discriminant locus.

Claim 8.8. Hd,g ! U is a finite covering space.

Proof Sketch. Picture P1 as the Riemann sphere with branch points p1, . . . , pb. Fix some auxilliary point
p. Let γ1, . . . , γb be arcs from p to p1. Let S = P1 \

⋃
γi. Then, S is simply connected, so π−1(S) ! S

is a d-sheeted cover of a simply connected space, i.e. π−1(S) is a disjoint union of d copies of S. Label
these copies 1, 2, . . . , d. Take a simple loop σ around a single branch point pi. As you move around this
loop, you swap two of the sheets, so you get a transposition τi (transposition because ramification degree
2 upstairs at a single point in the fiber, i.e. we’re really using simply branched here). Thus, the cover
C ! P1 is described by a b-tuple of transpositions τ1, . . . , τb satisfying τ1 . . . τb = id (fundamental group
of sphere minus b points). Since C is connected, we need ⟨τ1, . . . , τb⟩ ⊂ Sd to be a transitive subgroup.

How does this tuple depend on choices? If we chose a different labeling of the sheets, we’d simultane-
ously conjugate each of the τi, so to each cover we associate the data{

τ1, . . . , τb = id ∈ Sd

⟨τ1, . . . , τb⟩ transitive

}/
simultaneous
conjugations

.

Hence, Hd,g ! U is a finite map of degree the number of above orbits.

Sounds like this number is known (always?), but the corresponding numbers of non-simple branches
are less well understood.

■

Corollary 8.9. dimHd,g = dimU = dimPb = b = 2d+ 2g − 2.

Note that things were easier to understand in the presence of extra data.
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Example. Say someone gives you an abstract Riemann surface C and asks you how many ways can you
deform it? This is also hard to answer, but easy in the context of something like Hd,g. Here, to get
deformations, just move around the branch points pi. There are b of them, so get a b-dimensional space
of deformations (of the map C ! P1). Every deformation of C will be induced by some deformation of
this map, so can get a handle on things this way. △

Now, let’s look at Hd,g !Mg, [C ! f ] 7! [C].

Exercise. For d ≫g 0, this is surjective. Hint: embed in projective space and then look at a general
projection of the curve onto a line.

What’s the fiber dimension of Hd,g ! Mg? Given a genus g curve, how many ways are there
of expressing it as a (simply) branched (d-sheeted) cover of P1? A map of a curve to P1 is just a
meromorphic function of the curve, so we’re look at degree d meromorphic functions on C.10 To specify a
meromorphic function f , we’ll first specify its polar divisor D. This is a d parameter family of choices (a
degree d divisor is just d points, and be simply branched should be an open condition). Once we’ve fixed
D, the meromorphic functions with polar divisor D is exactly (an open subset in) L (D). For d large,
dimL (D) = d−g+1 by Riemann-Roch. Altogether, the dimension of the fibers is d+(d−g+1) = 2d−g+1.
Thus,

dimMg = dimHd,g − dim(fiber) = (2d+ 2g − 2)− (2d− g + 1) = 3g − 3.

Warning 8.10. This answer is wrong when g ∈ {0, 1}. The point is that curves of genus 0 or 1 have
a positive dimensional automorphism group. When looking at the Hurwitz space Hd,g, we claimed the
cover f : C ! P1 was determined (up to finite choice) by a finite number of branch points on P1. This is
not quite true. If you have an automorphism φ : C ! C, then φ ◦ f has the same branch points. When
g = 0, dimAutC = 3 and when g = 1, dimAutC = 1. So the coarse moduli spaces in these cases really
have dimensions dimM0 = (3(0)− 3)+3 = 0 and dimM1 = (3(1)− 3)+1 = 1. If g(C) ≥ 2, then Aut(C) 3g−3 should

still be the
correct di-
mension of
the associ-
ated mod-
uli stack
Mg, where
one has to
be care-
ful about
what they
mean by
M1 (I think,
M1 with
no marked
points has
always con-
fused me).

is finite, so 0-dimensional. •

Question 8.11. Is Mg irreducible?

Given two Riemann surfaces of genus g, can you find a continuously varying family going from one to
the other? This is hard to answer, but again becomes easier when using the auxilliary space Hd,g. Recall
the covering space Hd,g ! U (U ⊂ Pb). Hurwitz looked at the monodromy of this cover, and showed
that it was transitive on the fibers, so Hd,g is connected (hence irreducible) so Mg is irreducible too since
Hd,g ↠Mg is dominant for large d.

The star of what we’ve done has been the diagram

Hd,g

Symb(P1) \∆ Mg.

Alternatively, instead of using Hurwitz spaces, we could have introduced the Severi varieties

Vd,g =
{
(C, f) : C genus g and f : C ! P2 birational onto image which is nodal of degree d

}
.

10degree of a meromorphic function is degree of its polar divisor (or equivalently its zero divisor)
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One can understand these Vd,g’s and then use the map Vd,g !Mg to get at Mg.
Severi didn’t like Hurwitz proof of irreducibility of Mg since it was too rooted in topology. He wanted

a purely algebraic proof, so he showed Vd,g was irreducible algebraically and used this to show that Mg

is irreducible. However, his proof of irreducibility for Vd,g was completely wrong.

8.2 Curves of genus 1

Let’s verify that the family of curves of genus 1 is one-dimensional. Riemann-Roch says that any degree
2 divisor on C (curve of genus 1) has 2 global sections, so gives a map f : C

2
−! P1. This map will have

4 branch points and be determined by them. Via an automorphism of P1, these branch points can be
taken to be 0, 1,∞, λ with λ ∈ P1, so get 1-dimensional family.

Alternatively, a degree 3 line bundle will embed C ↪! P2 as a cubic. Look at space of cubics and mod
out by PGL3. A degree 4 line bundle will embed C ↪! P3 as the intersection of two quadrics. Look at
space of intersection of two quadrics, and mod out by PGL4.

9 Problem Session (9/24)

9.1 Problem 1

The first problem is about constructing simply branched covers of P1 of degree 3.
Recall the combinatorics of this setup. We have C ! P1 of degree d simply branched over p1, . . . , pb ∈

P1. We take an auxilliary point p ∈ P1, and draw arcs γ1, . . . , γb from p to the pi’s. The complement
P1 \

⋃
γi is simply connected, so the covering away from these arcs is simply d disjoint copies. That is,

we have
π−1

(
P1 \

⋃
γi
) ⊔d

i=1

(
P1 \

⋃
γi
)

P1 \
⋃
γi

Label the sheets 1, . . . , d. Because the covering is simply branched, at each point pi, two of the sheets come
together. Similarly, if we take a simple loop around pi, the monodromy action on the sheets will simply
be some transposition τi = (αi βi) ∈ Sd. Thus, we get a b-tuple of transpositions τ1, . . . , τb satisfying
τ1 . . . τb = 1 (π1(P1 \ {p1, . . . , pb}) ≃ ⟨a1, . . . , ab | a1a2 . . . ab = 1⟩. Furthermore, since C is connected, the
subgroup ⟨τ1, . . . , τb⟩ ≤ Sd is transitive (i.e. it’s possible to get from any sheet to any other). Conversely,
specifying any such b-tuple of transpositions will allow you to stitch together

⊔d
i=1

(
P1 \

⋃
γi
)

into a
Riemann surface with a degree d simply branched cover of P1, branched at p1, . . . , pb. Note that we made
a choice earlier; we chose a labelling 1, . . . , d of these sheets. Choosing a different labelling conjugates
the τi’s, so this tuple is well-defined only up to simultaneous conjugation.

The upshot is the following.

Proposition 9.1.

#such covers = #

{
(τ1, . . . , τb) transpositions

∣∣∣∣ τ1, . . . , τb = id ∈ Sd

⟨τ1, . . . , τb⟩ transitive

}/
simultaneous
conjugations

.
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Remark 9.2. Because the τi’s generate a transitive subgroup, no element of Sd will leave them unchanged.
That is, S3 acts faithfully on this set of b-tuples of transpositions. ◦

Example (d = 3). S3 has 3 transpositions. Assume b is even. The only odd permutation of 3 letters
is a transposition, so enough to specify any b− 1 transpositions τ1, . . . , τb−1. These will be transitive as
long as they’re not all the same. This gives the count (3b−1 − 3)/6. △

Joe went on a bit of an aside about further directions with this branching stuff. I didn’t take notes
on what he said, but he ended with the following question.

Question 9.3. Can every curve C be expressed as an even branched cover of P1, i.e. one where the
monodromy belongs to the alternating group Ad?

Unclear if this is known or not?

9.2 Problem 2

Let C ⊂ Pr be a smooth, irreducible, non-degenerate curve. Consider the set

{H ∈ Pr∗ : H ∩ C contains a point p with multiplicity ≥ 3}

of flex hyperplanes.

Claim 9.4. This has codimension 2 in Pr∗.

Intuition. For a specified p ∈ C, the space

Σp := {H ∈ Pr∗ : ip(H · C) ≥ 3}

is a linear subspace of Pr∗. Locally around p, choose a local coordinate t on C so that near t, we have Use implicit
function
theorem
over C or
(Weierstrass
preparation
on ÔC,p if
working al-
gebraically?)

C −! Pr

t 7−! [v(t)]

where v is a vector-valued function of t. At p, if v(p), v′(p), v′′(p) are linearly independent, then Σp
∼= Pr−3

is codimension 3. Now,
⋃

p∈C Σp is like a 1-parameter family of codim 3 subsets, so should be a codim 2

subset.
Note that v, v′ are linearly independent since C smooth. If v′′ ∈ span {v, v′}, then we get Σp

∼= Pr−2

there. As long as this only happens for finitely many points p, we’re still good.

Here’s something that could go wrong: what if v(p), v′(p), v′′(p) are linearly dependent for all p? That
is, what if v(t) ∧ v′(t) ∧ v′′(t) = 0? We know v, v′ are linearly independent, so this is equivalent to
v′′(t) ∈ span {v(t), v′(t)}. Let’s take a derivative of this wedge product (the product rule holds).11 This
gives

±v(t) ∧ v′(t) ∧ v′′′(t) = 0.
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This says v′′′(t) ∈ span {v(t), v′(t)} and this pattern continues. Thus, v(k)(0) ∈ ⟨v(0), v′(0)⟩. If all Instead of
this wedge
product
stuff, can
just take the
derivative
of v′′(t) ∈
span {v(t), v′(t)}
to conclude
v′′′(t) ∈
span {v′(t), v′′(t)} ⊂
span {v(t), v′(t)}

derivatives at this point lie in a particular 2-dimensional subspace, then the whole curve lives in this
subspace, i.e. C is a line (contradicting non-degeneracy).

Warning 9.5. This argument fails in characteristic p. There are non-constant functions all of whose
derivatives vanish, e.g. f(x) = xp. •

In characteristic p, look up strange curves. Hartshorne
talks about
these in
chapter 4
somewhere
(section 3
exercises)

9.3 Problem 3

We claimed in class that any curve is expressible as a simply branched cover of P1. Let’s prove this.
Say C ⊂ Pr. Let Λ ∼= Pr−2 ⊂ Pr be a general (r−2)-plane. We claim that the projection πΛ : C ! P1

will be simply branched.

Question 9.6. What can go wrong?

Either

(1) Two ramification points lined up over the same point in the target; or

(2) There is some point with ramification index ≥ 3

The first issue looks like a line being tangent to two separate points (at least, this is what it looks like in
P2); the second looks like a flex point.

(2) Says that Λ is contained in some hyperplane H so that H ∩ C has a point of multiplicity ≥ 3.
Now consider

locus of such Λ

ΣC

Note that dimΣC = r − 2 with fibers G(r − 2, r − 1) ∼= Pr−1. Thus, the locus of such Λ has dimension I prolly
won’t be
consistent
about this,
but let’s say
Gr(k, n)

is Grass-
mannian of
Ck ↪! Cn

and G(k, n)

is Grass-
mannian of
Pk ↪! Pn,
so G(k, n) =

Gr(k+1, n+

1).

(r − 2) + (r − 1) = 2r − 3 < 2(r − 1) = 2r − 2 = dimG(r − 2, r).
(1) Says that Λ ⊂ H where H ∩ C has ≥ 2 double points (i.e. two tangent lines to C). We want to

estimate dim {H : H ⊃ 2 tangent lines to C}. Set up an incidence correspondence

{(p, q,H) : H ⊃ TpC, TqC}

C × C Pr∗

.

Pick two points p, q ∈ C. We don’t expect any two tangent lines to meet, we expect their tangent lines
to be skew (to span a 3-plane). The fibers of the left map will be hypersurfaces containing that 3-plane,
so they’ll be Pr−4’s. Hence, the total space is 2 + (r − 4) = r − 2 dimensional. Thus, the image in Pr∗ is
≤ (r − 2)-dimensional.

Warning 9.7. This has not been completely rigorous. Things to watch out for
11(α(t) ∧ β(t))′ = α′(t) ∧ β(t)± α(t) ∧ β′(t)
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• Will two general tangent lines be skew? Could there be a (smooth, irreducible, non-degenerate)
curve in P3 such that any two tangent lines intersect?

Answer. No in char 0, but yes in char p. ⋆

• Other things... •

Open Question 9.8. If C ⊂ P3 is smooth, non-degenerate, and irreduible, is it possible that every
tangent line to the curve meets the curve again?

9.4 Problem 5

If H ⊂ P3 is a general plane and C ⊂ P3 a curve, then H ∩ C are in general position, no 3 collinear.
How many tri-secant lines does C have? Look at

{
(p, q, r) ∈ C3 \∆ : p, q, r collinear

}
.

What’s the dimension of this space? Project onto first two factors p, q in C × C. Is this map dominant?
Look at {

(p, q, r) ∈ C3 \∆ : p, q, r collinear
}

C × C.

π (p,q,r) 7!(p,q)

Question 9.9. Is π dominant?

Answer. No, in char 0. ⋆

Thus, the locus of trisecant lines is 1-dimensional. Hence, the locus of hyperplanes containing a
trisecant line has dimension 2 (1-parameter family of lines, each line lying in a 1-parameter family of
hyperplanes). Hence, the general hyperplane H ⊂ P3 won’t contain 3 collinear points of C.

Question 9.10 (Audience). Is it clear that this locus is not 0-dimensional instead of 1-dimensional?

Answer. The idea is something like this. We’re looking at pairs of points on the curve, and asking
whether the line through them meets the curve in another point. So we have a 2-parameter family of
lines. The condition of meeting the curve is a single condition, so we should expect the lines that meet
it a third time to be codimension 1 in this 2-dimensional family. ⋆

10 Lecture 7 (9/27): Jacobians

Remark 10.1. In genus 0, 1, all line bundles of a given degree behave the same. ◦

In genus 0, this is because there’s only one line bundle of a given degree. In genus 1, this is because
AutC acts transitively on the set of line bundles of a given degree.

This remark no longer holds in genus g ≥ 2. To talk about this, we’ll need a parameter space for line
bundles. Actually, we’ll see two moduli spaces, for

• effective divisors of degree d; and for
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• line bundles of degree d

The first moduli space is simply the dth symmetric product/power of C, i.e. the space Cd := Cd/Sd.12

Note that Cd has the desired universal property: for all B, there is a natural bijection{
families of effective

degree d divisors on C

}
 ! Hom(B,Cd).

Recall 10.2. A family of effective degree d divisors on C over B is a subscheme D ⊂ B × C flat
over B and of degree d. ⊙

Warning 10.3. Everything said up to now applies if C is an arbitrary variety of arbitrary dimension.
However, Cd is smooth only if dimC = 1 (and C smooth). •

Example. When C = P1, Cd
∼= Pd is the (projectiviation of) the space of homogeneous degree d

polynomials. △

Note 10. I couldn’t hear over the AC, but sounded like maybe Joe said this P1 example is enough to
conclude smoothness of Cd for all curves for some reason?

History. Here’s a story. It starts w/ calculus, in particular with integrals e.g.∫ t

t0

dx√
x2 + 1

.

When Joe was a graduate student, this problem appeared on his quals. He assumed it involved complex
analysis and whatnot, and spent like half an hour on it. Later, he learned Barry Mazur put this problem
on the quals as a problem in algebraic geometry. Barry was hinting that there’s a much more uniform
way to approach these sort of integrals.

Think of this integrand as a line integral on the Riemann surface associated to C : y2 = x2 + 1, i.e.
think of it as

∫
dx/y. Observe that C is rational (genus 0), i.e. ∃P1 ∼

−! C, t 7! (x(t), y(t)). Now, we can
pull back in order to express the original integral as something like∫

R(t)dt with R rational

(do this by partial fractions). This sort of reasoning applies more generally to integrals of this form (even
ones where trig substitution doesn’t work so cleanly). However, it only applies when the associated curve
is rational.

Next: look at ∫ t

t0

dx√
x3 + 1

.

This is a much harder problem, and for a long time, it wasn’t clear why. We can again think of this as∫
dx

y

on the curve E : y2 = x3 + 1. This curve is not rational, it is genus 1. In particular, E is not simply
connected, so integrals on E are not path independent. Letting α, β ∈ H1(E;Z) be generators, the value

12Taking quotients of a quasi-projective space by a finite (abstract) group is always possible
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of the integral
∫ q

p
ω is only well-defined modulo linear combinations of

∫
α
ω,

∫
β
ω. Once you see this,

you see that this cannot be an elementary function, e.g. since the inverse function is a double periodic
function on C (no elementary function on C can be doubly periodic). If you want to see more about
doubly periodic functions, can look is Ahlfors chapter 7. ⊖

What about genus g ≥ 2? Fix two points p, q ∈ C, and also fix a basis α1, β1, . . . , αg, βg ∈ H1(C;Z).
Given a holomorphic differential ω on C, we again have that the integral

∫ q

p
ω is only well-defined modulo

integral linear combinations of
∫
αi

ω,
∫
βi
ω.

Remark 10.4. When g = 1, you are looking at linear combinations of two complex numbers, so you expect
them to generate a lattice. When g ≥ 2, we have 2g complex numbers. “C modulo linear combinations
of 2g complex numbers is one of the spaces you scare children with.” ◦

The way to get around this nastiness is to not consider a single differential form ω, but instead to
consider all differential forms (note H0(KC) is g-dimensional). Fix a path γ and consider

∫
γ

as a linear
function on H0(KC). In this way, we get a map

H1(C;Z) −! H0(KC)
∗

(This map is even injective). Now, given two points p, q, we can think of
∫ q

p
(without specifying a path)

as a well-defined element of the quotient∫ q

p

∈ H0(KC)
∗/H1(C;Z).

This space is a g-dimensional complex vector H0(KC)
∗ space modulo a rank 2g lattice H1(C;Z). We call

this quotient space the Jacobian of C, J(C) := H0(KC)
∗/H1(C;Z). Note that this is a complex torus

of (complex) dimension g.

Definition 10.5. Fixing a base point p0 ∈ C, we get a well-defined map∫
p0

: C
µ
−! J(C).

This is called the Abel-Jacobi map. ⋄

We can extend this to symmetric powers. More generally, we have

µd : Cd −! J(C)

D =
∑

pα 7−!
∑∫ pα

p0

.

Theorem 10.6 (Abel’s Theorem). If D,E ∈ Cd any two divisors of degree d, then

µ(D) = µ(E) ⇐⇒ D ∼ E,

i.e. {
line bundles of
degree d on C

}
−! J(C)

D =
∑

nipi 7−!
∑

ni

∫ pi

p0
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is a bijection (note ni potentially negative above).

Note this (more-or-less) says that the Jacobian is the parameter space for linearly equivalence classes
of divisors.

This all seems like complex analysis, and it’s not even clear that this J(C) is algebraic (most complex
tori are not algebraic). For a long time, there was a campaign to try to define the Jacobian algebraically
(in the first half of the 20th century; this helped lead to the notion of an abstract variety).

Let’s look at the maps µd : Cd ! J(C). By Abel’s theorem, the fibers of µd are the complete linear
series of degree d, i.e. if D ∈ Cd, then |D| = µ−1

d (µd(D)).

Example. If d ≤ g, d random points on C ↪! Pg−1 will have no linear relations. By geometric Remember:
µd : Cd ! J

is birational
onto its im-
age when
d ≤ g, and
is surjective
when d ≥ g.

Riemann-Roch, this is saying that for general D ∈ Cd, r(D) = 0. Hence, µd will be birational onto its
image.

When d ≥ g, µd will be surjective. The general fiber ∼= Pd−g (general D will span all of Pg−1 +
geometric Riemann-Roch). △

When d = g, this says that µg : Cg ! J(C) is birational. This what inspired André Weil to define
the notion of abstract variety. Cd is clearly algebraic; Weil proposed to use this map to give coordinate
charts on the Jacobian. This map given an isomorphism between an open in Cd and an open J(C), and
then you can patch together (translates?) of these opens to describe J(C) abstractly.

Recall 10.7 (Abel, really Abel-Clebsch). D ∼ E ⇐⇒ µ(D) = µ(E) ⊙

Proof of =⇒ . (The other direction is substantially harder, and wasn’t done by Abel; it was done by
Clebsch).

Let L = O(D) ≃ O(E). Then, D = (σ) and E = (τ) for some σ, τ ∈ H0(L ). Define Dλ = (λ0σ+λ1τ)

for λ = [λ0 : λ1] ∈ P1. This gives a map P1
λ ! Cd. Take the composition

P1
λ −! Cd

µd−−! J(C).

There are no non-constant maps from P1 to a complex torus! This is because complex tori have lots of
global 1-forms (they’re Lie groups so cotangent bundle trivial), but P1 has none. Hence, the differential
of this map must be 0 everywhere, so the map is constant. ■

Warning 10.8. We said the Jacobian parameterizes line bundles of a given degree. This however only
works if we fix a basepoint. We’d like to talk about things in a way that doesn’t require basepoints. •

Notation 10.9. We set
Pic(C) = {all line bundles on C} ,

and
Picd(C) = {line bundles of degree d on C} .

Note we have an exact sequence

0 −! Pic0(C) −! Pic(C)
deg−−! Z −! 0,

and that Pic(C) =
⊔
Picd(C). Abel’s theorem is saying that Pic0(C) ∼= J(C).
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Recall 10.10 (Last Wednesday). Any line bundle of degree ≥ 2g+1 on a curve of genus g is very ample.
Can we do better? ⊙

Proposition 10.11. Let C be any curve of genus g. Let L be a general line bundle of degree g + 3.
Then, φL : C ↪! P3 is an embedding (in particular, H0(L ) = 4).

We’ll prove this by dimension count. Let’s first set up some notation.

Notation 10.12. Let

Wd =

{
lin. eq. classes of

eff. divisors of deg. d

}
=

{
L ∈ Picd(C) : h0(L ) ≥ 1

}
⊂ Picd(C).

Similarly let
W r

d =
{

L ∈ Picd(C) : h0(L ) ≥ r + 1
}
.

In other words, we have µd : Cd ! Picd(C) and W r
d is the locus of the image with fiber dimension ≥ r

(in particular, Wd = imµd).

Proof of Proposition 10.11. Fix some L ∈ Picg+3(C). When is L not very ample? This is the case iff
there exists a divisor D = p+ q of degree 2 so that h0(L−D) ≥ h0(L)− 1. Say h0(L) = 4.13 Then,

h0(L−D) ≥ 3 ⇐⇒ h0(K − L+D) ≥ 1

by Riemann-Roch. Let E = K − L + D and note degE = g − 3. That is, L is not very ample iff
L ∈ K +W2 +Wg−3 (i.e. L = K +D − E). This locus has dimension ≤ 2 + g − 3 = g − 1, so a general
line bundle of degree g + 3 will not be of this form. ■

11 Problem Session (10/1)

11.1 Problem 1

We have a complex torus X = V/Λ, so V ∼= Cn and Λ ⊂ V is a full rank lattice. All the tangent spaces
of X are identified with the vector space V . Note that X will not in general be an algebraic variety, just
a complex manifold. If n = 1, it will be, but if n > 1, it may not be.

If you choose a random lattice (throw 4 darts at C2), you will get a compact complex manifold with
no nonzero meromorphic functions at all.

Recall 11.1. Jacobians are algebraic varieties. ⊙

Take X = J(C) = H0(KC)
∗/H1(C,Z), the Jacobian of a curve C. Choosing a basepoint p0 ∈ C, we

get a map

C −! X, p 7!

∫ p

p0

.

Can also take sums, and so get a map Cd ! X. We have this embedding C ↪! J(C). What is the
tangent space to µ(C) = W1 ⊂ J(C) at the point µ(p)?

13This is true for a general line bundle of degree g + 3. Think back to the geometric Riemann-Roch example where we
said the general fiber of µd (for d ≥ g) is ∼= Pd−g .
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Let’s differentiate. I didn’t quite follow, but something like: we choose a path from p0 to p, and then
let p vary in a small neighborhood. The derivative of the integral

∫ p

p0
ω w.r.t. the point p is the value of

the cotangent vector at p, i.e. is ω(p). Thus, the tangent space to W1 at µ(p) is span {ω1(p), . . . , ωg(p)}
where ω1, . . . , ωg ∈ H0(KC) is a basis.

Note that the tangent space to J at µ(p) is H0(KC)
∗. Evaluation at the point p is a nonzero element

of this vector space, so it spans a line. That line is the tangent line of C ↪! J(C) at p.
Let G : W1 ! Pg−1 be the Gauss map (sending point to its tangent line in H0(KC)

∗). Then, the
composition C

µ
−!W1

G
−! Pg−1 is simply the canonical map

φK : C −! PH0(KC)
∗

(sending a point p ∈ C to the hyperplane cut out by evaluation at p).
Thinking of the curve as embedded in its Jacobian, the tangent line at p is the line representing

φK(p) ∈ Pg−1.
Now, for any d with 1 ≤ d ≤ g − 1, we have

Wd = µd(Cd)
G−−! Gr(d,H0(KC)

∗).

One similarly gets that the tangent space to Wd at µ(D) is D, the span of D in C ⊂ Pg−1. What if the
points of the divisor D are linearly dependent (don’t span a Pd−1)? Then µd is not 1-1 near D. The
map Cd !Wd is birational onto its image. To get an embedding, restrict to Cd \C1

d ↪!Wd (with image
Wd \W 1

d ).
Let’s now consider d = g − 1. We have

Cg−1 −!Wg−1 ⊂ J(C).

For a divisor D =
∑

pi, the tangent space Tµ(D)Wg−1 = p1 . . . pg−1. Applying the Gauss map, we get a
map

Cg−1 −!Wg−1
G−−!

{
hyperplanes in Pg−1

}
(this composition is rational. Need divisor not moving in a linear series, i.e. with linearly independent
points). In this case, both the source and the target have the same dimension, so it has a degree, the
cardinality of the fiber over a general point. Take a general hyperplane H in Pg−1. It will intersect C

is 2g − 2 distinct points p1, p2, . . . , p2g−2. How many divisors of degree g − 1 have H as the hyperplane
they span. We want g − 1 points among p1, . . . , p2g−2 which span H. We appeal to the general position
lemma: it tells us that if we have a general hyperplane, then any g − 1 points of the intersection will be
linearly independent. Thus, the degree is

(
2g−2
g−1

)
.

11.2 Problem 2

Let C be a curve of genus 2, and let L ∈ Pic5(C) be a degree 5 line bundle. The map φL : C ↪! P3 will
be an embedding by Riemann-Roch. Ask about the geometry of C. We start with asking about which
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surfaces contain C. Does it lie on a quadric? Consider

H0(OP3(2))︸ ︷︷ ︸
dim=10

−! H0(OC(2)) = H0(2L)︸ ︷︷ ︸
dim=9

.

Since 9 < 10, we conclude that C lies on a(n irreducible) quadric Q. Furthermore, Q is unique by Bézout
(5 ̸= 4).

Question 11.2. Is Q smooth or singular?

Let’s first suppose Q is smooth Let’s now look at cubics containing C. We have

H0(OP3(3))︸ ︷︷ ︸
dim=20

−! H0(OC(3)) = H0(3L)︸ ︷︷ ︸
dim=14

.

Thus, C lies on at least 6 linearly independent cubics. We know 4 of these cubics already (the unions of Q
with (coordinate) hyperplanes). We get two legitimately new cubics S, S′. Let’s apply Bézout again. We
know Q∩S is a curve of degree 6 containing C, so Q∩S = C∪L (L ∼= P1 a line). Since L ⊂ Q ∼= P1×P1,
it must be a line of one of the two rulings. Thus, C is a curve of type (2, 3) (or (3, 2)) on Q ∼= P1 × P1. Could also

see this from
the genus
formula

The point is that C ∪ L will be of type (3, 3).
We can write the line bundle L = OC(1) on C as L = g12 + g13 . The point is that the rulings on Q cut

out pencils of degree 2, 3 on C. There is a unique pencil of degree 2 (coming from the canonical bundle).

Now suppose that Q is singular Here, Q is a cone over a smooth conic curve in the plane. We still
get the pair of cubics S, S′ as before. Q ∩ S = C ∪ L is again C union a line by Bézout. The union of C
with a line will be the complete intersection of Q with some cubic surface, and so choosing a line again
gives rise to a pencil of degree 3 on C. We again get L = g12 + g13 .

Which is the general case In either case L = g12 + g13 . The difference is that the g13 has no basepoint
when Q is smooth, but does have one when Q is singular (the cone point). If it has a basepoint, then
g13 = p+ g12 , i.e. L = 2K + p. If it does not have a basepoint, then L ̸= 2K + p. Hence, the general case
is Q smooth.

This is maybe the first example we’ve looked at in detail where the particular line bundle matters,
and not just its degree.

Question 11.3 (Audience). Can you make an argument work where you send Pic5 to the space of
quadrics in P3, and then use this to argue that a general line bundle will give you a smooth quadric?

Answer (paraphrase). You want to say if you have a family of degree 5 line bundles on C, each lies
on a unique quadric, so you can send each member of the family to the quadric it lies on. You need to
show that the result is actually a family of quadrics in P3. Then, things work. A generic member of the
family of quadrics will be smooth, and the singular ones will correspond to a proper subvariety on the
base. However, showing you get a family of quadrics is not so easy; it requires digging through some of
chapter III of Hartshorne to justify.
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Say we have a line bundle L on B × C, and let π : B × C ! B be the projection map. We want to
look at the map

π∗OB×P3(2) −! π∗OB×C(2)

of sheaves coming from the restriction map OB×P3(2) ! OB×C(2). The LHS will be a vector bundle of
rank 10 while the RHS is a vector bundle of rank 9. The kernel of this map will be a line bundle giving
the actual family of quadrics. To make this rigorous, use cohomology and base change. ⋆

11.3 Problem 4

Given a smooth (projective) variety X, and a smooth subvariety Y ⊂ X of codimension 1, we ask: how
many double covers Z −! X are there which are branched exactly over Y ?

Example. If X = P1, then Z is unique if deg Y is even and doesn’t exist otherwise. △

Claim 11.4. {
double covers Z −! X

branched over Y

}
 !

{
line bundles L

s.t. L 2 ∼= O(Y )

}
We don’t have a ton of time, but we can at least see what the correspondences are right now. Verifying

that they work is up to you.
We first go  . Start with a line bundle L on X with L 2 ∼= O(Y ). We have a section σ of OX(Y )

that vanishes on Y . We’d like to take the square root of σ. Look at the set of pairs

{
(p, τ) : p ∈ X, τ ∈ Lp, and τ2 = σ(p)

}
(use identification L 2 ∼= OX(Y ) to make sense of τ2 = σ(p)). This space is a double cover of X branched
over Y .

In the other direction, say we have Z
π
−! X double cover branched over Y . Look at the sheaf π∗OZ .

This will be a vector bundle E of rank 2. Furthermore, it has an involution coming from the involution
µ : Z

∼
−! Z exchanging the two sheets. Thus, Z/2Z acts on E . Look at the eigenspaces. We get a

decomposition E = E + ⊕ E −. The (+1)-eigenspace corresponds to functions pulled back from X, so
E ∼= OX . One can check that the line bundle L := (E −)∗ has square O(Y ).

Question 11.5. If C is a genus g curve with evenly many points p1, . . . , pb ∈ C, how many double covers
are there branched over exactly these points?

Answer. We want to count the size of
{
L ∈ Pic(C) : L2 = OC(D)

}
. If L,L′ are any two elements of this

set, then M = L′ ⊗ L−1 is a line bundle so that M2 = OC . Thus, we’re really counting 2-torsion points This set is
a torsor for
Pic[2] =

Pic0[2]

on the Jacobian. Hence, the number of such L is exactly 4g, the number of points of order two on Cg/Λ

(Λ ∼= Z2g). The 2-torsion subgroup here is 1
2Λ/Λ

∼= (Z/2Z)2g. ⋆

12 Lecture 9 (10/4): The Uniform Position Lemma

The uniform position lemma is a key fact governing the hyperplane sections of a curve.

Recall 12.1. The general position lemma says that hyperplane sections of curves are in general position.
If C ⊂ Pr and H a general hyperplane, then no r points of H∩C are linearly dependent in H ∼= Pr−1. ⊙
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12.1 Monodromy

Let’s start our discussion with a construction. Say X,Y are two varieties of the same dimension n, and
let f : X ! Y be a dominant map. We can throw away subvarieties of Y to arrive at an open subset
U ⊂ Y so that

V := f−1(U)
f
−! U

is a topological covering space (recall we’re working over C); also can arrange for V,U to be smooth.
To get this, throw away the singular locus of X, and its image in Y . Also throw away the subset of Y

where the map has positive-dimensional fibers. At this point, we have a quasi-finite map between smooth
varieties. At this point, look at the ramification divisor in X (where the map fails to be a submersion).
Throw this away, throw away its image in Y , and throw away the preimage of its image back in X. This
is not a covering space.

Say f : V ! U has degree d. Choose a base point p ∈ U . Since f is a covering space, if γ is a
loop based at p – i.e. γ : [0, 1] ! U with γ(0) = p = γ(1) – and q ∈ f−1(p), then there is a unique
lift γ̃ : [0, 1] ! V so that f ◦ γ̃ = γ and γ̃(0) = q. Thus, the association q 7! γ(1) ∈ f−1(p) gives a
permutation, associated to γ, of f−1(p) = {q1, . . . , qd}. This permutation depends only on the homotopy
class of the loop γ, so we get a map

π1(U, p) −! Perm(f−1(p)) ∼= Sd.

That is, the fundamental group of the base acts on the fibers above a point.
This does not depend on the choice of U (it’s local to p). If U ′ ⊂ U is a smaller subset containing p,

then π1(U
′, p) ↠ π1(U, p). Given that U is smooth, you can’t block a loop in U by removing a proper

subvariety (proper subvarieties have real codimension 2, so can go around them). Thus, the image of the
composition

π1(U
′, p)↠ π1(U, p)! Sd

is always the same. This image M is called the monodromy group of the map f : X ! Y .

Assumption. Assume throughout that Y is irreducible, but don’t assume the same about X. We
however, do assume that every irreducible component of X dominates Y .

Remark 12.2. X is irreducible ⇐⇒ the monodromy group is transitive.
If X has multiple components, you can’t get from one to the other via loops on U since the points of

intersection of the component do not lie over U (they’re singular points). ◦

Keep in mind the setup
V X

U Y

⌜
f

open
⊂

Consider the fiber product

V ×U V =
{
(p, q1, q2) : q1, q2 ∈ f−1(p)

}
−! U.

The diagonal ∆ is an irreducible component of V ×U V . Name the complement Question:
Why?
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V (2) = V ×U V \∆ −! U.

Note the above is dominant with degree d(d − 1). The monodromy group M is twice transitive (i.e.
transitive on pairs of distinct points) ⇐⇒ V (2) is irreducible. In either case, you’re just asking for a
loop on U which sends (q1, q2) to (q′1, q

′
2) (for given q1, q2, q

′
1, q

′
2). In general, we define

V (k) := V ×U V ×U . . .×U V \ (locus where any two coordinates coincide).

Proposition 12.3. M is k-transitive ⇐⇒ V (k) is irreducible.

Remark 12.4 (An algebraic version of this story). This won’t be necessary for us, but worth pointing
out regardless. The dominant map f : X ! Y we started with gives an inclusion of function field
K(Y ) ↪! K(X). We let K(X) be the Galois closure of K(X)/K(Y ). In this case, the monodromy group Let K(X)

be the prod-
uct of the
function
fields of its
components
if you re-
ally want
reducible X.

we described is simply M = Gal(K(X)/K(Y )). ◦

12.2 Application to curves

Let C ⊂ Pr be an irreducible non-degenerate curve (not necessarily smooth). We want to consider a
general hyperplane H ∈ Pr∗, and say something about the intersection H ∩ C. If we want to use the
hypothesis that H is general, it’s not enough to consider it by itself (what we want won’t be true for an
arbitrary hyperplane). Instead, we should consider all hyperplanes at once. To this end, we introduce
the universal hyperplane section

Φ = {(H, p) ∈ Pr∗ × C : p ∈ H} −! Pr∗.

This fibers of the above map are precisely the hyperplane sections of C, so this map is finite. Let Question:
What is C∗

if C is not
smooth?

U = {H ∈ Pr∗ : H ⋔ C} = Pr∗ \ C∗

(H transverse to C, i.e. misses singular points and is not tangent to any point). The induced map

V = f−1(U) −! U

is now a covering space. As you move H along a loop of transverse hyperplanes, the intersection points
themselves vary unambiguously along with H. When the loop completes, the set of points returns to the
original set of points, but they have been reordered.

Theorem 12.5. If M is the monodromy group of the cover

V Φ

U Pr∗,

⊂

⊂

then M = Sd.

Warning 12.6. This is false in positive characteristic! •
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Proof of Theorem 12.5. We start with a simple fact. Given M ⊂ Sd, one has

M = Sd ⇐⇒ M is twice transitive and contains a transposition

(given the RHS, M contains all transpositions).
To show that the monodromy group M in our situation satisfies these, first consider

V(2) = {(H, p, q) : p, q ∈ H ∩ C, p ̸= q} −! U .

Recall that M twice transitive iff V(2) is irreducible. For this, we look at the zig-zag

V(2)

U C × C.

The fibers of the right map are ∼= opens in Pr−2. Since C ×C is irreducible and the fibers of irreducible
of the same dimension, we conclude that V(2) is irreducible as well. Thus, the monodromy is transitive.

Now, we just need to show that M contains a transposition. To show this, we’ll start with a hyperplane
H0 which is transverse to C at d−2 points, but is simply tangent to C at one point. That is, we claim there
exists H0 ∈ Pr∗ so that H ∩C = 2p+ q1 + · · ·+ qd−2 for some distinct smooth points p, q1, . . . , qd−2 ∈ C.
This is the part that’s false in positive characteristic. Note that H0 ∈ Pr∗ \ U . We look at neighborhood
∆ of H0 ⊂ Pr∗ and the corresponding neighborhoods of (H, p), (H, qi) ∈ Φ. The neighborhoods around
(H, qi) will map isomorphically onto ∆, but the one around (H, p) will be a 2-sheeted cover of ∆. Call this
neighborhood ∆̃. Now, since Φ is smooth, ∆̃ cannot be disconnected by removing a proper subvariety.
In particular, the locus of ∆̃ consisting of transverse hyperplanes is connected. Thus, we can draw an arc
γ of transverse hyperplanes with endpoints contained in some fiber. Then the image of this γ is a loop
inducing a transposition. ■

Theorem 12.7 (General Position Lemma). Let C ⊂ Pr be an irreducible, non-degenerate curve. Let
H ⊂ Pr be a general hyperplane. Write H ∩ C = {q1, . . . , qd}. Then, no r points among {q1, . . . , qd} are
linearly dependent.

Proof. Consider
V Φ

U Pr∗,

⊂

⊂

all as before. Look at the rth fiber product V(r) = {(H, p1, . . . , pr) : pi distinct ∈ H ∩ C}. Let W ⊂ V(r)

be the locus of (H, p1, . . . , pr) such that p1, . . . , pr are linearly dependent. This is the bad locus; we wish
to show that it cannot dominate U . The point is that W is a closed subvariety; furthermore, it is a proper
subvariety since there exists r-tuples of points which are linearly independent. Since V(r) is irreducible,
we have dimW < dimV(r) = dimU , so dimW cannot dominate U and we win. ■

Note 11. Got distracted and missed some stuff Joe was saying about how to interpret this result/proof,
I think.
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Question 12.8. When r = 3, the general position lemma says that given C ⊂ P3 irreducible and H ⊂ P3

a general plane, the intersection H ∩ C does not contain 3 colinear points.
Here’s a proposed monodromy-less argument for this. General H ∩ C ∋ 3 col. points implies that

the locus of trisecant lines is 2-dimensional. Hence, every chord to C meets C again. Writing H ∩ C =

{p1, . . . , pd}, we get that p1, . . . , pd ∈ P2 so that the line joining any two contains a third.
So we’ve arrived at d points in P2 which are not simultaneously collinear, but for which any line

through 2 of them contains a third one of them. Does such a configuration exist?

Apparently there is such a configuration, but only one is known. It’s unknown if there are others.

13 Problem Session (10/8)

Note 12. Roughly 7 minutes late

13.1 Arithmetic Genus

Definition 13.1. The arithmetic genus of a curve is pa(C) = 1− χ(OC) ⋄

This definition works for all curves (smooth, singular, non-reduced, not of pure dimension 1, etc.)

Example. Take an irreducible curve C union an isolated point P . What’s the genus of pa(C ∪P )? The
H1 doesn’t change, but the H0 goes up by one, so pa(C ∪ P ) = pa(C)− 1. △

This generality will be especially important when we talk about Hilbert schemes.
Consider, for example, twisted cubics C ⊂ P3. Such a curve has Hilbert polynomial pC(m) = 3m+1.

Recall the Hilbert polynomial measures the rank of

H0(OP3(m)) −! H0(OC(m)) = H0(OP1(3m)).

Now, given a Hilbert polynomial, the associated Hilbert scheme will parameterize all subschemes of P3

with the given polynomial. So the ‘family of twisted cubics’ is captures by the Hilbert scheme of subsets
of P3 with Hilbert polynomial pC(m) = 3m+ 1.

Question 13.2. What other things are captured by this scheme, do e.g. plane cubics have the same
Hilbert polynomial?

Answer. No, a plane cubic C ⊂ P2 has Hilbert polynomial pC(m) = 3m. ⋆

Now, consider this. Take a plane cubic C ⊂ P2 ⊂ P3 union with a point P ∈ P3 \ C. Then,
pC∪P (m) = 3m+1, so even if we don’t care about these ’curves’, they will appear in the Hilbert scheme.

13.2 Problems 2,3

In problems 2 – 4, we’ll see a simpler generalization of genus. Let C be a reduced pure dimensional curve,
and let ν : C̃ ! C be its normalization.

Question 13.3. What’s the relationship between pa(C̃) and pa(C)?
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Definition 13.4. The geometric genus of C is pa(C̃). ⋄

These genii (genera?) are defined in terms of the structure sheaf, so let’s start with the relationship
between their structure sheaves.

Example (Really, example/remark). Imagine C is a nodal curve (so C looks like α), and C̃ its normal-
ization (so the node got separated into two points). The normalization map ν : C̃ ! C gives an inclusion
0 ! OC ! ν∗OC̃ of sheaves. Note that, away from the node, this inclusion is an equality (in fact, ν is Inclusion

just because
the map is
surjective, I
think

an isomorphism away from the node). Hence, the cokernel will be supported at the singular points (at
the node), so we have

0 −! OC −! ν∗OC̃ −! F −! 0

with F supported at the singular points. △

We want to use the above to relate the Euler characteristic of OC with that of ν∗OC̃ .

Fact. χ(ν∗OC̃) = χ(OC̃).

(This comes from looking at the Leray spectral sequence)
The general theorem coming from the Leray spectral sequence is

χ(F ) =
∑

(−1)iχ(Riπ∗F )

Say π : X ! Y and F a sheaf on X. Leray gives a spectral sequence

Epq
2 = Hp(Y,Rqπ∗F ) =⇒ Hp+q(X,F ).

Let χr =
∑

p,q(−1)p+q dimEpq
r . One can check that this is unchanged as you pass from page to page,

and so
χ(F ) = χ∞ = χ2 =

∑
p,q

(−1)p+q dimHp(Y,Rqπ∗F ) =
∑
q

(−1)qχ(Rqπ∗F ).

In the case of the normalization map ν : C̃ ! C, one has Rqν∗OC̃ = 0, for q ≥ 1, since the fibers of
ν are 0-dimensional (ν is proper so you can see this e.g. with cohomology and base change, but this
is probably overkill. There should be a simpler argument to go from 0-dimensional fibers to no higher
direct images14).

Remark 13.5 (Audience). To get this fact, you can alternatively use that the normalization map is affine,
and so see that the cohomology of ν∗OC̃ agrees with that of OC̃ explicitly using Čech cohomology. ◦

Corollary 13.6. In any case, one gets that

χ(OC) = χ(ν∗OC̃)− χ(F ) = χ(OC̃)− h0(F ) = h0(OC̃)−
∑
p∈C

dimC Fp.

Question 13.7 (Audience). Can you get Riemann-Hurwitz via this sort of analysis?
14Here’s one that’s slightly better: ν is affine, so the higher direct image presheaves V 7! Hq(ν−1(V ),F ) have trivial

stalks – since the whole presheaf vanishings on an affine open cover – and hence the sheafification Rqν∗F must be trivial.
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Answer. That’s something worth thinking about. It certainly works out in the case of an unbranched
cover. Less clear off the top of the head of how to make things work when there is ramification. ⋆

Definition 13.8. The δ-invariant of a singular point p ∈ C is δp := dimC Fp. ⋄

Example (p a node). Let C = α with p the node, so near p, C looks like X. Above p, the normalization In case it’s
not clear,
most sym-
bols here are
used purely
as pictures

looks like = with q, r the preimages of p. We see immediately that a function on = is the preimage of
a function on X iff it takes the same values at q, r. Hence, the stalk of the sheaf is 1-dimensional, so
δp = 1. △

Example (p a cusp). Say C =≺ with p the cusp. The normalization looks like C̃ =
∫

. Since p is a cusp,
C looks like y2 = x3 near it. The cusp has a single preimage q ∈ C̃ with local coordinate t for which the
normalization map becomes t 7! (t2, t3).

Let U be a small open around p. When is a function f ∈ OC̃(ν
−1(U)) the pullback of a function

g ∈ OC(U)? This should give a set of linear conditions on f , and the number of such conditions will be
δp. Note that f is simply a power series in t. The pullbacks will be the power series in t2, t3, so we get
all power series with trivial linear component. Thus, the condition is f ′(q) = 0, so δp = 1. △

Example (p a tacnode). Here C =≍ (except the two pieces simply tangent) with p the point of tangency.
Then, C̃ =≍ (now an accurate picture) with two preimages q, r. Note that C looks, near p, like y2 = x4.
What are the conditions for f to be the pullback of a function?

We need f(q) = f(r), but this is not enough (imagine f vanishes to order 2 at q, but only order 1 at
r). We also need f ′(q) = f ′(r) (after choosing suitable local coordinates). These gives 2 linear conditions,
so δp = 2. △

Example (p a planar triple point). Here, C = ∗ is three smooth branches meeting pairwise transversally,
with p the singular point. Also, C̃ =≡ with preimages q, r, s of p.

We need f(q) = f(r) = f(s) (two linear conditions). This is not enough. If we have a function
vanishing to order 2 on two of the branches, then it must vanish to order ≥ 2 on the third branch. The
function will be the restriction of a function in the plane who directional derivative is 0 in two directions,
so it must be 0 in all directions. Hence, we also need an additional linear relation on the three derivatives
f ′(q), f ′(r), f ′(s). Thus, δp = 3. △

Example (p a spatial triple point). Say C looks locally like the union of 3 coordinate axes in three space
(I don’t know a latex symbol that looks like this). This is different from a planar triple point. As before,
the normalization looks like three different branches ≡. However, not a function f on ν−1(U) descends
⇐⇒ f(q) = f(r) = f(s) (no derivative condition). Thus, δp = 2. △

Note 13. There were good audience questions here, but I forget to write them down...

Exercise. You can specialize a node to a cusp, e.g. y2 = x2(x−t) is a family of nodal curves that becomes
a cuspidal curve when t = 0. Can you specialize a cusp to a node?

13.3 Problem 5

Theorem 13.9 (Marten’s theorem). Let C be a non-hyperelliptic curve of genus g, and fix some d

with 0 < d < 2g − 2. Then,

dimWd(C) ≤ d and dimW r
d (C) < d− 2r if r > 0
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(variety parameterizing linear series of degree d and dimension ≥ r, see Notation 10.12).

Marten’s theorem is often stated as an inequality, and then one says that if equality holds, the curve
C is hyperelliptic.

The argument here is much the same as was used for Clifford’s theorem.

Proof. Let φK : C ↪! Pg−1 be the canonical embedding. Recall that the points of a general hyperplane
section are in linear general position (i.e. any g − 1 points of H ∩ C are linearly independent). Hence, I think we’re

secretly
assuming
d ≤ g − 1

(in order to
apply GPL),
which is ok
since W r

d
∼=

W r−d−1+g
2g−2−d

by Riemann-
Roch

dim
{
H ∈

(
Pg−1

)∗
: H ∩ C contains k ≤ g − 1 linearly dependent points

}
< g − 1.

Suppose that dimW r
d ≥ d − 2r. Let D be a degree d divisor with r(D) = r. By geometric Riemann-

Roch, D ∼= Pd−1−r. Thus, we get an r-dimensional family of d-secant (d − r − 1)-planes. Let’s look at

Secretly this
will actual
be a projec-
tive space of
dimension
≤ d − 1 − r.
This is the
source of the
inequality
for dimΦ

later

hyperplanes containing a member D0 of this family:

Φ = {(D,H) : H ⊃ D and D ∼ D0} .

Consider the correspondence
Φ

Pr ∼= |D0| (Pg−1)∗

The fibers of the left map will be ∼= P(g−1)−(d−1−r)−1 = Pg−d+r−1. Thus,

dimΦ ≥ r + g − d+ r − 1 = 2r − d+ g − 1.

The right map is finite, so by looking at the dimension of the image, we see that

Question:
Do we se-
cretly need
r > 0 to get
the inequal-
ity (on the
right) be-
low?

Answer: I
think so.
If r = 0,
then Wd =

im
(
Cd ! Picd

)
.

This map is
birational
onto its
image for
d ≤ g, so for
such d we
always have
dimW 0

d =

dimCd = d,
and so the
theorem
statement
should be
slightly
modified.
Update: I
changed the
theorem
statement

2r − d+ g − 1 ≤ dimΦ ≤ g − 2 =⇒ d > 2r.

This is Clifford’s theorem (?). The same logic applies when you have a family of linear series; doing this
same argument with a family, one will arrive at the conclusion of Marten’s theorem. ■

14 Problem Session (10/15)

TODO:
Make these
notes less
trash

Note 14. Roughly 8 minutes late. Also, non-descript computer issues mean today’s notes might be
lacking.

Question 14.1. What is the maximal possible genus of C lying on a cubic surface S?

(I’m thinking there was discussion preceding this question and that’s what I missed. It doesn’t seem
to be directly related to what came next)

Say we have Γ = H ∩ C ⊂ A ⊂ P2 with A a cubic curve. What is hΓ, the Hilbert function of this
hyperplane section.

Let’s first do the case where 3 ∤ d, so d = 3k + 1 or d = 3k + 2.
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First assume m ≤ k. Curves of degree m containing Γ are curves of degree m containing A are curves
of degree 3m. Hence, Question:

What?
hΓ(m) = h0(OP2(m))−h0(IΓ(m)) = h0(OP2(m))−h0(OP2(m−3)) = h0(OP2(m))−h0(IA(m)) =

(
m+ 2

2

)
−
(
m− 1

2

)
= 3m.

The above applies whether A is smooth or not.
Now say m ≥ k + 1. We claim hΓ(m) = d. Here are two approaches

• We want to understand global sections of IΓ/P2(m) (not locally free, ideal sheaf of a bunch of
points15). To understand this, we relate to a line bundle, i.e. consider the exact sequence

0 −! OP2(m− 3)
·FA−−! IΓ/P2(m) −! IΓ/A(m) −! 0

(the cokernel above *is* a line bundle), where FA is the cubic polynomial cutting out A. The
corresponding sequence on global sections is exact (h1(OP2(m− 3)) = 0), so we see that

h0(IΓ/P2(m)) = h0(OP2(m)) + h0(IΓ/A(m)) = h0(OP2(m)) + h0(OA(mH − Γ)).

The LHS above is h0(OP2(m))−hΓ(m) =
(
m+2
2

)
−hΓ(m). The RHS above is

(
m+2
2

)
+h0(OA(mH−

Γ)). For this second term, we apply Riemann-Roch, which yields 3m− d. The upshot is

hΓ(m) = d

when m ≥ k + 1 (and 3 ∤ d).

•

What if 3 | d? Say d = 3k. There are two cases: Γ a complete intersection of A with a curve of degree
m, or it’s not such a thing. The argument is basically the same. The only difference is that mH − Γ is
of degree 0 when m = k, so it’s h0 is either 0 or 1, depending on if it’s trivial. In the end, if d = 3k and
Γ is a complete intersection, then

hΓ(m) =


3m if m < k

d− 1 if m = k

d if m > k.

If Γ is not a complete intersection, then

hΓ(m) =

3m if m < k

d if m ≥ k.

In problem 1 or 3, we’re asked to give an analogous argument when the curve isn’t necessarily smooth.
It’ll probably be ad hoc. Smooth plane curves are special. It’s harder to say something about linear

15It is torsion-free of rank 1
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series on possibly singular curves. The saving grace here is that our curve is cubic, so if it’s singular, it
either has a single node or a single cusp.

Here’s a lemma that may be useful to prove: Say D, E are linear series, and D,E are sets of points.
If D imposes independent conditions on D (i.e. can find an element of series containing all of D save any
one point) and E imposes independent conditions on E , then D ∪ E imposes independent conditions on
D + E (something like this. I’m not sure if makes sense the way I’ve typed it). This isn’t quite true, but
is up to an off-by-one error.

Now, say C ⊂ S ⊂ P3 with S a smooth cubic surface, and C a smooth, irreducible, non-degenerate
curve of degree d = 3k + 1 in P3. Let Γ = C ∩H by a general hyperplane section. Note that Γ ⊂ S ∩H

and S ∩H is a plane cubic curve, so from the above,

hΓ(m) ≥

3m if m ≤ k

d if m ≥ k + 1.

Hence, h0(OC(1)) ≥ h0(OC) + hΓ(1) = 1 + 3 = 4 (this is consistent with C being non-degenerate). We
can continue h0(OC(2)) ≥ h0(OC(1)) + hΓ(2) ≥ 4 + 6 = 10 (assuming d large enough). Continuing like
this, one gets

h0(OC(k)) ≥ 3

(
k + 1

2

)
and h0(OC(k + ℓ)) ≥ 3

(
k + 1

2

)
+ ℓd for all ℓ ≥ 0.

Now we apply Riemann-Roch. For ℓ ≫ 0, we have

(k+ℓ)d+1−g = h0(OC(k+ℓ)) ≥ 3

(
k + 1

2

)
+ℓd =⇒ g ≤ (k+ℓ)d−3

(
k + 1

2

)
−ℓd+1 = k(3k+1)−3

(
k + 1

2

)
+1 = 3

(
k

2

)
+k.

This gives a bound for genera of curves on a cubic surface. Do there always exists such curves of a given
degree and genus satisfying this bound?

Claim 14.2. If C ⊂ S is linearly equivalent to kH +L with H the hyperplane class and L any line, then
adjunction gives

g(C) = 3

(
k

2

)
+ k =: π1(d, 3).

Hence, our upper bound is sharp.

(exercise)

Recall 14.3 (from a Wednesday). We worked out Castlenuovo’s (spelling?) bound π(d, 3) and worked
out that asymptotically, π(d, 3) ∼ d2/4. ⊙

Note that k ∼ d/3 (recall d = 3k + 1), so π1(d, 3) ∼ 3(k2/2) + k ∼ d2/6.

Claim 14.4. For genera between these two bounds, any curve with that genus must lie on a quadric
surface ( =⇒ g = (a− 1)(b− 1) for some a+ b = d)

Note 15. Had to pop out for a bit

Claim 14.5. Every genus g ≤ π1(d, 3) occurs
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Somehow this is related to the fact that if Q is a (smooth) quadric and S is a (smooth) cubic, then
Pic(Q) = Z2 and Pic(S) = Z7 (I guess probably just apply adjunction to get a genus formula and see
which values occur?)

Joe is saying more stuff, but I’m having trouble following... TODO:
Take a closer
look at
Mary’s notes
on the ma-
terial you’ve
missed

Remark 14.6 (Keep in mind for (3b)). On an integral cubic surface, a general hyperplane section is still
integral. ◦

15 Lecture 11 (10/18)

Note 16. Roughly 5 minutes late

15.1 Castelnuovo Continued

Today we want to finish Castelnuovo theory. Say C ⊂ Pr of degree d.

Recall 15.1. Castelnuovo’s idea was to bound h0(OC(m)) from below, and then apply Riemann-Roch
(using that this line bundle is non-special for m ≫ 0). Basic steps

• Introduce general hyperplane section Γ = C ∩H with H ∼= Pr−1 ⊂ Pr. Then,

h0(OC(ℓ))− h0(OC(ℓ− 1)) ≥ hΓ(ℓ)

(this is ultimately coming from 0! OC(ℓ− 1)! OC(ℓ)! OΓ(ℓ)! 0)

• hΓ(ℓ) ≥ min(ℓ(r − 1) + 1, d).

An easy induction + Riemann-Roch then let’s one see that g(C) ≤ π(d, r) where

π(d, r) =

(
m0

2

)
(r − 1) +m0ε with m0 :=

⌊
d− 1

r − 1

⌋
and d = m0(r − 1) + r + ε

(note 0 ≤ ε ≤ r − 2). The expression for π(d, r) is kinda messy because of the minimum in the lower
bound. Asymptotically, we have

π(d, r) ∼ d2

2(r − 1)
.

In particular, for plane curves (r = 2), one has π(d, r) ∼ d2/2 which is indeed the correct asympotic. ⊙

Goal. Verify that the above bound is sharp by exhibiting such curves (“Castelnuovo curves”). While
we’re at it, it’d be nice to classify all such curves.

Recall 15.2. Apparently the lower bound hΓ(ℓ) ≥ min(ℓ(r − 1) + 1, d) is sharp with example given by
any Γ contained in a rational normal curve in Pr−1. ⊙

In fact, the above examples are the only ones.

Lemma 15.3 (Castelnuovo’s Lemma). If d ≥ 2r + 1, then

hΓ(2) = 2r − 1 =⇒ Γ ⊂ r.n.c ⊂ Pr−1.
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Note that the rational normal curve containing Γ will exactly be the intersection of all quadrics
containing Γ. As a consequence the curve C itself will lie on a surface S ⊂ Pr so that H ∩ S is a rational
normal curve (which forces degS = r − 1). Question:

Why?Lemma 15.4. If S ⊂ Pr is an irreducible non-degenerate surface of minimum degree r − 1, then S is a
rational normal scroll or the Vernonese surface ν2(P2) ⊂ P5. Question:

What’s a
rational nor-
mal scroll?

Answer: Es-
sentially,
more clas-
sical termi-
nology for a
Hirzebruch
surface

Here are the basic facts about S, our rational normal scroll:

• S is a P1-bundle over P1

• Pic(S) = ZH ⊕ ZF with F a line of the ruling. Furthermore H2 = r − 1, F 2 = 0 and FH = 1.

If you have a P1-bundle over P1, an open subset U of that is an A1-bundle over A1, so Pic(U) = 0. If
you have a line bundle on S, its restriction to U will be trivial, so can pick some nonzero holomorphic
section above U , and extend it to a global meromorphic section. It will have zeros/poles only along
the fiber F and the hyperplane section H.

• KS = −2H + (r − 3)F

Once we have this, we can apply adjunction to a curve of any class. Say S ⊂ S has class C ∼
αH + βF . One gets that

d = deg(C) = CH = (r − 1)α+ β and g = g(C) =

(
α

2

)
(r − 1)− α− β

(adjunction gives genus. Degree computation is more definitional). One can compute that the maxi-
mum value of g subject to the constraint deg(C) = d is obtained by taking (α, β) = (m0 + 1, r − 2− ε),
giving

g =

(
m0

2

)
(r − 1) +m0ε

(allegedly, I didn’t do the algebra).

If ε = 0 (so d = m0(r− 1)+ 1), there’s another maximal value where you take (α, β) = (m0, 1) and
get the same genus. Hence, when ε = 0, there are two different kinds of Castelnuovo curves.

Recall we had set out to ask the question of which genera are possible for degree d curves in Pr. We
have now obtained the maximum possible genus, but what about g < π(d, r)? Which of these occur?
The highest genus is obtain by curves lying on a rational normal scroll. For such curves, we know by the
above adjunction calculation what all possible genera are. These curves don’t cover every possible value
of g.

Question 15.5 (Open?). Assume Γ ⊂ Pn is any configuration of d points (in linear general position).
The smallest possible Hilbert function hΓ is hΓ(ℓ) = min(ℓn + 1, d) (achieved by Γ lying on a rational
normal curve). What is the second smallest possible Hilbert function?

Question 15.6 (Audience). Is there a geometric reason that π(r, d) is increasing with d but decreasing
with r?

Answer. For decreasing with r, can look at the argument. Getting upper bound on genus from lower
bound on Hilbert function of a hyperplane section. This Hilbert function starts hΓ(1) ≥ r+1 which gets
bigger with r, so maybe reasonable that the resulting bound on genus decreases with r. ⋆

50



Fact (Assuming I heard correctly). Among curves not lying on a quadric in P3, the maximal genera are
obtained by those lying on a cubic.

On the homework, we worked out an upper bound π1 for the genera of such curves. For values of g
with π1 < g < π, no smooth curves in P3 of degree d have genus g.

15.2 Curves of low genus (g = 2)

Let’s look at smooth curves C of genus g = 2. Note that the canonical map φK : C
2
−! P1 is hyperelliptic

in this case.

Question 15.7. Are there degree 3 maps C ! P1?

Say L ∈ Pic3(C) is a line bundle of degree 3. Riemann-Roch instantly tells us that h0(L ) = 2, so
φL : C

3
99K P1 is a degree 3 rational map to P1. This won’t always extend to a morphism; L can have

basepoints. Specifically, L has basepoint p iff L = ωC(p) for some p ∈ C.

Question 15.8. Are there any degree 3 line bundles not of the form ωC(p)?

Answer. Yes. There is a 2-dimensional family Pic3(C) of line bundles on a genus 2 curves, but only a
1-dimensional family of those of the form ωC(p). ⋆

That was simple enough. How about maps to P2 (i.e. linear series of projective dimension ≥ 2)?
Say L ∈ Pic4(C). We know |L | has no basepoints (since h0(L (−p)) = 2 always, while h0(L ) = 3,

both by RR), so we get a map C ! P2 with image a quartic curve. Note that the image cannot be This is
slightly mis-
leading. 4

is actually
the degree
of the image
curve times
the degree
of the map
from C onto
its image

smooth since the genus of a smooth quartic curve is 3. Write L = KC +D where D is an effective divisor

Question:
(How) does
Riemann-
Hurwitz
extend to
singular
curves?

Answer:
You can eas-
ily get one
extension
by applying
Riemann-
Hurwitz to
the induced
map on the
normaliza-
tions of the
curves, and
combine this
with a com-
parison of
the normal-
ized curves
and the sin-
gular ones

of degree 2. Two cases

• (D = KC , i.e. L = ω⊗2
C ) In this case, C ! P2 is the composition

C P1 P2
φK

φL

ν2

That is, φL is a degree 2 cover of a conic plane curve.

• (D ̸= KC) Then, h0(D) = 1, so D = p+ q for a unique pair of points p, q.

Assumption. Let’s assume p ̸= q.

Note that h0(L ) = 3 while h0(L (−p − q)) = 2, so p, q must have the same image under φL ,
i.e. φL (p) = φL (q) is a node of φL (C). We haven’t quite shown this yet; need to verify that
the tangent lines at p, q map to different tangent lines of φL (C). This comes from verifying that
L (−2p) ̸= L (−2q), I think. This node will be the only singularity of the image. So ended up with

I guess φL

is the nor-
malization
map, so the
sum of the
δ-invariants
of the im-
age must be
3 − 2 = 1

(where 3

comes from
degree-genus
formula
for plane
curves)

a plane quartic curve with a node.

• (D ̸= KC ,L = ωC(2p)) In this case, one gets a quartic curve with a cusp.
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Now let’s look at L ∈ Pic5(C) so h0(L ) = 4 and L is base-point free. Consider φL : C ↪! P3.
Apparently, we’ve looked at something like this before (see section 11.2). Keep in mind

H0(OP3(2))︸ ︷︷ ︸
dim=10

−! H0(OC(2))︸ ︷︷ ︸
dim=9

so C lies on a quadric surface. Write L = ωC(D) with D of degree 3.

Recall 15.9. Either D = KC + p for some p ∈ C, or it doesn’t. ⊙

If D ̸= KC + p, then it induces an actual morphism, and we can consider the composition

C P1 × P1 P3
φK×φD

φD+K=φL

(note that φK is a double cover and φD is a triple cover).
What if D = KC + p? Then, φD : C 99K P1 is rational.

Claim 15.10. In this case, C ⊂ P3 lies on a unique quadric Q ⊂ P3, but Q is a cone. The vertex of the
cone will be the image of the point p.

Note if you project from p (i.e. consider L(−p) = 2K), we once again see that 2KC maps C 2:1
−−! (some

plane conic).

Fact. Say C is a hyperelliptic curve and L ∈ Picd(C) is very ample, so it gives an embedding

φL : C ↪! P.

Let α : C
2
−! P1 be the hyperelliptic map. Write α−1(t) =: pt + qt. For each t ∈ P1, let Lt ⊂ P be the line

through pt, qt ∈ C. Let S =
⋃

t∈P1 Lt. This will be a ruled surface, and in fact, S is a rational normal
scroll.

In the case of a genus 2 curve embedded in P3 via a degree 5 line bundle, this construction reproduces
the quadric containing the curve.

15.3 g = 3, Briefly

Say we have a curve C of genus 3.

Assumption. Assume C is non-hyperelliptic.

In this case, the canonical map φK : C ↪! P2 embeds C as a smooth plane quartic.
What sort of maps to P1 do we have? No degree 2 map by assumption. Are there such maps of degree

3? Yes, look at KC(−p) for any p ∈ C. This is always base-point free by Riemann-Roch (+ assumption
that there’s no degree 2 line bundle with 2 sections), so gives a degree 3 map C ! P1. More concretely,
choose any point p ∈ C ⊂ P2 and project πp : C ! P1 away from that point; this writes it as a degree 3
cover of P1.
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16 Problem Session (10/22)

Note 17. Roughly 15 minutes late

16.1 Problem 1

Missed most of this discussion, but looks like he computed D2, D ·E on the board, and is now computing
E2?

Say S, T ⊂ P3 surfaces of desgrees s, t (S smooth), and say S ∩ T = D ∪ E with D,E (smooth?)
curves of degree d, e. Write g(D) = g and g(E) = h. One can compute

D2 = (2g − 2)− d(s− 4), D · E = td+ (s− 4)d− (2g − 2) and E2 = te− (s+ t− 4)d+ 2g − 2

(use adjunction a few times?)
Then,

2h− 2 = KSE + E2 = (s− 4)e+ te− (s+ t− 4)d+ 2g − 2.

Collecting terms gives the liaison formula

h− g = (e− d) · s+ t− 4

2
.

To see that the RHS is an integer, use e+ d = st by Bezout.

16.2 Problem 2

Example. Say D a twisted cubic curve. Let S, T be quadric surfaces containing D. S ∩T = D∪E with A twisted
cubic lies on
3 linearly
independent
quadrics

E a curve a degree 1 (by Bezout), so E a line. Can check the liaison formula by hand in this case (h = g

and s+ t = 4, so both sides vanish). △

Question 16.1 (Beyond the homework). How many twisted cubics are there?

Consider the Hilbert scheme parameterizing subschemes of P3 with Hilbert polynomial p(m) = 3m+1.
This includes all twisted cubics (they will form an open subscheme?). What is the dimension of this space?

The liaison example relates twisted cubics to lines. We know lines in P3 are parameterized by a
4-dimensional Grassmannian G(1, 3). To make use of this, we set up an incidence correspondence:

Φ :=
{
(S, T,D,E) ∈ P9 × P9 ×H3m+1 ×G(1, 3) : S ∩ T = D ∪ E

}
(P9 parameterizing quadrics, H3m+1 Hilbert scheme). Project onto third and fourth factors

Φ

H3m+1 G(1, 3).

pr3 pr4

Look at fibers of right map. Fix a line L ↪! P3. It will lie on a 7-dimensional subspace of quadrics; for a
general pair of quadrics containing L, the residual curve will be a twisted cubic (degree 3 and genus 0).
Hence, the fibers of the right map are, opens in P6 × P6. Thus, dimΦ = 12 + 4 = 16.
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On the left, the quadrics containing a twisted cubic form a P2, so the fibers on the left will be open
in P2 × P2. Thus, dimH3m+1 = dimΦ− 4 = 12.

Remark 16.2. This is not the simplest way to answer this sort of question (compare: section 7.3) ◦

Example. Say D is a rational quartic curve. Dimension counting shows that D lies on a quadric surface
S. In fact, S is unique (else by Bezout it’d be the complete intersection of two quadrics, and then
adjunction would compute it to have genus 1 ̸= 0). Another dimension count shows that D lies on (≥) 7
independent cubics. Since S lies on 4 independent cubics, we conclude there’s some cubic T containing
D but not S. Write S ∩ T = D + E. Then, E must have degree 2. Liaison will tell us that E has genus
pa(E) = −1, so E better be reducible.

Think of D ⊂ S = P1 × P1. D will be of type (1, 3) (or (3, 1)). At the same time, S ∩ T will be type
(3, 3), so E ⊂ S must have type (2, 0). This is a pair of fibers in one direction, E ∼= P1 ⊔ P1 (zero locus
of quadratic polynomial in one set of variables), and indeed, pa(P1 ⊔ P1) = −1. △

Let’s take a moment to mention a few questions, some of which are still open.
If you have two curves whose union gives a complete intersection, the geometry of these two curves are

related to each other, as we have seen. Say two curves C,D are linked well, if their union is a complete
intersection. This defines an equivalence relation (say on curves in P3).

Question 16.3. Is this a non-trivial equivalence relation? Are there any two curves which are not linked?

There’s one equivalence class containing complete intersections (all linked to the empty curve of degree
0). This class contains other curves as well, e.g. the twisted cubic (which is linked to a line).

Answer. Yeah, it’s non-trivial. The first example of a curve not linked to a complete intersection is the
one from the example we just worked out: a curve of type (2, 0) in P1 × P1 ↪! P3. ⋆

Ultimately, Hartshorne and Rao (spelling? I didn’t hear too clearly) gave a complete set of invariants
for this linkage relationship.

16.3 Problem 3

Say M is an m× n matrix of linear forms on Pr. To this, we associate the determinantal variety

Σk := {x ∈ Pr : rankM(x) ≤ k}

(zero locus of (k + 1)× (k + 1) minors of the matrix). What is codim(Σk,Pr)? This is a standard quals
problem here: codim(Σk,Pr) ≤ (m−k)(n−k). For a general matrix of this form, this will be an equality.

If I heard correctly, in general, one says a projective variety is determinantal if it is of this form (with
expected codimension?). Also, the entries of M don’t need to all be linear. They can be of any degree
as long as all minors are homogeneous.

Example. A complete intersection is a determinantal variety associated to a 1× c matrix. △

Let’s do an example. Say M is a 3× 4 matrix of linear forms on P3, and let

D =
{
X ∈ P3 : rankM(X) ≤ 2

}
.
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This has expected codimension (3 − 2)(4 − 2) = 2, so we expect D to be a curve (and it will be for a
general matrix).

A word of what we mean by ’general matrix’: such an M defines a linear map Pr ↪! P (m× n matrices)
and inside of the target is the locus Mk of matrices of rank ≤ k.

There is a general formula for the degree of determinantal curves. However, in this case, we can use
liaison. This curve D is exactly the zero locus of the 3×3 minors of this matrix. There are 4 such minors,
each homogeneous of degree 3. Let’s take two of these (say the first three columns and the last three
columns). Let ∆123 be the cubic surface cut out by the minor of the first 3 columns, and ∆234 be the
same for the last 3 columns. Write ∆123 ∩ ∆234 = D ∪ E. Note the middle two columns gives a 3 × 2

matrices. If that matrix has rank 2, the left and right minors vanishing already implies all minors vanish.
Hence,

E : rank

M12 M13

M22 M23

M14 M24

 ≤ 1.

Note that E above is a twisted cubic (see the textbook’s discussion of rational normal curves). This
forces deg(D) = 6 and g(D) = 3.

Exercise. Say M is a general n× (n+ 1) matrix of linear forms on P3. Let Dn = {rankM(x) ≤ n− 1}.
Find the degree and genus of Dn. (Hint: use induction)

16.4 Problem 4

Let C be a curve of genus 2, and let L ∈ Pic5(C) be a degree 5 line bundle. By RR, h0(L) = 4 and L

is very ample, so we get embedding φL : C ↪! P3. Dimension counting shows that C lies on a quadric
surface Q ⊂ P3. This Q is unique by Bezout. When is Q smooth?

If L ∼= K2
C(p), then L(−p) = K2

C . We know φKC
: C ! P1, so φK2

C
is the composition

C
φK−−! P1 ν2−! P2

(use RR to see that this map is associated to the complete linear series K2
C). This composition is 2 : 1

onto a conic. Note that φK2
C

is alternatively the composition of

C
φL
↪! P3 πp

−! P2

of φL with projection away from p. The image is a conic, so C must lie on the cone over that conic (with
vertex p).

17 Lecture 13 (10/25)

Note 18. Roughly 7 minutes late

Today

• genus 5 and 6, but mostly 5

• Start Brill-Noether theorem
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17.1 Genus 5

Assume non-hyperelliptic φK : C ↪! P4, so C an octic curve (degree 8). Looking at the restriction
map H0(OP4(2)) ! H0(OC(2)), shows that C lies on ≥ 3 quadrics Q1, Q2, Q3. Two possibilities: C =

Q1 ∩Q2 ∩Q3 or C ⊊ Q1 ∩Q2 ∩Q3 (forces this triple intersection to be a surface).

Remark 17.1 (partial converse). If Q1, Q2, Q3 are 3 general quadrics. They will intersect in a smooth
curve by Bertini. By adjunction, that smooth curve will be a canonical curve (of genus 5).

By adjunction,
KP4 = O(−5) KQ1∩Q2

= O(−1)

KQ1
= O(−3) KQ1∩Q2∩Q3

= O(1)

(assuming the involved varieties are still smooth at each step). ◦

So the first of our two possibilities does occur, and is in fact the general case.

17.1.1 Case I

Assumption. First assume that C = Q1 ∩Q2 ∩Q3.

Question 17.2. Is C trigonal (= 3-sheeted cover of P1)?

Answer. Let D = p1 + p2 + p3 be an effective degree 3 divisor on C. To say that D moves in a pencil
says exactly that p1, p2, p3 are collinear. This can’t happen! Any quadric containing the curve, intersects
the line Lp1p2

in ≥ 3 points and so must contain this line. Hence, Lp1p2
⊂ Q1 ∩ Q2 ∩ Q3, contradicting

that this intersection is exactly C. Thus, C is not trigonal. ⋆

Question 17.3. Is C a 4-sheeted cover of P1? i.e. does there exist a divisor D = p1 + p2 + p3 + p4 on
C with r(D) ≥ 1 ( ⇐⇒ r(D) = 1, by Clifford).

Again invoke geometric Riemann-Roch: r(D) ≥ 1 ⇐⇒ p1, p2, p3, p4 lie on a 2-plane Λ. These four A collection
of 4 points
in the plane,
no three co-
linear, is the
intersection
of two conics

points will lie on exactly two conics in Λ, and no more. However, C itself lies on 3 quadrics. This seems
fishy. Algebraically, we’re looking at

H0
(
IC/P3(2)

)
−! H0

(
ID/P2(2)

)
.

By hypothesis, the source is 3-dimensional, but the target is only 2-dimensional. Thus, there exists a
quadric Q with Q ⊃ C and Q ⊃ Λ. A quadric hypersurface in P4 containing a 2-plane is necessarily
singular16 (either rank 4 or rank 3).

Note 19. Joe drew some pictures of singular quadrics, but I missed their explanation, so I’m not sure
what they’re doing...

Remark 17.4. Conversely, if Q is singular quadric ⊃ C, get Λ1,Λ2 2-planes of opposite rulings (rankQ =

4). C meets each of Λ1,Λ2 in 4 points. Somehow this gives two different g14 ’s.
I’m kinda confused by what’s happening, but sounds like here Q is a cone over a (smooth) quadric

P1 × P1 in P3. The two degree four maps are something like C ↪! Q 99K P1 × P1 ⇒ P1. ◦
16Think in terms of (quintic) quadratic forms. A (projective) 2-plane in the associated quadric gives a 3-dimensional

isotropic subspace of the quadratic form. A non-degenerate quadratic form can only have isotropic subspaces up to half the
total dimension
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To conclude that C does have a degree 4 map to P1, need to verify that C lies on some singular quadric.
Note that {quadrics in P4} ∼= P14. Sitting inside of here is P2 ∼= Γ = {Q : Q ⊃ C} (using the assumption
that C is a complete intersection of 3 quadrics). The locus of singular quadrics X := {sing quadrics} ⊂ P14

is a quintic hypersurface; think of quadrics as locus of quintic quadratic forms, and then the singular
ones are those which are degenerate (determinant of associated matrix vanishes). Therefore, the singular
quadrics containing C are given by X ∩ P2, a (non-empty) quintic plane curve.

So we get a whole curve of singular quadrics containing C, and so a whole 1-dimensional family of
degree 4 maps to P1.

We’ve shown we have a hypersurface X ⊂ P14 of singular quadrics. A general singular quadric will
be singular at just 1 point, and so will be rank 4. Can look further at the locus

Y := {quadrics of rank ≤ 3} ⊂ X ⊂ P14.

Claim 17.5. dimY = 11 (i.e. Y is codim 3 in P14)

Exercise. Verify this, and also compute its degree if you want.

For a general choice of three quadrics, they’ll span a two plane in the same of all quadrics, and so
they will miss Y (11 + 2 < 14). Hence, for Q1, Q2, Q3 general, no linear combination has rank ≤ 3 and
so C = Q1 ∩Q2 ∩Q3 won’t lie on a quadric of rank ≤ 3.

Claim 17.6. Xsing = Y

So for C a general curve of degree 5, the intersection Σ := P2 ∩ X is a smooth plane quintic curve
(P2 = space of quadrics containing C), and there’s is a 2:1 map

{
g14 ’s on C

} 2:1−−! Σ.

Remark 17.7. Apparently the Jacobian of the curve is the Prym of this map, whatever that means. ◦

Exercise. If C is bielliptic, i.e. exists degree two map C ! E with E elliptic,17 then Σ is reducible,
consisting of the union of a line and a quartic plane curve.

17.1.2 Case II

Assumption. Now assume C ⊊ Q1 ∩Q2 ∩Q3.

Claim 17.8. Q1 ∩Q2 ∩Q3 is a surface.

Proof. If it were a curve, it would be a curve of degree 8, and so would be C. Hence, it must have some
surface component S.

Exercise. Show that S contains C.

An irreducible, non-degenerate surface in P4 can’t lie on more that 3 quadrics. Thus, this S must be
a rational normal scroll, and we must have Q1 ∩Q2 ∩Q3 = S. ■ TODO:

Make sense
of this argu-
ment

Recall 17.9. Pic(S) = Z ⟨H,F ⟩ ⊙
17Note this immediately shows that C is expressible as a 4-sheeted cover of P1 is a 1-parameter family of ways
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Canonical curves are Castelnuovo curves (maximal genus given degree), so previous analysis shows
that C must have class 3H −F . This says in particular that C ·F = 3, so C is trigonal (S is a P1-bundle
over P1, and the map C

3
−! P1 is just the restriction of S ! P1).

Corollary 17.10. A non-hyperelliptic curve of genus 5 is trigonal iff it is not a complete intersection.

17.2 (Genus 6 and) Brill-Noether

Question 17.11. If C is a general curve of genus g, what is the smallest d so that there exists a map
f : C ! P1 of degree d? Also, how many such maps are there, what’s the dimension of the space of all
such maps?

We’ve answered this already for several small values of g:

g min. d # when
0 1 (1)
1 2 (∞1) Section 8.2
2 2 (1) Section 15.2
3 3 (∞1) Section 15.3
4 3 (finite number)
5 4 (∞1) Section 17.1
6 4? (finite number?) Extrapolate

Table 1: Gonality (min d s.t. ∃C d
−! P1) of general curves of small genus

Say C is a non-hyp curve of genus 6, so φK : C ↪! P5 is a curve of degree 10. One quickly sees that
C lies on ≥ 6 quadric hypersurfaces. This doesn’t give us much to work with. It’s not clear how to do a
hands-on analysis here, so we really need a theorem.

This brings us to the start of how discussion of Brill-Noether.

Question 17.12. If C is a general curve of genus g, what linear series exist on C?
For any triple (g, d, r), one asks: does a general curve C of genus g possess a grd?

We’ve repeatedly been asking this question for r = 1 and various values of g throughout the course.

Example (Consequence of Brill-Noether). C is expressible as a d-sheeted cover of P1 ⇐⇒ d ≥
⌈
g+2
2

⌉
.

△

This is the pattern we observed in the table. We can refine our question a little. So far, we’ve just
asked: is W r

d (C) ̸= ∅, but why not ask

Question 17.13. What is dimW r
d (C), for a general curve C of genus g?

This is what Brill-Noether (aims to?) answer. More on this Wednesday.

Question 17.14 (Audience). Is is clear that if a curve is expressible as a d-sheeted cover of P1, then it’s
also expressible as a (d+ 1)-sheeted cover?

Answer. Depends on how you think of things. If a curve has a g1d, then it automatically has a g1d+1

(e.g. just add a basepoint). However, it can have a basepoint-free g1d (and so a map) without have a
basepoint-free g1d+1. For example, sounds like hyperelliptic curves of genus g ≥ 3 are never trigonal. ⋆
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18 Problem Session

Note 20. Roughly 9 minutes late

18.1 Problem 1

Say C ↪! P4 genus 5, degree 8. Have C ⊂ Q1, Q2, Q3 3 quadrics. Say C ⊊ Q1 ∩ Q2 ∩ Q3. This forces
Q1 ∩ Q2 ∩ Q3 to be 2-dimensional (if it were one-dimensional, it’d be pure of dimension 1; no isolated
point). We want to conclude that S := Q1 ∩Q2 ∩Q3 is a rational normal scroll.

For something like this, need slight strengthening of Bezout.

Theorem 18.1 (First Bézout). If X1, . . . , Xk ⊂ Pn are hypersurfaces of degrees d1, . . . , dk which
intersect transversely, then deg

(⋂k
i=1 Xi

)
=

∏k
i=1 di.

Theorem 18.2 (Second Bézout). If X1, . . . , Xk ⊂ Pn are hypersurfaces of degrees d1, . . . , dk and
⋂
Xi

has dimension n− k – i.e.
⋂
Xi =

⋃
Zk with Zk irreducible of dimension n− k – then we can assign to

each irreducible component Zk of
⋂
Xi an intersection multiplicity mZk

(X1, . . . , Xk) so that∑
k

mZk
(X1, . . . , Xk) degZk =

∏
di.

Example. Say we have curves C = V (f) and D = V (g) in P2. For p ∈ C ∩D, one has

mp(C ·D) = dimC
OP2,p

(f, g)
. △

Defining intersection multiplicities in complete generality is tricky, it sounds. Something something
Serre’s Tor formula something something...

Neither of these two versions of Bezout are good enough for us. We’d like to e.g. rule out the
possibility that Q1 ∩Q2 ∩Q3 = C ∪H is C union a hyperplane H. In this case, the intersection does not
have the expected dimension, and so neither of the above versions tell us anything about the degrees of
the components of Q1 ∩Q2 ∩Q3.

Theorem 18.3 (Fulton). Say X1, . . . , Xk ⊂ Pn hypersurfaces of degree d1, . . . , dk, and write⋂
Xi =

⋃
Zα

(Zα irreducible components). Then, ∑
degZα ≤

∏
di.

In order to get an equality above, would need to develop Fulton’s excess intersection formula.
This rules out the possibility that Q1 ∩Q2 ∩Q3 = C ∪H. In fact, it shows that if C is an irreducible

component of Q1 ∩ Q2 ∩ Q3, then C must be the whole intersection. Thus, if the intersection is 2-
dimensional, then C must be contained in a 2-dimensional component Z of the intersection, and Z is
necessary an irreducible, non-degenerate surface.

Remark 18.4. Fulton’s intersection theorem is specific to projective space. ◦
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18.2 Problem 2: Vector bundles on P1

Theorem 18.5. If E ! P1 is a vector bundle of rank r, then E is a direct sum of line bundles.

Classifying vector bundles on curves of genus g ≥ 1 is much more non-trivial.
For this problem, we’ll prove this, at least when r = rankE = 2.

Definition 18.6. The degree of a vector bundle E is deg(detE), the degree of the line bundle detE :=∧top
E. ⋄

Remark 18.7. We we have an exact sequence

0 −! O(a) −! E −! O(b) −! 0.

Then,
∧2

E ∼= O(a)⊗ O(b), so degE = a+ b. Also, χ(E) = χ(O(a)) + χ(O(b)) = a+ b+ 2 = degE + 2.
Note, given any vector bundle of rank 2, can find such a sequence.18 ◦

Claim 18.8. Say we have
0 −! O(a)

α−−! E
β−−! O(b) −! 0.

If a ≥ b− 1, then this sequence splits, i.e. E = O(a)⊕ O(b).

Proof. We have a section φ : O(b) ! E so that β ◦ φ = id. Let M = O(b) and L = O(a). Apply the
(exact) functor Hom(O(b),−) = M∨ ⊗ (−) to get

0 −!M∨ ⊗ L −!M∨ ⊗ E −! O −! 0.

In Hom(M,M) = M∨ ⊗ M = O, we have the identity map idM : M
=
−! M , and the original sequence

splits iff it is in the image of the map Hom(M,E) ! Hom(M,M), i.e. the map E ⊗M∨ ! O. Taking
cohomology gives an exact sequence

H0(Hom(M,E)) H0(Hom(M,M)) H1(Hom(M,L))

C H1(M∨ ⊗ L)

H1(O(a− b))

0.

since b−a≥1

Thus, we win by exactness. ■

So, given E ! P1, we’d like to show there exists a sub-line bundle L = O(a) ↪! E with a = degL ≥
1
2 deg(E)− 1. How do we find a sub-line bundle of a vector bundle of rank 2?

Suppose we have a global section s ∈ H0(E) which is nowhere vanishing. This would then span a
sub-line bundle (over a point p ∈ P1, look at the span of s(p)). This sub-line bundle would necessarily

18Twist E∨ to assume it has a section s : O ! E∨ (really s : O ! E∨(a) since the original bundle may need to be twisted
before its dual has a section). Take the dual of this map s∨ : E ! O. The kernel will be a line bundle.
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be trivial (it has a nonvanishing global section). We claim a similar thing can be done for sections which
vanish somewhere.

When we had a non-vanishing section, to define the sub-line bundle (over a trivializing neighborhood
U , so E|U ∼= U ×C2), we were essentially taking a map U ! P1 = P(C2) picking out the line spanned by
the value of the section. If our section has some zeros, we only get a rational map U 99K P1, but because
U is smooth and 1-dimensional, such a rational map always extends to a morphism U ! P1, and so can
still be used to define a sub-line bundle!

Hence, given E, the goal is to find σ ∈ H0(E) w/ as many zeros as possible. For this, we use Riemann-
Roch. Pick points p1, . . . , pk ∈ P1, and look at the vector bundle E(−p1−· · ·−pk) := E⊗O(−p1−· · ·−pk).
Global sections of this are just global sections of E vanishing at these k-points. Thus, just need H0 of
this to be nonzero. Riemann-Roch says that

h0(E(−p1 − · · · − pk)) ≥ χ(E(−p1 − · · · − pk)) = (degE − 2k) + 2.

Choosing the maximal k so that this is positive gives a line subbundle of high enough degree to write E

as a sum of two line bundles.

Note 21. Missed some remark about normal bundles

Exercise. Take the simplest example of a curve with rank 2 normal bundle – a twisted cubic in P3 – what
is its normal bundle? It will be O(a)⊕ O(b) for some a, b. Which ones?

18.3 Problem 3

Recall the construction of scrolls.

Construction 18.9. Start with two disjoint linear subspaces Pa,Pb ⊂ Pr. Choose a rational normal curve
C1 of degree a in Pa and one C2 of degree b in Pb. Fix some parameterization φα : P1 ∼

−! Cα of each,
and let Xa,b ⊂ Pr be the surface swept out by lines between corresponding points on the rational normal
curves, i.e.

Xa,b =
⋃
t∈P1

φ1(t)φ2(t) −! P1
t

The lines above are disjoint which is why we get the morphism down to P1
t (?).

The fibers of this map are P1’s, so Xa,b is a P1-bundle over P1 (a Hirzebruch surface). This makes it
the projectivization of some vector bundle on P1, and the claim is that

Xa,b ≃ P (OP1(a)⊕ OP1(b)) .

Warning 18.10. Usually when one has a vector space V , PV is the space parameterizing lines (i.e. 1-
dimensional subspaces) in V . So usually given a vector bundle E ! X, PE is {(x, L) : x ∈ X,L ⊂ Ex 1-dim}.
However, Grothendieck told us that this is the wrong way. He said we should actually have projectiviza-
tions parameterize 1-dimensional quotients instead of 1-dimensional subobjects.

That is, he says PV := {Λ ⊂ V : Λ codim 1 linear subspace}. Not everyone is on board with this (in
particular, Joe isn’t), so conventions vary. Grothendieck’s convention allows one to define the projec-
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tivization of any coherent sheaf: for any coherent sheaf F on any scheme X, can define

P(F ) := ProjX

⊕
m≥0

Symm F

 . •

To finish this problem, one invokes the following theorem:

Theorem 18.11. If E,E′ −! X are vector bundles, then PE ∼= PE′ (over X ′) iff E′ ≃ E⊗L for some
line bundle L .19

Corollary 18.12. Xa,b ≃ Xa′,b′ iff a− b = ±(a′ − b′).

18.4 Problem 4

Say C genus 5, non-trigonal. Have canonical embedding φK : C ↪! P4 and C = Q1 ∩ Q2 ∩ Q3. The
locus Σ of singular quadrics containing C is a quintic plane curve in P2 ∼= {Q ⊃ C}. Suppose that C

is bi-elliptic, i.e. ∃π : C
2
−! E with g(E) = 1. One gets an involution ι : C

∼
−! C just flipping the two

sheets. Can use this to break up the space of differentials into eigenspaces

H0(KC) = H0(KC)
+ ⊕H0(KC)

−.

Note that h0(KC)
+ = π∗ H0(KE) and so is 1-dimensional. Look at the maps associated to these subspaces,

e.g.

C P4 P3.φH0(KC )

φH0(KC )−

project

The map φH0(KC)− factors through π and so is 2 : 1 onto an elliptic curve E ↪! P3 embedded as a quartic.
This E will be the intersection of two quadrics, and so lies on a pencil of quadrics. Thus, C ↪! P4 lies
on the cones over those quadrics, giving a 1-parameter family of singular quadrics containing the original
canonical curve.

19 Lecture 15 (11/1): Brill-Noether

We want to start the proof (of at least half) of Brill-Noether. This will involve introducing a new
construction/notion (inflection points of linear series) which we will discuss on Wednesday. Today, we
want to talk about the general setup of proving this theorem. Apparently, there are ≥ 4 known proofs.

Keep in mind that Brill-Noether (BN) describes linear series on a general curve, and also describes
the varieties that parameterize them. The basic starting question is

Question 19.1. Are there any grd’s on a curve C?

Answer. Introduce the Brill-Noether number

ρ(g, r, d) = g − (r + 1)(g − d+ r).

19Look at cohomology sequence induced by 1 ! Gm ! GLn ! PGLn ! 1
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This is the expected dimension of W r
d (saw this last Wednesday). ⋆

Theorem 19.2 (Brill-Noether theorem). There exists a grd on a general curve C of genus g ⇐⇒
ρ(g, r, d) ≥ 0. Moreover, dimW r

d (C) = ρ.

Note that we talking about a ’general’ curve, so this is implicitly assuming that we have a space
parameterizing all curves (and then are saying BN holds for curves in some dense open). We have not, in
this class, constructed the moduli space parameterizing genus g curves. This is a highly non-trivial thing
to do, so to save time, we’ll take the perspective of the 19th century mathematicians who just assumed
such a thing existed, and went on with their lives.

Fact. The varieties W r
d (C), for C any curve of genus g, fit together to form the fibers of a map.

Let Mg be the moduli space of curves of genus g. Above this is the space Unclear to
me if Joe
has in mind
the course
moduli space
or fine mod-
uli stack,
but let’s just
say it’s the
latter for
now?

℘d,g :=
{
(C,L) : C genus g and L ∈ Picd(C)

}
(this is a sub-object of the universal jacobian Pic0Cg/Mg

). Inside of here, one has the space Wr
d ={

(C,L) : h0(L) ≥ r + 1
}

(this is W r
d (Cg)). So the picture is

℘d,g Wr
d

Mg

⊂

The point with putting these W r
d ’s into a family Wr

d is that they’re dimensions are upper semi-continuous.
Thus, to show that the dimension is ≥ ρ, it suffices to find one curve with dimension = ρ (implicitly
appealing to some determinantal variety computation from last time showing that dimW r

d (C) ≥ ρ when
W r

d (C) ̸= ∅ always).
Two halves of BN core

• (’existence’) If ρ ≥ 0, then W r
d (C) ̸= ∅ and dimW r

d (C) ≥ ρ.

• (’non-existence’) If ρ < 0, then W r
d (C) = ∅ for general C, and dimW r

d (C) = ρ. Question: Is
this a typo?

To prove the non-existence half, it suffices to exhibit a single curve C of genus g so that dimW r
d (C) = ρ

(if ρ ≥ 0) and so that W r
d (C) = ∅ (if ρ < 0).

This doesn’t sound so bad, but this isn’t so easy. Most of the ways we have or writing down curves
actually violate BN (e.g. hyper-elliptic curves, plane curves, complete intersections, etc. are not general). There’s

some re-
mark in the
course text
about Mg

not being
unirational
when g ≫ 0.
I wanna
say this is
related to
that?

Exercise. Try (and fail) to verify BN for hyper-elliptic, plane, and complete intersection curves (say,
complete intersections in P3 to keep things reasonable).

Recall 19.3. If I give you an explicit curve, there’s an algorithmic way to write down all of its linear
series (and this is true over any field). ⊙

Approach 2 Here’s an idea: write down some family of curves (including a general curves), and verify
BN over the generic point of this family. Joe called this the second approach (I guess the first was to try
to write down a generic curve in isolation?)
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Example. If g = 2, then y2 = x6 + a5x
5 + · · · + a1x + a0 gives a family of curves over A6

a0,...,a5
which

includes every curve of genus 2 (assuming char k ̸= 2). △

Example. For g = 3, can look at curves given by
∑

i+j≤4 aijx
iyj which includes a general curve of genus

3 (but not all, e.g. no hyper-elliptics). △

Question 19.4. Given a genus g, can we find a family of curves of genus g over some open U ⊂ An

(open e.g. because you want to fibers to be smooth) which includes a general curve?

This was open for a long time, but is now closed.

Answer. Yes! when g ≤ 13 (this was done classically by hand for g ≤ 10 if I heard correctly). When
g ≥ 23, the answer is no. Still open in the middle range. ⋆

Approach 3 New thought: instead of specializing to a general smooth curve, why don’t we specialize
to a singular curve? This idea goes back to Castelnuovo it seems.

Example (Castelnuovo?). Let C0 be a g-nodal curve (pa(C0) = g and C0 has g nodes, so g(C̃0) = 0).
That is, the normalization is P1 and C0 is obtained by identifying pairs of points pi ↔ qi (for i = 1, . . . , g).
The point is that this can be deformed to a smooth curve! That is, there exists a family C ! ∆ (∆ =

disc) so that Ct is smooth of genus g and C0 is g-nodal. △ I might be
mistaken,
but I think
this is just
because Mg

is connected
(or possi-
bly just be-
cause ‘gen-
eral’ means
belonging
to a dense
open?)?

We now need to start worrying a bit about extending the theory we have built up to singular curves.

Definition 19.5. By a linear series on a singular curve C0 we mean a line bundle L on C0 along
with a subspace V ⊂ H0(L). ⋄

Also, the degree of a line bundle on C0 is defined to be the degree of its pullback to the normalization
C̃0.

Claim 19.6. If we have

{(Lt, Vt) : Lt line bundle of degree d on Ct and Vt ⊂ H0(Lt) of dim r + 1 : t ̸= 0},

then this extends, in the limit, to such a linear series on C0.

Note 22. Got distracted for a second, and missed something Joe said.

Claim 19.7. If the g-nodal curve C0 is general (i.e. the pi, qi ∈ P1 are general), then C0 := P1/(pi ∼
qi)

g
i=1 satisfies Brill-Noether, i.e. ∄grd on C0 with ρ < 0.

Proof. Say we have C0 = P1/(pi ∼ qi)
g
i=1, and say we have a linear series (L0, V0) on C0. How can we

describe this data? Pull back to P1. Let ν : P1 ! C0 be the normalization map. Let L := ν∗L0
∼= OP1(d),

so V := ν∗L ⊂ H0(OP1(d)). What condition must V satisfy in order to come from a linear series on C0,
i.e. when does the map φ(L,V ) : P1 ! Pr factor through C0?

Observation 19.8. A linear series (L, V ) on P1 is a pullback from C0 iff for any σ ∈ V , σ(pα) = 0 ⇐⇒
σ(qα) = 0 (for all α = 1, . . . , g).
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Note that a linear series of dimension r and degree d on P1 exactly corresponds to a plane Λ ∼=
Pd−r−1 ⊂ Pd (embed P1 ↪! Pd by the complete linear series |OP1(d)|, and then subseries consist of all
divisors containing some given plane Λ. Moreover, the associated map is φΛ : P1 ↪! Pd πΛ

999K Pr). Hence,
this space of linear series is parameterized by a Grassmannian G(d − r − 1, d). In this language, what’s
the condition that φΛ(pα) = φΛ(qα)? If you think geometrically, this is just saying that a hyperplane
containing Λ contains pα iff it contains qα. More simply, it means Λ intersects the line pαqα (all taking
place in Pd). Hence, we arrive at the following question

Question 19.9 (Question in Schubert calculus). Given collection pα, qα ∈ Pd, does there exist Λ ∼=
Pd−r−1 ⊂ Pd so that Λ ∩ pαqα ̸= ∅ for all α?

Start with a dimension count in G := G(d− r − 1, d). If L ⊂ Pd is any line, set

Σr(L) := {Λ ∈ G : Λ ∩ L ̸= ∅}

this is a cycle of codimension r in G.20 So we expect ∃Λ w/ Λ ∩ pαqα ̸= ∅ for all α ⇐⇒ rg ≤ dimG
(sum of codimensions at most dimension of Grassmannian), i.e.

rg ≤ (d− r)(r + 1) ⇐⇒ g − (r + 1)(g − d+ r)︸ ︷︷ ︸
ρ(g,d,r)

≥ 0.

Almost done, but not yet. If we took g general lines (in place of pαqα), then all the dimension counts
would work out as expected (by a standard Bertini-type argument). However, we’re not taking general
lines in Pd, but instead are taking general chords to P1 ↪! Pd. That is

Proposition 19.10 (Bertini). If L1, . . . , Lg are general lines in Pd, then dim
⋂

Σr(Lα) = ρ (in particular,
is empty if ρ < 0).

We want to show this holds in L1, . . . , Lg are general chords to a rational normal curve.

Let’s ground ourselves, by pausing to look at the first non-trivial case: is a general curve C of genus 3
hyperelliptic? In this case, C0 = P1/(p1 ∼ q1, p2 ∼ q2, p3 ∼ q3). Are there any maps C0

2
−! P1? Consider

the pullback of such a thing to P1 embedded as a conic in P2. Any degree 2 map P1 ! P1 is the Veronese
embedding P1 ↪! P2 followed by projection from a point p ∈ P2. Such a thing factors through C0 iff p

lies on the chords pαqα. For 3 general pairs of points on the conic, not all three chords will share a point
of intersection (imagine a triangle). Note that in this case, every line in P2 is a chord, so Bertini applies
on the nose.

(Got distracted again and missed some stuff)
Are lines pαqα, α = 1, 2, 3 concurrent? Not in general, but they might be (e.g. pick some point in

P2, draw three lines through it, and then make the identifications indicated by those lines). Let’s take
things a step further. Instead of specializing to three secant lines, what if we took 3 tangent lines? 3
secant lines in the plan can be concurrent, but three tangent lines to a conic in the plane can never be
concurrent. To prove this, we’ll introduce inflection points next time.

We will finish carrying out this proof over the next couple of lectures... ■
20Something like Σr(pt) has codimension r + 1, so a 1-parameter family of points will give codimension r
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20 Lecture 17 (11/8)

Note 23. Roughly 7 minutes late

Plan for this week

• Today: fun with Weierstrass points + automorphism groups (of curves)

• Wednesday: back to work (proof of Brill-Noether, at least the first half I think)

20.1 Last time

Let C be a smooth projective curve of genus g, and fix a point p ∈ C. Let D = (L, V ) be a degree d

linear series on C.

Recall 20.1. We defined the ramification sequence of D at p as follows: first find a basis σ0, . . . , σr ∈ V

with
ordp σ0 < ordp σ1 < · · · < ordp σr.

Then, the vanishing sequence is
ai(D, p) := ordp σi

(note this is strictly increasing), while the ramification sequence is

αi(D, p) := ordp σi − i.

We say that p is an inflectionary point for D if (α0, . . . , αr) ̸= (0, . . . , 0). The weight of p is

w(p) :=
∑

αi(D, p). ⊙

Fact. There are only finitely many inflectionary points for a given D. This is false in positive character-
istic.

Note that above definitions make sense for any linear series, even those with base points

Exercise. The map φD fails to be an immersion near p ⇐⇒ α1(D, p) > 0.

Fact. The Plücker formula tells us that∑
p∈C

w(p) = (r + 1)d+ r(r + 1)(g − 1).

Exercise. Every point p ∈ C is an inflectionary point for some linear series (Hint21)

If we want to use this to pick out only certain points on the curve, we can apply this notion to the
canonical series (or to pluricanonical series).

21Consider Oc(np) for n ≫ 0
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20.2 Weierstrass points

Definition 20.2. We say p ∈ C is a Weierstrass point if p is inflectionary for |K|, the canonical
series. ⋄

We can give an equivalent, alternate definition of Weierstrass points.

Observation 20.3. Say D is a general effective divisor of degree d, i.e. D ∈ Cd general. Geometric
Riemann-Roch tells us that

h0(D) =

 1 if d ≤ g

d− g + 1 if d ≥ g

(a general effective divisor imposes d independent conditions on the canonical series. A general point will
not be a basepoint of K − p or K − p− q or ...).

What if we tried making a similar remark not for general divisors, but for multiples of a general point?
We expect

h0(dp) =

 1 if d ≤ g

d− g + 1 if d ≥ g.

In other words, we expect that ∄f ∈ M(C) (meromorphic function) so that f is holomorphic on C \ {p}
and ordp f ≥ −g.

Classically, people asked: given p ∈ C, consider

Σp := {− ordp(f) : f ∈ M(C) and f holo. on C \ {p}} ⊂ N,

the Weierstrass semi-group of p. We expect that, for a general point p ∈ C, this semi-group is simply
Σp = N≥g+1.

Claim 20.4. For a general p ∈ C, Σp = {g + 1, g + 2, g + 3, . . . }.

Proof. Note that there exists f ∈ M(C) with f holomorphic on C\{p} and − ordp(f) = k ⇐⇒ h0(kp) >

h0((k − 1)p) ⇐⇒ h0(kp) = h0((k − 1)p) + 1. By Riemann-Roch, this is the case iff

h0(K − kp) = h0(K − (k − 1)p),

i.e. p is a basepoint of K − (k − 1)p. This is the case iff ∄ω ∈ H0(K) vanishing to order exactly k − 1 at
p. That is ordp ω ≥ k − 1 =⇒ ordp ω ≥ k. The upshot of this is that

N \ Σp = {a0(K, p) + 1, . . . , ag−1(K, p) + 1} ,

the complement of the Weierstrass semi-group at p is the vanishing sequence of the canonical series,
shifted by 1. The above sequence of integers is called the Weierstrass gap sequence. We see from this
that

• #(N \ Σp) = g

• For general p ∈ C, Σp = {g + 1, g + 2, g + 3, . . . } ■ Last time
they showed
that for any
linear series,
a general
point is not
inflectionary

Corollary 20.5. p ∈ C is a Weierstrass point iff Σp ̸= {g + 1, g + 2, . . . } iff h0(gp) > 1.
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Consider the gap sequence N \Σp = {b1, . . . , bg}. We define the weight of p as a Weierstrass point to
be w(p) =

∑
bi − i. This is equal to the weight of p as an inflectionary point for |K|. By Plücker, the

number of Weierstrass points is captured by∑
p∈C

w(p) = (r + 1)(2g − 2) + r(r + 1)(g − 1) = g3 − g.

(note r + 1 = g above).
“Too many letters on the board, and not enough numbers.”

Example (g = 2). Say p ∈ C of genus 2. We know that h0(p) = 1, so two possibilities: h0(2p) ∈ {1, 2}.
In other words, the semigroup could be {3, 4, 5, . . . } (with gap seq. (1, 2)) or {2, 4, 5, . . . } (with gap seq.
(1, 3) and weight w(p) = 1). In particular, every Weierstrass point has weight 1, so there must be exactly
6 Weierstrass points. These will be the ramification points of the canonical map φK : C

2
−! P1. △

Example (hyperelliptic). A hyperelliptic curve will always be given by an equation of the form

y2 =

2g−2∏
i=1

(x− λi).

Consider the point pi := (λi, 0). There is a meromorphic function with pole of order exactly 2 at pi:
namely, 1/(xi − λi). Thus, Σpi

contains all even numbers; furthermore, once it contains an odd number,
it contains all numbers past that. Given that it omits g values, this forces

Σpi
= {2, 4, 6, . . . , 2g, 2g + 1, 2g + 2, 2g + 3, . . . } .

Hence, w(pi) = g(g − 1)/2. Pluc̈ker says that the Weierstrass points have total weight g3 − g. We just
found (2g + 2) points each with weight g(g − 1)/2, so these must have been all of them. That is, the
Weierstrass points of a hyperelliptic curve are exactly the ramification points of the hyperelliptic map. △

Example (g = 3). If C is hyperelliptic, there are 8 Weierstrass points, each with semigroup {2, 4, 6, 7, 8, . . . }
(so gap seq. (1, 3, 5)) and weight 3. Consider instead the non-hyperelliptic case (so 2 not in the semi-
group). There are two possibilities for the semi-group

• {3, 5, 6, 7, . . . } (gap 1, 2, 4) with weight 1. Note C ↪! P2 as a smooth plane quartic. The orders of
vanishing of holomorphic differentials at p correspond to contact orders of p ∈ C with lines L ⊂ P2.
You can get order 0 from a line disjoint from p, order 1 from a line simply passing through p, and
order ≥ 2 from a line tangent to p. For p Weierstrass here, we have a line of contact order 3, so p

Weierstrass ⇐⇒ p is a flex point of |K|.

• {3, 4, 6, 7, . . . } (gap 1, 2, 5) with weight 2. This corresponds to p being a hyperflex point.

In the non-hyperelliptic case, we get α weight 1 points, β weight 2 points so that α+ 2β = 24.

Fact. All possible combinations occur except (α, β) = (2, 11). △

The big general question is

68



Question 20.6. Which semigroups Σ ⊂ N of finite index g (i.e. #(N \ Σ) = g) occur as Weierstrass
semigroups of points on curves of genus g?

Sounds like this is answered at least for genus g ≤ 8. It turns out they all occur, so people naturally
conjectured that they always all occur (regardless of g). This is false (due to Buchweitz). Characterizing
the ones that do is still open.

Question 20.7 (Audience). If you have a point that is fixed by the entire automorphism group, then
must it be a Weierstrass point?

Answer. Not sure off the top of my head, but this should be answerable. In the simplest case, consider
an automorphism of order 2. If the quotient curve is rational, the fixed points will be Weierstrass by the
hyperelliptic case we considered above. If the quotient curve is higher genus, it’s less immediately clear
how things work out. ⋆

Remark 20.8 (Audience). If the curve has no non-trivial automorphisms, then the answer is no. ◦

20.3 Automorphisms

Theorem 20.9. Let C be a smooth projective curve of genus g ≥ 2. Then, #Aut(C) < ∞.

Proof. There are two (and a half?) components to the proof. We want to deal with the hyper-elliptic
case separately, so let’s assume C is non-hyperelliptic. Let wP (C) denote the set of Weierstrass points.

(1) #wP (C) > 2g + 2

One can use Clifford to show that the largest possible weight of a Weierstrass point is
(
g
2

)
. In fact,

if you have a point of this weight, then your curve must be hyperelliptic, so here w(p) <
(
g
2

)
for all

p ∈ wP (C). Once you have this, #wP (C) > 2g + 2 by Plucker.

(2) If φ : C
∼
−! C is any automorphism which fixes > 2g + 2 points, then φ = id.

This follows from the Lefschetz fixed point formula. It tells us that22

#
{

fixed pts of φ : C
∼
−! C

}
=

∑
i≥0

(−1)i Tr
(
φ∗ : Hi(C)! Hi(C)

)
.

For i = 0, 2, φ∗ will carry a point to a point and the fundamental class of C to itself, so φ∗ = id

with Tr(φ∗) = 1. For i = 1, we claim there exists a Hermitian inner product on H1(C) which is
preserved by φ, so the eigenvalues of φ∗ : H1 ! H1 are complex numbers of modulus 1. Thus,
Tr(φ∗|H1) ≥ −2g. Thus, Lefschetz says that

#
{

fixed pts of φ : C
∼
−! C

}
≤ 1− (−2g) + 1 = 2g + 2.

Remark 20.10. When applying Lefschetz to C∞-functions, each fixed point has an index ±1 you
need to assign. For holomorphic functions, everything is orientation preserving, so all the indices
will be +1. ◦

22LHS is really intersection number ∆ · Γφ with ∆,Γφ ⊂ C × C the diagonal and graph of φ
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Remark 20.11. Observe that φ∗ : H0(K)
∼
−! H0(K) preserves the positive definite Hermitian inner

product H(ω) =
∫
C
ω ∧ ω. Hence the eigenvalues are complex numbers of modulus 1. At the same

time, H1
dR(C;C) = H0(K)⊕H0(K), so get the same conclusion about its eigenvalues. ◦

■

21 Problem Session (11/12)

Note 24. Roughly 5 minutes late

21.1 Problem 1

Compare Riemann-Roch for D with Riemann-Roch for D+ p. Get that h0(D+ p) = h0(D) + 1 iff p is a
base point of |K −D| (i.e. iff h0(K−D) = h0(K−D−p)). If D is special (i.e. h1(D) = h0(K−D) ̸= 0),
for general p, q ∈ C, h0(D+ p− q) = h0(D)− 1 (I missed why if he said so). The conclusion from this is
that W r+1

d (C) ⊊ W r
d (C).

Question 21.1 (Something to think about). Above really shows W r+1
d (C) is a closed subvariety of

W r
d (C) not containing any irreducible component, so it’s codimension ≥ 1. Can it’s codimension be > 1?

21.2 Problem 2

Recall 21.2 (Clifford’s Theorem). For p ∈ C any point, h0(K − ℓp) ≤ g − ℓ
2 . ⊙

Thus, the vanishing sequence of |KC | at p is ≤ (0, 2, 4, . . . , 2g − 2), so its ramification sequence is
≤ (0, 1, 2, . . . , g − 1). Thus, it’s weight is ≤

(
g
2

)
.

Now let’s look at pluricanonical series.

Definition 21.3. An m-fold Weierstrass point is an inflectionary point of the pluricanonical series
|mKC |. ⋄

As m increases, the number of distinct m-fold Weierstrass points will also increase. Say m ≥ 2.
Clifford =⇒ vanishing sequence of |mK| at p is23 Secretly

what’s writ-
ten below is
like a mix of
the ramifi-
cation and
vanishing se-
quences

≤

 0, 0, . . . , 0︸ ︷︷ ︸
(m−1)(2g−2)

, 2, 4, . . . , 2g

 .

Thus, the ramification sequence is ≤ (0, . . . , 0, 1, 2, . . . , g) and so w(|mK| , p) ≤
(
g+1
2

)
. At the same time,

the total weight of the m-fold Weierstrass points is growing (quadratically) with m, so as m increases,
we can find arbitrarily large subsets of the curve which are fixed by any automorphism.

23Note that mKC is non-special, as is mKC − ℓp for ℓ ≤ (m− 1)(2g − 2)
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21.3 Problems 3/4

Definition 21.4. For a semigroup Σ ⊂ N, we define its genus to be #(N \ Σ) and its weight to be24

w(Σ) :=
∑

m∈N\Σ

m−
(
g + 1

2

)
. ⋄

We want to count semigroups of weight w and genus g ≫ w.
The simplest genus g semigroup is {g+1, g+2, g+3, . . . }. Any genus g semigroup can be written in

the form

Σ = {g + 1− a1, g + 2− a2, . . . , g + k − ak, . . . } with weight w(Σ) = a1 + · · ·+ ak.

Above, we’ll have a1 ≥ a2 ≥ · · · ≥ ak. Thus, each semigroup of genus g and weight w gives rise to a
partition of w.

Warning 21.5. If you start with a partition a1 + · · ·+ ak = w of w, the set

Σ = {g + 1− a1, g + 2− a2, . . . , g + k − ak, . . . }

may not be a semigroup. •

However, if w < g
2 , then the above warning is irrelevant; any parition of w does give rise to a semigroup.

Question 21.6 (Audience). Would we have been able to guess beforehand that the answer does not depend
on g? (At lest if g ≫ w)

Answer (paraphrase). I’m not sure. It’s unclear how to see this without going through this argument. ⋆

Question 21.7 (Audience). The (bi − i)’s also give a partition of w. Is this the same as the partition
given by the ai’s?

Answer. Almost. They (probably) give Young diagrams which are transpose of each other, e.g.

v.s.

⋆

Example (weight w = 2). There are two possible semigroups:

{g − 1, g + 2, g + 3, g + 4, . . . } or {g, g + 1, g + 3, g + 4, . . . } .

If you take g = 4, the two possible ones are

{3, 6, 7, 8, . . . } and {4, 5, 7, 8, . . . }
24If N \ Σ = {b1, . . . , bg}. This is w(Σ) =

∑g
i=1(bi − i)
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with gap sequences
(1, 2, 4, 5) and (1, 2, 3, 6). △

Can we find genus 4 curves with Weierstrass points whose associated semigroups are as above?
For such a p ∈ C, the vanishing sequence of |KC | at p would be (0, 1, 3, 4) (or (0, 1, 2, 5)). In or-

der to construct Weierstrass points with these vanishing sequences, we would like to understand them
geometrically.

Let’s say C ↪! Pr is a smooth curve. Say p ∈ C is a point and Λ ⊂ Pr is a linear subspace (of any
dimension). We define the order of contact of Λ with C at p to be

ordp(Λ · C) := min
H⊃Λ

ordp H

(if H ⊂ Λ is a hyperplane, it’s defined by a single linear polynomial FH , and ordp H is just the order
of vanishing of FH at p). Furthermore, for any k, among all k-planes Λ ⊂ Pr, there is a unique one w/
maximal order of contact; this is called the osculating k-plane to C at p. The osculating 0-plane is
the point p, and the osculating 1-plane is the tangent line at p.

Now, say φK : C ↪! P3 is a canonically embedded genus 4 curve. What does it mean to have a point
with vanishing sequence (0, 1, 3, 4)? This is saying there’s no hyperplane with contact order 2 at p, so p

must have contact order 3 with its tangent line. Similarly, if p has vanishing sequence (0, 1, 2, 5), it means
p has contact of order 5 w/ its osculating 2-plane.

Remark 21.8. In general, the vanishing sequence is telling us the contact orders of p with is osculating
k-planes. ◦

Recall 21.9. A canonical curve of genus 4 is the intersection of a quadric and a cubic surface. ⊙

Write C = Q∩ S ⊂ P3. To keep life simple, let’s look for any example with Q ∼= P1 × P1 smooth. We
first want a point p ∈ C with contact of order 3 with its tangent line. Note that if there is a line L ⊂ P3

with contact order 3 with the curve, then L ⊂ Q (else, it would have contact order ≤ 2 by Bezout). Let’s
fix some line L ⊂ Q then. Choose coordinates x, y on P1 × P1 and take L = {x = 0}, for example. We
want a polynomial f on Q ∼= P1 × P1 (of bidegree (3, 3)) so that f |x=0 vanishes to order 3 in y, i.e.

f(x, y) = αy3 + x(blah).

We’re almost done. How do we know we can find a smooth curve cut out by an equation of the above
form? We apply Bertini. Look at the linear series of all such polynomials; need to show a general member
gives a smooth curve.

If I heard correctly, Bertini will tell us that a general member is smooth away from the point p (= (0, 0)

in local coordinates), so we need to verify that a general member is also smooth at p. For this, it suffices
to find one member smooth at p, and for that you can take L union a curve a type (2, 3).

Now we want p ∈ C = Q ∩ S ⊂ P3 with vanishing sequence (0, 1, 2, 5), i.e. that there is a plane H

in P3 with contact order 5 at p. Set E = H ∩ Q, a conic plane curve (type (1, 1) on Q). We want a
polynomial f of bidegree (3, 3) on Q ∼= P1 × P1 whose restriction f |E to E vanishes to order 5 at p. One
could just write down such a thing, but let’s instead see a more general approach to doing things like
this...
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The space of polynomials of bidegree (3, 3) on Q is simply H0(OQ(3)). We’re considering the restriction
map

H0(OQ(3))
ρ−−! H0(OE(3)) = H0(OP1(6)).

We want an element in the image of this map vanishing to order 5 at p. There certainly exists a section
σ of OP1(6) vanishing to order 5 at p. Is σ ∈ im ρ? To figure this out, realize the above as coming from
the short exact sequence

0 −! IQ/E(3) −! OQ(3) −! OE(3) −! 0.

Note that IQ/E
∼= OP3(−1)|Q ∼= OQ(−1), so IQ/E(3) ∼= OQ(2). We claim that H1(OQ(2)) = 0, so ρ is

surjective. To prove the claim, we invoke the exact sequence

0 −! OP3 −! OP3(2) −! OQ(2) −! 0

which induces
0 = H1(OP3(2))! H1(OQ(2))! H2(OP3) = 0

from which we conclude that H1(OQ(2)) = 0.
This just leaves making a Bertini-type argument to show that we can find such a polynomial cutting

out a smooth curve.

Question 21.10 (Audience). Could you say something about how one proves Lemma 15.4?

Answer. The basic idea is that you’re looking for a surface S ⊂ Pr of minimal degree r − 1. You want
to argue by induction. Take your surface, choose a general point p ∈ S, and then projection away from
this point. If the projection map is birational onto its, the image will have degree one less, and so you
can inductively apply the theorem to the image of the projection in Pr−1.

Want to say if you have a family of lines on the projection, then these came from a family of lines
on S. Might worry that you have a bunch of conics on S which get straightened out to lines on the
projection, and so the family of lines there is coming from conics on S, not from lines on S. This is
what happens in the case of the Veronese surface. One needs to show that the only surface with a ≥ 2

parameter family of conics on it is the Veronese surface.
In general, one can prove a result of the following form:

Theorem 21.11. If Xk ⊂ Pr is non-degenerate of dimension k, then deg(X) ≥ r− k+1. Furthermore,
if deg(X) = r − k + 1, then X is either

• a quadric hypersurface

• a cone over the Veronese surface ν2(P2) ⊂ P5

• a scroll swept out by a 1-parameter family of (k − 1)-planes. ⋆ Presumably
this is the
same thing
as a P1-
bundle over
Pk−1

22 Lecture 19 (11/15)

Note 25. Roughly 6 minutes late
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Missed some discussion about historical perspective on classifying curves: curves as embedded in
projective space (classified by Hilbert scheme) v.s. abstract iso classes of curves (classified by Mg).

Some class stuff

• Today: Proof of Brill-Noether / 2

• Wednesday: Hilbert schemes (stay on this topic for most of rest of semester?)

• Homework: 2 more, due 11/29 and 12/8

22.1 Brill-Noether

Question 22.1. For a general curve C of genus g, what is dimW r
d (C)?

At some point (on a Wednesday), we described Cr
d (divisors of degree d with proj dim ≥ r) as a

determinantal variety; we also showed (or are going to show? I can’t remember) that

W r
d (C) ̸= ∅ if ρ := g − (r + 1)(g − d+ r) ≥ 0,

so dimW r
d (C) ≥ ρ. The second half is to show dimW r

d (C) ≤ ρ (in particular, if ρ < 0, then W r
d (C) = ∅).

Goal. If ρ < 0, then W r
d (C) = ∅.

For this, we need to find a single curve C of genus g so that ρ < 0 and dimW r
d (C) = ∅.

The idea behind the original proof goes back to Castelnuovo: specialize to a g-nodal curve of arithmetic
genus g, i.e. take P1, choose g pairs of points pi, qi, and then form C0 = P1/(pi ∼ qi). Let ri ∈ C0 denote
the image of pi (equiv. the image of qi).

Remark 22.2. One should check that this C0 really exists as an algebraic curve. To do this, just need
to specify a topological space along with its structure sheaf. As a topological space, C0 is exactly
P1/(pα ∼ qα), simple enough. The structure sheaf is also not too bad: a regular function on C0 will just
be a regular function on P1 with the same values on pairs of identified points, i.e.

OC0
(U) :=

{
f ∈ OP1(ν−1(U)) : f(pα) = f(qα) for all α such that rα ∈ U

}
.

Let’s take a moment to think about this algebraically...

Question 22.3. In algebraic geometry, can we define the notion of an equivalence relation so that we can
take quotients like this?

Say we have a scheme X, what should we mean by an equivalence relation on X? Set-theoretically,
an equivalence relation is a subset of X×X. So, algebro-geometrically, an equivalence relation should
be a subscheme Σ ⊂ X ×X so that

• Σ ⊃ ∆ (reflexivity)

• i(Σ) = Σ where i : X ×X ! X ×X the switch (symmetry)
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• Considering
X ×X ×X

X ×X X ×X,

π12 π23

one has π23

(
π−1
12 (Σ) ∩ π−1

23 (Σ)
)
= Σ (transitivity) TODO:

Make sure
you got this
right

Example. If X is a smooth curve and p, q ∈ X, take Σ = ∆ ∪ {(p, q), (q, p)}. The quotient X/Σ now has
a node. △

Example. If X is a smooth curve and p ∈ X, take Σ = ∆ ∪ {fat point at (p, p)}. The quotient X/Σ now
has a cusp. △

Warning 22.4. The quotient of an equivalence relation does not always exist (as a scheme). Not every
singularity arises as a quotient by an equivalence relation. •

Missed part of this last bit, but Grothendieck studied these in order to construct the Picard scheme as a
quotient by an equivalence relation. This might

be in the
Neron Mod-
els book or
in Kleiman’s
article in
FGA ex-
plained?

◦

The first part of Castelnuovo’s argument was to consider the curve C0. The second part is the following
fact

Fact. There exists a flat family C π
−! ∆ with Ct = π−1(t) smooth for t ̸= 0 and C0 = P1/(pα ∼ qα).

Here, think of ∆ as a complex unit disk.

This can be shown algebraically by applying deformation theory. Alternatively, one can show this
complex analytically. Topologically, a node looks like two disks intersecting transversally in a single point
(picture this as a double cone). Consider the family {xy − t = 0} ! ∆t. This gives a family of annuli
specializing to the (local) nodal picture. Analytically, you can take this local picture, and just glue in
the rest of the curve to get the desired family of proper curves.

Say we have our family C π
−! ∆ with C0 a g-nodal curve and Ct smooth of genus g.

Claim 22.5. For ρ(d, g, r) < 0, ∄grd on Ct for general t.

The first step is to suppose there does exist a grd =
(
L ∈ Picd(Ct), V

r+1 ⊂ H0(L)
)

on Ct for general
t. We want to say that the limit of these gives a grd on C0. Let’s take this for granted for now, and circle
back to it later...

Given this, we now claim that ∄grd on C0 with ρ < 0. Recall a grd on C0 is a line bundle L0 on C0 Maybe recall
Claim 19.7along with a subspace V0 ⊂ H0(L0) of dimension r + 1. To investigate this, we pull it back to P1, where

it becomes V ⊂ H0(OP1(d)) satisfying

σ ∈ V =⇒ [σ(pα) = 0 ⇐⇒ σ(qα) = 0 for all α].

Recall we have a natural embedding P1
|O(d)|
↪! Pd (as a rational normal curve), and any linear series of

degree d and dimension r in H0(OP1(d)) corresponds to a linear subspace Λd−r−1 ⊂ Pd (the subspace

75



you project away from to get the map associated to the linear series). This Λ will correspond to a linear
series coming from C0 iff

H ⊃ Λ =⇒ [H ∋ pα ⇐⇒ H ∋ qα for all α]

for hyperplanes H. Equivalently, Λ ∩ pαqα ̸= ∅.

Observation 22.6. If ℓ ⊂ Pd is any line, the locus

Σr(ℓ) := {Λ ∈ G(d− r − 1, d) : Λ ∩ ℓ ̸= ∅}

is a codimension r cycle in the Grassmannian. If

Σr(p1q1) ∩ · · · ∩ Σr(pgqg)

is a proper intersection (i.e. has expected codimension r · g), then them having non-empty intersection
would force

rg ≤ dimG(d− r − 1, d) = (r + 1)(d− r) ⇐⇒ ρ = g − (r + 1)(g − d+ r) ≥ 0.

Thus, we’re reduced to verifying that this intersection of r-cycles is indeed proper. That is, for g

general chords ℓα = pαqα to a rational normal curve P1 ↪! Pd, we need to verify that Σr(ℓα) intersect
properly.

Remark 22.7. This statement is not true for literally every possible collection of g chords, only for general
ones. So we still can’t write down a particular g-tuple of chords and verify it for them. To get around
this, we specialize further. ◦

Specialize the chords ℓα to g tangent lines. The collection of intersections form a family, so by upper
semi-continuity of fiber dimension, if we can show the intersection is proper for tangent lines, then it will
be for general lines.

To say that Λ∩Tr(P1) ̸= ∅ says that every hyperplane containing Λ contains Tr(P1), so σ ∈ V implies
that σ(r) = 0 =⇒ σ′(r) = 0. This is telling us that the ramification sequence of the linear series V on
P1 at r is

≥ (0, 1, 1, . . . , 1)

(no 1 in the vanishing sequence). In particular, w(V, r) ≥ r. Thus, V must have total ramification index
≥ rg by considering the points r1, . . . , rg. Plücker then tells us that (g(P1) = 0)

rg ≤
∑
p∈P1

w(V, p) = (r + 1)d+ r(r + 1)(g − 1) = (r + 1)d− r(r + 1) = (r + 1)(d− r).

We conclude

Proposition 22.8. There exists a plane Λ ⊂
⋂

α Σr(TrαP1) only if

ρ = g − (r + 1)(g − d+ r) ≥ 0.

History (paraphrase). Back in 19th century, BN was viewed as basically an established fact, even
though they knew they hadn’t rigorously proved it. Castelnuovo had a further question: in a case where
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ρ = 0, there should only be finitely many grd’s; how many exactly? In wondering this, he had an idea of
specializing to a g-nodal curve. He was happy to assume the relevant intersection was transverse, so the
number was computable by Schubert calculus. Over time, standards of prove evolved, and people really
wanted a rigorous proof (as recently as the 60s). Steve Kleiman had the idea to repurpose Castelnuovo’s
construction as a proof of Brill-Noether; it boiled down to this statement about general chords have
Schubert cycles with proper intersection. He wasn’t quite able to work this out, so this remained as a
conjecture for a time afterwards until it was finally resolved later on. So this is a proof that was worked
over over the course of like 100 years or something. ⊖

Let’s get back to the hiccup we skipped before. If you have a family of line bundles on (the smooth
locus) of a family of curves, it does not necessarily specialize to a line bundle on the singular fiber.
However, it will specialize to a torsion-free sheaf at the fiber. Once you have this, you appeal to the fact
that a torsion free sheaf (of rank 1) on a nodal curve can only be one of two things at a singular point:
either free or the maximal ideal. So really one wants to take the partial normalization of the nodal curve
(normalzing points where you get mp instead of OC,p), and work with that.

23 Lecture 21 (11/22): Hilbert schemes of curves in Pr

Notation 23.1. We let Hd,g,r denote the Hilbert scheme w/ Hilbert polynomial md − g + 1. We let
H◦

d,g,r ⊂ Hd,g,r be the (open) locus of smooth, irreducible, non-degenerate curves.

Question 23.2. Given d, g, r describe the dimension/irreducibility of H◦
d,g,r.

Remark 23.3. If we wanted to do a deeper study of the geometry of this space, we’d want to compactify it
first since most of our techniques apply primarily to compact/projective varieties. One compactification
would be to consider the whole Hilbert scheme, but that’s a bit of a wild space, so a smaller compacti-
fication would be more suitable. As far as dimension/irreducibility are concerned, it’s enough to look at
an open, so we don’t worry about compactifying here. ◦

We’ll limit ourselves today mainly to P3 instead of general Pr. The point is that in P3 we have the
extra technique of liaison/linkage.

23.1 d = 3

The least possible degree of a (non-degenerate, irreducible) curve in P3 is d = 3, in which case it must
be a twisted cubic.

Approach 1 Consider the family of maps P1 ↪! P3. It will be given by [F0, . . . , F3] with Fi ∈
H0(OP1(3)). In order for the image to be non-degenerate, the Fi’s need to be linearly independent
and so must form a basis for H0(OP1(3)). Finally, simultaneously scaling all the Fi’s does not change the
map. Thus, this is a family parameterized by an open subset

U ⊂ P
(
H0(OP1(3)4

) ∼= P15,

so we get a map U ! H0
3,0,3 whose fibers are copies of Aut(P1) = PGL2. So we get

Proposition 23.4. H◦
3,0,3 is irreducible of dimension 12.
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Approach 2 Let’s give an alternative means of calculating this. The Hilbert scheme of twisted cubics
is a subset of the Grassmannian of 3-dimensional vector spaces of quadrics in P3 (a twisted cubic is the
intersection of 3 quadrics in P3). What condition is it on the 3-dimensional vector spaces of quadrics that
makes them intersect in a twisted cubic? For 3 general quadrics, their intersection will be a point, not
a twisted cubic. One way to look at this is to look at pairs of quadrics (which will intersect in a curve)
instead of triples; when does that curve contain a twisted cubic curve? If this is the case, the intersection
must be the union of a twisted cubic and a line; conversely, if two (general) quadrics jointly contain a
line, the residual intersection will be a twisted cubic.

This all suggests that we look at the incidence correspondence (P9 =space of quadrics in P3)

Φ =
{
(C,L,Q1, Q2) ∈ H◦

3,0,3 ×G(1, 3)× P9 × P9 : Q1 ∩Q2 = C ∪ L
}
.

This has projection maps
Φ

H◦
3,0,3 G(1, 3).

If we fix a line L ∈ G(1, 3), what does the fiber look like? They will be open subsets of the pairs of quadrics
containing a line, i.e. opens in P6×P6. Hence, Φ is irreducible of dimension dimG(1, 3)+dim(P6×P6) =

16. Now look on the other side; what are the fibers of the map to the Hilbert scheme? The story is the
same; two (general) quadrics containing a twisted cubic will have a line as the residue intersection, so the
fibers are open subsets in the space of pairs of quadrics containing a twisted cubic, i.e. opens in P2 × P2.
Thus, the Hilbert scheme is irreducible of dimension dimH◦

3,0,3 = dimΦ− dim(P2 × P2) = 12.
For the low degree/genus case, there are many methods for estimating the dimension of these Hilbert

schemes. In higher degrees, maybe only some of these methods will work. In still higher degrees, we just
won’t know the answer.

Approach 3 Let’s see a third way of doing this computation. This will be specific to rational normal
curves in Pr.

Lemma 23.5. If p1, . . . , p6 ∈ P3 are in linear general position (i.e. no 4 coplanar), then there exists a
unique twisted cubic C ∋ p1, . . . , p6.

Remark 23.6. The subset of the Hilbert scheme corresponding to twisted cubics passing through a spec-
ified point is codimension 2. Hence, given the previous computations, we’d expect that given 6 points,
there’d only be finitely many twisted cubics passing through them all. ◦

Note 26. Missed some of what he said... something about looking at curves with Hilbert scheme of
dimension 2n passing through n points I think?

Consider

Γ =
{
(p1, . . . , p6, C) ∈ (P3)6 ×H◦

3,0,3 : pi ∈ C
}

H0
3,0,3 (P3)6.
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The lemma tells us that the right map is an isomorphism onto an open U ⊂ (P3)6 (specifically, the open
of points in linear general position). The fibers of the left map are opens in (P1)6 (pick any 6 points on
C ∼= P1 in linear general position), so dimH0

3,0,3 = 18− 6 = 12.

23.2 d = 4

Remark 23.7. A curve of degree 4 in P3 must have genus 0 or 1, e.g. by Castelnuovo. ◦

23.2.1 g = 1

Let’s start with genus 1. As usual, helpful to look at surfaces containing our curve, so consider

H0(OP3(2)︸ ︷︷ ︸
dim=10

−! H0(OC(2))︸ ︷︷ ︸
dim=8

,

so C ⊂ P3 will lie on two linear independent quadrics Q1, Q2. Furthermore, we must have C = Q1 ∩Q2.

If C had genus > 1, it would lie of ≥ 3 quadrics, but this is impossible. A degree 4 curve in P3 can’t
lie on > 2 quadrics. This gives a different proof that the only possible genera are 0, 1.

Corollary 23.8. A genus 1 quartic curve in P3 is determined by the 2-dimensional pencil of quadrics
containing it.

(Conversely, the intersection of two quadrics will be degree 4 and genus 1, by adjunction)

Corollary 23.9.
H◦

4,1,3

open
⊂ G(2, 10),

so is irreducible of dimension 16.

Fact. If you have 8 general points in P3, there will be a unique such quartic curve passing through them.

23.2.2 g = 0

Now g = 0. C will be the image of a map P1 ! P3 given by a 4-tuple of polynomials [F0, . . . , F3] with
the Fi ∈ H0(OP1(4)) linearly independent. The condition that this map be an embedding is an open
condition, so these maps are parameterized by an open

B ⊂ P
(
H0(OP1(4))4

) ∼= P19.

We get a map B ↠ H◦
4,0,3 with fibers ∼= Aut(P1) = PGL2.

Proposition 23.10. H◦
4,0,3 is irreducible of dimension 16.

Exercise. Do this computation using liaison instead (Hint25).

Question 23.11 (Audience). Is it a coincidence that both of these dimensions turned out to be 16?

Answer. That’s a good question. Let’s do some more examples, and see if we can discover the pattern. ⋆
25C will lie on a quadric and a cubic with residual curve the union of two skew lines
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23.3 d = 5

In this case, the possible genera are g = 0, 1, 2. This follows e.g. from Castelnuovo.

23.3.1 g = 0

We can do the same thing of looking at maps [F0, . . . , F3] : P1 ! P3 with Fi ∈ H0(OP1(5)). The ones
giving an embedding will form an open subset of the projectivation of the fourth power of this space.
The fibers are PGL2, and the punchline is

Proposition 23.12. H◦
5,0,3 is irreducible of dimension 20.

At this point, it should be clear that this same strategy works for rational curves of any degree. The
conclusion is

Theorem 23.13. H◦
d,0,3 is irreducible of dimension 4d.

You could try to do a linkage argument here, but things are more subtle than before. The first step
in a linkage argument is estimating the number of surfaces our curve lies on. Once d = 5, this number
depends on the curve; a general rational quintic won’t lie on a quadric, but some quintic will. Hence, the
incidence correspondence coming from liaison will have more than one component.

23.3.2 g = 2

We could do this using liaison. We’ve done this computation in class before: if C ⊂ P3 a (smooth,
irreducible, non-deg) curve of degree 5 and genus 2, then C will lie on unique quadric surface Q and on
a (non-unique) irreducible cubic surface S not containing Q. The intersection will be degree 6 and so of
the form S ∩Q = C ∪ L with L ∼= P1 a line. Thus, we consider

Φ =
{
(C,L,Q, S) ∈ H◦

5,2,3 ×G(1, 3)× P9 × P19 : S ∩Q = C ∪ L
}

with projection maps
Φ

H◦
5,2,3 G(1, 3).

The fibers of the right map are opens in P6 × P15 (specify a quadric and a cubic containing the line you
start with), so Φ is irreducible of dimension 25. For the left map, if you specify C, there’s a unique
quadric containing it and a 6-dimensional vector space of cubics containing it. Hence, the fibers of the
left map are opens in P5.

Proposition 23.14. H◦
5,2,3 irreducible of dimension 20.

Another Approach Can we adapt the approach we used for rational curves of arbitrary degree?
Instead of thinking of our curves as zero loci of polynomials, we think of them are the images of maps
from an abstract genus 2 curve. With this approach in the case of rational curves, we’re taking advantage
of the facts that there is a unique curve of genus 0 and this curve has a unique line bundle of degree
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d. Contrast this with the fact that there are many different curves of genus 2 and each one has many
different line bundles of degree 5.

Let M2 be the moduli space of curves of genus 2, which is irreducible of dimension 3. Choosing a
point here corresponds to specifying the source of a map C ↪! P3. We next need a line bundle giving
this map, so we want a point of

℘5,2 =
{
(C,L) : C ∈ M2, L ∈ Pic5(C)

}
.

The fibers of the natural map ℘5,2 ! M2 are copies of the Jacobian of the base curve, and so are
irreducible of dimension 2. Thus, ℘5,2 is irreducible of dimension 5. Since 5 ≥ 2(2) + 1, any L ∈ Pic5(C)

will be very ample and have h0(L) = 5 + 1 − 2 = 4. Hence, the fibers of H◦
5,2,3 ! ℘5,2 will be open

subsets in P
(
H0(C,L)4

)
, and so are irreducible of dimension 15.

Proposition 23.15. H◦
5,2,3 is irreducible of dimension 20.

23.4 A general statement

Let’s see how much of the most recent argument generalizes to curves of any degree and genus. For g ≥ 2,
we have Mg irreducible of dimension 3g − 3. In order for ℘d,g ! Mg to be simple, we need d large so
that all line bundles of degree d will behave similarly.

Assumption. Assume d > 2g − 2 and d ≥ g + 3 (so L has at least 4 sections).

Keep in mind the maps
H◦

d,g,3 ! ℘d,g !Mg.

We know dimMg = 3g − 3 and dim℘d,g = 4g − 3 (fibers are Jacobians). Define

G3
d,g :=

{
(C,L, V 4 ⊂ H0(L))

}
−! ℘d,g.

This has fibers given by opens in G(4, d− g + 1). Now we consider

H◦
d,g,3 −! G3

d,g

with fibers ∼= PGL4. Adding everything up

Proposition 23.16. dimH◦
d,g,3 is irreducible of dimension 4d, when d > 2g − 2 and d ≥ g + 3. Also need to

ensure L is
very ample,
so probably
also want
d ≥ 2g+1 to
be safe

More on the significance this next time.

23.5 Announcement

We’ll only do one more homework assignment, due the week of December 6th. Still feel free to play
around with these things on your own though.

24 Lecture 22 (11/29)

Note 27. Roughly 13 minutes late
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24.1 Class stuff

• Last class on Wednesday

• Last assignment due 12/8

There will be section on Friday

24.2 Hilbert scheme

We’re studying the restricted Hilbert scheme

H◦
d,g,r := {C ⊂ Pr : C irred., smooth, non-degerate} .

We observed that in P3, for d ≤ 5, H0
d,g,3 is irreducible of dimension 4d.

Let’s do the analogous analysis for Pr in place of P3. Assume d ≥ g + r and d ≥ 2g + 1. Then we
have maps

H◦
d,g,r

Gr
d

{
(C,L, V ) : V r+1 ⊂ H0(L) : φV embedding

}

Pr
d,g

{
(C,L) : L ∈ Picd(C) : h0(L) ≥ r + 1

}

Mg {C : genus g}

fibers ∼=PGLr+1

fibers open in Gr(r+1,d−g+1)

fibers are W r
d (C)’s

One stares at this and analyzes the fibers (i.e. observes that they’re irreducible and computes their
dimensions), and ultimately concludes

Theorem 24.1. H◦
d,g,r is irreducible of dimension

h(d, g, r) := 4g − 3 + (r + 1)(d− g + 1)− 1

(this is 4d if r = 3), when d ≥ max(g + r, 2g + 1).

Question 24.2. Can we carry out this kind of analysis without the extra assumptions on d?

Note 28. Missed some stuff he said cause I was busy catching up with what was on the board...

In the case d ≤ g + r (but where ρ(g, d, r) := g − (r + 1)(g − d + r) > 0), Brill-Noether tells
us that the fiber of Pr

d,g over a general C ∈ Mg is irreducible of dimension ρ(d, g, r). This tells us
that is a unique irreducible component of H0

d,g,r which dominates Mg, and it will have dimension = The previ-
ous sentence
shows this
with Pr

d,g

in place of
H0

d,g,r. To
get H0

d,g,r

here, also
need to
know that
a general
member of
Pr
d,g has ex-

actly r + 1

sections

(3g − 3) + ρ(d, g, r) + (r2 + 2r) = h(d, g, r).

Warning 24.3. If I heard correctly, it sounds like when ρ(d, g, r) ≤ 0, the Hilbert scheme does not
dominate Mg, and this Brill-Noether stuff tells us nothing about its dimension. •

Remark 24.4. It sounds like Joe and Eisenbud cranked out the case ρ = −1 and proved the pattern
persists; there’s a unique irreducible component of expected dimension h(d, g, r). Another person (missed
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the name26) cranked out the case ρ = −2 and showed the pattern persists there. Sounds like its known
the pattern fails for ρ ≪ 0. ◦

Remark 24.5. Above, we need ρ > 0 since W r
d (C) is irreducible in this case. When ρ = 0, W r

d (C) is not
irreducible, but one can analyze the monodromy of the universal family, show it acts transitively, and use
this to conclude that there’s a unique irreducible component of expected dimension dominating Mg. ◦

24.3 Back to P3

Recall 24.6. For all d ≤ 5, we have seen that H0
d,g,3 is irreducible of dimension 4d. ⊙

Question 24.7. What about d = 6?

In this case, the parametric approach (i.e. the tower on the previous page) works for g ≤ 3. Note
that the maximal possible genus of a degree 6 curve in P3 is 4, so this leaves only g = 4.

Remark 24.8. A curve of degree 6 and genus 4 in P3 is a canonical curve. ◦

One can show (and we have shown previously) that in this case C = Q∩S is the complete intersection I think on a
Wednesday?of a quadric Q and a cubic S. We have a map H0

6,4,3 ! {Quadrics}. The space of quadrics has dimension
9 = h0(OP3(2))− 1 and the fibers of this map are opens in P15, so dimH0

6,4,3 is irreducible of dimension
24.

24.3.1 More examples

Example (d = 8, g = 9). Look at the restriction map OP3(2) ! OC(2). The dimension of the global
sections of the source is 10 while the dimension of global sections of the target is

16− 9 + 1 +

1 if OC(2) = KC

0 otherwise.
=

9 if OC(2) = KC

8 otherwise.

We claim that in this case, OC(2) = KC . If not, C would lie on ≥ 2 quadrics, violating Bezout. Thus, C
lies on a unique quadric Q. Note C will not lie on a cubic by Bezout. What about quartics? Look at

H0(OP3(4))︸ ︷︷ ︸
dim=35

−! H0(OC(4))︸ ︷︷ ︸
dim=24

.

Hence, C lies on at least 11 quartic surfaces. There is a 10-dimensional vector space of quartic polynomials
containing Q. Hence, there is a quartic S ̸⊃ Q which contains C. Thus, C = Q ∩ S is the intersection
of a quadric and a quartic surface. Now we can just look at the map H0

8,9,3 ! P9 = {Q} whose fibers
are opens in P(quartic polys/polys vanishing on Q) ∼= P35−10−1 ∼= P24. Thus, H◦

8,9,3 is irreducible of
dimension 33 ̸= 4(8). △

So the dimension estimate really doesn’t always hold. Still, it’s been irreducible in every case we’ve
looked at, so let’s fix that.

26Dan something?
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Example (d = 9, g = 10). As always, we ask, “what sort of equations define C?” Does C lie on a
quadric?

H0(OP3(2))︸ ︷︷ ︸
dim=10

−! H0(OC(3))︸ ︷︷ ︸
dim=


10 if OC(2) = KC

9 otherwise.

.

We have a genuine ambiguity here (neither possibility leads to a contradiction).

• Let’s first say C does not lie on a quadric ( =⇒ OC(2) = KC)

Look at cubics:
H0(OP3(3))︸ ︷︷ ︸

dim=20

−! H0(OC(2))︸ ︷︷ ︸
dim=18

.

Hence, C lies on a pencil of cubic surfaces. Since C does not lie on a quadric, all of these cubics are
irreducible. Thus, C = S ∩ S′ is the intersection of any two of these cubics27 (equivalently, it’s the
base locus of the pencil). Thus, such C are parameterized by an open subset of Gr(2, 20). Hence,
we get a component of H◦

9,10,3 which is irreducible of dimension 2(20− 2) = 36 = 4(9).

• Now say C lies on a quadric Q.

Q must be irreducible. Let’s assume for the moment that Q is smooth.

Exercise. For such a C, Q must be smooth.

Note that C will have type (a, b) where

a+ b = 9 and (a− 1)(b− 1) = 10.

This forces (a, b) = (3, 6) (or (6, 3)) on Q. Hence, get a map {C of this type} ! P9 = {quadrics}
whose fibers are open in P(bihom poly of bidegree (3, 6)) ∼= P27 (here 27 = (3+1)(6+1)−1). Thus,
we have another irreducible component of dimension 36. △

You can play around and find more examples with multiple components of different dimensions.

24.4 Sneak Peek for Wednesday

We want to look at another way of estimating the dimension of the Hilbert scheme. The parametric
approach gave us the expected dimension h(d, g, r). Instead of looking at the number of parameters
needed to specify all the data, we can go back to thinking of curves as zero loci of polynomials. This is
directly so easy. If someone gives you a collection of polynomials and asks you about the dimension of
their common zero locus, there’s no easy way to answer this. Here’s one way of getting an approximate
(and approximately wrong) answer: compute the dimension of the Zariski tangent space at a point. If
you have a single common zero of all the polynomials you’re given, you can evaluate the derivatives of
all the polynomials at that point, and then use linear algebra to estimate the dimension of the Zariski
tangent space.

27Conversely, can check that if you intersect two general irreducible cubics, you get a smooth curve of degree 9 and genus
10

84



Warning 24.9. Singular points exist, and everywhere non-reduced schemes all exist. •

So this approach won’t always give a perfectly correct answer, but it’s something.

Goal. Estimate dimH0 by finding the dimension of its Zariski tangent space at a point [C], i.e. compute
dimT[C]H0.

We can’t write down the equations defining the Hilbert scheme, but we can still get at its geometry
using its universal property: maps into it are in natural bijection with (flat) families of curves over the
source scheme. To do this, we use the following characterization of TpX (say X a k-scheme): a tangent
vector of X at p is simply a map Spec k[ε]/(ε2)! X sending the unique point of Spec k[ε]/(ε2) to p ∈ X.
That is,

TpX =
{
φ : Spec k[ε]/(ε2)! X

∣∣∣p =
(
Spec k ! Spec k[ε]/(ε2)

φ
−! X

)
∈ X(k)

}
.

Exercise. Describe the natural addition and scalar multiplication laws on the above set.

Because we understand maps to the Hilbert scheme, we can understand T[C]H0 using this perspective.
A map φ : Spec k[ε]/(ε2)! H0 carrying Spec k ! [C] is exactly a family

C Pr
k[ε]/(ε2)

Spec k[ε]/(ε2)

with C0 ∼= C. This is a 1st order deformation of C.

25 Lecture 23 (12/1): Last lecture of Fall

Note 29. Roughly 16 minutes late

Looks like Joe recapped what was done last time... Today we’ll try to estimate dimH0
d,g,r by the

dimension of its tangent space.

25.1 Tangent Space

In general, for any scheme X/k and point p ∈ X(k), one has

TpX =


Spec k[ε]/(ε2) X

Spec k p

⊂ ∈


We can apply to this [C] ∈ H0

d,g,r. Using the universal property of H0
d,g,r (maps into H0 are flat families

of projectively embedded curves) this gives

T[C]H0 =

{C ⊂ Pr
k[ε]/ε2 flat over Spec k[ε]/ε2

such that C0 ≃ C

}
.

Above, C0 ↪! Pr
k is the fiber of C over Spec k.
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Remark 25.1. Flatness over a reduced base is fairly trivial. Say B is a smooth curve, and we have a
closed subscheme C ⊂ Pr

B . Flatness is then the following: given b ∈ B

C \ Cb = C,

i.e. if you remove the fiber over b and then take the closure, you recover the original family. Think: every
fiber is the limit of the nearby fibers. ◦

Note 30. I’m distracted today, so these notes will be missing some of what was said

Remark 25.2. I kinda lost the thread that we’re on, but say C = V (f1, . . . , fk) is the zero set of some
polynomials. Then we can write C = V (f1 + εg1, . . . , fk + εgk), and the question is: what do we need the
g’s to satisfy in order for this to be a flat family? Now, you can apply the algebraic definition of flatness
(probably use the ‘local criterion for flatness’?) to see that C is flat iff for all f ∈ IC , there exists g ∈ OU

s.t. f+εg ∈ IC and g is unique mod IC . So we get a homomorphism of sheaves IC/Pr ! OPr/IC,Pr = OC

which descends to give a map
IC/Pr/I 2

C/Pr −! OC

(this homomorphism spits out g, given f). Note that (by taking duals), the above homomorphism is the
same thing as a section of the normal bundle of C ↪! Pr.

I /I 2 being the conormal bundle is definitional in AG. I guess if you’re working analytically, then
you usually first define the normal bundle NC/Pr via the exact sequence

0 −! TC −! TPr |C −! NC/Pr −! 0.

When one dualizes this sequence, they get 0 ! N∨
C/Pr ! T∨

Pr |C ! T∨
C ! 0. The kernel of this map can

be identified by hand, and one ends up deducing that N∨
C/Pr = IC/I 2

C . ◦

Corollary 25.3. For C ∈ H0
d,g,r, one has T[C]H0 = H0(NC/Pr ).

What’s the dimension of the normal bundle? For C a smooth curve in Pr, the normal bundle NC/Pr

will be a vector bundle of rank (r − 1). The normal bundle could (probably) be just about any vector
bundle since C is just an arbitrary smooth curve, so how do we estimate the size of its space of global
sections? We Riemann-Roch.

Definition 25.4. Given any rank r vector bundle E ! C on a smooth curve, we define deg(E) :=

deg (
∧r

E). ⋄

Observe that if 0! E ! F ! G! 0 is a short exact sequence, then deg(F ) + deg(E) + deg(G).

Theorem 25.5 (Riemann-Roch for Vector Bundles on Smooth Curves). Given a vector bundle
E ! C on a smooth curve, one has

χ(E) = deg(E) + rank(E)χ(OC) = deg(E)− r(g − 1).

(Prove this by induction on the rank by putting E in an exact sequence 0! F ! E ! G! 0 with
rank(F ), rank(G) < rank(E))

Exercise. If E is any vector bundle of rank r > 1 on a smooth curve C, then E has a sub line bundle.
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Given this, we just need to know deg(NC/Pr ) and then we can estiamte its h0 by its χ.

Recall 25.6. There is an exact sequence

0 −! TC −! TPr |C −! NC/Pr −! 0. ⊙

The degree of TC = ω−1
C is 2 − 2g. The degree of TPr is r + 1 (it’s top exterior power is ω−1

Pr ), so
deg(TPr |C) = (r + 1)d. Thus,

degNC/Pr = (r + 1)d+ (2g − 2).

Hence,

dimH0
d,g,r ≤ h0(NC/Pr ) ≥ χ(NC/Pr ) = (r + 1)d+ (2g − 2)− (r − 1)(g − 1) = (r + 1)d− (r − 3)(g − 1).

Note the inequalities go in opposite directions, so we can’t formally conclude a bound on dimH0
d,g,r from

this; it’s moreso just a heuristic.

Recall 25.7. Last time we obtained the following formula for the expected dimension:

h(d, g, r) = 4g − 3− (r + 1)(g − d+ 1)− 1.

This looks like a different estimate, but they’re actually the same (check this). ⊙

Remark 25.8. When r = 3, today’s heuristic becomes

(3 + 1)d− (3− 3)(g − 1) = 4d

recovering the pattern we had observed before. ◦

We’ll say one last thing, and then end early today.

Note 31. Missed most of this last thing. Whoops... Something about this estimate

h(d, g, r) = (r + 1)d− (r − 3)(g − 1)

failing spectacularly for large g because of the existence of Castelnuovo curves.

Question 25.9. Could there be any component of the Hilbert scheme of dimension 0?

No. Given any curve you can move it around using automorphisms of projective space, so any com-
ponent will have dimension ≥ dimPGLr+1 −3 (the −3 is because of projective automorphisms carrying
the curve to itself).

Question 25.10. Are there components of dimension = dimPGLr+1 −3?

Yes, for a rational normal curve.

Definition 25.11. Say C ⊂ Pr is rigid if every deformation of C is a translate of C under PGLr+1. ⋄ If I heard
correctly,
this means
there’s
an open
nbhd of
[C] ∈ H0

d,g,r

on which
PGLr+1 acts
transitively

Open Question 25.12. Are there rigid curves which are not rational normal curves?

Sounds like something like this would give a component of the Hilbert scheme mapping to a point in
Mg.
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26 Problem Session (12/3)

Note 32. Roughly 13 minutes late

26.1 Problem 1 Probably

Theorem 26.1. Given p1, . . . , pn+3 ∈ Pn in linear general position, there is a unique rational normal
curve C ⊂ Pn with C ∋ p1, . . . , pn+3.

Proof Sketch. (Existence) First normalize to assume p1 = [1 : 0 : . . . 0 :], . . . , pn+1 = [0 : · · · : 0 : 1],
pn+2 = [1 : 1 : · · · : 1], and pn+3 = [λ0 : · · · : λn]. Consider map

f : P1 −! Pn

t 7−!

[
a0

t− b0
, . . . ,

an
t− bn

]
.

Then, f(bi) = [0, . . . , 0, 1, 0, . . . , 0], f(0) = [a0/b0, . . . , an/bn] (so can take ai = bi), and f(∞) =

[a0, . . . , an].
(Uniqueness) If C,C ′ are r.c.n⊂ Pn with #(C ∩ C ′) ≥ n+ 3, then C = C ′.
Use induction. The base case n = 2 holds by Bezout (two quadrics with 5 points in common). For

n > 2, choose any p ∈ C ∩ C ′ and projective: πp : Pn 99K Pn−1. I missed why but looking at this
projection map is the key. ■

Now consider the Hilbert scheme

H = H0
n,0,n = {rational normal curves ⊂ Pn} .

Consider the maps

Φ := {(p1, . . . , pn+3, C) : p1, . . . , pn+3 ∈ Pn, C ∈ H, and p1, . . . , pn+3 ∈ C}

H U
open
⊂ (Pn)n+3

The right map is dominant and 1 : 1 by the above, so Φ is irreducible of dimension n(n+ 3). The fibers
of the left map are opens in (P1)n+3, so H is irreducible of dimension n(n+3)− (n+3) = (n− 1)(n+3).

Remark 26.2. For plane conics this gives (2 − 1)(2 + 3) = 5 which is the right answer (PΓ(P1,OP1(2))).
For cubic rnc’s in P3, it gives (3− 1)(3 + 3) = 12 = 4(3) which we previously computed. ◦

Question 26.3 (Audience). There was a claim in lecture before about requiring curves to contain a point
being a codimension 2 condition on the Hilbert scheme; can you explain this?

Answer. Let H be any component of restricted Hilbert scheme. Let p ∈ P3 be a point. Let Hp =

{C ∈ H : C ∋ p} ⊂ H. Look at

Φ = {(C, p) : p ∈ C}

H P3
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Looking at fibers at counting dimensions shows that Hp ⊂ H is codimension 2. ⋆

Question 26.4. If dimH = 2m is even, then for a general choice of m points p1, . . . , pm ∈ P3, there will
exists a finite number of C ∈ H which contain those points. How many?

Note 33. Mostly missed what Joe said about this. Whoops

26.2 Problem 2

Let C ⊂ P3 be a quintic rational curve. Such a curve won’t have to lie on a quadric surface, but it will
lie on some cubics:

H0(OP3(3))︸ ︷︷ ︸
dim=20

−! H0(OC(3))︸ ︷︷ ︸
dim=16

=⇒ C lies on ≥ 4 cubics. Say S, S′ ⊂ P3 are two cubics containing C. Then,

S ∩ S′ = C ∪D

with D a curve of degree 4 and genus −1 (by liaison). This will force D to either be the union of two
disjoint conics, or of a line and a twisted cubic. In this case, it will be the line and the twisted cubic.

If you have a cubic surface S with a conic curve E ⊂ S, then E will be contained in a plane H. TODO:
Make this
paragraph
make sense

The intersection H ∩ S is now degree 3, so will be the union of E and a line L. Say E′ is a second,
disjoint from E, conic on S. Then, H ∼ E + L ∼ E′ + L′ as divisor classes on S (L′ some line). Now,
3 = H3 = (E + L)(E′ + L′) = EE′ + EL+ E′L+ LL′ ≤ 2 + LL′ which forces L = L′. Thus, to get two

Question:
Why are
EL′, E′L ≤
1?

disjoint conics, you need two hyperplanes meeting in a line L, and then to take the residual intersections
of those hyperplanes with S. The upshot is that if E,E′ ⊂ S are disjoint conics, then any cubic surface
S′ ⊃ Q,Q′ must contain the line L. In particular S ∩ S′ won’t be irreducible.

Thus, D = L ∪B is a line and a twisted cubic. Now look at

Φ = {(A,L,B, S, S′) : S ∩ S′ = E ∪ L ∪B}

H0
5,0,3 G(1, 3)×H0

3,0,3

The right space has dimension 16. For the fibers of the right map, how many cubic surfaces do a given
line L and twisted cubic B lie on? It’s 4 conditions to contain a line and 10 to contain a twisted cubic,
so fibers should be opens in P5 × P5. Thus, dimΦ = 26 and it’s irreducible. One checks that C lies on
exactly 4 cubics so the fibers on the left are opens in P3×P3 and so dimH0

5,0,3 = 20 (and it’s irreducible).

26.3 Problem 3

This one is kind of a slog. We’ll skip it for now
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26.4 Problem 4

Say C ⊂ Pn is a smooth curve. Consider the exact sequence

0 −! TC −! TPn |C −! NC/Pn −! 0.

Note that NC/Pn is a vector bundle of rank n − 1. If C is rational, all vector bundles are sums of line
bundles; what line bundles give the normal bundle?

Setup 26.5. Say C ⊂ P3 is a twisted cubic (C ∼= P1). We want to determine NC/P3

We will have NC/P3 ∼= OP1(a)⊕ OP1(b) for some a, b ∈ Z. We can easily determine a+ b = degNC/P3

since the sequence we started with gives

degNC/P3 = deg(TP3 |C)− deg(TC) = (degC)(degω∨
P3)− degω∨

P1 = 3(4)− 2 = 10.

Now, here’s the trick: look for sub-line bundles (of largest possible degree). One way to get a sub line
bundle of NC/P3 is to take a smooth surface ⊃ C and then look at the normal bundle of that smooth
surface. Let Q ⊂ P3 be a smooth quadric containing our twisted cubic C. Then, we get an exact sequence

0 −! NC/Q −! NC/P3 −! NQ/P3 |C −! 0.

Note that NQ/P3 = OQ(2), so its restriction to C is OP1(6). Consequently, NC/Q will have degree 4.

Recall 26.6. To split a vector bundle E of rank 2, you really would like a sub line bundle of degree
≥ 1

2 deg E . ⊙

At this point, we at least know NC/P3 is either O(4)⊕ O(6) or O(5)⊕2.
To figure out which one, we take a completely different approach. Pick a point p ∈ C. Define sub-

line-bundle L ⊂ NC/P3 by requiring that at each q ∈ C, the fiber Lq at q is the subspace of (NC/P3)q

spanned by the line pq.

Question 26.7 (Audience). Do we know there’s no tangent line that hits the curve at 2 distinct points?

Answer. This line would intersect C in 3 points (with multiplicity). Thus, any quadric surface containing
the twisted cubic would contain this line. But the twisted cubic is the intersection of all quadric surfaces
containing it.

Any collection of points on a twisted cubic will be in linear general position. ⋆

There’s another issue: we haven’t defined a sub-line-bundle at the point p. However (since we’re over
a smooth curve), there will be a natural extension of to an entire sub-line bundle L. This L will have
degree 5, and so NC/P3 ∼= O(5)⊕2. How do we calculate the degree of L? Observe that this construction
gives a sub-line-bundle Lp = L attached to any point p on C; what would happen if we chose a different
point p′? We claim the lines pq and p′q are independent in the fiber of NC/P3 above q (otherwise, the
plane spanned by p, p′, q would be tangent to the curve at q and so intersect C in 4 > 3 points). Thus,
NC/P3 = Lp ⊕ Lp′

for any distinct p, p′ ∈ C, so they better have degree 5.
The last part asks an analogous question for rational normal curves in Pn. The answer there will be

very similar. Again, for any point p ∈ C, define the sub line bundle Lp ⊂ NC/Pn as before.
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Claim 26.8. For any p1, . . . , pn−1 distinct on C, NC/Pn =
⊕

Lpi
.

Have a linear relationship would give a hyperplane H meeting the points p1, . . . , pn−1 and which is
tangent at q; this is a no-no since degC = n. Now one just computes degrees. The Lpi

’s all have the same
degree since they very continuously with the choice of points. One concludes degLpi

= n(n+1)−2
n−1 = n+2.

You can ask this same sort of question for smooth rational curves which are not necessarily rational
normal curves. What splitting types for their normal bundles can occur? It sounds like this was answered
relatively recently for rational curves in P3, but is still open in higher dimensions.

Question 26.9 (Audience). What’s the plan for next semester?

Answer. Still working out what exactly is feasible, but it’d be good to talk about finer properties of
these moduli spaces. Instead of just irreduciblicity and dimension, can ask e.g. ‘is the moduli space of
curves unirational?’ There should be a syllabus up in January with more details. ⋆
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27 Lecture 1 (1/25/2022) – Second Semester Start

Note 34. Roughly 6 minutes late

27.1 Class stuff

• Classes Tu/Th 12 – 1:15pm

• section: Fridays 12 – 1:15pm (same room), starting 2/1

• Homeworks: due Mondays, starting 2/4

Topics

• plane curves

• moduli spaces (bulk of class)

Joe said more about these two things, but I was busy catching up

27.2 Plane curves

Let’s start with a problem.

Recall 27.1. Given a curve C (smooth + projective) and a divisor D =
∑

p∈C mpp, we write

L (D) = {f ∈ M(C) : ordp(f) ≥ mp for all p} = {f ∈ M(C) : (f) +D ≥ 0} . ⊙

Problem 27.1. Given C and D,

(1) find H0(K) = {holomorphic 1-forms}.

(2) find L (D) = H0(OC(D)).

(Above, ‘find’ = ‘write down a basis’)
In general, it’s not clear how to do this. How can one go from a random collection of polynomials in

Pr to an actual description of its space of 1-forms? Our strategy will be to project the curve down to the
plane, and then work with the plane curve.

Warning 27.2. So far, we’ve been working mainly with smooth, projective curves. However, most of
these are not embeddable in the plane P2 (e.g. by the genus formula g =

(
d−1
2

)
). Instead, we’ll need to

start working with singular plane models of curves. •

Fact. Every smooth, projective curve C will have a birational embedding π : C
∼
99K C0 ↪! P2 onto a

singular plane curve.

Above, C will be the normalization of C0.
There are two ways we can think about/approach this.
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• Given an arbitrary smooth, projective curve, one can argue that a general projection down to the
plane will map C birationally onto a curve with at most nodes as singularities.

Hence, it would be sufficient to work only with plane nodal curves. However, there are situations
where the most natural projection has other singularities as well. Hence, it will be more convenient
to be able to work with arbitrary singularities.

• Alternatively, we can do things in 3 steps

(1) First consider C ⊂ P2 a smooth plane curve, and answer the problem in this special case.

(2) Broaden scope to nodal curves C0 ⊂ P2.

At this point, we will have, in theory, a complete solution. Since every curve can be realized
as the normalization of a nodal plane curve.

(3) However, we’ll go a step further and answer things for C0 ⊂ P2 with arbitrary singularities.

Note 35. Got distracted and missed some comments by Joe. Something about ‘Gorenstein’

Let’s get started.

27.2.1 C ⊂ P2 smooth plane curve of degree d
Maybe com-
pare start of
this section
to Section
4.2

More explicitly, say C = V (F ) where F (X,Y, Z) is homogeneous of degree d.

Notation 27.3. We’ll write f(x, y) := F (x, y, 1).

Recall 27.4. We want to find H0(KC) and H0(D) for any divisor D ∈ Div(C). ⊙

“I’m gonna do something that I have had occasion to tell many of you not to do, which is to introduce
coordinates and do everything in coordinates”

We can choose coordinates [X,Y, Z] on P2 satisfying

• The point [0, 1, 0] ̸∈ C

• The line an infinity L∞ = V (Z) intersects the curve transversely, i.e.

L∞ ∩ C = {p1, . . . , pd}

with the pi distinct.

(Joe drew a picture. Maybe one day I’ll start bringing my ipad to lecture and drawing these pictures as
well, but certainly not today)

Let’s try and find H0(KC). Note that the space of meromorphic 1-forms is 1-dimensional over M(C),
so if we write down any meromorphic 1-form, all others will be multiples of it by some rational/mero-
morphic function. Let’s start with dx. Here x = X/Z and y = Y/Z so U = P2 \ L∞ ∼= A2

x,y. Thus, dx is
holomorphic on C̃ := C ∩ U .

Note that this dx is the pullback of the differential dx on P1 under the map projecting C to the x-axis.
Consequentially, dx (on C) will have double poles at the points p1, . . . , pd above ∞ ∈ P1 (this projection
C ! P1 we’re pulling back along is unramified at ∞ ∈ P1). Now, we need to find rational functions to
multiply dx by which will kill off the poles at the points pi (w/o introducing new poles).
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A random polynomial of degree n on U ∼= A2
x,y will have a pole of order n at each of the pi’s. Hence,

we can kill the poles of dx by dividing by any polynomial h(x, y) of degree ≥ 2. This will introduce new
poles at the points (in U) at which h vanishes. Thus, we need to choose h to have zeros only at points
where dx vanishes.

Fact. The differential dx will vanish at the ramification points of the projection C ! P1 onto the x-axis,
i.e. at the zeros of ∂f

∂y .

On C̃ = {f = 0} ⊂ A2
x,y, we can write

0 = df =
∂f

∂x
dx+

∂f

∂y
dy.

Since C is smooth, we know that ∂f
∂x ,

∂f
∂y have no common zeros. Consequentially,

ordp(dx) = ordp

(
∂f

∂y

)
since

∂f

∂x
dx = −∂f

∂y
dy.

Thus,

ω0 =
dx
∂d
∂y

will be holomorphic on C̃. Note that deg(∂f/∂y) = d−1, so ω0 will have zeros of order (d−1)−2 = d−3

at pi. Thus, if d ≥ 3, we get a holomorphic differential.28 Letting H =
∑

pi, we have computed
(ω0) = (d− 3)H.

Thus, we can multiply ω0 by a polynomial g(x, y) of degree ≤ d − 3 to get another holomorphic
differential. As such, we consider the space{

g(x, y)
dx

∂f/∂y
: deg g ≤ d− 3

}
⊂ H0(KC).

Question 27.5. Are these all the holomorphic differentials on C?

Note that (ω0) = (d− 3)H has degree d(d− 3), and so we conclude from this that

2g − 2 = d(d− 3) =⇒ g =

(
d− 1

2

)
.

By counting, we conclude that in fact{
g(x, y)

dx

∂f/∂y
: deg g ≤ d− 3

}
= H0(KC)

since the LHS has dimension
(
(d−3)+2

2

)
=

(
d−1
2

)
.

Before looking at arbitrary divisors, let’s see some consequences.

Recall 27.6. If D = q1 + · · ·+ qn, then geometric Riemann-Roch says that

r(D) = n− g + h0(K −D) = n−
(
h0(K)− h0(K −D)

)
.

28If d ≤ 2, then g(C) = 0 and there are no holomorphic differentials
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Note that the expression in the parentheses is the number of conditions D imposes on the canonical
series. ⊙

Question 27.7. What’s the smallest degree of a divisor D on C w/ a non-trivial linear series, i.e.
r(D) > 0? Equivalently, what’s the smallest n s.t. C is expressible as an n-sheeted cover of P1?

We’re really asking, what’s the smallest number of points on the curve that may fail to impose linearly
independent conditions on the canonical series? We’ve seen that the canonical series on a plane curve
is spanned by polynomials of degree ≤ d − 3. Now, any n + 1 points in the plane will impose linearly
independent conditions on polynomials of degree n (assuming I heard correctly). Thus,

Proposition 27.8. If C is a smooth plane curve of degree d, and C ! P1 is any map of degree n, then
n ≥ d− 1.

This is sharp since projection from a point on the curve will realize it as a (d− 1)-sheeted cover of P1.
Let’s go back a second. Say we have p1, . . . , pm ∈ P2.

Claim 27.9 (Homework?). If m ≤ n+ 1, then the points pi impose independent conditions on the space
of polynomials of degree n. If m = n+2, then the points p1, . . . , pm fail to impose independent conditions
iff they are colinear.

(Look for polynomials vanishing on all but one of the points by taking unions of lines through them,
or something like this)

Onto the second problem: given a smooth plane curve C ↪! P2 and a divisor D on C, we’d like to
find H0(OC(D)).

Write D = E − F with E,F ≥ 0 both effective. Next, choose polynomial G(X,Y, Z) of degree m so
that G vanishes on E, but G ̸≡ 0 on C. Now we write (G|C) = E + A for A some divisor on C. Note
that E +A ∼ mH (with H = p1 + · · ·+ pd the hyperplane divisor from before). We also want to choose
a polynomial J of the same degree m s.t. J vanishes on A+F , but J ̸≡ 0 on C. If no such J exists, then
H0(OC(D)) = 0. Write (J |C) = A+ F +D′ ∼ mH. Thus,

D′ ∼ mH −A− F ∼ E − F = D

is an effective divisor linearly equivalent to D.

Claim 27.10. This process produces all effective divisors ∼ D.

Proof. Conversely, say D′ ∼ D with D′ ≥ 0. We can write D′ +A+ F ∼ mH. We claim there will exist
a polynomial J of degree m s.t. (J) = D′ +A+ F , i.e. that

H0(OP2(m))! H0(OC(m))

is surjective. Note that the cokernel of the above map embeds into H1(OP2(m − d)) = 0, so the claim
holds. ■

Next time, we’ll want to consider the analogous construction for nodal plane curves in order to answer
these two questions for their normalizations.
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Question 27.11 (Audience). Can you say more about what we’ll do in this course?

Answer (Paraphrase). There’s a number of things we could try to cover. We want to stick, as much as
possible, with things we can actually prove within this class. We’d like to talk about constructing Mg, the
compactified moduli space of (stable) genus g curves. Importantly, this Mg is a modular compactification
of Mg. Once we have that, we can try and study its geometry. The hope is that we can give a reasonable
argument that Mg is not unirational. Unfortunately, there’s a lot of technical detail involved, so it’s not
entirely clear how much we’ll be able to say vs. what we’ll just have to accept. ⋆

28 Lecture 2 (1/27)

Note 36. Only like 3 minutes late

Joe spent some time in the beginning going over, out loud, what we did/talked about last time.

Recall 28.1. Let C ⊂ P2 be a smooth plane curve of degree d. Let D = E − F be a divisor on C (E,F

both effective). To find |D|, we do the following 2-step process

(1) Find a polynomial G of degree m s.t. G vanishes on E, but G ̸≡ 0 on C. In other words, G defines
a plane curve which passes through C in the points of E (plus other points). We write (G) = E+A

(the intersection of C and the plane curve cut out by G), and note that A ∼ mH − E.

(2) Look for polynomials J of degree m s.t. J vanishes on A+ F (but not on all of C). Then we can
write J = A+ F +D′ so now

D′ ∼ mH −A− F ∼ D

is an effective divisor linearly equivalent to D.

All effective divisors D′ ∈ |D| arise in this way. This follows from the fact that the polynomials of degree
m in P2 cut out a complete linear series |mH| on C, i.e. H0(OP2(m)) ! H0(OC(m)) is surjective (since
its cokernel embeds into H1(OP2(m− d)) = 0). ⊙

Example (Group law on an elliptic curve). Take d = 3, so C is an elliptic curve, at least after we choose
an “origin” o ∈ C. We define a group law on C with origin o via p+C q := r where r is the unique point
of C so that

r ∼ p+ q − o.

Concretely, for the first step, take m = 1 and draw the line pq (this is a poly vanishing at p+ q). Write
pq ∩ C = p + q + s. For the second step, we take the line os through s and the origin, and then write
os ∩ C = s+ o+ r. This r is the sum p+C q in the group law on C. △

Remark 28.2. We can use this process to estimate |D| (D = E − F as usual). First choose G s.t.
(G) = E +A, so degA = md− e. Next we find J s.t. (J) = A+ F +D′. How many choices do we have
for J?

Question 28.3. How many polynomials J are there so that J = 0 on A+F , modulo polynomials vanishing
on C?
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The space of all degree m polynomials modulo those vanishing on C has dimension This is
h0(OC(m)),
assuming
h1(OC(m)) =

0 (e.g. as-
suming
m ≫ 0), but
I think Joe
has in mind
something
more
elementary
than
Riemann-
Roch
for this
computation

(
m+ 2

2

)
−
(
m− d+ 2

2

)
= md−

(
d− 1

2

)
+ 1.

Thus, the “expected” dimension h0(OC(D)) is

h0(OC(D)) = deg(D)−
(
d− 1

2

)
+ 1

(at least, when the points of A+ F impose independent conditions on polynomials of degree m). ◦

When we talk about nodal plane curves, something like the above will be telling us something new. Question:
Will it not
still just
amount to
Riemann-
Roch for
singular (ge-
ometrically
integral)
curves?

28.1 Nodal curves

Setup 28.4. Let C be a smooth, projective curve (not necessarily planar). Assume we have a regular,
birational ν : C ! C0 ⊂ P2 with C0 nodal of degree d (so C = C̃0 is the normalization).

Such a map will always exist (proof later).

Note 37. Let q1, . . . , qδ ∈ C0 be its nodes (δ in total), and write ν−1(qi) = {ri, si}. Finally, let ∆ =∑
i(ri + si) ∈ Div(C).

Simplifying Assumption. Assume there are no vertical tangents at the nodes. This will be true for a
general choice of coordinate system.

Goal. Find H0(KC)

Recall 28.5. In the smooth case, we chose coordinates, and then started w/ the meromorphic differential
dx. We saw it was holomorphic in the (finite) plane, but had double poles at its points at infinity. To
cancel these out, we looked at ω0 = dx/(∂f/∂y). We then used

0 ≡ df =⇒ ∂f

∂x
dx = −∂f

∂y
dy

and that C0 was smooth (so one partial derivative is always nonzero) so conclude that ω0 is holomorphic
in the finite plane, and so (ω0) = (d− 3)H. ⊙

In the nonsmooth case, ∂f
∂x ,

∂f
∂y can have common zeros. In fact, they do have common zeros, exactly

at the nodes. At them, they will vanish to order 1, so (using that there are no vertical tangents to avoid Question:
Why?needing to consider the order of vanishing of dx), ω0 as above will have simple poles at the nodes. That

is,

ω0 =
dx

∂f/∂y
=⇒ (ω0) = (d− 3)H −∆ ∈ Div(C).

Recall 28.6 (when C0 smooth). In the smooth case, we said ω0 was holomorphic and that we could get
other holomorphic differentials by multiplying it by any polynomial of degree ≤ (d− 3), i.e.

H0(KC) =

{
g(x, y)dx

∂d/∂y
: deg g ≤ d− 3

}
. ⊙
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In the present case, we also need to require that g vanishes at the nodes, i.e.

H0(KC) =

{
g(x, y)dx

∂d/∂y

∣∣∣∣ deg g ≤ d− 3

g(qi) = 0

}
(28.1)

To see that this really is the hold space, observe that

2g − 2 = deg(ω0) = d(d− 3)− δ =⇒ g =

(
d− 1

2

)
− δ

is the dimension of the RHS of (28.1).29

Recall 28.7 (in the smooth case). We saw that C was not expressible as an m-sheeted cover of P1 for
any m ≤ d− 2. ⊙

Example (δ = 1). First note that if you project from the node of C0, this will express the curve as a
(d− 2)-sheeted cover of P1. Can it be expressed as a branched cover of lower degree?

To say that a divisor D moves in a linear series is to say that D together with the node fail to impose
independent conditions on the canonical series (on polynomials of degree ≤ d−3?). This can only happen
if degD ≥ d− 2. If degD = d− 2, this can only happen if its points are collinear with the node. △

Exercise. Explore what happens for higher δ.

Onto the second problem: given C ! C0 ⊂ P2 as before along with a divisor D = E − F on C.

Goal. Find |D|.

Here’s the solution

(1) Find a polynomial G of degree m s.t.

• G(qi) = 0

• G vanishes on E

• G ̸≡ 0 on C0

Write (G) = E +∆+A if supp∆ ∩
suppE ̸= ∅,
we want
G to van-
ish to the
appropri-
ate degree,
i.e. this is
the correct
expression
(with A ef-
fective) for
all E

(2) Find J of degree m s.t.

• J(qi) = 0

• J(F ) = 0

• J(A) = 0

Write (J) = ∆+ F +A+D′. Then, D′ ∼ mH −∆− F −A ∼ D.

Claim 28.8. We get, in this way, all effective divisors D′ ∼ D.

Note 38. Got distracted and missed what he was saying. Something about how to prove this claim...

Consider the blowup S = Bl{q1,...,qδ}(P2)
π
−! P2.

29A priori, the dimension of the RHS is ≥
(d−1

2

)
− δ, but the above genus computation shows that this must be an

equality.
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Notation 28.9. Let Ei ⊂ S be the exceptional divisor over qi ∈ P2. Let H ∈ Div(S) be the pullback of
the hyperplane class in P2, and let E = E1 + · · ·+ Eδ ∈ Div(S) be the sum of the exceptional divisors.

Note that C is (isomorphic to) the proper transform of C0 in S. This has class

C ∼ dH − 2E ∈ Div(S).

Furthermore, KS = −3H + E.30

Claim 28.10. H0(OS(mH − E))! H0(OC(mH −∆)) is surjective

Proof. Look at the exact sequence of sheaves:

0 −! OS(mH − E − (dH − 2E)︸ ︷︷ ︸
(m−d)H+E

) −! OS(mH − E) −! OC(mH − E) −! 0.

We claim that H1(OS((m− d)H + E)) = 0. By Serre duality, we know

H1(OS((m− d)H + E)) ≃ H1 (OS((d−m− 3)H)
∨
.

The point is that this is a line bundle pulled back from the plane, and so the Leray spectral sequence will TODO: Add
an aside car-
rying out
this compu-
tation

tell us that
H1(OS((d−m− 3)H)) ∼= H1(OP2(d−m− 3)) = 0. ■

28.2 Every smooth curve is birational to a nodal plane curve

We’ve made the assertion titling31 this subsection a couple times now, so we should probably prove it at
some point.

“I thought this was pretty obvious/trivial, but it’s false in characteristic p– well, it true in characteristic
p, but not in the one I’m gonna prove it to you. Bare that in mind.”

Proof of (sub)section heading. Embed C ↪! Pn (working in char 0). We claim that if Λ ⊂ Pn is a general I think this
argument
is in chap-
ter 4 of
Hartshorne
(section 3?)

(n− 3)-plane, then πΛ : C ! P2 will project C birationally onto a nodal curve C0. For this, we introduce
the secant variety of C in Pn. We have a map

C2 −! G(1, n)

p+ q 7−! pq

(which sends 2p to the tangent line). The secant variety is the union

S :=
⋃

D∈C2

D

of these lines. This the union of a 2-parameter family of lines, so dimS = 3. The point is that if p ∈ Pn\S
is not on the secant variety, then πp : C ! Pn−1 is in fact an embedding. Thus, we may reduce to the
case that n = 3.

30Follows from general computation of canonical class of a blowup of a surface at a point or from thinking about taking
a meromorphic 2-form on P2 and pulling it back to S

31That’s a strange looking word
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We need to know that, for a general point p ∈ P3, p won’t lie on any tangent line32 to C (so projection
from p will be an immersion) and that p does not lie on any 3-secant line. More on this next time...

Suffices to show that the locus of trisecants is a proper subvariety of the secant variety, i.e. that not
every secant is a trisecant. In characteristic 0, one uses uniform position lemma to conclude this. In
characteristic p, it can be the case that every secant is a trisecant. ■

29 Lecture 3 (2/1)

Note 39. In some sense, a few minutes late

29.1 From Last Time

Let C ⊂ Pn be a smooth projective curve, and let Λ ⊂ Pn be a general (n−3)-plane. Then, the projection
πΛ : C ! C0 ⊂ P2 is birational onto its image, and C0 is nodal.

Recall 29.1. We reduced this to the case n = 3. ⊙

Remark 29.2. πp is birational precisely when p (the point/0-plane in P3 we project from) lie on only
finitely many secant lines to C. ◦

Consider the incidence correspondence

Φ =
{
(D, p) ∈ C2 × P3 : p ∈ D

}
C2 = Sym2(C) P3.

Stare at this (and count dimensions) until you’re convinced that a general p will only lie on finitely many
secants.

Remark 29.3. πp is an immersion iff p does not lie on any tangent lines to C ◦

This is also immediate (1-parameter family of tangent lines gives 2-dimensional bad locus, but
dimP3 = 3 > 2).

Remark 29.4. For C0 to be nodal, we need πp to be nowhere 3 : 1. That is, we need to know that the
trisecant lines don’t fill up P3. ◦

Since there’s a 3-dimensional family of secant lines, to show that the family of trisecants has dimension
≤ 2, it suffices to say that not every secant line is trisecant, i.e. it is sufficient to exhibit a single secant
line which is not trisecant.

Warning 29.5. This is false in positive characteristic, there are curves in P3 for which every secant
meets the curve a third time. •

Proof not all secants are trisecants in characteristic 0. Choose a general plane H ⊂ P3. The uniform
position lemma (Lemma 12.7 suffices) tells us that the points of H ∩C are in linear general position, i.e. I think,

but am not
100% sure,
that general
position and
uniform po-
sition are
two different
lemmas

no 3 collinear. Thus, taking 2 of these, the secant through them won’t hit the curve a third time, i.e.
any secant contained in a general H won’t be trisecant. ■

32There’s a 1 parameter family of tangent lines, so their union cuts out a 2-dimensional variety, so not all of P3
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Note 40. Joe started saying something else, but I was distracted and so missed it...

We still need to show that the image C0 = πp(C) is nodal (maybe it has something like ≍).

Remark 29.6. If C0 has a point with preimages q, r ∈ C s.t. the tangent lines at q, r map to the same
tangent line in C0, then those tangent lines (of q, r) must lie in the same 2-plane. Hence, they must
intersect. ◦

To show C0 is nodal, need to show that not every pair of tangent lines to C intersect. If they do all
meet, then

πTpC : C ! P1

would be a dominant morphism with derivative 0 everywhere. This can’t happen in characteristic 0.

Question 29.7. What do you do in characteristic p?

Answer (One option). Ignore it, and just always work in characteristic 0. ⋆

That’s not always the most satisfying option.

Remark 29.8. To say that every pair of tangent lines to C meet is to say that for all p, q ∈ C, the divisor
D = 2p + 2q fails to impose independent conditions on |OC(1)| (linear series cut out by hyperplanes).
Note there’s an exact sequence

H0(OP3(1)) −! H0(OD(1)) −! H1(ID/P3(1)) −! 0 = H1(OP3(1)),

so to say D doesn’t impose 4 = h0(OD(1)) linear conditions is exactly to say that H1(ID/P3(1)) ̸= 0. By
Serre vanishing, you can fix this by taking some large n-uple embedding. So after re-embedding C, you
can take appropriate projections. ◦

29.1.1 Recall Process for finding Linear series

Recall 29.9. The situation is we have C
π
−! C0 ⊂ P2 with C0 a degree d nodal plane curve. Say C0 has

nodes q1, . . . , qδ and write π−1(qi) = {ri, si}. We also set ∆ =
∑

(ri + si). ⊙

Say we are given D = E − F on C. Choose a polynomial G of degree m s.t. G(qi) = 0 and G ≡ 0

(E). That is, (G) = E +∆+A with A effective.

Simplifying Assumption (If I understand, this changes literally nothing (it’s purely psychological)).
Assume suppE ∩ supp∆ = ∅.

Not choose a poly H of degree m s.t. H(qi) = 0 and H ≡ 0 (mod F+A). Write (H) = ∆+F+A+D′.
Then, D′ ∼ D.

We want to verify that this process gives the complete linear series |D|.

Claim 29.10. We get, in this way, all effective divisors D′ ∼ D.

As before, consider the blowup S = Blq1,...,qδ(P2). The proper transform C ⊂ S of C0 ⊂ P2 is the
normalization of C0 (since C0 nodal or else I think you need multiple blowups). Let E1, . . . , Eδ ⊂ S be
the exceptional divisors, and set

E := E1 + · · ·+ Eδ.
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Then, C ∼ dH − 2E where H is (the pullback of) the hyperplane class. By general theory, also KS ∼
−3H + E.

Claim 29.11. Plane curves of any degree m passing through the nodes of C0 cut out a complete linear
series |mH −∆| on C. That is, the map

H0(OS(mH − E)) −! H0(OC(mH − E))

is surjective.

Proof. The cokernel of this map embeds into H1(OS(mH − E − C)). Since C ∼ dH − 2E, we see that
(mH − E − C) ∼ ((m− d)H + E). Now, we apply Serre duality to see that

H1(OS((m− d)H + E)) = H1(OS(KS − [(m− d)H + E]))∨ = H1(OS((−3 + d−m)H))∨.

Now, the Leray spectral sequence tells us that

H1(OS(−3 + d−m)H) = H1(OP2(d−m− 3)) = 0

and so we win. ■

On Thursday, we’ll talk about doing this for plane curves with arbitrary singularities (buzz phrase:
‘completeness of the adjoint series’).

29.2 Genera of curves

History. Today, we know of the genus of the curve as the number of holes of a Riemann surface. This
picture only came about with the work of Riemann, but curves had been studied already for 100 years by
this point. So how did earlier mathematicians think of the genus? Essentially, they anticipated Riemann-
Roch. The earliest curves to be studied were rational curves. On such curves, if you look at the space of
functions with at most d poles, it has dimension d+1. They then this failed for other curves. For a curve
C and a divisor of large degree d, it doesn’t have d+ 1 sections, but instead it has d+ 1− p sections for
a value p they called the deficiency of the curve. It was only after Riemann that this p started being
written g and called the ‘genus’. ⊖

Let C be a smooth curve of degree d in P2, and say we want to compute its deficiency. Start with
some high degree divisor, and then compute its space of global sections. Let’s look at the linear series
|OC(m)| for m ≫ 0. This is cut out by polynomials of degree m in the plane, so we should have Remember:

Computing
h0(OC(m))

is a nicer
way to get
the genus
of a plane
curve than
the usual
adjunction
argument

h0(OC(m)) =

(
m+ 2

2

)
−

(
m− d+ 2

2

)
= md−

(
d− 1

2

)
+ 1,

the dimension of the space of degree m plane curves minus the dimension of the space of those curves
which contain C. Thus, the deficiency is precisely

(
d−1
2

)
.

Now, suppose C0 is a nodal plane curve of degree d with normalization C ! C0. How do we compute
the deficiency of C? We would try the same thing of looking at plane curves of degree m. This won’t
work e.g. since it’ll give the same answer and e.g. since it won’t give a complete linear series. Instead,
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we want to look at the linear series cut on C by plane curves of degree m passing through the nodes of
C0, i.e. at OC(mH −∆). We saw a moment ago that these plane curves passing through the nodes do
cut out a complete linear series, so we now just need to compute its dimension and degree. It’s degree is
md− 2δ. It’s dimension is

h0(OC(mH −∆)) = md−
(
d− 1

2

)
− δ + 1

(plane curves of degree m passing through the nodes modulo those which vanish identically on C0). Thus,
the deficiency of C must be

(
d−1
2

)
− δ. Note, having to pass through a node is a single condition with

decreases the degree by 2, and so has the effect of dropping the genus by 1.

29.2.1 Other singularities

Example (Planar triple point). Suppose that C0 has a triple point33 p ∈ C0 and let {q, r, s} ⊂ C be
its preimage in the normalization. To compute the genus of C, let’s compute the difference between the
degree and dimension of a large complete linear series. Look at curves of degree m in P2 passing through
p. This has degree md − 3. Passing through p is a single linear condition on the degree m curve, so it
has dimension

(
md−

(
d−1
2

)
+ 1

)
− 1. This suggests that the genus drops by 2; however, that’s not quite

right (recall ‘planar triple point’ example from section 13.2). We can do better.
Take plane curves of degree m which pass through p w/ multiplicity ≥ 2. These have degree md− 6

but dimension md−
(
d−1
2

)
+ 1− 3. This suggests a genus drop of 3, which is the correct value. △

Example (tacnode). Suppose C0 has a tacnode34. Looking at plane curves through the tacnode would
be “a two for one deal” (suggest a genus drop of 1), but we can do better. If we instead look a plane curves
passing through the tacnode with the same tangent line, we get “a four for two deal” which suggests the
correct genus drop: 2. △

Exercise. Work out deficiency calculations for other types of singularities. Ask yourself, “What’s the best
deal you can get?"

29.3 Something else, I missed what

Let C0 be an arbitrary reduced and irreducible curve (not assumed planar). Let ν : C ! C0 be its
normalization. We want to compare the genus of C to the (arithmetic) genus of C0, i.e. 1− χ(OC0

). To
compare their genera, we compare their structure sheaves. The normalization includes a map OC0

↪!

ν∗OC . Consider the cokernel
0 −! OC0

−! ν∗OC −! F −! 0,

and note that it’s a skyscraper sheaf F supported at the singular points of C0.

Recall 29.12 (From section 13.2). χ(ν∗OC) = χ(OC) and so g(C) = pa(C0)− h0(F ). ⊙

We’ll continue on Thursday...
33Looks like a tri-branched node
34Looks like two branches meeting tangentially
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30 Lecture 4 (2/3)

A few announcements

• Problem #2 on homework is gone

“We don’t mind, but why?” - some student. Problem 1 was the assertion from class that m points
in Pn impose independent conditions on polynomials of degree ≤ n− 1. Problem 2 was extending
this from reduced schemes of dimension 0 to arbitrary 0-dimensional subschemes. This is supposed
to not be much harder, but Joe is blanking on the proof, so he decided to take it off the homework.

• There’s one problem on the second homework assignment which will be covered by the material
from today, so the problem is already on canvas if you want an early start.

• There will be sections/office hours on Fridays 12 – 1:15. The location is partially TBD. For the
time being, we’ll do them in Joe’s office SC 339.

Plan for the next week or two

• Today: carry out analysis of computing complete linear series for plane curves with arbitrary
singularities

• Look at Severi varieties parametrizing plane curves of given degree and geometric genus.

• After this, we want to move on to the main topic of the semester: the geometry of the moduli space
of curves (probably start in a week or two)

Remark 30.1 (References). The stuff up to now (geometry of individual plane curves) is described in
chapter 14 of the “book” w/ Eisenbud (personality of curves).

Once we start talking about Severi varieties, our main reference will be Harris-Morrison’s ‘Moduli of
Curves’. The Severi variety discussion relevant to us will start in chapter 1. ◦

30.1 Singularities

Remark 30.2. There are many interesting problems involving the behavior of singularities of plane curves
in families. We won’t get to touch on this too much. ◦

For now, we’ll mainly be focused on some invariants of singularities. Let C0 ⊂ P2 be a reduced and
irreducible plane curve of degree d. Let ν : C ! C0 be its normalization. Recall the exact sequence

0 −! OC0
−! ν∗OC −! F −! 0.

Slogan. The difference between the (arithmetic) genera of C0 and C is captured by the question, “What’s
a function on C0 v.s. what’s a function on C?”

Specifically, the exact sequence (+ ν being finite) tells us that

g(C) = pa(C0)− h0(F ) =

(
d− 1

2

)
−

∑
p∈C0,sing

dimC(Fp).

104



Definition 30.3. The value dimC(Fp) is called the δ-invariant of the singularity p ∈ C0. ⋄

Note 41. For some examples of computing these δ-invariants, see Section 13.2. Joe is doing a few examples
on the board right now, but I don’t know if I feel like typing them up again...

Fact. δnode = 1, δcusp = 1, δtacnode = 2, δplanar triple point = 3, δspatial triple point = 2.

We can introduce an ideal Ip ⊂ OC0,p defined by Ip = Ann(Fp), so any function upstairs multiplied
by an element of Ip must come from a function downstairs. This is called the conductor ideal.

Fact (Key fact). dimO/Ip = δp = dim(Fp), i.e. the codimension of the conductor ideal is the delta
invariant.

Warning 30.4. The key fact is special to planar curves. It says that the singularity is Gorenstein.
The above fact is a consequence of every local complete intersection being Gorenstein. •

Example. Iplanar triple point = m2
p while Ispatial triple point = mp. In the latter case, the conductor ideal

has codimension 1 but δ-invariant 2, so spatial triple points are not Gorenstein. △

Recall 30.5. We have
C

ν
−! C0 ⊂ P2

with C0 a degree d plane curve. We want to find H0(ωC) and also |D| for any divisor D. ⊙

Let’s find H0(ωC). Start with a differential dx (really, it’s pullback to C). This will have some poles,
so we want to divide by a polynomial to kill them. The way to do this, in the smooth case, was to form

ω0 =
dx

∂f/∂y

where C0 = {f = 0} ⊂ P2. We observe that ω0 has zeros of order d − 3 along the line L∞ at ∞. In
the smooth case, ω0 has no poles, so we could take any gω0 where deg g ≤ d − 3, and these gave all
holomorphic differentials. In the nodal case, ω0 had a simple pole at each point lying over a node, so we
could only allow g (of degree ≤ d− 3) for which g(qi) = 0 for all nodes qi ∈ C0.

In general, if ν−1(p) = {q1, . . . , qm}, then ω0 will have poles at the points qi, so let’s say ordqi(ω0) =

−ni. In this case, what we need is that ordqi(g) ≥ ni for each i, so g kills the poles. This leads us to
another ideal.

Definition 30.6. The adjoint ideal A on C0 is This is not
the ‘A’ that
Joe wrote.
I’m not sure
which fond
he was going
for, it looked
like a big
lowercase
roman a

A = {g : ordqi(g) ≥ ni} ,

i.e. gω0 if holomorphic ⇐⇒ g ∈ A. ⋄

Fact. The adjoint ideal is the conductor ideal.

The upshot is that the space of differentials in get in this way is the number of polynomials g of degree
≤ d − 3 minus the number of conditions of g to be in the adjoint ideal (= number of conditions of g to
be in the conductor ideal = δ-invariant), and so we in fact get all holomorphic differentials, i.e.

H0(KC) =

{
ν∗

g(x, y)dx

∂f/∂y
: g ∈ Ad

}

105



and this is called ‘completeness of the adjoint series’.

30.1.1 Brief Higher Dimensional Analogue

Say S ⊂ P3 is a surface of degree d, and say p ∈ S is an isolated singular point. Let S̃ ! S be the
desingularization. S TODO: Add

in rest of
notes from
today

31 Lecture 5 (2/8): Severi Varieties

Note 42. 9ish minutes late

Today: Severi varieties. Thursday/next week: moduli spaces
The basic objects are (N =

(
d+2
2

)
− 1)

PN {plane curves of degree d}

Vd,g

{
integral curves

degree d, genus g

}

Ud,g

{
integral curves of degree d

with δ =
(
d−1
2

)
− g nodes

}
Ud,δ

⊂
⊂

Basic facts

• Ud,g = Ud,δ is smooth of codimension δ in PN , i.e.

N − δ =

(
d+ 2

2

)
− 1−

[(
d− 1

2

)
− g

]
= 3d+ g − 1.

We’ll prove this today in class.

• Ud,g is dense in Vd,g

This is not obvious, but is also not deep.

• Ud,g (and hence Vd,g and V d,g) are irreducible.

We will not show this.

We have been looking (since the Fall) at families of curves in projective space. The most straightfor-
ward way of describing these is as maps of curves to projective space. Let

Hd,g,n =

{
(C, f)

∣∣∣∣C smooth projective curve of genus g

f : C ! Pn non-deg map of degree d

}
(Note: if f is required to be an embedding, then this would be a Hilbert scheme).

One could impose smoothness conditions, e.g. Want con-
ditions that
still allow
Hd,g,n to
dominate
Mg

• For n ≥ 3, could require f to be an embedding
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• For n = 2, could require f birational onto nodal image

• For n = 1, could require that f is simply branched

Recall 31.1. In the Fall, we derived an “expected dimension”

h(d, g, n) = (n+ 1)d− (n− 3)(g − 1)

when looking at Hilbert schemes. ⊙

Remark 31.2. Note that this works for n = 1 since the Hurwitz scheme is a covering space of Symb P1

where b is the number of branch points. When n = 2, the first bullet point in our basic facts says that

dimUd,g = h(d, g, 2) = 3d+ g − 1

also always has the expected dimension. ◦

For n ≥ 3, the situation with Hilbert schemes can be quite messy. They certainly don’t always have the
expected dimension. They can even have multiple components of different dimensions.

Let’s think a bit more about the second bullet point, that Ud,g is dense in Vd,g. On one hand, this is
saying that given any singularity of a plane curve, you can deform it into a collection of nodes without
changing the total δ-invariant, w/o changing the arithmetic genus.

Example. If you start with a tacnode (≍ meeting transversally), you can move the branches vertically
to get two nodes. △

Example. If you have a triple point ∗, you can move one branch away from the other two to get something
with 3 nodes. △

It’s less clear how to do this with other complicated singularities. Imagine e.g. a cusp ≺ or worse
(yp = xq). It’s not so obvious how to deform this into a collection of nodes.

Finally, let’s say something about Ud,g being irreducible. This question was proposed by Severi himself
who had the goal of proving that Mg (moduli of genus g curves) is irreducible. Note that we have a map

Hd,g,n −!Mg

which is dominant if d ≫ g, n. This gives the possibility of proving global theorems about Mg by looking
at these spaces. For example, Mg irreducible ⇐= Hd,g,1 is irreducible for all d, g.

History. This was done in the late 19th century (by Clebsch, Hurwitz, etc.). They did this by analyzing
the monodromy of the cover Hd,g,1 ! U ⊂ Pb = Symb(P1); they proved that the monodromy acts
transitively on the fibers, so Hd,g,1 inherits irreducibility from U . Severi did not like this proof. His main
issue was that it was not purely algebraic; it relies, in an essential way, of working over C and applying
the classical topology. Severi wanted something that would work over arbitrary fields/characteristics if
possible. He suggested trying to prove that Hd,g,2 is irreducible. Having suggested this, he then proceeded
to give a false proof of the assertion that these Severi varieties are irreducible. Severi’s student Zariski
tried to give a correct proof, but it sounds like it took until Zariski’s student Mumford before this was
finally done.35 ⊖

35Not sure if I heard this last assertion correctly
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Anywho, let’s get back to work...

Goal. We want to prove that Ud,g = Ud,δ is smooth of codimension δ in PN (recall N =
(
d+2
2

)
− 1).

Let’s start with the case δ = 1.

Remark 31.3. When talking about Hilbert schemes of curves in higher dimensional projective spaces, we
did not know how to deform the curves. Obviously, the curve is defined by some set of equations and
we could just vary those coefficients; however, if you vary those coefficients randomly, you may not end
up with a curve! It’s not so clear what conditions are needed for a procedure like this to stay within the
realm of curves. However, plane curves are simply. They are all defined by a single equation, and varying
its equation any which way will still produced a plane curve! So let’s use this fact. ◦

Introduce the incidence correspondence

Σ :=
{
(C, p) : C × P2 degree d and p ∈ Csing

}
⊂ PN × P2

fitting into
Σ

PN P2.

Remark 31.4. Σ is smooth since it’s a projective bundle over P2. We’ll see its smoothness again in a
bit. ◦

We can write out equations defining Σ. Note that

Σ =

{
(f, p) : f(p) =

∂f

∂x
(p) =

∂f

∂y
(p) = 0

}
where f(x, y) =

∑
i+j≤d

aijx
iyj .

Say p is the point p = (x, y). In these coordinates (the aij ’s and x, y), Σ is the zero locus of 3 polynomials:

F (a, x, y) =
∑

aijx
iyj , G(a, x, y) =

∑
iaijx

i−1yj , and H(a, x, y) =
∑

jaijx
iyj−1.

Remark 31.5. One could explicitly prove that Σ is smooth by looking at the partial derivatives of these
three defining equations w.r.t. the coordinates aij , x, y. ◦

Example. Let’s compute these partial derivatives w.r.t to x, y, a00. The results are in Table 2. △

F G H
x 0 a20 a11
y 0 a11 a02
a00 1 0 0

Table 2: Table of derivatives of defining equations of Σ w.r.t x, y, a00

Note that to say that (0, 0) is a node of f is to say that its matrix of second derivatives is nonsingular.
This implies that Σ is smooth at (f, 0). Consider the projection π : Σ ! PN . Looking at the kernel of
matrix shows that dπ is injective and furthermore Question:

What?
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Im(dπ) = {f : f(0, 0) = 0} = {(C, p) : C ∋ p0} .

This is saying that Ud,1 ⊂ PN is locally closed of codimension 1, and (if I’m not too lost) that the tangent
space at a point [C] ∈ Ud,1 is the set of equations vanishing at the node of C.

Now, suppose that C is a plane curve with δ nodes (and no other singularities). Look at π−1(C) ⊂ Σ.
We have δ points of Σ lying over C. Each of these points has a neighborhood where the projection map
is an immersion. Now, we have a collection of δ such hypersurfaces, and we’re asking how they intersect.
Let’s say our δ nodes are p1, . . . , pδ. Each of these has a corresponding point (C, pi) ∈ Σ mapping to Ud,g.
The tangent space of (C, pi) consists of curves of degree d containing pi. Recall that the nodes of a curve
impose independent conditions on curves of degree ≥ (d − 3) (part of computation of canonical series
of curves). Thus, these tangent spaces must be linearly independent. That is, each point (C, pi) has a
neighborhood mapping isomorphically onto a smooth hypersurface in PN , and these δ hypersurfaces have
linearly independent tangent hyperplanes. Thus, the intersection of these hypersurfaces (which gives a
neighborhood of Ud,δ around [C]) is smooth of codimension δ. This is exactly what we wanted to show.

Exercise. Go home and go over this argument until it makes sense.

Example (d = 2). This is looking at {conics C ⊂ P2} ∼= P5. Inside where, can consider locus T =

{singular conics} and S = {double lines} ⊂ T . Note every plane conic is smooth or a pair of lines or a
double line. What does S look like as a subset of P5? Well you get a double line by specifying a line and
then doubling it, so we get a map

P2∗ −! S ⊂ P5

L 7−! 2L.

Equivalently, this map sends {AX +BY + CZ} 7! {(AX +BY + CZ)2}. In coordinates, this is

[A,B,C] 7! [A2, B2, C2, 2AB, 2AC, 2BC].

Away from characteristic 2, this is just the quadratic Veronese map, i.e. S is the Veronese surface in P5.
What does T look like? Think of the space of conics as the projectivization of the space of symmetric
3×3 matrices. Then, T = P(rank ≤ 2) and S = P(rank = 1). This means that T is a cubic hypersurface,
cut out by the vanishing of the derivative.

Note, a matrix of rank ≤ 2 can be expressed as the sum of 2 rank 1 matrices (e.g. diagonalize it).
Conversely, the sum of any 2 rank 1 matrices has rank ≤ 2. In the above terms, this says that T is
the secant variety of the Veronese surface S. This is a bit unusual. A surface in P5 has a (4 = 2 + 2)-
dimensional family of secant lines, so you’d expect the secant variety to be 5-dimensional and hence be all
of P5; however, that doesn’t happen for the Veronese surface. In fact, this is the unique non-degenerate
surface in P5 whose secant variety is properly contained in P5.

Exercise (challenge). Prove this fact. △

We’re low on time, so let’s just set up some questions about cubic plane curves for you to have fun
with.
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First of all, consider the loci

P9

9 {plane cubic curves}

8 {singular cubics}

7 {cuspidal cubics} {conics + lines}

6 {triangles} {lines + tangent conic}

5 {asterisk}

4 {double line + line}

2 {triple lines}

⊂

⊂ ⊂

⊂ ⊂⊂

⊂ ⊂

⊂
⊂

This is a complete stratification. Each type of cubic determines a subvariety (closure of indicated locus)
of P9. These subvarieties have dimension equal to the number to the left of them.

32 Lecture 6 (2/10)

32.1 Announcements

Homework #2 will be due 2/21. This is because the full asignment is not yet complete/uploaded to
canvas.

32.2 Moduli Spaces of Curves

Today we start our discussion of moduli spaces of curves. This will occupy us for the rest of the semester.
We will try to prove real theorems about these moduli spaces. Admittedly, we will have to build up
everything from the ground up, so we will be limited in how much we can cover in complete detail. Espe-
cially in the beginning, this will involve some amount of repeating what was said already last semester.
With that out of the way, let’s get into it...

Definition 32.1. A moduli problem consists of two things

• A class of objects

• a notion of family

Note that if you have a family C over B and a morphism f : B′ ! B, then you should be able to
pull C back to a family f∗C over B′ ⋄
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Example (moduli of curves). One can try to parameterize “isom classes of smooth projectuve genus g

curves” where a family of such objects is a “smooth, projective morphism C ! B whose fibers are curves
of genus g” △

Goal. Given a moduli problem, we would like to get the set of objects the structure of a scheme in a
natural way.

By ‘natural’, we mean that for all families C π
−! B, we want an associated map φπ : B ! M which

is functorial in B. That is, given f : B′ ! B, the map associated to the family C′ := C ×B B′ π′

−! B′ is
φπ′ = φπ ◦ f .

We can rephrase the discussion so far functorially. Consider the two functors

Sch −! Set

B 7−! {families/B}

B 7−! Mor(B,M)

The assignment (C π
−! B)⇝ (φπ : B !M) above is simply a natural transformation between these two

functors. To call M a (fine) moduli space, we want this to furthermore be a natural isomorphism.

Remark 32.2. If we have such a natural isomorphism, then M(C) ≃ {families/C} ≃ {objects}. Thus,
such an M will succeed in the goal of giving the set of objects a scheme structure. ◦

Definition 32.3. A fine moduli space for a functor F : Sch ! Set is a scheme M with a natural
isomorphism F

∼
−! Mor(−,M) of functors. Such an M , if it exists, is determined uniquely by F . ⋄

Example. The Hilbert scheme is a fine moduli space for the functor parameterizing smooth projective
curves C ⊂ Pn of degree d and genus g. △

Non-example. The functor parameterizing isom classes of curves of genus 0 does not admit a fine moduli
space.

Indeed, every genus 0 curve over C is ≃ P1, so such a moduli space would have to be a single point
∗. However, a family of genus 0 curves is a projective bundle, so if there were a fine moduli space, then
one could conclude that every P1-bundle over any scheme is trivial. This is false. ▽

Non-example. The functor parameterizing isom classes of curves of genus g does not admit a fine
moduli space.

Let’s look more closely at the case of g = 1. Say C is a smooth projective curve of genus 1. Then, Unclear to
me if what
follows is
strictly cor-
rect or if
it secretly
only works
for M1,1

(moduli
of pointed
genus 1
curves).
At the very
least, I can’t
see where
things would
fail for M1

in place of
M1,1... I
think this
works for
M1, and
in particu-
lar it is the
case that M1

and M1,1

share the j-
line A1

j as
their coarse
moudli space
(e.g. note
that Jac :

M1 ! M1,1

is a bijec-
tion on C-
points).

there exists a degree 2 map C ! P1 which will be branched over 4 points in P1. We can compose with
an automorphism of P1 to take 3 of these to be 0, 1,∞, so we may represent C as y2 = x(x− 1)(x− λ)

for some λ ∈ P1 \ {0, 1,∞}. This gives a family C ! A1
λ \ {0, 1} of smooth curves of genus 1 over the

λ-line. Note that different fibers may be isomorphic (had to choose 3 points to send to 0, 1,∞ in some
order). In fact,

Cλ ∼= Cλ′ ⇐⇒ λ′ ∈
{
λ, 1− λ,

1

λ
, 1− 1

λ
,

1

1− λ
,

λ

λ− 1

}
.

Thus, S3 acts on P1
λ and we would hope that the quotient P1

λ/S3 is (a compactification of) our moduli
space. Note that any quotient of P1 by a finite group is still P1, i.e. K(P1

λ)
S3 = C(j) for some function

If C =

P1/G, then
C is the
smooth pro-
jective curve
with func-
tion field
K(P1)G and
so we have
P1 ↠ C

which gives
g(C) = 0

by Riemann-
Hurwitz
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j(λ). Traditionally, one takes

j(λ) = 256
(λ2 − λ+ 1)3

λ2(λ− 1)2
.

Note that j(λ) = ∞ ⇐⇒ λ ∈ {0, 1,∞}. The upshot is that we have a bijection{
isom classes of

curves of genus 1

}
 ! points of A1

j .

However, this A1
j is not a fine moduli space of curves of genus 1. One can show that the above discussion

does extend to giving a natural transformation{
familes of genus 1

curves/B

}
−!

{
regular functions

j on B

}
,

but this map is neither injective nor surjective.
To see that it’s not surjective, stare at the expression for j and observe that every 0 of the j-function

of an actual family of genus 1 curves has order divisible by 3.36

To see that it’s not injective, we need to know that two non-isomorphic families can have the same
j-function. We’ll do this by exhibiting a non-trivial (i.e. not a product) family with constant j-function.
Choose B′ ! B any unramified double cover. Fix a curve E of genus 1, let σ : B′ ! B′ be the involution
exchanging sheets, and let τ : E ! E be multiplication by −1. Let

C :=
B′ × E

⟨(σ, τ)⟩
−! B.

This will be, in general, a non-trivial family, i.e. C ≁= B × E even though every fiber is isomorphic to
E. ▽

There are (at least) two ways of dealing with the nonexistence of a fine moduli space.

• Can define a coarse moduli space37 for a functor F as a space M with a natural transformation
F ! Hom(−,M) such that It’s not

clear to me
that this
definition
uniquely
characterizes
M

– for all maps B ! M , there exists a finite cover B′ ! B such that B′ ! B ! M is the map
associated to some family over B′ (i.e. to some element of F (B′)).

– For all pairs of families C,D ∈ F (B) with the same associated B ! M , there exists a finite
cover f : B′ ! B such that the pullbacks f∗C ≃ f∗D are isomorphic.

Fact. A coarse moduli space for smooth curves of genus g exists.

(Proven by Deligne-Mumford in 1969) In this paper
if I’m not
mistaken

• Even we can’t find a fine moduli space, then this just means your category isn’t big enough. An
alternate approach is to enlarge your category, e.g. from the category of schemes to the category
of (algebraic) stacks.

36In particular, this shows there’s no family of curves of genus 1 associated to the identity A1
j

=
−! A1

j
37Another popular definition of coarse moduli space is that it’s a scheme (or algebraic space) M with a natural trans-

formation F ! Hom(−,M) inducing a bijection on C-points and which is initial for natural transformations from F to
schemes
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Fact. A fine moduli space for smooth curves of genus g exists as an algebraic stack (and even as a
DM stack)

History. Joe spent some time talking about how stacks are quite technical, but somehow really
the right place to do AG. At least, DM stacks are close enough to schemes to extend much of
the theory. “One could imagine DM stacks replacing schemes as the basic objects, but this hasn’t
happened.” He then went into a bit of history. In the 19th century, people didn’t worry to much.
Then in the 20th century, people wanted to really give rigorous foundations for AG and make
sense of varieties over more general bases (e.g. non-algebraically closed fields). Then in the 60’s,
Grothendieck introduced his notion of schemes and argued (quite persuasively) that these were the
right objects to consider. This led to a (successful) rewrite of the subject from the ground up in
the language of schemes. Now, Deligne and Mumford’s paper introducing (DM) stacks appeared in
1969. This was poor timing since algebraic geometers had just concluded a 20 year period where
they had rewritten the subject in the language of schemes, so there wasn’t enough will to rewrite
things in the language of stacks. And to this day, stacks are not yet seen as the basic objects of
AG. ⊖

If you are interested in learning about stacks, and want an introduction to the ideas behind them,
Joe recommends an earlier paper by Mumford (’65): ‘Picard groups of moduli problems’

Most of algebraic geometry deals with projective varieties over algebraically closed fields. Often, if you
have e.g. a quasi-projective variety, one thinks of it as a projective variety with some subvariety removed
(then they can use projective techniques). Similarly, things are simpler over algebraically closed fields
than non-closed ones. For example, the topology of degree d curves over R can vary wildly depending on
the particular equation cutting them out; however, every degree d curve over C is homeomorphic.

The point of the above is to motivate the desire to compactify Mg, to view it as an open subset of a
compact/projective variety Mg.

So here’s some things coming up

• How do you see that Mg is not already compact?

• Once we have a way of proving that it’s not compact, this will give us a way of finding a compact-
ification, so we’ll introduce the Deligne-Mumford compactification of Mg.

33 Lecture 7 (2/15)

33.1 Announcements

Two talks

• Eric Larson: Interpolation (AG Seminar, today at 3:00 in room 507)

The simplest example of interpolation is the fact that through any two points in P2 there is a
unique line. Similarly, five points in P2 (in general position) will be passed through by a unique
conic. Generally, can ask, “given a family C ⊂ B × Pr of curves in projective space (with base B

of dimension dimB = h), for any given m general points p1, . . . , pm ∈ Pr, does there exist a b ∈ B
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so that Cb ∋ p1, . . . , pm?” We don’t want to repeat curves, so generally assume that the induced
map B ! H to the Hilbert scheme is an embedding (in fact, most of the time, one takes B to be a
component of the Hilbert scheme). To study such a question, it’s natural to introduce an incidence
correspondence

Φ = {(b, p1, . . . , pm) ∈ B × (Pr)m : Cb ∋ p1, . . . , pm}

B (Pr)m

α β

The question then becomes, “Is β dominant?” Dimension counting gives dimΦ = h + m, so we
expect/naively guess that ∃Cb through m general points ⇐⇒ h ≥ m(r − 1). Intuitively, it’s r − 1

conditions for a curve in Pr to pass through a given point, so m(r − 1) conditions for it to pass
through m general points. We say interpolation holds for the family if the expectation holds.

Fact (Exercise). Interpolation always holds if r = 2.

Non-example. In P3, take the family of canonical curves of genus 4 (C = Q2∩S3 is the intersection
of a quadric and a cubic). The family of these (i.e. the relevant component of Hilbert scheme) has
dimension 24. Now, may naively expect that you can find a curve of this family through 12 points.
However, 12 general points in P3 won’t lie on a quadric surface38, so interpolation fails in this
example. ▽

Recently, Eric Larson and Isabel Vogt found a nice proof of the current state of the art for figuring
out when interpolation holds.

Theorem 33.1. Interpolation holds for any component of the Hilbert scheme H dominating moduli
Mg, with exactly 4 counterexamples (including the one above).

Recall 33.2. When the Brill-Noether number is negative, there are no components of the Hilbert
scheme dominating moduli. When it is nonnegative, there is a unique such component. ⊙

Open Question 33.3. When h = m(r − 1), we expect finitely many b ∈ B such that Cb passes
through m general points. Larson-Vogt prove this in the course of proving the above theorem.
However, determining this number on the nose is still open in general.

(Sounds like Ravi Vakil answered some case of this in his thesis)

Remark 33.4. Can ask the same sorts of questions for families of surfaces or higher dimensional
varieites. Sounds like Aaron Landesman worked on this for his Harvard senior thesis. ◦

• Hannah Larson, Lines

Open neighborhood seminar, Wednesday at 4:30 in room 507

Remark 33.5. I think the big takeaway from the above is that Stanford algebraic geometers are out here
doing things.39 ◦

There’s a new version of homework 2 on the course website. Unclear if we’ll get far enough in lecture
this week to justify it being due on Monday.

38Can’t put a quadric through more than 9 general points
39Most names above are no longer currently associated with Stanford, but they all were at one point or another while I

was there
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33.2 Compactifying Mg

Question 33.6. Can we write down a general curve of genus g?

(We want to answer this by the end of the semester)
What does this have to do with Mg and why would having a compactification be useful? Before

answering this directly, let’s look at some low genus examples.

Example (g = 2). Here we can write down y2 = x5+a4x
4+ · · ·+a1x+a0. This is a generically smooth

family of genus 2 curves over A5. Thus, it gives a rational map A5 99K M2 (i.e. a map A5 ⊃ U ! M2)
which is dominant and in fact even surjective.

The point is we have a family of curves in free parameters which includes a general curve of genus
2. △

Example (g = 3). A general curve of genus 3 is non-hyperelliptic and so it a (canonically embedded)
plane quartic. Thus, the family

∑
i+j≤4 aijx

iyj gives rise to a dominant rational map A15 99K M3 (not
surjective since it misses the hyperelliptic ones). △

Question 33.7 (Question 33.6 rephrased). Can we find an open subset U ⊂ AN of affine space and a
family of curves C ! U inducing a dominant map U !Mg?

The key of this rephrasing is the following observation

Remark 33.8. If such a family exists for a given g, then Mg is unirational. ◦

Definition 33.9. In general, we say X is unirational if there exists a dominant rational map Pn 99K X

for some n. ⋄

Rational varieties are obviously unirational.

Fact. If dimX ≤ 2, then X is unirational ⇐⇒ it is rational. The case dimX = 1 is Luroth’s
theorem (this is e.g. a consequence of Riemann-Hurwitz + Riemann-Roch40). The case dimX = 2 is
due to Castelnuovo-Enriques.

Example. A smooth cubic threefold is unirational, but not rational. △

Note that an easy way of showing something is not unirational is to show that it has holomorphic top
forms (see e.g. one of the footnotes). However, this only works when talking about compact varieties
(e.g. An has tons of holomorphic n-forms, but is still unirational), so to show that Mg is not unirational,
it’d be useful to first compactify it.

The first step in compactifying Mg is answering the following question:

Question 33.10. Is Mg compact?

Remark 33.11. We should be saying ‘proper’ instead of ‘compact’, but ‘proper’ doesn’t have a nice verb
form analogous to ‘compactify’ so meh ◦

40Alternatively and even simpler, if g(C) > 0, then it would have a (nonzero) holomorphic 1-form. You could pull that
back along a dominant map P1 ! C to get a holomorphic 1-form on P1, but no such thing exists.
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Recall 33.12 (Valuative criterion for properness, more-or-less). Say X is a quasi-projective vari-
ety.41 X is projective iff for all meromorphic maps ∆∗ ! X from the punctured disk to X, there exists
a (unique) extension ∆! X. ⊙

Taking X = Mg above, we see that to say that Mg is proper is to say that for any family of smooth
curves C∗ ! ∆∗, after a finite base change42, the family extends to one over the whole disk ∆, i.e. we
want a diagram like

C∗ C∗
2 C2

∆∗ ∆∗ ∆
tm [t

Claim 33.13. Let C ! ∆ be a family of curves with Ct smooth for t ̸= 0, but C0 singular with a single
node as its only singularity. Furthermore, assume that C has a smooth total surface. Even after a finite
chance, we can’t fill in with a smooth curve.

(in other words, Mg is not proper)
How do we prove something like this? There’s a lot we can do; we can take finite base changes, we

can blowup the total space, we can blowdown the total space, etc. How do we show that no combination
of such changes will give a family with the same curves away from the origin, but with a smooth curve
at the origin? The answer is that we will calculate the monodromy of this family, and show that it is not
of finite order.

Interlude on monodromy Consider C ! B a family of smooth curves (in the above case, we’ll take
B = ∆∗). We want to form a covering space of B:

Σ = {(b, γ) : b ∈ B and γ ∈ H1(Cb,Z)} −! B.

The point is that C ! B is topologically (analytic topology over C) a fiber bundle, and so locally looks
like a product Cb × U (with U ⊂ B a small neighborhood around b). This let’s us locally identify the
homology of the fibers and so this to give Σ a topology so that Σ! B is a covering space (with countable
fibers H1(Cb,Z)). Thus, we get a monodromy map

π1(B, b) −! Aut(H1(Cb,Z)).

Remark 33.14. When B = ∆∗, π1(B, b) ≃ Z, so we can identify the monodromy with a single matrix,
the image of a generator of the fundamental group. ◦

Note that if B = ∆, then B is simply connected, so the monodromy will be trivial.

Back to the task a hand In the situation of Claim 33.13, the monodromy will have infinite order.
Thus, it cannot be removed after finite base change.

History. This monodromy calculation was somehow ‘understood’ by Picard, but was not really written
down and proven until Lefschetz. Thus, it bears both of their names. ⊖

41Ask yourself, after embedding X is projective space, are there any holes? Does it contain all limit points?
42Secretly, this finite base chance is hinting that we’re really using the valuative criterion of properness for algebraic

stacks instead of for schemes
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Let C ! ∆ be a family with Ct smooth for t ̸= 0 and C0 nodal with a single singularity. Let p ∈ C0
be the node. In a neighborhood of p, the family is given simply by y2 = x2 − t. Let’s take a look at the
topology of this chunk.

Remark 33.15. Over R, it looks like a punch of hyperbolas specializing to a union of two lines. ◦

Remark 33.16. Over C, it looks like a 2-sheeted cover of the disk branched over ±
√
t. TODO: Add

drawingTo get a picture, note that we can disconnect the total space by removing a little arc between ±
√
t.

In fact, we can fatten up the ark to a small wedge. We can then recover the whole space by identifying
points on the upper edge of the removed wedge on one sheet with the lower edge of the removed wedge on
the other sheet. Thus, the picture is of two disks connected by a twisted/orientation-reversing cylinder
between them.

As t goes around the origin, one circle gets twisted halfway around and the other gets twisted halfway
around the other direction.

Note 43. I’m starting to get lost. Maybe I’ll take a look at Voisin II’s section on Dehn twists and
Picard-Lefschetz and whatnot... ◦

Theorem 33.17 (Picard-Lefschetz). γ 7! γ + (γ · δ)δ where δ is the vanishing cycle (a simple cycle
around the cylinder)

This transformation is not of finite order since δ ∈ Z2g is non-torsion. We may run into trouble if
the vanishing cycle is trivial in homology. In such cases, the special fiber is reducible (imagine a g-holed
torus with a homologically trivial cycle that gets pinched to a point).

On Thursday, we’ll start talking about how to actually compactify Mg.

34 Lecture 8 (2/17)

Remark 34.1. Joe considers the compactification of Mg by Deligne and Mumford to be one of the biggest
results in the theory of algebraic curves in the 20th century. ◦

In general, to compactify a variety X is to express it as an open subset of a compact variety X; it does
not necessarily include any further conditions on X. In the present case, X = Mg is not just a random
variety, but is in fact a moduli space. Hence, it would naturally be desirable to get a compactification
Mg which is also itself a moduli space. A priori, there’s no reason any given compactification of a moduli
space must also be a moduli space (i.e. must also parameterize a reasonable set of objects), but we will
be able to show the existence of such a thing in this case.

Goal. Find/describe a modular compactification of Mg.

In other words, we’ll take the class of smooth projective genus g curves and embed this in a larger
class of curves (to be specified) s.t. the larger class admits a projective (in particular, proper) moduli
space.

Recall 34.2. The valuative criterion tells us that the larger class will have a compact moduli space if:
for all families C∗ ! ∆∗ of smooth curves, (possibly after a base change) we can fix this in to a family
C ! ∆ w/ fiber C0 in the larger class (moreover, there should be a unique possibility for C0). ⊙ Question:

Is it easy
to see that
the stacky
valuative
criterion for
properness
is the same
as the usual
one when
applied to
schemes?
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Example (plane cubics). Recall that the moduli space here is given by the j-line A1
j and so it’s natural

to expect that a reasonable compactification would be given by P1. Can we give a moduli interpretation
to the point at infinity in P1?

• First attempt: add the cuspidal cubic curve y2 = x3.

Consider the following family. First say C : y2 = x3 + ax+ b is a smooth cubic (so a, b fixed). Now
consider the family

C =
{
y2 = x3 + at2x+ bt3

}
−! ∆t.

This is a family of smooth curves Ct (t ̸= 0) degenerating to a cuspidal curve C0 : y2 = x3 when
t = 0. However, note that Ct ≃ C when t ̸= 0. Thus, a moduli space M parameterizing smooth
plane cubics + the cuspidal cubic would be non-separated (the family Ct, t ̸= 0, would not have a
unique limit). In fact, it would be widely unseparated: the point “∞ ∈ M ” corresponding to the
cuspidal cubic would necessarily lie in the closure of any other point of M .

Remark 34.3. This is the sort of problem that can arise when trying to compactify your moduli. For
the case of moduli spaces of curves, Deligne and Mumford essentially solved this problem. Sounds
like there are now other ways of compactifying Mg which are known though. ◦

△

Here’s the solution due to Deligne and Mumford (’69).

Definition 34.4. Say a projective curve C of arithmetic genus g ≥ 2 is stable if

• It’s only singularities are nodes

• #Aut(C) < ∞ ⋄

Example. If I heard correctly, the moduli space of all nodal curves is also compact. However, to get
a separated moduli space, it’s not enough to just ask for nodal curves. Indeed, if C is a smooth curve,
consider the constant family C := C ×∆! ∆, and fix a point p ∈ C0. Then, C′ := Blp C is isomorphic to
C away from 0 ∈ ∆, but C′

0 ̸≃ C0. However, both of these limits are nodal, so the moduli space of nodal
curves is not separated. Hence, we want to avoid something like C′

0 (which is a nodal union of C and
P1). △

Note 44. Missed most of some discussion about alternate modular compactifications of Mg. Sounds like
one of Mumford’s students described a second compactification, and then later someone else wrote a
paper describing all possible modular compactifications of Mg.

Theorem 34.5 (Deligne-Mumford). There exists a proper moduli space Mg of stable curves.

(This Mg is in fact even projective)
What’s up with this finite automorphism condition?

Recall 34.6. A smooth curve of genus g ≥ 2 has finite automorphism group. ⊙

For more general curves C (say, C reducible), any automorphism will permute its irreducible com-
ponents. Does, there’s a finite index subgroup Aut0(C) ⊂ Aut(C) consisting of the automorphisms

118



which carry each irreducible component Cα of C to itself. Such an automorphism will permute the
intersection points of any two components. Hence, insider there, there’s another finite index subgroup
Aut1(C) ⊂ Aut0(C) which further fix each point of Cα ∩ Cβ for all α, β. Now, we make the following
observations

• Any component of genus ≥ 2 has finite automorphism group

• Any component of genus 1 will necessarily meet a second component (since g(C) ≥ 2), and so
contribute finitely many automorphisms to Aut1(C), i.e. #Aut(E, p) < ∞ for E of genus 1 and
p ∈ E

• P1 has infinitely many automorphisms fixing any two points, but only finitely many automorphisms
fixing any three or more points.

Corollary 34.7. Stability is equivalent to saying that C is nodal and

• every smooth rational component of C meets the rest of C at least 3 times.

Claim 34.8 (DM, stable reduction). Given any family C ! ∆ of curves with Ct smooth for t ̸= 0 and
C0 arbitrary, there exists a base change ∆′ ∼= ∆

t 7!tm
−−−−! ∆ so that there exists a family C̃ ! ∆′ (birational

to C′ := C ×∆ ∆′) so that C̃0 is stable. Furthermore, is D̃ ! ∆′ is a second such family, then C̃0 ≃ D̃0.

The birational map in the above theorem will be some sequence of blowups and blowdowns in practice.
Generally, stable reduction is something which one can carry out concretely in practice.

Example. say π : C ! ∆ is a family of curves with Ct smooth for t ̸= 0 and C0 smooth except for a This is prob-
ably gonna
be hard to
follow with-
out me be-
ing able
to draw
pictures
here. Oh
well, look
at the rele-
vant section
of Harris-
Morrison’s
‘Moduli of
Curves’

single cusp p ∈ C0. To keep life easy, we’ll further assume that the total space C is smooth. According
to Deligne and Mumford, it should be possible to replace the stable fiber C0 (which looks like ≺) by a
stable curve. Let’s try and do this...

In this pro-
cess, the
multiplic-
ity of the
newest ex-
ceptional
divisor is
the order to
which t van-
ishes at the
point being
blown up

• First step is to get rid of the cusp, and we do this by blowing it up, i.e. replace C by Blp C. Doing
this normalizes the cuspidal curve, so C0 now looks like C̃0 + 2E1 where C̃0 is the proper trans-
form/normalization of the original curve C0 and E1 ≃ P1 is the exceptional divisor. Furthermore,
E1 meets C̃0 tangentially. So we have a non-reduced curve whose reduction has a tacnode ≍; that
sounds worse.

• Blowup again. This gives C0 = C̃0 + 2E1 + 3E2 meeting at a triple point ∗.

• One more blowup. Now get C0 = C̃0 + 2E1 + 3E2 + 6E3 whose reduction is a set theoretic normal
crossing, i.e. each of E1, E2, C̃0 meets E3 in a different point (so looks like E with E3 as the
‘backbone’)

• If the above exceptional divisor was reduced, it’d be nodal and we’d be happy. However, it’s not,
so we start making base changes, first one of order 2. That is, base change along ∆s ! ∆t where
s2 = t.

We’ll actually do two things, so let’s motivate the second: at a point of E1 (away from E3), we
can take local coordinates z, w on C so that E1 = (w) and t = w2 (this is what it means for 2E1

to appear in C0). After base change, this becomes s2 = w2 which is two components meeting in
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a point. To get rid of this, we normalize. Thus, the real operation here is base change and then
normalize. To effect of this is to take the double cover of the surface branched along the union of
the components appearing in the special fiber with odd multiplicity.

To compute the new C0, first observe that C̃0 and E2 are contained in the branched locus, so they
remain after the operation. On the other hand, E1 ≃ P1 does not meet the branch locus, so we take
an unramified double cover of E1. Thus, E1 will be replaced by two rational curves E′

1, E
′′
1 ≃ P1.

Finally, E3 meets the branch locus in 2 points, so we take a double cover of E3 ≃ P1 branched at
two points. This is again a P1 (e.g. by Riemann-Hurwtiz), so we end up with

C0 = C̃0 + 3E2 + E′
1 + E′′

1 + 3E3

(E3 meets everything, but nothing else meets anything else; picture looks like an E with extra
teeth)

• Now, we make a base change of order 3 and pass to the normalization. This corresponds to taking
the triple cover branched along the union of the components of multiplicity not divisible by 3, i.e.
along C̃0 +E′

1 +E′′
2 . Note that E2 does not meet this branch locus, so we get an unramified cover

of E2, i.e. 3 different P1’s. Similarly, get a (cyclic) triple cover of E3 ≃ P1 branched at 3 points, so
it becomes a curve of genus 1.43 Thus, we end up with

C0 = E3 + E′
1 + E′′

1 + E′
2 + E′′

2 + E′′′
2 + C̃0

now reduced (note g(E3) = 1 but g(Eanything else) = 0)

• The C0 above is nodal, but not stable. We have smooth rational curves (e.g. E′) meeting the rest
of the fiber in one point. Each of them has intersection 0 with the total fiber and intersection 1

with the rest of the fiber, so self-intersection −1. Thus, we can blow them down to finally arrive
simply at a nodal union of E3 and C̃0 with g(E3) = 1 and g(C̃0) = g − 1. △

35 Lecture 9 (2/22)

Today: we want to talk more about stable curves and their moduli.

Recall 35.1. A stable curve is a nodal curve with finite automorphism group. ⊙

The moduli space of stable curves gives a modular compactification of the space of smooth genus g

curves. This was proven by Deligne-Mumford and then later again by Mumford-Knudsen. At some point,
we’d like to talk a little about both of their approaches to proving this, but not today.

35.1 Pointed curves

Let’s consider a variant of Mg.
43We can even say which genus 1 curve this is. Since E3 has an automorphism of order 3 (as its a cyclic triple cover of

P1), it must be the curve with j-invariant 0
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Definition 35.2. A stable n-pointed curve of genus g is a tuple (C, p1, . . . , pn) where C is a nodal curve
with arithmetic genus g, p1, . . . , pn are distinct smooth points of C, and we require that #Aut(C, p1, . . . , pn) <

∞. The pi’s are called marked points. ⋄

Remark 35.3. Aut(C, p1, . . . , pn) is the group of automorphisms which fix the points p1, . . . , pn. Geo-
metrically, this corresponds to asking that every smooth rational component P1 ⊂ C contains at least 3
special points, where a point is ‘special’ if its a node or one of the pi’s. ◦

Theorem 35.4 (DM ’69). There exists a coarse moduli space Mg,n for stable n-pointed genus g curves.
Furthermore, Mg,n is proper.

Remark 35.5. Mg,n will be a fine moduli space when n ≫g 0; briefly, a non-trivial automorphism can only
fix so many points, so when n is sufficiently large, you kill off all automorphisms. However, the same is
not true for Mg,n; even when n is large, you only get a coarse space, because non-trivial automorphisms
can persist (e.g. permute components or imagine C ∪ P1 with all marked points in the P1). ◦

Here’s one potential source of worry: what happens when two points come together? That is, if you
have C with marked points p, q ∈ C, you can imagine letting p approach q. Since Mg,2 is compact, there
must be some (unique) stable 2-pointed limit when p approaches q. What is it? Similarly, what if C is
nodal and p ∈ C is market; then, what’s the limit if you let p approach the node of C? (Recall marked
points are required to be smooth)

Example (p ! q). Say we have a fixed curve C with p, q ∈ C. Imagine that q is fixed, but p varies. With all
these exam-
ples, proba-
bly best to
sit down and
try to draw
what’s going
on. I could
go back and
add images
to these
notes, but
I’m lazy, so I
won’t

Start with the constant family ∆×C ! ∆ (∆ is the unit disk as usual). We have the horizontal section
∆× q along with some other section σ (corresponding to p) which actually varies. Say σ(t) ̸= q for t ̸= 0,
but σ(0) = q. We want to 2-pointed stable limit as t! 0.

The naive limit is not stable (since σ(0) = q are not distinct), so to fix this, we blow up ∆×C at the
point (0, q). In the new total space, the central fiber is a nodal union E ∪ C (E the exceptional divisor)
with the strict transform of the sections σ,∆× q both meeting E, but now in two distinct points. Thus,
the stable limit is a nodal union C ∪ P1 (with node at q ∈ C) with two marked points on the P1. △

Note that, in the above situation, it does not matter how quickly p approaches q. The stable limit
always looks the same since AutP1 acts 3-transitively on P1.

However, if there were 3 sections coming together, then we’d get a nodal union of C and P1 with 3

marked points on the P1. These four special points on the P1 (the 3 marked points + the nodal point)
have some j-invariant (or cross ratio), and this j-invariant can take any possible value, depending on the
relative speed/angle of approach of the sections coming together.

Example (p! node). Say C is a nodal curve with marked (smooth) point p ∈ C. What happens when
p approaches the node? What can try a similar approach starting with total space ∆×C, but this surface
is singular. Hence, it’s a little delicate to blow up. To avoid dealing with these, we replace C with its
(pointed) normalization (C̃, q, r) (here, q, r lie over the node of C).

So consider ∆× C̃ ! ∆ with constant sections q, r. Let σ be the section corresponding to the marked
point p, so σ(t) ∈ C̃ \ {q, r} for t ̸= 0, but σ(0) ∈ {q, r}. Say, σ(0) = r. We blow up the total space at
this point of intersection, and arrive at a central fiber which is a nodal union of C̃ and the exceptional
divisor E ≃ P1, with σ, r passing through E at two distinct (smooth) points and q passing through C̃ at
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some smooth point. Now, we can take this blown up surface, and re-identify the (disjoint) sections r, q

to see that the stable limit is a copy of C̃ with a rational bridge P1 passing through two points of C̃ (the
points r, q), and having a single marked point p. △

Note 45. Missed a couple small thinks Joe said, not sure about what...

Say C is a fixed (irreducible) nodal curve. Let p, p′ ∈ C be a pair of distinct smooth points. Thus,
(C, p, p′) is a stable pointed curve.

Question 35.6. What is the limit as both p, p′ approach the node? In particular, does the limit depend
on the particular family realizing this approach?

As before, we pass to the pointed normalization (C̃, q, r) of C and start with the constant family
∆× C̃ ! ∆. We have the horizontal sections q, r of this family. In addition, we have two more sections
σ, σ′ corresponding to the points p, p′. Suppose, σ(t), σ′(t) both avoid q, r for t ̸= 0, but both hit one of
these when t = 0.

• First suppose that σ(0) = q ̸= r = σ′(0).

We do the usual thing and blow up the total space at both these points of intersection. This gives a
central fiber consisting of a nodal chain E− C̃−E′ (so E,E′ ≃ P1 both meeting C̃ in a single point,
but not meeting each other). We have q, σ meeting E, and r, σ′ meeting E′ in the central fiber. We
now re-identify q, r in the central fiber, and the resulting picture is a little hard to describe in just
words, so I encourage you the draw this out.

Here’s my attempt: we have three components C̃, E,E′. C̃ has no marked points, but two nodal
points (where it meets E,E′). Furthermore, E,E′ meet each other at a single point (coming from
identifying q, r) and they each have a single marked point.

In any case, the result here does not depend on the particular approach (since every P1 in the result
has exactly 3 special point).

• Now suppose that σ(0) = r = σ′(0).

Again, we blow up, but now at a single point of intersection. We get a nodal union of C̃ and E ≃ P1

with q passing through C̃, but r, σ, σ′ passing through E. Now, when we re-glue q to r, we get C̃

with a rational bridge having two marked points (p, p′).

Here, we have a non-trivial cross ratio (coming from having 4 special points on the P1), and so the
resulting answer will depend on how p, p′ both approach the node (along the same branch).

35.2 The boundary of M g

We have a space Mg which contains Mg as an open subset. We’d like to understand the boundary of
Mg, i.e. the complement Mg \Mg.

Let C be stable genus g curve. It’s normalization C̃α =
⊔

Cα is the disjoint union of the normalizations
of its components. Say Cα smooth of genus gα. For each node pi ∈ C, we get two points qi, ri ∈ C̃ above
it.

We want to describe this data combinatorially.
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Definition 35.7. The dual graph of a stable curve C has one vertex for each irreducible component
of C, and one edge for each node (joining to the vertices corresponding to the components containing its
preimages in the normalization). Furthermore, one labels each vertex with the genus of the corresponding
component. ⋄

Considering these dual graphs will give us a stratification of Mg, i.e. a collection of locally closed
subsets s.t. the closure of any one is a union of itself and other strata. For a given graph Γ, we consider

MΓ = {stable curves with dual graph Γ} ⊂ Mg.

Question 35.8 (Audience). Is it each to see that these MΓ are locally closed?

Answer. It would be using some deformation theory, but we haven’t yet really introduced deformation
theory, and it’s unclear if we want to. Without using it, it’s less immediately clear. ⋆

Example (Stratification in genus 2). Possible dual graphs

(1) A single vertex with weight 2, i.e. a smooth genus 2 curve.

(2) A single vertex with a self loop and weight 1, i.e. a nodal geometric genus 1 curve

(3) Two vertices with an edge between them and both weight 1, i.e. a nodal union of two elliptic curves

(4) A single vertex with 2 self loops and weight 0, i.e. a rational curve with 2 nodes

(5) A weight one vertex joined with a weight 0 vertex (and the weight 0 vertex has a self-loop), i.e. a
nodal union of an elliptic curve and a rational curve with a single node

(6) A pair of weight 0 vertices with three edges between them, i.e. two rational curves with 3 points
identified between them

(7) A pair of weight 0 vertices each with a self-loop and with one edge between them, i.e. a nodal union
of two rational curves w/ a single node

Note, to be stable, a graph needs ≥ 3 edge ends connected to each rational vertex. △

We’d like to determine dimMΓ in terms of the graph Γ. We’ll start now, and pick this up next time
since we only have a few minutes left.

Example (Case (7) above). In this case, we have exactly 3 marked points on each P1 (each normalization
of a rational component), so all such curves are isomorphic, i.e. dimMΓ(7) = 0 (the moduli is a single
point). △

Example (Case (5) above). Get a one-parameter family of these, by letting the elliptic curve on the
left vary. In the closure, the j-invariant of the elliptic curve goes to ∞, and so you get something of type
(7). △

Example (Case (4) above). These come from taking a single P1 and identifying 2 pairs of points, so
we’re in effect marking 4 points on P1. These have a cross ratio, so we get a 1-parameter family. △
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Fact. Cases (2),(3) have dimension 2, cases (4),(5) have dimension 1, and cases (6),(7) have dimension
0. In general, the codimension of each strata is the number of edges in the dual graph (= the number of
nodes of the curves).

We’ll show this on Thursday. Note that this will give us a start towards the divisor class theory of
Mg.

Note 46 (added some time after lecture). If I am recalling lecture correctly, Joe remarked at the end that
the strata MΓ are images of maps from products of moduli spaces to Mg, e.g. note that (continuing with
the genus 2 example) M(3) is the image of a map M1,1×M1,1 !M2 which sends a pair of marked elliptic
curves to the (unmarked) stable curve obtained by gluing them together at their marked points. On the
one hand, since dimM1,1 = 1 (M1,1 = A1

j is the j-line), this makes it believable that dimM(3) = 2.
On another hand, more generally, this sort of reasoning shows that MΓ is constructible (i.e. a union of
locally closed subsets) since it’s the image of a morphism of schemes; if you further accept that Mg,n is
irreducible, then I guess this in fact gives a way to see that MΓ is locally closed.

36 Lecture 10 (2/24)

Last time, we asserted that we can compactify Mg by throwing in isomorphism classes of stable curves
(those with only nodal singularities and with finite automorphism groups). Now, we embark on a relatively
large scale project, even accepting that we’ve obtained a modular compactification Mg of Mg. To really
make use of the fact that Mg is a modular compactification, we’ll need to take the theory of smooth
curves we’ve developed and extend it over to the theory of stable curves. This will allow us to treat the
objects Mg parameterizes essentially uniformly.

The first thing we’ll want to do is finish up our discussion of dual graphs which we started last time.

36.1 The boundary of M g, continued

Let C be a stable curve of genus g with δ nodes.

Recall 36.1. We associate to this the dual graph ΓC which is a weighted graph with one vertex for each
component Cα of C which is given weight/label/marking gα = g(Cα); furthermore, this is one edge for
each node, connecting the two (not necessarily distinct) irreducible components containing this node. ⊙

This association gives us a stratification of Mg, a way of writing it as a disjoint union of locally closed
subschemes.

Example (g = 3). The possible dual graphs here are

• A single vertex with weight 3

This is the open M3 ⊂ M3 of smooth curves

• A single vertex with weight 2 and one self-loop

A genus 2 curve with a node

• A weight 2 vertex attached to a weight 1 vertex

A nodal union of an elliptic curve and a genus 2 curve
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• A single vertex of weight 1 with two self-loops

An elliptic curve with two nodes

• Two weight 1 vertices attached by an edge, and one of them also has a self loop

A nodal union of an elliptic curve and an elliptic curve with a node

• Same as above, except the vertex with self-loop has weight 0 and the other has weight 2

A nodal union of a genus 2 curve and a rational curve with a node

• Two weight 1 vertices with two edges between them

A double nodal union of two elliptic curves

• A length 3 path of weight 1 vertices

A length 3 chain of elliptic curves △

Let’s consider some numbers. Let C be a stable curve with normalization C̃ =
⊔
Cα. Write gα = g(Cα)

and say Cα contains nα points lying over nodes of C (so
∑

nα = 2δ). We want to estimate the dimension
of the locus of curves with this dual graph Γ. First observe that (Cα, p1, . . . , pnα

) ∈ Mgα,nα
is a stable

pointed curve, so this data varies in a family of dimension dimMgα,nα
= 3gα − 3+ nα (this expression is

correct even when gα ∈ {0, 1}, by the condition of stability). The upshot is that
{
C ∈ Mg : ΓC = Γ

}
is

the image of a map ∏
α

Mgα,nα
!Mg.

Fact. The above map is finite (which should suffice to conclude that the image is locally closed).

Thus,
dim

{
C ∈ Mg : ΓC = Γ

}︸ ︷︷ ︸
ΣΓ

=
∑
α

(3gα − 3 + nα).

Now, it’s not hard to show the genus formula

g = pa(C) = g(C̃) + δ =
∑

(gα − 1) + 1 + δ =
∑

gα − ν + 1 + δ

where ν is the number of irreducible components. Now, note that

dimΣΓ =
∑

(3gα − 3 + nα) =
∑

3(gα − 1) + 2δ = 3g − 3− δ so codim(ΣΓ) = #nodes.

Let’s look at some extreme cases

• δ = 1 (codimension 1 strata)

These are curves with one node, i.e. dual graphs with exactly one edge. This means the dual graph
either has 1 vertex (with weight g − 1) or two vertices (with weights α and g − α). This gives
approximately g

2 strata with codimension 1, i.e. g
2 divisors on Mg.

This is significant since one of the main ways we study projective varieties is by looking at their
divisors and line bundles. Thus, it’s natural to try and understand the Picard group of Mg.
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Remark 36.2. We also see that the boundary of Mg is the union of these ∼ g
2 divisors. ◦

• What’s the largest possible δ? Well, codimΣΓ = δ, so δ certainly can’t exceed 3g−3. In fact, there
will be finitely many stable curves of genus g with 3g − 3 nodes. In this case, we must have

– gα = 0 for all α.

If you had a component of positive genus, you could vary its moduli. This would contradict
dimΣΓ = 0.

– each component meets the other components exactly 3 times.44

If there were 4 or more points of intersection, you could vary the cross ratio of those 4 points
in order to move the curve in a family, contradicting dimΣΓ = 0.

– There are 2g − 2 components

Given previous two bullet points, this follows from the genus formula.

Thus, the dual graph Γ of such a C is a trivalent graph (i.e. every vertex is contained in 3 edges
(w/ multiplicity)).

Example (g = 2). The two possibilities here are two vertices with 3 edges between them or two
vertices with one edge between them and each having a self-loop. △

Example (g = 3). Can take Γ = K4, complete graph on 4 vertices. The curve here is 4 lines in P2.

Could also take a vertex with valence 3 so that each of its neighbors has a self-loop.

Could take something that looks like • = • − • = • with one more edge connecting the other two
vertices.

The last possibility is C. − . <: || where each . is a vertex (4 in total) and everything else denotes
edges (6 in total). △

Definition 36.3. A stable curve with the maximum number δ = 3g − 3 of nodes is called a
terminal curve. ⋄

Open Question 36.4. How many terminal curves of genus g are there?

(e.g. 2 is genus 2 and 5 in genus 3)

Question 36.5 (Audience). Is it easy from looking at these dual graphs to tell which strata specialize to
which others?

Answer. Let’s reverse the question: given a strata, which others is it in the closure of? This corresponds
to removing/smoothening a node of the curve (turning × into ≍). Let Γ be a graph and let e be one
of its edges. We can define another dual graph Γ̃ by deleting an edge and identifying the two vertices
at which the edge is attached, i.e. by contracting the edge e. The new single vertex has genus equal to TODO: Add

in a figure
giving an
example of
this

the sum of the genera of the original vertices (1 fewer node and 1 fewer component, so arithmetic genus
unchanged this way). If you contract a self-loop, you instead increase the genus by 1 (1 fewer node, but
same number of irreducible component) ⋆

44Including the possibility that it contains both branches of a node and one other point of intersection
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36.2 Theory building for stable curves

The first thing we did when talking about smooth curves was define the notion of a divisor (as a finite
formal linear combination of points). This definition does not work for singular curves. The first thing
we’ll want to do here is see the correct definition of divisors for stable curves.

Observation 36.6. If C is a smooth curve, then an effective divisor on C is the same thing as a codimension
1 subscheme of C.

Definition 36.7. Let C be a possibly singular curve. An effective (Cartier) divisor on C is defined
to be a locally principal45 subscheme D ⊂ C of dimension 0. ⋄

Example. Say C ⊂ P2 (so C = α) is a nodal cubic, with node p. First note that p is not a Cartier
divisor. Any function vanishing at the point p will do so to order ≥ 2 and so not cut out a reduced
subscheme.46 At the same time, there exists infinitely many Cartier divisors of degree 2 with support
at p, parameterized by lines passing through p (except you get a degree 3 divisor whenever your line is
tangent to one of the branches). △

Construction 36.8. Given an effective Cartier divisor D ⊂ C, w/ local defining equation f , we define the
invertible sheaf/line bundle OC(D) by setting

OC(D)(U) = {rational functions g on U : fg is regular} .

Note that this is simply dual to the ideal sheaf of D (which is invertible by definition of a Cartier divisor).

Definition 36.9. A Cartier divisor is a formal difference of effective Cartier divisors. ⋄

Definition 36.10. If f is a meromorphic/rational function on C, we write f locally as g/h and define
the divisor of f to be div(f) = V (g)−V (h). We say two Cartier divisors D,E are linearly equivalent
if there exists a rational function f with (f) = D − E. ⋄

Fact.
PicC ≃ {Cartier divisors}

linear equivalence

What’s coming up next week?

• We need an appropriate analogue of the notion of a canonical bundle. The cotangent sheaf won’t
work for stable curves. We’ll need to extend Riemann-Roch to stable curves.

• We also need an appropriate analogue of the Jacoabian of a stable curve. We can ask if there’s still
a variety parameterizing line bundles on stable curves, and if so, how its geometry is affected by
the geometry of the stable curve it comes from.

45i.e. in a neighborhood of any point, D is cut out by a single equation
46Alternatively, the tangent space at p has dimension 2 and so any principal subscheme will have tangent space of

dimension ≥ 1 at p
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37 Lecture 11 (3/1)

37.1 Administrative Stuff

Harvard has updated its mask guidance. As of Thursday, assuming the class room is suitable (as ours
is), Joe will be able to lecture maskless. Let him know if you’d rather he kept it on for any reason. Also,
potentially, the students can be unmasked if we’re sat far enough apart. By default, the plan would be
for Joe to be unmasked and the students to remain masked.

Plan for today

• The (degree 0) Picard group Pic0(C) of a nodal curve

• The dualizing sheaf of a nodal curve

We’ve developed these notions for smooth curves. We now would like to generalize this story to singular
curves. We focus on nodal curves since we have seen these suffice to compactify Mg. One could also
imagine generalizing them to arbitrary singular curves, and this works to varying degrees. For the
purposes of this coarse, we stick with the nodal case.

Let’s begin with a formula: say C is a nodal curve with δ nodes and k irreducible components Cα.
Let C̃α be the normalization of Cα, and let gα = g(C̃α) be the geometric genus of Cα. Note that the
normalization of C is simply C̃ =

⊔
C̃α. Note that the dual graph of C has k vertices and δ edges.

Notation 37.1. We’ll always use g(−) to refer to the arithmetic genus of −. If we need its geometric
genus, we’ll write g(−̃).

Given the above setup, one has the genus formula for nodal curves

g(C)− δ = g(C̃) =
∑

gα − k + 1 =⇒ g(C) =
∑

g(C̃α)− k + 1 + δ.

This follows from examining the cohomology of the exact sequence 0! OC ! ν∗OC̃ ! F ! 0.

Remark 37.2. g(C) =
∑

gα ⇐⇒ δ = k − 1, i.e. iff the dual graph is a tree (connected graph with one
fewer edge than vertex). In general,

∑
g(C̃α) = g − h1(ΓC) where h1(ΓC) is the rank of first singular

cohomology of the dual graph.47 ◦

37.2 Pic0(C) of a nodal curve

Let’s first consider the case where C is irreducible w/ a single node p ∈ C. Let q, r ∈ C̃ be the points of
the normalization lying above the node. Pullback along C̃

ν
−! C gives a natural (surjective) map

Pic0(C)
ν∗

−! Pic0(C̃)! 0.

Remark 37.3. A line bundle L on C is the same thing as a line bundle L̃ on C̃ together with a choice of
isomorphism L̃q ≃ L̃r. Such an identification corresponds to multiplication by a nonzero scalar, so the
kernel of the map is C×, i.e. we have

C× −! Pic0(C) −! Pic0(C̃) −! 0.

47If T ⊂ ΓC is a spanning tree, then T is contractible so ΓC is homotopy equivalent to ΓC/T with is a bouquet of k−δ−1
circles
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◦

Question 37.4 (Audience). Is it obvious that this data always determines a line bundle L?

Answer. Here’s one way to see it. Given L̃ on C̃ with an identification φ : L̃q
∼
−! L̃r, we form the sheaf

L on C with sections
L(U) =

{
σ ∈ L̃(ν−1(U)) : φ(σ(q)) = σ(r)

}
One then verifies that this is locally free. ⋆

Is the map C× −! Pic0(C) in the previous remark injective? If not, you’d have a line bundle
L on C with an automorphism acting differently on the fibers above q, r. This can’t happen because
automorphisms of a line bundle are (nonvanishing) global functions, and a global holomorphic function
on an irreducible curve must be constant. Thus, we have 0! C× ! Pic0(C)! Pic0(C̃)! 0.

Exercise. If C has two smooth irreducible components meeting at a node, then you get an isomorphism
Pic0(C)

∼
−! Pic0(C̃) (the latter group is the product of the Jacobians of the two components).

Remark 37.5. In either case (connected curve with 1 node and no other singularities), Pic0(C) has
dimension g. When C irreducible, it is not compact, but when C is reducible, it is compact. ◦

Let’s now consider the more general setting. Say C is any nodal curve and write

C̃ =
⊔

C̃α
ν
−! C.

We again get a map Pic0(C)! Pic0(C̃) =
∏

Pic0(C̃α) which is surjective.

Warning 37.6. Pic0(C) usually refers to degree 0 line bundles. If C is reducible, a line bundle has a
degree on each component, and one usually takes its degree to be the sum of these. However, when we
write Pic0(C̃), we really want line bundles which are degree 0 individually on each component (and not
just those with total degree 0). •

To descend a line bundle on C̃ to one on C, we need to make δ identifications, so we get

(C×)δ −! Pic0(C) −!
∏

Pic0(C̃α) −! 0.

However, the left map may not be injective if there are nodes lying on two components. What one
actually gets is an exact sequence

0 −! (C×)a −! Pic0(C) −!
∏

Pic0(C̃α) −! 0 where a = h1(ΓC).

In particular, Pic0(C) is a g-dimensional group which is compact iff Γ is a tree (in this case, we say that
C is of compact type).

Question 37.7. Can we compactify Pic0?

(Sounds like finding a good compactification of an arbitrary singular curve is still open)
As before, start with the example of C irreducible with a single node p ∈ C. Recall this gives

0 −! C× −! Pic0(C) −! Pic0(C̃) −! 0.
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To figure out what the compactification should be, let’s look at degree 0 line bundles on C as they
approach the hole in C×. Let q, r ∈ C̃ be the points over the node. Let s, t ∈ C be two different smooth
points. Consider the line bundle OC(s−t) as t varies. What happens when t! p? The naturally limiting
sheaf is Ip(s), the sheaf of meromorphic functions on C with a simple pole allowed at s and which vanish
at p. Now, the maximal ideal at the node point p is not free (it requires two generators, but is only rank
1). Thus, what we get is not a line, but only a torsion-free sheaf (of rank 1).

The upshot is that we can compactify Pic0(C) by taking

Pic0(C) =

{
torsion-free sheaves

of rank 1 on C

}
.

(implicitly, we only want the degree 0 such sheaves above. We’ll say what the degree of a rank 1 torsion-
free sheaf is in a moment).

Question 37.8. What does the result of forming this compactification look like?

Keeping with the same example of C irreducible with a single note, note that Pic0(C̃) is a (g − 1)-
dimensional abelian variety, and that Pic0(C) ! Pic0(C̃) is a C×-bundle. We can compactify this to a
P1-bundle over Pic0(C̃) by introducing a cross-section at 0 and one at ∞. By considering lim

t!p
O(s − t) TODO:

Come back
and make
sense of this
description

as t approaches p along the two branches, one sees that we want to identify the 0 cross-section above
O(s − q) to the ∞-cross section above O(s − r). The quotient of the P1-bundle by this identification is
Pic

0
(C).

Warning 37.9 (Assuming I heard correctly). There’s not a natural map Pic
0
(C)! Pic0(C̃) •

Example (Cuspidal curves). Say C irreducible with a single cusp p ∈ C with preimage q ∈ C̃. We again
get a map Pic0(C)! Pic0(C̃)! 0. What is the kernel? What data do you need to specify to descend a
line bundle from C̃ to C? In this case, you get

0 −! C −! Pic0(C) −! Pic0(C̃) −! 0.

In general, for C an irreducible curve, you’ll get a similar exact sequence where the kernel is some product
of C’s and C×’s whose dimension is the sum of the δ-invariants of the singularities.48 △

37.3 Dualizing sheaves

In the case of smooth curves, the canonical bundle played a special role due to its appearance in Serre
duality and Riemann-Roch. We want a suitable analogue for nodal curves. This will be given by the
dualizing sheaf (on a possibly singular curve).

The definition of the dualizing sheaf of a nodal curve will be relatively straight forward, but may seem
a bit mysterious. To motivate it, let’s first review a proof of Riemann-Roch.

Proof sketch of RR. Consider a smooth curve C with a divisor D = p1 + · · ·+ pd (assume pi distinct to
keep life simple). We would like to find dimL (D) where

L (D) =

{
f ∈ M(C)

∣∣∣∣f has at worse a simple pole at each pi
and f is holomorphic elsewhere

}
.

48The tangent space at the identity of Pic0(C) is H1(C,OC) which has dimension g(C) (assuming C irreducible)
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Fix local coordinates zi around each pi. For f ∈ L (D), we can write f(zi) = ai/zi + g(zi) with g

holomorphic. The residues (a1, . . . , ad) determines f up to the addition of a constant (two functions with
the same residues would have a global holomorphic difference). Thus, dimL (D) ≤ d+ 1.

However, we can do better (this is the key step). If ω is any holomorphic 1-form on C, and f ∈ L (D),
then fω will be a meromorphic 1-form ( =⇒ the sum of its residues is 0). If we write ω(zi) = bidzi+(stuff
vanishing at pi), then,

0 =
∑

Res(fω) =
∑

aibi.

Thus, for every holomorphic differential ω, we get a linear relation on the ai’s. This gives (g−h0(K−D))

linearly relations on the ai’s (e.g. bi = 0 for all i, the associated relation is trivial). Thus,

h0(D) ≤ d+ 1− (g − h0(K −D)).

The same relation applied to K −D gives h0(K −D) = (2g − 2 − d) + 1 − (g − h0(D)). Adding these
two inequalities up gives h0(D) + h0(K −D) ≤ h0(K −D) + h0(D). Since two inequalities added up to
an equality, they must have both been an equality to start. ■

The key was that to a meromorphic section of the canonical bundle, we can associate residues, and
the sum of these residues is 0. We also needed it to have degree 2g − 2 and to have g global sections.

On Thursday, we’ll see the construction of a line bundle on a nodal curve satisfying these properties.

38 Lecture 12 (3/3): Dualizing sheaves

Recall 38.1. To prove RR, we needed 3 facts about KC

• degKC = 2g − 2

• h0(KC) = g

• For all meromorphic sections ω of KC , ∑
p∈C

Resp ω = 0. ⊙

We would like to find, on a nodal curve C, a sheaf with analogous properties.

Example. Say C irreducible with a single node p ∈ C lying under q, r ∈ C̃, where ν : C̃ ! C is the
normalization.

• 1st attempt: take

KC(U) =

{
holomorphic 1-forms

on ν−1(U)

}
,

i.e. KC = ν∗KC̃ . This fails on all accounts

– degKC = deg(KC̃) = 2(g − 1)− 2 = 2g − 4

– H0(KC) = H0(KC̃) has dimension g − 1
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Given that a holomorphic 1-form on C̃ only has 2g − 4 zeros, we want to allow (simple) poles at
q, r.

• 2nd attempt: take the dualizing sheaf ωC to be defined by

ωC(U) =
{
ω ∈ KC̃(q + r)(ν−1(U)) : Resq(ω) + Resr(ω) = 0

}
This will give the correct sheaf. △

Let’s give the general definition.

Definition 38.2. Let C be any reduced curve (arbitrary singularities) and let ν : C̃ ! C be its normal-
ization. The dualizing sheaf of C is given by

ωC(U) =


meromorphic differentials ω

on ν−1(U)

∣∣∣∣∣∣∣∣
∀f ∈ OC(U),∀p ∈ U∑
q∈ν−1(p)

Resq(fω) = 0

 ⋄

Why does this specialize to what we said before in the nodal case?

Note 47. I was too busy fiddling with the previous displayed equation to hear the answer to this question,
so... exercise: figure out the answer.49

Observation 38.3. In the nodal case (C only has nodal singularities),

• ωC is locally free (of rank 1).

If you choose local coordinates x near q and y near r, then a generator for ωC near p is given by
the pair

(
dx
x ,−dy

y

)
.

Warning 38.4. ωC is not always locally free if you allow C to have arbitrary singularities. •

• h0(ωC) = g.

Note that h0(KC̃(q + r)) = g by Riemann-Roch, and that H0(ωC) = H0(KC̃(q + r)) since global
meromorphic 1-forms on smooth curves always have residues adding up to 0.

• deg(ωC) = 2g − 2 I’m pretty
sure degree
of a line
bundle on
C is the de-
gree of its
pullback to
the normal-
ization

The total number of zeros of a section minus the total number of poles is 2g − 4. There are two
poles at q, r, so there better be 2g − 2 zeroes.

Using these, one can obtain Riemann-Roch for nodal curves.
Above, we’ve had in mind that C is irreducible. In general, we want to be able to handle also reducible

(but still connected) C.

Example (reducible nodal). Say C is a nodal union of a genus α curve A and a genus g−α curve B, so
C̃ = A ⊔B. What can we say about the dualizing sheaf ωC (same definition) in this case?

• It has basepoints TODO:
Come under-
stand this
example

49Sounds like the main point is that you can find functions vanishing identically along one branch at p but to order n− 1
along the other branch. Thus, if you have a pole or order ≥ 2 at q, you can multiply a function to get a meromorphic
differential with a simple pole at q but which vanishes identically near r, and such a things residues can’t add to 0
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You can’t find a non-holomorphic differential with a simple pole at a single point on either com-
ponent A,B of the normalization (residues must sum to 0 on each component). If you look at
sections near the node p, they’ll be the generator (dx/x,−dy/y) multiplied by functions vanishing
at p. Thus, ωC won’t be globally generated in this case. △

Example (cusp). Say C has a cusp at p ∈ C and no other singularities (so C irreducible). Let ν : C̃ ! C

be the normalization. Let q ∈ C̃ lie over the cusp. We have a local coordinate t around q, so that
ν : t 7! (t2, t3).

Remark 38.5. C has the same underlying topological space as C̃, but its structure sheaf consists of
functions with derivative vanishing at q, i.e.

OC(U) =
{
f ∈ OC̃(ν

−1(U)) : f ′(q) = 0
}
. ◦

Note that ωC(U) consists of meromorphic differentials ω on C̃ s.t. the residue of fω at q vanishes
for all f ∈ OC(U). This allows double poles at q whose residue vanishes. However, it does not allow for
higher order poles (or for simple poles). That is,

ωC(U) =
{
ω ∈ KC̃(2q) : Resq(ω) = 0

}
.

Note that this satisfies the three conditions we identified earlier. Furthermore, ωC is locally free, with
generator at p given by dt/t2. △

Example (tacnode). Say C is irreducible with a tacnode at p ∈ C and no other singularities. Let
ν : C̃ ! C be the normalization, and let r, q ∈ C̃ lie over the tacnode. Sections of the dualizing sheaf
can’t have poles of order ≥ 3 at r, q. This is because, locally near p ∈ C, you can find a function which
vanishes identically along one branch, but only to order 2 at the point lying over the other branch.
Multiplying such a thing by a differential with a triple pole at one point will give a 1-form with a simple
pole at r (say) but vanishing near q whose residue then don’t add to 0. On the other hand, one can allow
double poles at q, r over p. The dualizing sheaf here will be a line bundle, and it will satisfies the three
conditions we identified earlier. △

The simplest example where the dualizing sheaf is not locally free is given by a spatial triple point.

Example (spatial triple point). A spatial triple point (locally) looks like the union of the three coordinate
axes in A3. Let C be irreducible with a spatial triple point p ∈ C and no other singularities. Let ν : C̃ ! C

be the normalization. In this case, a section of the dualizing sheaf will look like a meromorphic differential
on C̃ with at worse simple poles at the points q, r, s ∈ C̃ above p (and whose residues add to 0). Thus,
near p, one gets sections of the form(

dx

x
,−dy

y
, 0

)
,

(
dx

x
, 0,−dz

z

)
,

(
0,

dy

y
,−dz

z

)
.

There’s only one relation among them, so the dualizing sheaf here is not locally free. △

Question 38.6. When is ωC locally free?

Theorem 38.7. Let C be a reduced curve. Then, ωC is locally free iff C is Gorenstein. One day
I’ll need
to actually
learn what
this word
(and Cohen-
Macaulay)
mean

In particular, this holds when C is planar, or more generally, if C is a local complete intersection.
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38.1 Another characterization of dualizing sheaves

We’ve talked about the canonical bundles of smooth curves since the beginning. We’ve now defined the
dualizing sheaf and claimed it’s the right analogue in the case of singular curves.

Question 38.8. Say we have a family π : C ! ∆ of curves where Ct is smooth for t ̸= 0 and C0 is nodal.
To keep things simple, also assume C is smooth. Does the canonical bundle of the general fiber relate to
the dualizing sheaf of C0?

Here’s a simpler question: ignoring the singular fiber, so the canonical bundles of the fibers fit together
to a form a line bundle on C?

Yes. Let ∆∗ = ∆ \ {0} and let C∗ = π−1(∆∗). Form the relative cotangent bundle

T ∗
C∗/∆∗ := T ∗

C∗/dπ(T ∗
∆∗),

i.e. it’s defined by the exact sequence

T ∗
∆∗ −! T ∗

C∗ −! T ∗
C∗/∆∗ −! 0

of cotangent bundles. This relative cotangent bundle will restrict to the canonical bundle (= cotangent
bundle) on each fiber. Now, does this extend to a line bundle on all of C?

Fact. Yes. It extends to the relative dualizing sheaf ωC/∆. This is a line bundle on C s.t. (among other
things), ωC/∆|C0

= ωC0
.

This uniquely characterizes the dualizing sheaf. If you have a smooth surface and a line bundle away
from a single point, then there’s a unique way to extend it to a line bundle on the whole surface.

38.2 Plane curves revisited

We started this semester by talking about plane curves. At the time, we were thinking of them in relation
to their normalizations. Now that we’ve generalized some notions from smooth curves to arbitrary curves,
let’s revisit this material with a new eye.

Recall 38.9. We started by looking at smooth C : f(x, y) = 0. We write that the holomorphic differential
ω0 = dx/∂f/∂y and said that we could get more by multiplying this by polynomials (of degree ≤ d− 3).

We then looked at nodal C and saw that ω0 had simple poles at the points of C̃ lying over the nodes
of C. ⊙

In either case, the ω0 you write down gives a holomorphic section of the dualizing sheaf.

39 Lecture 13,14 (3/8,10): Out of town

40 Lecture 15 (3/22)

Note 48. Roughly 12 minutes late. Oops

Today
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• Construction of Mg

• divisor class theory of Mg (continued from last week)

Next week: guest lecture by Prof. deMarco on Teichmuller theory (3/29)
Constructions of Mg/Mg

• DM approach (’69)

gluing together deformation space

• Mumford-Knudsen (’76)

via geometric invariant theory (GIT)

• Teichmuller theory

40.1 Deformation theory

Note 49. Missed some motivation/intuition Joe explained out loud

Let X be a given curve of genus g.

Definition 40.1. A deformation of X is a germ of a family of curves over a pointed scheme (B, b0) ⋄

That is, we’re considered families C ! B of curves over B equipped with an isomorphism central fiber
φ : X

∼
−! C0 := Cb0 . By ‘germs’ of such families, we mean that two are considered equivalent if they

agree around opens of their points.

Theorem 40.2. There exists a “versal deformation space” of X, i.e. a deformation C ! ∆ (with
0 ∈ ∆ and X ∼= C0) so that every deformation of X is a pullback of this family.

Warning 40.3. There’s no uniqueness claim above. ‘versal’ is ‘universal’ without uniqueness. Conse-
quenctly, this condition does not uniquely characterize the family C ! ∆, e.g. if you have one such
family, you can replace the base with ∆× S for whatever random scheme S you want. •

To get uniqueness, one asks for a versal deformation space which is minimal w.r.t. this property (such
a space also exists).

Remark 40.4. Moduli spaces may or may not exist, but versal deformation almost always exist. ◦

Note 50. Got distracted and missed some stuff Joe was saying about inductively extending deformations
over Spec k[ε]/(εn)

Suppose the curve X has automorphisms. Since the data of a deformation C ! B includes a choice
of identification φ : X

∼
−! C0, we see that Aut(X) acts on the set of deformations over a given base.

In particular, it will act on a versal deformation space. From this, you should expect that a given fiber
of a versal deformation C ! ∆ appears Aut(X) times, so this versal deformation space will not give a
neighborhood of the point [X] in the moduli space. What one would like to do is take the quotient of
∆ by Aut(X) and hope that this now gives a (germ of a) neighborhood of the point [X] in the moduli
space. Roughly speaking, this is what Deligne and Mumford do. They want to glue together quotients of
deformation spaces, but in order to actually carry this out, one needs to pass from the world of schemes
to the world of stacks.
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Question 40.5 (Audience). This makes is clear that we want stable curves to have finite automorphisms.
How do we see that if we throw in weirder singularities then the resulting space is non-separated or
otherwise bad?

Answer. Secretly, there’s nothing stopping us trying to do this with other types of curve singularities
allowed. DM’s choice of stable curves was indeed a choice. People later wondered if there were other
classes of curves for which this construction will produce a compact moduli space. For example, David
Schubert’s thesis considers curves with nodes/cusps as singularities and no elliptic tails. More recently,
David Smythe (spelling?) found a way of generating infinitely many classes of curve which produce
compact moduli. ⋆

40.2 Knudsen-Mumford approach

Their approach was to use Geometric Invariant Theory (GIT). The basic idea is that it may not be clear
how to construct a moduli space of curves directly, but it’s a little easier to construct a moduli space of
curves equipped with some extra structure.

Example. Curves of genus g equipped with a closed embedding into Pr (of given degree d) have a moduli
space, given by the Hilbert scheme H. Note that PGLr+1 = Aut(Pr) will act on the Hilbert scheme H,
and so our candidate for Mg is the quotient H/PGLr+1.

The problem with this is that quotients don’t always exist in algebraic geometry; they do for finite
groups, but not for positive-dimensional groups (consider e.g. trying to form the quotient of C× ↷ C.
There will be two orbits, with one lying in the closure of the other). So, how do you overcome this? △

Let’s spend a bit of time on this issue of quotients not always existing.

Example. Say we want a moduli space of curves of genus 1. A (smooth) curve of genus 1 can always be
embedded in the plane as a cubic curve, and the space of plane cubics is a P9. The group PGL3 = Aut(P2)

acts on this P9, and we’d like to say that M1 = P9/PGL3 is the quotient of this action. Note first that
the orbit containing y2 = x3 lies in the closure of every orbit of smooth curves, e.g. if E : y2 = x3+ax+b

is smooth, we can consider the family

Et : y
2 = x3 + t2ax+ t3b

for which E ∼= Et if t ̸= 0 but E0 ≃ (y2 = x3). Thus, a point in the quotient corresponding to the
cuspidal curve would lie in the closure of every other point, so the quotient cannot be a variety. △

Let’s now give an overview of the setup/steps of GIT.

Setup 40.6. We have a reductive algebraic group G acting on a projective variety X, and we want to
form the quotient X/G.

The formalism of GIT classifies the orbits of G ↷ X into three categories

• The stable orbits

These behave well when you want to take a quotient. These will sweep out an open subset Xs
open
⊂ X

such that a good, geometric quotient Xs/G exists. However, Xs/G if often not compact.
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Example. In the PGL3 ↷ P9 plane cubic example from before, nodal curves will not be stable.
However, you can have a family of smooth curves specializing to a nodal one, so the stable quotient
won’t be proper in this case. △

• Strictly semistable orbits.

The stable and semistable locus Xss also admits a quotient Xss/G, which is now (usually?) com-
pact.

Warning 40.7. The points of the quotient Xss/G no longer correspond 1-1 to semistable orbits.
In the plane cubic example, the closure of the orbit of nodal cubics contains the orbit of a ‘lines +
conics’ and also the orbit of ‘triangles’. •

• Unstable orbits.

These will lie in the closure of a general orbit, so cannot be included if you want a nice quotient.

Part of the power of GIT is that it gives you a method of determining which orbits are of each type, as
well as telling you how to construct the corresponding quotient (in the cases they exist). I think

Mumford’s
‘Geomet-
ric Invari-
ant Theory’
book is the
standard ref-
erence, but
Mukai’s ‘An
Introduction
to Moduli
and Invari-
ants’ gives
a gentler in-
troduction
to the sub-
ject in a few
of its middle
chapters

The idea of Knudsen and Mumford to construct Mg is to apply GIT to the Hilbert scheme H of
tricanonical curves φ3K : C ↪! P5g−6. One wants to form the quotient H/PGL5g−5 and show that it is
Mg.

Remark 40.8. Knudsen and Mumford found that in this case of PGL5g−5 ↷ H, there are no strictly
semistable orbits. Furthermore, remarkably, the stable orbits are exactly those corresponding to ‘stable
curves’ in the sense of DM. ◦

40.3 Teichmüller theory

Fact. Teichmüller was a literal nazi.

Recall 40.9. Guess lecture next Wednesday by Prof. DeMarco on Teichmuller theory. ⊙

This approach is very much complex analytic. It’s hard to imagine it’s possible to apply it to ground
fields other than C.

At a high level, you once again start with curves equipped with extra structure, and then remove the
dependence on the extra structure. What’s the extra structure in this case?

Start with pairs (X,σ) with X a compact genus g Riemann surface and σ a ‘pair of pants decompo-
sition’ of X. If I’m understanding correctly, this is a collection of loops on X which expresses it as a
union of ‘pairs of pants,’ pictured as the obvious cobordism between S1 and S1 ⊔ S1 (up to homotopy
equivalence, this is a disk in the plane minus two sub disks).

It turns out the family of pairs of pants has 3 real parameters. If you have a Riemann surface D that
looks like a disk minus two subdisks, its universal cover is a disk. A disk has a unique (Poincaré) metric.
This metric will descend to D (the covering group will preserve it), and so in th descended metric, you can
ask for the lengths of the three boundary circles of D. These lengths determine D up to biholomorphism.

The upshot is that we can decompose X into 2g − 2 pairs of pants, each specified by specifying the
lengths of 3 boundary loops. Since these loops are identified in pairs, this gives 3(2g− 2)/2 = 3g− 3 real
parameters. Since to glue these to form X, we need to identify circles, we observe that this identification
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is determined up to rotation, so we get an additional 3g− 3 angular parameters. Combined with the real
parameters, we find 3g − 3 complex parameters, as we’d hope.

Fact. The set of possible structures forms an open ball in R6g−6, called “Teichmuller space”

This gives a moduli space for curves equipped with a pants decomposition. What’s the relevant group
action to quotient by to get a moduli space of curves unqualified?

Say X is a compact genus g Riemann surface (thought of for the moment as the underlying real
surface). Consider the group Γg = Diff(X)/(isotopy) (the mapping class group) of diffeomorphisms
of X, considered up to isotopy. It turns out that the data of a pair of pants decomposition is the same
as an element of this group Γg.50 Thus, one gets Mg = Tg/Γg (note that Γg is discrete).

Remark 40.10. The different constructions of Mg each have their own virtues.

• The Teichmuller approach gives you chance of understanding the topology on Mg. The Teichmuller
space Tg is contractible (and the Γg-action is free and transitive, apparently), so the (co)homology
of Mg will be the group cohomology of Γg. ◦

41 Lecture 16 (3/24)

Note 51. 10 minutes late

Today: divisor classes/line bundles on Mg.
Sounds like we want to give two ways of describing divisor classes on Mg.

• divisors on variety Mg

Remark 41.1. Coming from the DM construction of Mg (from gluing together quotients of deforma-
tion spaces by finite groups), we see that Mg only has finite quotient singularities. A consequence
of this is that every divisor on it is Q-Cartier. Hence, we will work with Pic(Mg)⊗Q ◦

• line bundles on the moduli functor/stack

This is a gadget which associates to any family C ! B of stable curves (with dimB = 1 if you like)
a line bundle on the base B. This association must furthermore be compatible with pullback.

Remark 41.2. We can simplify life further. It suffices to have such an association only for bases B

which are curves. Furthermore, this is in fact no continuous part of Pic(Mg)⊗Q (see Theorem 41.7),
so a line bundle on it is determined by the (a priori coarser) information of simply the degree∈ Q
of the corresponding line bundle on base curves B. ◦

Example. Let ∆ = {singular curves} ⊂ Mg (the ‘boundary divisor’ I believe). This is a divisor on Mg

and so determines a (rational) divisor class. Equivalently, this associates to a given family C ! B the
number of singular fibers. Really, this is too simple.

Warning 41.3. A family with two nodal fibers can specialize to a family with a single nodal fiber that
has two nodes. The degree of ∆ on both of these must be the same.

As another complication, say you have a family C ! B with a single singular fiber (with one node)
over 0 ∈ B. Now suppose B′ ! B is a double cover branched over 0. Then, C′ = C ×B B′ has a single

50If I’m understanding correctly, really, the set of pairs of pants decompositions is a Γg-torsor
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singular fiber with only one node, but ∆ should have degree 2 on B′ (we expect degrees to scale under
pullback). •

Hence, we’ll need to associate multiplicities to nodes in the fibers and then have ∆ be the divisor
summing up these multiplicities. △

Fact. If C ! B is a one-parameter family of stable curves and p ∈ C0 ⊂ C is a node of C0 (0 ∈ B

some point), then C ! B has a local equation near p of the form xy − tm for some m (here t is a local
coordinate on B). This m is our desired multiplicity.

Note that if m > 1, then the surface C will be singular at the node point (and I think this is an iff).

Question 41.4 (Audience). What number do you assign to a family consisting entirely of singular curves?

Answer. We’ll answer this next week, after introducing a bit of deformation theory. ⋆

Recall 41.5. The locus of irreducible curves with one node forms an irreducible divisor ∆0. Reducible
curves with a single node look like a nodal union of a genus α curve and a genus g − α curve; this locus
is called ∆α (α = 1, . . . , ⌊g/2⌋). ⊙

Hence, our divisor class ∆ is
∆ = ∆0 +∆1 + · · ·+∆⌊g/2⌋.

Let’s see some other (rational) line bundles on Mg. These will not be associated to divisors on Mg, but
will instead be described as line bundles on the functor.

Example (Hodge class). The “Hodge class” λ is the assignment

λ
(
C π
−! B

)
⇝ det

(
π∗ωC/B

)
.

Note that π∗ωC/B is a rank g vector bundle on B with fiber over b ∈ B equal to H0(KCb
). The Hodge

bundle is the rank g vector bundle (C ! B)⇝ π∗ωC/B . △

Remark 41.6. If Mg were a fine moduli space, it would support a corresponding universal family of
curves π : Cg !Mg. In this case, we would directly get a rank g vector bundle over Mg using this same
construction: π∗ωCg/Mg

. ◦

Mg is not a fine moduli space, so we can’t make the above construction. However,

Fact. There exists a family C!M of curves such that the induced map M
φ
−!Mg is finite, surjective!

(This is the key to our two descriptions of rational line bundles on Mg being the same)
Say φ above has degree m. Then, the Hodge class λ can be described as

λ =
1

m
φ∗ det

(
π∗ωC/M

)
∈ Pic(Mg)⊗Q.

Example (kappa class). We also define the rational divisor class κ via

κ(C π
−! B) = [ωC/B ]

2

(Above, B a curve, so C a surface, so can take self-intersections of line bundles) △
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Theorem 41.7 (Harer). H1(Mg,Q) = 0 and H2(Mg,Q) = Q Question: Is
it possible
(and easy)
to go
from this to
H1(Mg,Q) =

0

Remark 41.8. Harer is a topologist and thinks of these cohomology groups as the group cohomology of
the mapping class group Γg. Harer constructs a contractible simplicial complex on which Γg acts, and
then computes the cohomology of the quotient. ◦

What’s the significance of this, at least for our purposes? The first statement tells us that a line
bundle on Mg is determined by the degrees of its associated line bundles (look at the exponential exact
sequence over C). The second tells us that Pic(Mg)⊗Q is rank 1, so generated by either λ (or κ). Hence,
Pic(Mg)⊗Q is generated by λ, δ0, . . . , δ⌊g/2⌋.

The above implies that we have a relation among the classes λ, κ, δ0, . . . , δ⌊g/2⌋.

Fact (Mumford relation).

λ =
κ+ δ

12
.

Question 41.9 (Guiding questions). Which divisor classes are effective? ample? big?
If someone gives us a divisor class, can we express it in terms of these natural classes?

Example (General pencil of plane quartic curves). Let F,G ∈ C[X,Y, Z] be general homogeneous
polynomials of degree 4. Consider the family

C =
{
(t, p) ∈ P1 × P2 : t0F (p) + t1G(p) = 0

}
P1

The first thing to do is verify that this is a family of stable curves.

Remark 41.10. Here’s an equivalent description of the family. Let P14 be the space of all quartic plane
curves. Then, C ! P1 corresponds to a general line in P14. ◦

In P14, the locus ∆ of singular curves is irreducible of dimension 13, and a general [C] ∈ ∆ is irreducible
w/ 1 node. Thus, the locus of curves which are not stable is codimension ≥ 2, so a general line will miss
it. In fact, a general line will give a family where every fiber is smooth or irreducible w/ 1 node (e.g.
gives an arc in M3 meeting ∆0 but not ∆1).

Proof of above claims. Consider

Σ =
{
(C, p) ∈ P14 × P2 : p ∈ Csing

}
P14 P2.

If you fix p ∈ P2, the condition that a curve is singular at it is 3 linear conditions, so the fibers of the
right map are ∼= P11. Hence, Σ is smooth, irreducible of dimension 13. It’s image under the left map
is precisely ∆. One needs to show that a general curve of Σ is irreducible with 1 node, and this follows
from Bertini allegedly. ■

Back to our family C ! P1. We know it’s a family of stable curves.
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Claim 41.11. The total space C is smooth.

Proof. Consider the map C ! P2. This map will be generically one-to-one. It fails to be so if both F,G

vanish at p ∈ P2 (in which case the fiber is a P1). Hence, C ! P2 is in fact the blowup of P2 at the 16
points where F = G = 0. Hence, C is smooth. ■

This tells us that the multiplicities of the nodes in the family are all = 1. Thus, deg∆ on this family
is simple the number of singular fibers (each singular fiber has 1 node).

Goal. Compute degrees of λ, κ, δ0, δ1 on this family.

• deg(δ1) = 0 since all fibers irreducible

• deg(δ0) = #singular fibers

Remark 41.12. In the P14, the locus of singular curves is a hyperplane. We want to degree of this
hyperplane (we’ve intersected it with a general line, and are asking how many points of intersection
there are). ◦

We’ll compute this using a sort of generalized Riemann-Hurwitz.

Let’s start with a basic fact about (analytic) varieties/C. Say X is a smooth variety, and Y ⊂ X

is a closed subvariety. Then, χ(X) = χ(Y ) + χ(X \ Y ) (topological Euler characteristic), e.g. by
taking a tubular neighborhood of Y and then applying Mayer-Vietoris. Now suppose X is smooth,
and we have a map X ! B with B a smooth curve. Say π has singular fibers over the points
b1, . . . , bδ.

“Since we assumed X is smooth, not every fiber can be singular, since thank god we’re in charac-
teristic 0”

Let Y =
⊔
Xbi , so the complement X \ Y is now a fiber bundle over B \ {b1, . . . , bδ}. Now we’re in

business. Note that (Xη general smooth fiber)

χ(X \ Y ) = χ(B \ {b1, . . . , bα})χ(Xη) = (χ(B)− δ)χ(Xη) and χ(Y ) =

δ∑
i=1

χ(Xbi).

Thus,
χ(X) = χ(B)χ(Xη) +

∑
b∈B

(χ(Xb)− χ(Xη)) (41.1)

(note χ(Xb) = χ(Xη) if Xb is smooth).

Let’s apply (41.1) to our situation. We have X a general pencil of plane quartics, fibered over
P1. Note that χ(Xη) = −4, χ(P1) = 2, and each singular fiber is a genus 2 curve with two points
identified, so has Euler characteristic −2− 1 = −3. Thus,

χ(X) = 2(−4) + #sing. fibers.

At the same time, we say earlier that the projection map X ! P2 represents it as the blowup of P2

at 16 points, so χ(X) = χ(P2) + 16 = 19. Thus,

deg(δ0) = 27. △
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Since we did not get through the remaining parts of this calculation, we will differ the homework for
a week.

42 Lecture 17,18 (3/29,31): Out of town

43 Lecture 19 (4/5)

Three more weeks in the semester apparently. With the time left, we want to develop machinery that
will allow us to prove theorems about the geometry of Mg even though we do not have a clear picture of
what this space looks like for g ≫ 0.

Example. When g = 1, M1 ≃ A1
j is the j-line. When g = 2, every genus 2 curve is hyperelliptic, uniquely

expressible has a double cover of P1 branched at 6 points, which we can take to be 0, 1,∞, λ1, λ2, λ3.
Hence, M2 is the quotient of (P1)3 (the choice of λi’s) by the action of the symmetric group S6. △

Last time, we obtained
Pic(Mg)⊗Q = Q

〈
λ, δ0, . . . , δ⌊g/2⌋

〉
using Harer’s theorem. We also described a curve B ∼= P1 ↪! M3 (a general pencil of plane quartics),
and calculated the degrees on B of λ, δ0, δ1. We had two reasons for doing this

• We wanted to make the divisor classes a little more concrete, show by example that it is possible
in practice to compute these things.

• We also want to develop techniques for finding the class of a given divisor (e.g. the canonical/du-
alizing divisor on Mg)

Mg is itself mysterious, but it has a lot of subvarieites which are of interest to us.

Example. When we talked about Brill-noether, we described what linear series a general curve of
genus g has. What about the linear series a general curve does not have? Such linear series will
generally live on curves coming from some subvariety of Mg.

e.g. in M3, one has the hyperelliptic divisor

H = {C ∈ M3 : C hyperelliptic} ⊂ M3.

Fact. The dimension of the hyperelliptic locus in Mg is 2g − 1.

(so H is codimension dimM3 − dimH = 1 in M3)

What is the class of H, expressed as a linear combination H ∼ aλ0 − b0δ0 − b1δ1? One gets
information e.g. from the family B ⊂ M3 from last time. Recall

degB(λ) = 3, degB(δ0) = 27, and degB(δ1) = 0.

Recall 43.1. A curve of genus 3 is either hyperelliptic or a plane quartic ⊙
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Hence, degB(H) = 0 since B is disjoint from the hyperelliptic locus.51 Thus, 3a − 27b0 = 0. The
strategy is now clear; one computes degrees for various subvarieites of Mg in order to obtain enough
linear relations to pin H down exactly. △

Let’s mention some other potential divisors on Mg:

• Curves with a Weierstrass point of weight 2

Recall 43.2. Every curve of genus g has g3 − g Weierstrass points, counted with weights. For a
general curve, each of these points will be simple (i.e. have weight 1). ⊙

Hence, the space of Weierstrass points is a degree g3 − g cover of Mg. This suggests looking at the
branch divisor, i.e. the curves which have a Weierstrass point of weight 2.

• curves w/ “vanishing Θ-null,” i.e. a line bundle L ∈ Picg−1(C) so that L2 ∼= KC and h0(L) ≥ 2,
i.e. curves with a “semicanonical pencil.”

This is a divisor, but that shouldn’t be immediately obvious.

• Brill-Noether tells us about linear series on general curves. If we look for linear series with negative
Brill-Noether number, we’ll get a corresponding subvariety of Mg (those curves with a grd so that
ρ(g, r, d) = blah for some blah < 0).

Fact. If g, r, d are given so that ρ(g, r, d) = −1 (e.g. g = 3, r = 1, d = 2). Then,

{C : C has a grd} ⊂ Mg

is codimension 1. The resulting divisors are called Brill-Noether divisors.

Goal. Understand Pic(Mg)⊗Q

To keep things simple, let’s restrict ourselves to the subspace generated by λ, δ (δ = δ0 + · · · + δ⌊g/2⌋),
i.e. only look at classes of the form aλ− bδ.

Question 43.3.

• What is the ample cone?

• What is the effective cone?

• Where in this picture52 is KMg
?

(We’ll see that the canonical class KMg
is included in span of λ, δ).

• Where in this picture are the various divisor classes considered above?

Answer (The punch line). To help guide us in the next lecture, let’s go ahead and state without
justification the answer to some of these questions.

51This is some ignored subtlty here coming from H really being the closure of the hyperelliptic locus. One should
understand what singular curves this encompasses in order to justify the claim before this footnote.

52Joe drew a plane on the board
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• The ample cone is
{aλ− bδ : a > 11b > 0} .

• The effective cone obviously contains all aλ− bδ with a ≥ 0 and b ≤ 0 since these are non-negative
combinations of an effective divisor (δ = −(−δ)) and an ample divisor (λ). Hence, there will exist
some Sg so that the effective cone is

{aλ− bδ : a ≥ 0 and a > Sg · b} .

• KMg
= 13λ− 2δ.

Note that KMg
is never ample. If Sg > 6 1

2 , then KMg
is outside the effective cone (as are all its powers,

so Mg will have negative Kodaira dimension). If Sg < 6 1
2 , then KMg

will be big, and so Mg will be of
general type. This is worth repeating

Fact. Mg is of general type if Sg < 6 1
2 .

(Mg can have intermediate Kodaira dimension only if Sg = 6 1
2 ) ⋆

How do we get a handle on Sg? You can compute explicit effective divisor classes. Doing so will give
an upper bound for Sg since it must be small enough for the class you’ve computed to end up in the
effective cone.

Goal. Calculate classes of effective divisors in Mg.

Most of the divisors we deal with won’t be in this cone, but one can always take the smallest coefficient
of one of the boundary divisors δi, and use that to bound Sg. This leaves one important question: where
are we gonna the necessary test curves (curves in Mg used to compute divisor classes à la the plane
quartic example from before).

Warning 43.4. On a variety of general type, through a general point, there are no rational curves. Hence,
it should not be easy to write down a 1-parameter family of curves of a given large genus g ≫ 0. •

To get around this, we will work with families of singular curves.

Example. Fix a curve C of genus α and another curve D of genus g − α. One gets a stable curve of
genus g (assuming α, g−α ̸= 0) by identifying one point on C with one point on D. Varying these points
gives a 2-parameter family of stable curves. We only want a 1-parameter family, so fix a point q ∈ D,
and then consider the one parameter family

{Cp = (C ⊔D)/(p ∼ q)}p∈C .

Concretely, start with C × D and C × C, both thought of as schemes over C. Take the cross section
Γ := C × {q} ⊂ C ×D as well as the diagonal ∆ ⊂ C × C. Identifying Γ ⊂ C ×D with ∆ ⊂ C × C, we
get

C := (C ×D ⊔ C × C) /(Γ ∼ ∆) −! C,

and this is the total space of the family. △
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Example. Fix a curve C of genus g − 1, and fix a point q ∈ C. Consider the family of curves Cp =

C/(p ∼ q). Note that we take Cq to be the stable limit of the nearby curves; that is, Cq will look like the
curve C with a P1 with a single node attached. △

Example. Let {Cλ}λ∈P1 be a pencil of plane cubics. Note that two plane cubics intersect in 9 points,
so the total space C =

{
(t, p) ∈ P1 × P2 : p ∈ Ct

}
(the blowup of P2 at the 9 points of intersection) will

have 9 exceptional divisors Ei (i = 1, . . . , 9). It will also have exactly 12 singular fibers.
Fix some curve D of genus g − 1 along with a point q ∈ D. Consider the family

{Cλ ⊔D/p ∼ q : p ∈ Ei ∩ Cλ}

for a fixed i. △

Next time we’ll talk about computing the degrees of the boundary components restricted to such
singular families.

44 Lecture 20 (4/7)

Goal. For D ⊂ Mg an effective divisor, find the class of D in Pic(Mg)⊗Q =
〈
λ, δ0, . . . , δ⌊g/2⌋

〉
.

Remark 44.1. Essentially any property of a curve that is not shared by all curves will give a subvariety
of the moduli space. Many of these will be codimension 1, and so give divisors. ◦

Example. There’s the Weierstrass divisor (curves w/ Weierstrass point of weight 2), the theta divisors
(curves w/ a semicanonical pencil), and the Brill-Noether divisors (curves w/ a grd where ρ(g, r, d) =

−1) △

Our proposed method for computing these divisor classes is to make use of test curves B ⊂ Mg. Given
such a thing, one computes degB λ, degB δα,degB D and so deduces a relation of the coefficients a, bα of
the expression D = aλ−

∑
α bαδα, i.e. one obtains

degB D = a degB λ−
∑

bα degB(δα).

Enough such relations will let us determine the class of D.

Example (g = 3). Consider H ⊂ M3, the (closure of the) locus of hyperelliptic curves.

Warning 44.2. It’s not a priori clear which stable curves are ‘hyperelliptic’ in the sense of belonging to
this divisor H. •

Recall the test curve B ⊂ M3 given by a (general) pencil of plane quartics. This had

degB λ = 3, degB δ0 = 27, and degB δ1 = 0.

Note that a smooth plane quartic is never hyperelliptic. Note that a general pencil of plane quartics
will meet the boundary in general points, and general points of the boundary cannot be contained in the
closure of a divisor, so degB H = 0. One deduces a = 9b0. △ I’m not sure

how to make
this rigor-
ous. I think
this is just
saying that
H meets
the bound-
ary in a 4-
dimensional
locus, while
B meets
it in a 0-
dimensional
locus, so
one expects
them to not
intersect
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Example. Fix a curve C0 of genus α and a curve C1 of genus g−α with fixed point r ∈ C1. Consider the
family of curves {Cq = (C0⊔C1)/(q ∼ r) : q ∈ C0}. These are all stable curves (assuming α ̸= 0 ̸= g−α).
The total space of the family is

C := {(C0 × C0 ⊔ C0 × C1)/∆ ∼ Γ} −! C0 where Γ = C0 × {r}.

△

Remark 44.3. Let X be a smooth projective variety, and let D ⊂ X be a smooth (effective) divisor. Let
C ⊂ X be a curve. If C,D meet transversely, then

degOX(D)|C =: (C ·D) = #C ∩D.

More generally, if C ∩D is finite, then

C ·D =
∑

p∈C∩D

mp(C ·D).

What if C ⊂ D? First observe that OX(D)|D = ND/X . Hence,

(C ·D) = deg
(
ND/X |C

)
. ◦

Fact. Say C ∈ Mg has exactly one node, and let ν : C̃ ! C be its normalization. Write ν−1(p) = {q, r}.
Let ∆ ⊂ Mg denote the boundary. Then,

∆ is smooth at [C] and
(
N∆/Mg

)
[C]

= TqC̃ ⊗ TrC̃.

(Try to think about why this would be true. We’ll prove it next week)
We will need to be able to deal with families which include curves with multiple nodes.

Definition 44.4. If C is a stable curve with node p ∈ C, we define its index to be

δ(p) =

0 if C \ {p} connected

α if C \ {p} has two connected components of arithmetic genera α, g − α.

Note that C lives in the boundary component δδ(p). ⋄

In general, say C has nodes p1, . . . , pδ. In a neighborhood of [C] ∈ Mg, ∆ has normal crossings (as a
divisor in Mg) with one branch for each node.

Example. Go back to the example C ! C0 of gluing a variable q ∈ C0 (genus α) to a fixed r ∈ C1

(genus g − α). Let B ∼= C0 ! Mg be the corresponding test curve. I did not follow why, but the above
discussion tells us that (

N∆/Mg

)
|B = NC0×{r}/C0×C1

⊗N∆/C0×C0
.

Note that NC0×{r}/C0×C1
is the trivial bundle (whose fiber at any point is TrC1). The degree of N∆/C0×C0
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restricted to C0 is the topological Euler characteristic χ(C0) = 2− 2α.53 Thus,

degB δ0 = 0, degB δα = 2− 2α, and degB δβ = 0 for any β ̸= α.

What is degB λ? Note that a section of the dualizing of a curve Cq is a meromorphic differential on the See Section
38normalization with possible a single pole at the points lying over the node. A meromorphic differential

on an integral curve can’t have a single pole (residues sum to 0), so get space H0(C0, ω)⊕H0(C1, ω) (note
this has dimension g). Thus, π∗ωC/B is the trivial bundle over B with fibers H0(KC0) ⊕ H0(KC1), and
thus degB λ = 0. △ Note these

test curves
will pick out
one coeffi-
cient (unless
α = 1, i.e.
unless you
vary a point
on a genus 1
curve)

Example (Above when g = 3). In a slightly more concrete case, get B ⊂ M3 coming from identifying a
variable point q on a genus 2 curve C0 with a fixed point r on a genus 1 curve C1. This satisfies

degB λ = 0, degB δ0 = 0, and degB δ1 = −2.

What is degB H? How many curves in this family are limits of hyperelliptic curves?

Exercise. Think about this. △

Let’s see another test curve (useful for picking out δ0)

Example. Fix a smooth curve C0 of genus g− 1. Fix some r ∈ C0 and let q ∈ C0 be variable. Consider
the family {Cq := C0/(q ∼ r) : q ∈ C0} (where Cr is interpreted as the stable limit of nearby curves, C0

with a nodal tail attached at r). This family has total space

C := Bl(r,r)(C0 × C0)/(∆̃ ∼ Γ̃) −! C0.

Above, ∆̃ is the strict transform of the diagonal and Γ̃ is the strict transform of the cross section C0×{r}.
We’re running out of time, so let’s just state the answer, and see how to get it next time...

Let B ∼= C0 !Mg denote the corresponding test curve. Then,

degB λ = 0, degB δ0 = −1, degB δ1 = 1, degB H = 1. △

45 Lecture 21 (4/12) I think most
(but not all)
of this lec-
ture was
contained
in the previ-
ous one

This theorem about Mg being general type has been around for 40 years, but this is Joe’s first time
teaching it in a class. It has turned out that there are more technical ingredients needed to work out
the argument than he originally imagined, so there will be a few things we take for granted and/or cover
briefly for sake of time.

Coming up...

• Grothendieck-Riemann-Roch formula

This will be used to determine the canonical divisor class on Mg.

• A bit of deformation theory
53The conormal bundle of the diagonal, pulled back to C0, is the cotangent space Ω1
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• Admissible covers and limit linear series

Recall 45.1.
Pic(Mg)⊗Q = Q

〈
λ, δ0, . . . , δ⌊g/2⌋

〉
. ⊙

Given an effective divisor D ⊂ Mg, we’d like to be able to compute a, b0, . . . , b⌊g/2⌋ ∈ Z so that D ≃
aλ−

∑
i biδi.

Example. Consider the hyperelliptic locus H ⊂ M3.
Here’s one way one might try to compute the class of this divisor. Use Porteous’ formula: given a

map φ : Em ! Fn of vector bundles on a variety X, what is the class of the locus

Mk = {x ∈ X : rankφx ≤ k}?

Note that Mk has expected codimension (n− k)(m− k)

Porteous expresses the class of Mk in terms of the chern classes of E,F . In the present case, look in
C3 = M3,1 (stable curves (C, p) with a marked point p ∈ C). Note that M3,1 ! M3 “is the universal
curve” (literally true for stacks, not literally true for schemes). We want a map of bundles on C3 which
detects the hyperelliptic locus. Let E be the line bundle on C with fibers E(C,p) = H0(KC) (i.e. E is the
pullback of the Hodge bundle) and let F be the line bundle on C3 with fibers F(C,p) = H0(KC/KC(−2p)).
Note that E is rank 3, F is rank 2, and there’s a natural map E ! F . This map has rank 1 exactly along
the hyperelliptic locus. This will indeed have codimension 2 in C3 as one expects.54 Hence, Porteous
could be used to compute the class of H, at least in M3. It would show that H’s class in M3 is a multiple
of λ, and so let one deduced (without appeal to Harer) that is class in M3 is in the span of λ and the
boundary components.

Remark 45.2 (Audience question + Joe’s response). For a non-hyperelliptic curve, the multiplication
map H0(KC)⊗H0(KC)! H0(2KC) is surjective (due to Noether), and the converse holds as well. Can
you apply Porteous using this for other values of g? Not quite since Porteous only applies when Mk has
expected codimension. The hyperelliptic locus will have codimension g − 2 which is much smaller than
expected here. ◦

Instead of a Porteous argument, we will compute H using the method of test curves. That is, we’ll
describe some curves Bi ⊂ Mg and then compute degBi

(λ),degBi
δα, and degBi

(D). This gives some
system of linear equations which, assuming we choose appropriate Bi’s, will determine the coefficients
a, bα of D. On that note, let’s leave this example block and talk more about the test curves we’ll be
using... △

We will use the following test curves

• Fix a curve C0 of genus α and a curve C1 of genus g − α. Let q ∈ C1 be a fixed point. For p ∈ C0,
we consider the curve Cp = C0 ⊔ C1/(q ∼ p). This gives a family

Bα = {Cp} ⊂ ∆α ⊂ Mg.

54It’s codimension 1 in M3, and each hyperelliptic curve has 8 points where the rank drops
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• Fix a curve C0 of genus g − 1 along with a point q ∈ C0. Then, we get the family

{Cp = C0/(p ∼ q)}p∈C ⊂ ∆0 ⊂ Mg.

(with Cq interpreted as the stable limit of nearby curves)

• Let {Ct} be a pencil of plane cubics, say interpolating between {F = 0} and {G = 0}. Consider
the total space

E :=
{
(t, p) ∈ P1 × P2 : t0F (p) + t1G(p) = 0

}
,

and note that E ∼= BlF=G=0(P2) is the blowup of P2 at 9 points. Fix a curve C0 of genus g − 1

along with a point q ∈ C0. Consider the curves Ct := C0 ⊔Et/(q ∼ p) (with t ∈ P1). Here, p is the
point in the fiber Et of E! P1 meeting a fixed exceptional divisor of E. So we have a family with
total space

C :=
(
P1 × C ⊔ E

)
/(P1 × {q} ∼ E) −! P1

(where E ⊂ E = BlF=G=0(P2) is some fixed exceptional divisor).

Remark 45.3. Say X and D ⊂ X are both smooth (D a divisor). Say C ⊂ X is a curve. If C ̸⊂ D, then
the intersection number C ·D is degC(D) which is the number of points of intersection of C ∩D, counted
with multiplicity. If C ⊂ D, we still set C ·D := degOX(D)|C . Note that

OX(D)|C = (OX(D)|D) |C = ND/X |C

is the normal bundle of D in X, restricted to C. ◦

Remark 45.4 (The normal bundle to ∆ at a point [C]). Say C is a stable curve w/ exactly one node
p ∈ C. Let ν : C̃ ! C be the normalization, and write ν−1(p) = {q, r}.

Suppose for the moment that C ⊂ S is contained in a smooth surface S. The normal bundle of C in
S is OC(C) = OS(C)/OS . Define

Nν := coker
(
ν∗ : TC̃ −! ν∗TS

)
A section of Nν near x ∈ C̃ looks like a normal vector field to the curve C ⊂ S along the branch
corresponding to the point x. I’m not really sure what Joe’s saying, but apperently one can convince
themself that the sections of the normal bundle OC(C) of the singular curve are rational sections of Nν

with possibly simple poles at q, r. This in turn says

(NC/S)p/(Nν)q = Tr(C̃)⊗ OC̃(q)/OC̃ = Tr(C̃)⊗ Tq(C̃)

The left hand side is (N∆/Mg
)[C], deformations that preserve C modulo those perserving the node.

I think this whole discussion was not meant to be close to a rigorous computation, but more of a hint
at why (N∆/Mg

)[C] = Tr(C̃)⊗ Tq(C̃). ◦

Example. Consider the test curve Bα from before. Convince yourself that(
N∆/Mg

)
|Bα = N∆/C0×C0

⊗NΓ/C0×C1
where Γ = C0 × {q}.
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Note that Γ · Γ = 0 (it’s a fiber) while degN∆/C0×C0
= 2− 2α. Hence,

degBα
(δα) = 2− 2α while degBα

(δβ) = 0 for all β ̸= α.

One can also show that degBα
(λ) = 0. △

46 Lecture 22 (4/14)

Let’s keep in mind a summary of (some of) the test curves we’ve seen and their degrees

Example.

• There’s Bα coming from gluing a variable point of a curve C0 of genus α to a fixed point of a curve
C1 of genus g − α. This has

degBα
(δβ) = 0 if β ̸= α, degBα

(δα) = 2− 2α, and degBα
(λ) = 0.

• There’s B1 coming from gluing a fixed point q of a curve C0 of genus g − 1 to a variable point p of Potential no-
tation clash
with Bα, ex-
cept Bα=1

it not useful
(all degrees
are 0)

the same curve. This has55

degB1
(δα) = 0 if α ≥ 2, degB1

(δ1) = 1, , degB1
(δ0) = ∆̃2 + Γ̃2 = 2− 2g, and degB1

(λ) = 0.

For the Hodge bundle computation, differentials on a fiber look like meromorphic differentials on
C0 (the normalization) with simple poles at p, q. Get a trivial rank g− 1 subbundle by considering
holomorphic differentials on C0. The quotient is determined by the residue at either point p, q.
Since q is fixed, the quotient will be a trivial line bundle.

• To get a test curve with non-trivial Hodge class, we start with a pencil of plane cubics Et (one
of the simplest families with non-trivial Hodge class). Let B0 come from gluing a fixed point of a
curve C0 of genus g − 1 to an element of a general pencil Et of plane cubics. This has

degB0
(δα) = 0 if α ≥ 2, degB0

(δ1) = Γ2 = −1, degB0
(δ0) = 12, and degB0

(λ) = 1.

Note that the total space of the family Et is the blowup of P2 at 9 points, and we get a cross section
Γ by using one of the exceptional divisors (Γ gives a choice of basepoint in each fiber which we use
for gluing).

These provide enough test curves to compute the class of any effective divisor D ⊂ Mg, assuming we can
compute the degrees of D restricted to each of these curves. △

Remark 46.1. For carrying out our plan of computing divisor classes like this, we don’t need to use test
curves per se. We could use higher dimensional subvarieties as long as we know enough about their Chow
rings. ◦

55For δ1 computation, apparently if you have a family which is generically smooth whose total space is smooth, then
when you acquire a node, it appears with multiplicity one. Maybe something like this came up earlier? Also, blowing up a
point will decrease self-intersection by 1
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Example. Get a 4-dimensional subvariety of Mg by fixing a pointed curve q ∈ C0 of genus g − 2 and
gluing it to any pointed curve p ∈ C of genus 2 (dimM2,1 = (3 · 2− 3) + 1 = 4). One could use a family
such as this instead of test curves. We won’t. △

With that covered, we want to talk today about Chern classes and Grothendieck-Riemann-Roch.

46.1 Chern classes

One can develop a well-behaved theory of Chern classes in multiple settings (CW complexes, (complex)
manifolds, algebraic varieties, etc.). We’ll discuss an approach that works for complex manifolds/varieties.

Question 46.2. Say we’re given a rank n complex vector bundle E over a space X. When is E trivial?

Answer. E is trivial ⇐⇒ there exists sections σ1, . . . , σn of E which are everywhere independent. ⋆

Instead of looking for n linearly independent sections, can start with the simplest case of looking for
a single section which is every linearly independent (i.e. nowhere vanishing).

Idea. Choose a section σ of E and associate to it the class [V (σ)] of its 0-locus in the Chow ring
(specifically, in An(X)). This class will be independent of the choice of section (assuming e.g. the image
of σ is transverse to the zero locus).

If τ is another section, can consider σt := t0σ+ t1τ and show that [V (σt)] is independent of t (and so
of σ).

We call cn(E) := [V (σ)] the top Chern class of E.

Definition 46.3. In general, if σ1, . . . , σk are sections of E, they fail to be linearly independent exactly
along V (σ1 ∧ · · · ∧ σk). It’s class

cn−k+1(E) := [V (σ1 ∧ · · · ∧ σk)] ∈ An−k+1(X)

is called a Chern class of E. ⋄

Remark 46.4. If k = n above, the locus where the section fail to be linearly independent is given by the
vanishing of the determinant of an n× n matrix. This will have codimension 1 and cut a representative
of the first Chern class. ◦

Definition 46.5. The total Chern class of E is

c(E) := 1 + c1(E) + c2(E) + · · ·+ en(E) ∈ A∗(X). ⋄

Fact.

• Given f : X ! Y and E a vector bundle on Y ,

c(f∗E) = f∗c(E).

• If E = OX(D) is a line bundle, then c1(E) = [D] ∈ A1(X)
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• Whitney product formula
c(E ⊕ F ) = c(E)c(F )

for any vector bundles Em, Fn on X, e.g. c1(E ⊕ F ) = c1(E) + c1(F ) and cn+m(E ⊕ F ) =

cm(E)cn(F ).

Exercise. Without appealing to the product formula, try justifying the equality Sounds like
this and
more is
worked out
in chapter 5
of ‘3264 and
all that’

cn+m−1(E ⊕ F ) = cm(E)cn−1(F ) + cm−1(E)cn(F ).

Fact. On a smooth variety X, can extend the definition of Chern classes to arbitrary coherent sheaves.

Start with a sheave F , and then find a resolution by vector bundles

0 −! Ek −! · · · −! E1 −! E0 −! F −! 0

(will be finite length by the Hilbert syzygy (spelling?) theorem). The Chern class of F is then defined
by what is must be to satisfy Whitney, an alternating product of Chern classes of the Ei’s.

46.2 Riemann-Roch

Example (Riemann-Roch for curves). Let C be a smooth curve of genus g.

• Then, χ(OC) = 1− g. Equivalently, χ(OC) =
1
2c1(TC).

• For OC(D) (say D effective), get sequence 0 ! OC ! OC(D) ! OC(D)|D ! 0 from which one
concludes

χ(L ) = c1(L ) +
1

2
c1(TC).

• Now say E is a vector bundle of rank 2. Can find an exact sequence 0! L! E !M ! 0 and so
get

χ(E) = χ(L) + χ(M) = c1(E) + (rankE)c1(TC)/2.

This will hold for arbitrarily ranked vector bundles on C.

• In fact, for any coherent sheaf F on the smooth curve C, one has

χ(F ) = c1(F ) + rank(F ) · c1(TC)

2
.

The first bullet point is non-trivial, but once you have it, everything else follows without too much
effort. △

Example (Riemann-Roch for surfaces). Let S be a smooth projective surface. We start with
Noether’s formula

χ(OX) =
c21(TS) + c2(TS)

12

(again, this is not easy). Once you have it though, you can obtain a Riemann-Roch for an arbitrary
coherent sheaf on S.
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• Let L = OS(D), say with D effective. Consider 0! O ! L! L|D ! 0. One concludes that

χ(L) =
c21(L) + c1(L)c1(TS)

2
+

c21(TS) + c2(TS)

12
.

• Can now look at higher rank vector bundles. It is no longer the case that you can always get a line
subbundle with locally free quotient, but we can have Chern classes for arbitrary coherent sheaves.
One shows you can always fit a coherent sheaf into a short exact sequence with lower rank coherent
sheaves. This allows one to do the induction, and so conclude that for any arbitrary coherent sheaf
F on S, one has

χ(F ) =
1

2

[
c21(F )− 2c2(F ) + c1(F )c1(Ts)

]
+ rank(F )χ(OS). △

We’d like to extend this to varieties of arbitrary dimension. As the formulas get more hairy when
you increase dimensional, we’ll need to introduce more abstraction/notation in order to be able to make
a succinct statement.

Say F is a coherent sheaf on X of rank r. Write

c(F ) =

r∏
i=1

(1 + αi)

(for now, think of the αi’s as formal symbols satisfying α1 + · · ·+ αr = c1(F ), yadda yadda, α1 . . . αr =

cr(F )). Define the Chern character

ch(F ) :=
∑
i

eαi =
∑
i

(
1 + αi +

α2
i

2
+

α3
i

6
+ . . .

)
.

Remark 46.6. The coefficients of ch(F ) will be symmetric polynomials in the αi’s, and so can be written
in terms of the elementary symmetric polynomials of the αi’s, i.e. in terms of the Chern classes. ◦

Definition 46.7. The Todd class of F is

Td(F ) :=
∏
i

αi

1− e−αi

This will given another formal power series in α1, . . . , αr whose coefficients are symmetric (so expressible
in terms of Chern classes). ⋄

Example.

Td(F ) = 1 +
1

2
c1(F ) +

c21(F ) + c2(F )

12
+

c1(F )c2(F )

24
+ . . . △

The Chern character and Todd classes are ways of repackaging the information of the Chern classes.

Theorem 46.8 (Atiyah-Singer-Bott-Hirzebruch-Riemann-Roch, up to spelling). Let F be a co-
herent sheaf on a smooth projective variety X. Then,

χ(F ) = {ch(F ) · Td(TX)}n ,
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the nth graded piece of this product (evaluated against the class of a point to get a number instead of a
Chow class).

Where does Grothendieck fit into all of this? Briefly, he made things relative. We’ll say more on
Tuesday.

47 Lecture 23 (4/19)

Last time we talked about Chern classes and various Riemann-Roch formulae. We were just about to
state Grothendieck Riemann-Roch when we ran out of time. Today, we’ll finish up this discussion, and
then see two applications of Grothendieck-Riemann-Roch: deriving Mumford’s relation, and computing
the canonical class of Mg.

Recall 47.1. Let E ! X be a rank n complex vector bundle. Let σ1, . . . , σn−k+1 be sections of E. Then,
the locus V (σ1 ∧ · · · ∧ σn−k+1) where these sections fail to be independent represents the kth Chern
class

ck(E) = [V (σ1,∧ · · · ∧ σn−k+1)] ∈ Ak(E).

Think of these as obstructions to finding everywhere linearly independent sections. ⊙

History. Let’s talk a bit about how Chern classes were first defined, before Chern. This was done by
Whitney, and we’ll see in particular the definition of the top Chern class cn(E). Say X is a simplicial
complex. We want to find an everywhere nonzero section σ of E, a rank n topological vector bundle
over X. Say n = 1 to keep things simple (E a line bundle). Whitney’s idea was to attempt to do so
inductively over successive skeleta of X.

• First choose value of σ on the 0-skeleton X0. Just pick nonzero points in each relevant fiber.

• Want to extend to X1 next. Consider a 1-simplex I of X. We have already fixed the values of σ on
the endpoints of I. Since C× is path-connected, we know we extend extend a map ∂I ! C× to a
map I ! C×. Hence, we’re in good shape.

• Now imagine a 2-simplex ∆ of X. We already have a map ∂∆! C×, and we want to extend this
to a map ∆! C×. This is possible iff the loop ∂∆! C× is contractible, is trivial in π1(C×) ≃ Z.

Looking at the value of these various 2-simplicies, we get a 2-cocycle valued in π1(C×) ≃ Z of X.
One can check that this is in fact a 2-cochain. Making different choices earlier on would give rise
to a different 2-cochain, but one that differs by a coboundary. Thus, we end up with a well-defined
obstruction class in H2(X;Z). This is the first Chern class.

For a rank n vector bundle, you are trying to extend maps to Cn \ 0 ≃ S2n−1. Thus, this will be
possible until you reach the 2n-simplices, and then you get a well-defined (simplicial) cohomology class
in H2n(X;Z); this will be the top Chern class cn(E). ⊖

Exercise. Think about why this definition agrees with the earlier one given in terms of the vanishing
locus of a nonzero section (in the case that X is a complex manifold).

Remark 47.2. The definition we’ve been working with says we can think of Chern classes as classes of
degeneracy loci of bundle maps Ok ! E (where this map fails to be injective). ◦
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Why look at these particular bundle maps?

Question 47.3. Above we take k ≤ n =: rankE. What if we took k ≥ n and asked where Ok ! E fails
to be surjective?

Answer. This gives the Segre classes sk(E) =
[
deg loc of On+k−1 ! E

]
. These turn out to be express-

ible in terms of the Chern classes (and vice versa). If one sets s(E) = 1+s1(E)+ . . . the toal Segre class,
then one has

c(E)s(E∗) = 1. ⋆

More generally, if φ : E ! F is any (suitably transverse) map of vector bundles, we can associate to
it the locus

Mk(φ) := {x ∈ X : rankφx ≤ k} ,

and then consider the class [Mk(φ)].

Fact. [Mk(φ)] is expressible in terms of c(E), c(F ).56

Now, let’s consider the Chern character Note the nth
order term is
1
n! (

∑
αn
i )ch(E) :=

∑
eαi = rank(E) + c1(E) +

c1(E)2 − 2c2(E)

2
+ . . . ,

where the elementary symmetric polynomials in the αi’s are the Chern classes of E. Also consider the
Todd class

Td(E) :=
∏ αi

1− e−αi
= 1 +

c1(E)

2
+

c1(E)2 + c2(E)

12
+ . . . .

Todd arrived at the definition of his class from considering the Riemann-Roch formula.

Recall 47.4 (Riemann-Roch). Let X be a smooth projective n-dimensional complex variety. For a
coherent sheaf F on X, one has

χ(F ) = {ch(F ) Td(TX)}n .

In particular, χ(OX) = {Td(TX)}n. ⊙

The goal for Todd was defining a class so that χ(OX) = {Td(TX)}n.

History (what Todd did). He’s looking for a polynomial of degree n in the Chern classes (that will
compute χ(OX)). The number of such polynomials is the number p(n) of partitions of n. So figuring out
this polynomial is basically a matter of linear algebra. For X any product of projective spaces, we know
χ(OX) = 1 (h0 = 1 and no higher cohomology). Each such X gives a relation on the coefficients of what
we’ll become the nth graded piece of the Todd class. There are p(n) such products of projective spaces of
dimension n. Todd went ahead and solved the resulting system of linear equations, and then afterwards
saw that the solutions fit together into the expression Td(X) =

∏ αi

1−e−αi
. ⊖

With that, let’s transition from our discussion of classical Riemann-Roch to Grothendieck’s more
modern version.

Remark 47.5. Think of Riemann-Roch as a formula for computing h0(F ), with error terms coming from
the higher cohomology of F . ◦

56I imagine this follows e.g. from computing the cohomology of BU(n)
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Suppose now that we have a morphism π : X ! B and a sheaf F on X. We think of this as a family
of sheaf Fb on Xb on varieties parameterized by B. We would like an object which measures how the
spaces H0(Xb,Fb) of fibral global sections changes as we move along B. The best choice for such an
object is the direct image sheaf π∗F on B.

Warning 47.6. π∗F won’t be a vector bundle with fibers H0(Xb,Fb) in general. e.g. this won’t be the
case is the dimensions of these h0’s jumps as you vary b ∈ B. •

Theorem 47.7 (Grothendieck-Riemann-Roch). TX/B the
relative tan-
gent bundle,
not the dual
of the dual-
izing sheaf

For my own
benefit,
here’s an
exposition I
like.

∑
i≥0

(−1)i ch
(
Riπ∗F

)
= π∗

(
ch(F ) · Td

(
TX/B

))
.

Equivalently,
Td(TB)

∑
i≥0

(−1)i ch
(
Riπ∗F

)
= π∗ (ch(F ) Td(TX))

Let’s see some applications.

Example (Mumford’s relation). Let C
π
−! B be a family of smooth curves. Recall the classes λ, κ, δ

from before. In particular, recall λ = c1(π∗ωC/B). Note that, by duality, one has R1π∗ωC/B = (π∗OC)
∨
=

OB . Grothendieck-Riemann-Roch gives

λ =
{
π∗

(
ch(ωC/B) · Td(TC/B)

)}
1

Set γ = c1(ωC/B). The above reads (note TC/B = ω∨
C/B since C! B smooth)

λ =

{
π∗

((
1 + γ +

γ2

2
+ . . .

)(
1− γ

2
+

γ2

12
+ . . .

))}
1

= π∗

(
γ2

2
− γ2

2
+

γ2

12

)
=

κ

12

What if the family has isolated singular fibers? Away from the singular locus, the relative tangent bundle
is still the dual of the relative dualizing sheaf. However, at the points where there are singular fibers,
TC/B is no longer locally free. This will mean that when we take its second Chern class, we’ll pick up the
fundamental class of the singular locus of π. Hence, one will end up with λ = (κ+ δ)/12. △

Example (Computing KMg
). GRR applies to pushforwards. How can be describe the cotangent space

to Mg in terms of sheaves on the (universal) curve itself? For this, we’ll quote some deformation theory.

Fact. Let X be a smooth variety (or one with only “mild singularities”). Then,

{1st order deformations of X} ≃ H1(X,TX),

where a 1st order deformation of X is a family X/ Spec(C[ε]/(ε2)) whose fiber X0 over the reduced
point SpecC ↪! SpecC[ε]/(ε2) is isomorphic to X.

Recall 47.8. If X ⊂ Z, the first order deformations of X as a subscheme of Z are given by H0(X,NX/Z).
⊙
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Note that we have an exact sequence 0 ! TX ! TZ |X ! NX/Z ! 0, and the induced map
H0(X,NX/Z) ! H1(X,TX) is exactly the map sending an embedded deformation in Z to the under-
lying abstract deformation of X.

Imagine we have a universal curve Cg !Mg. The upshot of the above fact is that then

TMg
= R1π∗TCg/Mg

.

Similarly, the dual of the space of 1st order deformations is H0(X,T ∗
X⊗ωX), so T ∗

Mg
= π∗

(
T ∗
Cg/Mg

⊗ ωCg/Mg

)
.

We want to use GRR to compute the first Chern class of this relative dualizing sheaf.
We only have one minute left, so we will not carry this out today. △

48 Lecture 24 (4/21)

Today: finish calculation of KMg
and introduce admissible curves.

Recall 48.1 (GRR). Say π : X ! B and F on a sheaf on X. Then,∑
(−1)i ch

(
Riπ∗F

)
= π∗

(
ch(F ) Td(TX/B)

)
. ⊙

Recall 48.2 (fact from deformation theory).

{1st order deformations of X} ≃ H1(X,TX).

(apparently originally due to Kodaira and Spencer, in the setting of complex compact manifolds) ⊙

Note that above is saying that
TMg = R1π∗(TCg/Mg

),

with Cg !Mg the (imagined) universal curve. By duality theory, this is equivalently saying

T ∗
Mg

= π∗

(
T ∗
Cg/Mg

⊗⊗ωCg/Mg

)
(note that, on each fiber, T ∗

Cg/Mg
⊗ ωCg/Mg

restricts to a torsion-free rank 1 sheaf of degree 4g − 4 so its
higher cohomology will vanish). Now, Maybe need

g ≫ 0. I
haven’t done
the compu-
tation

KMg
= c1(T

∗
Mg

) =
{
π∗

(
ch(Ω⊗ ω) · Td(TC/M )

)}
1

where Ω := T ∗
C/M .

Introduce the notation
γ = c1(ωC/M ) ∈ A1(C) and η = [nodes] ∈ A2(C).

With these defined we have,

Td(TC/M ) = 1− γ

2
+

γ2 + η

12
+ . . .

ch(Ω⊗ ω) = 1 + 2γ + (2γ2 − η) + . . .
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(note TC/M ,Ω⊗ω are line bundles away from the nodes of the fibers. This is apparently useful in figuring
out the right expressions above in the presences of nodes, but I’m not 100% sure how one computes these
things)

We now compute

π∗

[(
1− γ

2
+

γ2 + η

12

)(
1 + 2γ + (2γ2 − η)

)]
= (3g − 3) + π∗

[
13

12
γ2 − 11

12
η

]
= (3g − 3) +

13

12
κ− 11

12
δ.

Thus, using the Mumford relation λ = (κ+ δ)/12, we conclude that

KMg
= c1(T

∗
M ) =

13

12
κ− 11

12
δ = 13λ− 2δ.

Recall 48.3. In the subgroup {aλ− bδ} ⊂ Pic(Mg)⊗Q, the ample cone is

{aλ− bδ : a > 11b > 0} .

The effective cone will look like everything to the left of a line of some slope Sg (and in the first or
second quadrant), i.e. it is

{aλ− bδ : a > Sgb > 0} ,

assuming I’m following.

Remark 48.4. Anything effective is a sum of something ample and something effective, and so is big. ◦
From our computation of KMg

, we conclude that KMg
will be big if Sg < 6.5. ⊙

Warning 48.5. The singular locus of Mg is codimension 2, so it does not affect divisor class calculations.
However, while KMg

being big will give a lot of sections of the (rational) canonical divisor class, when
these get pulled back to a desingularization of Mg, they may no longer be (different) regular differential
forms on the desingularization. If they are, one says that the singularities of Mg are canonical. We will
take for granted that this is the case. •

Open Question 48.6. What is the value of Sg in general?

To show that Sg < 6 1
2 for g ≫ 0, we will compute the classes of effective divisors, and use these

results to bound Sg from above. Typically, these classes won’t lie in the span of δ, λ; they will look like
aδ−

∑
i biδi (usually b0 < b1, . . . , b⌊g/2⌋ if I heard correctly). However, we can still define the slope of D

to be
slope(D) :=

a

min(bi)
=: s(D),

and then define
Sg := min

D⊂Mg

s(D).

Recall 48.7. If we find some D with s(D) < 6.5, then this means we can write Mg as a sum of an
effective divisor and a non-negative linear combination of boundary components. This suffices to show
that it is big. ⊙

Remark 48.8 (Assuming I heard correctly). For any effective divisor anyone’s actually computed, it always
works out that b0 is the smallest coefficient among the bi’s. No one’s proven this must always be the
case. ◦
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The plan now is to

• find a lot of effective divisors

• calculate their classes

• find one of minimal slope

Example (divisors on Mg).

• curves w/ a Weierstrass point of weight ≥ 2. There are two kinds of these.

These gives divisors with slope ! 9 as g !∞.

• curves w/ semicanonical pencil.

Example (g = 4). The canonical model of genus 4 curve is the complete intersection of a quadric
and a cubic in P3. It has exactly two g13 ’s if the quadric is smooth. In this case, they are distinct,
so there’s no semicanonical pencil. However, when the quadric is singular, the g13 cut out by the
ruling of that singular cone is a semicanonical pencil. △

This gives a divisor with slope ! 8 as g !∞.

• curves w/ a grd where ρ(g, r, d) = −1.

This gives a divisor with slope ! 6 as g !∞. Specifically, it will have slope 6+ 12
g+1 which is < 6 1

2

when g > 23 (and is = 6 1
2 when g = 23).

Hence, the Brill-Noether divisors will be the only ones we need to look at for our purposes. △

Warning 48.9. ρ(g, r, d) = g− (r+1)(g−d+ r) cannot be equal to −1 for all values of g. In particular,
ρ(g, r, d) = −1 =⇒ g + 1 is composite. When g + 1 is prime, there will be another divisor class (we
haven’t yet introduced) that one can look at instead. •

Fact. Brill-Noether divisors have class

c

(g + 3)λ− g + 1

6
δ0 −

⌊g/2⌋∑
i=1

i(g − i)δi


with c a constant given by an explicit but complicated expression. In particular, every Brill-Noether
divisor class on Mg has the same class, up to scaling.57

Recall 48.10. Given D ⊂ Mg, D ∼ aλ− b0δ0 − b1δ1 − . . . , can compute a, bi by calculating degBα
(D)

for all our test curves Bα. See Section 46 for a reminder of what these curves are. ⊙

Question 48.11. How do we calculate degBα
(D)? In particular, which points of Mg are in the closures

of our divisors D ⊂ Mg, i.e. which stable curves are limits of smooth curves [C] ∈ D?
57Note e.g. that if g = 23, then g + 1 = 24 has multiple factorizations so you get several different Brill Noether divisors.

Nevertheless, their divisor classes all lie in the same 1-dimensional subspace.
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Example. In M3, consider H := {hyperelliptic curves}? What is degB1
(H)? Recall elements of B1 are

nodal unions of curves of genera 1, 2.
To answer this, need a way to describe limits of linear series on smooth curves Ct as they specialize

to a singular curve C0. It’s unknown how to do this in general, but there are two ways which each apply
in certain circumstances

• admissible curves (applies only to 1-dimensional linear series, pencils)

• limit linear series (applies only on curves of compact type, i.e. those whose dual graphs are trees) △

48.1 Admissible Covers

Recall 48.12 (small Hurwitz scheme). This was

Hd,g =
{
(C, f : C ! P1) : C smooth of genus g and C

f
−! P1 simply branched degree d cover

}
⊙

This fits into a natural diagram

Hd,g

Mg (P1)b \∆,

where b = 2d + 2g − 2 is the number of branched points, and ∆ is the “big diagonal” (locus where two
points coincide). The right map above is a covering space, so Hd,g has the structure of a b-dimensional
variety. This diagram can be used to compute dimMg and even, with some more work, to show that it
is irreducible.

Question 48.13. Can we describe the closure of the image of the left map?

We will do so by compactifying Hd,g

open
⊂ Hd,g so that the map Hd,g !Mg extends to a regular map

Hd,g !Mg. Then, the closure of the image of Hd,g is just the image of Hd,g.

Remark 48.14. Instead of letting branch points come together (compactifying (P1)b \∆ to (P1)b), we’ll
construct Hd,g so that it lives over M0,b ⊃ (P1)b \ ∆. One way of thinking of this is that when points
come together, we separate them by blowing up. ◦

49 Lecture 25 (4/26): Last Lecture, but I’m out of town (whoops) I don’t know
what all
was in this
last lecture,
but you can
check out
this paper
for the ‘ad-
missible cov-
ers’ com-
pactifying
Hd,g and the
details of
finishing the
computation
of κ(Mg)
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50 List of Marginal Comments

o I think most (but not all) of this lecture was contained in the previous one . . . . . . . . . . . v
o I don’t know what all was in this last lecture, but you can check out this paper for the ‘admissible

covers’ compactifying Hd,g and the details of finishing the computation of κ(Mg) . . . . . . . vi
o Question: Is this true? Does he secretly mean proper? . . . . . . . . . . . . . . . . . . . . . . . 2
o Question: What does X1/X0 mean as a function on C? Do we secretly mean (X1/X0) ◦ f or

something? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
o Question: Did I write down the wrong thing when taking notes? I’m pretty sure this just is not

what (dx) is... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
o Answer: Implicitly using that D ∼ 5p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
o In general, this pC is the Hilbert polynomial pC(m) = χ(OC(m)) . . . . . . . . . . . . . . . 16
o Question: Why is this counting linear relations? . . . . . . . . . . . . . . . . . . . . . . . . . . 19
o Note 6 = 2 · 3 so reasonable to expect C to a lie on a quadric surface and a cubic surface . . . . 20
o Question: Why? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
o Answer: Because C does not lie on a hyperplane, so can’t lie on a quadric that’s a product of

two linear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
o TODO: Understand the geometry in this example . . . . . . . . . . . . . . . . . . . . . . . . . 23
o Question: Why is being a map an open condition . . . . . . . . . . . . . . . . . . . . . . . . . . 24
o Answer: Not a map if there’s a common zero, so complement cut out by pairwise resolvents . . 24
o The smooth quadrics will be an open in the base, so enough to look at them . . . . . . . . . . 25
o Probably use adjunction to show that if C has digree (1, 4) then it’s won’t be genus 0 . . . . . 25
o Can see examples of this phenomenon e.g. in the book ’Geometry of Schemes’ . . . . . . . . . . 26
o 3g − 3 should still be the correct dimension of the associated moduli stack Mg, where one has

to be careful about what they mean by M1 (I think, M1 with no marked points has always
confused me). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

o Use implicit function theorem over C or (Weierstrass preparation on ÔC,p if working algebraically?) 30
o Instead of this wedge product stuff, can just take the derivative of v′′(t) ∈ span {v(t), v′(t)} to

conclude v′′′(t) ∈ span {v′(t), v′′(t)} ⊂ span {v(t), v′(t)} . . . . . . . . . . . . . . . . . . . . . . 31
o Hartshorne talks about these in chapter 4 somewhere (section 3 exercises) . . . . . . . . . . . . 31
o I prolly won’t be consistent about this, but let’s say Gr(k, n) is Grassmannian of Ck ↪! Cn and

G(k, n) is Grassmannian of Pk ↪! Pn, so G(k, n) = Gr(k + 1, n+ 1). . . . . . . . . . . . . . . 31
o Remember: µd : Cd ! J is birational onto its image when d ≤ g, and is surjective when d ≥ g. 35
o Could also see this from the genus formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
o This set is a torsor for Pic[2] = Pic0[2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
o Question: Why? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
o Let K(X) be the product of the function fields of its components if you really want reducible X. 41
o Question: What is C∗ if C is not smooth? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
o Inclusion just because the map is surjective, I think . . . . . . . . . . . . . . . . . . . . . . . . 44
o In case it’s not clear, most symbols here are used purely as pictures . . . . . . . . . . . . . . . 45
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o I think we’re secretly assuming d ≤ g − 1 (in order to apply GPL), which is ok since W r
d
∼=

W r−d−1+g
2g−2−d by Riemann-Roch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

o Secretly this will actual be a projective space of dimension ≤ d − 1 − r. This is the source of
the inequality for dimΦ later . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

o Question: Do we secretly need r > 0 to get the inequality (on the right) below? . . . . . . . . . 46
o Answer: I think so. If r = 0, then Wd = im

(
Cd ! Picd

)
. This map is birational onto its image

for d ≤ g, so for such d we always have dimW 0
d = dimCd = d, and so the theorem statement

should be slightly modified. Update: I changed the theorem statement . . . . . . . . . . . . . 46
o TODO: Make these notes less trash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
o Question: What? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
o TODO: Take a closer look at Mary’s notes on the material you’ve missed . . . . . . . . . . . . 49
o Question: Why? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
o Question: What’s a rational normal scroll? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
o Answer: Essentially, more classical terminology for a Hirzebruch surface . . . . . . . . . . . . . 50
o This is slightly misleading. 4 is actually the degree of the image curve times the degree of the

map from C onto its image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
o Question: (How) does Riemann-Hurwitz extend to singular curves? . . . . . . . . . . . . . . . . 51
o Answer: You can easily get one extension by applying Riemann-Hurwitz to the induced map

on the normalizations of the curves, and combine this with a comparison of the normalized
curves and the singular ones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

o I guess φL is the normalization map, so the sum of the δ-invariants of the image must be
3− 2 = 1 (where 3 comes from degree-genus formula for plane curves) . . . . . . . . . . . . . 51

o A twisted cubic lies on 3 linearly independent quadrics . . . . . . . . . . . . . . . . . . . . . . . 53
o A collection of 4 points in the plane, no three colinear, is the intersection of two conics . . . . . 56
o TODO: Make sense of this argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
o Unclear to me if Joe has in mind the course moduli space or fine moduli stack, but let’s just

say it’s the latter for now? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
o Question: Is this a typo? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
o There’s some remark in the course text about Mg not being unirational when g ≫ 0. I wanna

say this is related to that? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
o I might be mistaken, but I think this is just because Mg is connected (or possibly just because

‘general’ means belonging to a dense open?)? . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
o Last time they showed that for any linear series, a general point is not inflectionary . . . . . . 67
o Secretly what’s written below is like a mix of the ramification and vanishing sequences . . . . . 70
o Presumably this is the same thing as a P1-bundle over Pk−1 . . . . . . . . . . . . . . . . . . . . 73
o TODO: Make sure you got this right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
o This might be in the Neron Models book or in Kleiman’s article in FGA explained? . . . . . . 75
o Maybe recall Claim 19.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
o Also need to ensure L is very ample, so probably also want d ≥ 2g + 1 to be safe . . . . . . . . 81
o The previous sentence shows this with Pr

d,g in place of H0
d,g,r. To get H0

d,g,r here, also need to
know that a general member of Pr

d,g has exactly r + 1 sections . . . . . . . . . . . . . . . . . 82
o I think on a Wednesday? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
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o If I heard correctly, this means there’s an open nbhd of [C] ∈ H0
d,g,r on which PGLr+1 acts

transitively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
o TODO: Make this paragraph make sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
o Question: Why are EL′, E′L ≤ 1? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
o Maybe compare start of this section to Section 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . 93
o This is h0(OC(m)), assuming h1(OC(m)) = 0 (e.g. assuming m ≫ 0), but I think Joe has in

mind something more elementary than Riemann-Roch for this computation . . . . . . . . . . 97
o Question: Will it not still just amount to Riemann-Roch for singular (geometrically integral)

curves? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
o Question: Why? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
o if supp∆ ∩ suppE ̸= ∅, we want G to vanish to the appropriate degree, i.e. this is the correct

expression (with A effective) for all E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
o TODO: Add an aside carrying out this computation . . . . . . . . . . . . . . . . . . . . . . . . 99
o I think this argument is in chapter 4 of Hartshorne (section 3?) . . . . . . . . . . . . . . . . . . 99
o I think, but am not 100% sure, that general position and uniform position are two different

lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
o Remember: Computing h0(OC(m)) is a nicer way to get the genus of a plane curve than the

usual adjunction argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
o This is not the ‘A’ that Joe wrote. I’m not sure which fond he was going for, it looked like a

big lowercase roman a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
o TODO: Add in rest of notes from today . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
o Want conditions that still allow Hd,g,n to dominate Mg . . . . . . . . . . . . . . . . . . . . . . 106
o Question: What? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
o Unclear to me if what follows is strictly correct or if it secretly only works for M1,1 (moduli of

pointed genus 1 curves). At the very least, I can’t see where things would fail for M1 in place
of M1,1... I think this works for M1, and in particular it is the case that M1 and M1,1 share
the j-line A1

j as their coarse moudli space (e.g. note that Jac : M1 ! M1,1 is a bijection on
C-points). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

o If C = P1/G, then C is the smooth projective curve with function field K(P1)G and so we have
P1 ↠ C which gives g(C) = 0 by Riemann-Hurwitz . . . . . . . . . . . . . . . . . . . . . . . . 111

o It’s not clear to me that this definition uniquely characterizes M . . . . . . . . . . . . . . . . . 112
o In this paper if I’m not mistaken . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
o TODO: Add drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
o Question: Is it easy to see that the stacky valuative criterion for properness is the same as the

usual one when applied to schemes? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
o This is probably gonna be hard to follow without me being able to draw pictures here. Oh well,

look at the relevant section of Harris-Morrison’s ‘Moduli of Curves’ . . . . . . . . . . . . . . . 119
o In this process, the multiplicity of the newest exceptional divisor is the order to which t vanishes

at the point being blown up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
o With all these examples, probably best to sit down and try to draw what’s going on. I could

go back and add images to these notes, but I’m lazy, so I won’t . . . . . . . . . . . . . . . . . 121
o TODO: Add in a figure giving an example of this . . . . . . . . . . . . . . . . . . . . . . . . . . 126
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o TODO: Come back and make sense of this description . . . . . . . . . . . . . . . . . . . . . . . 130
o I’m pretty sure degree of a line bundle on C is the degree of its pullback to the normalization . 132
o TODO: Come understand this example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
o One day I’ll need to actually learn what this word (and Cohen-Macaulay) mean . . . . . . . . . 133
o I think Mumford’s ‘Geometric Invariant Theory’ book is the standard reference, but Mukai’s

‘An Introduction to Moduli and Invariants’ gives a gentler introduction to the subject in a
few of its middle chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

o Question: Is it possible (and easy) to go from this to H1(Mg,Q) = 0 . . . . . . . . . . . . . . . 140
o I’m not sure how to make this rigorous. I think this is just saying that H meets the boundary

in a 4-dimensional locus, while B meets it in a 0-dimensional locus, so one expects them to
not intersect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

o See Section 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
o Note these test curves will pick out one coefficient (unless α = 1, i.e. unless you vary a point

on a genus 1 curve) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
o I think most (but not all) of this lecture was contained in the previous one . . . . . . . . . . . 147
o Potential notation clash with Bα, except Bα=1 it not useful (all degrees are 0) . . . . . . . . . 150
o Sounds like this and more is worked out in chapter 5 of ‘3264 and all that’ . . . . . . . . . . . . 152
o Note the nth order term is 1
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i ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

o TX/B the relative tangent bundle, not the dual of the dualizing sheaf . . . . . . . . . . . . . . . 156
o For my own benefit, here’s an exposition I like. . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
o Maybe need g ≫ 0. I haven’t done the computation . . . . . . . . . . . . . . . . . . . . . . . . 157
o I don’t know what all was in this last lecture, but you can check out this paper for the ‘admissible

covers’ compactifying Hd,g and the details of finishing the computation of κ(Mg) . . . . . . . 160
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