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Introduction

This talk marks the beginning of a shift in the topics of this seminar. From now until the end of the

semester, we will focus our efforts on gaining some understanding of Galois deformations. Before

diving into this material, let’s give a quick recap of where we are.

Recall 1. Suppose (a, b, c) is a non-trivial solution to ap + bp = cp.1 Attached to this is the

remarkable Frey curve E : y2 = x(x− ap)(x+ bp).

• In the first lecture we discussed this curve. In particular, we showed that its mod p represen-

tation ρE,p : GQ ! Aut(E[p]) ≃ GL2(Fp) is absolutely irreducible, odd, unramified outside

2p, and flat at p. In particular, it has surprisingly little ramification; so little ramification, in

fact, that modularity predicts that E cannot exist.

• In the third and fourth lectures, we discussed the Langlands-Tunnell [CSS97, Chapter VI,

Theorem 1.3] result on modularity of odd, solvable Artin representations. We have also seen

(e.g. in notes for the first lecture) that this implies the modularity of ρE,3 : GQ ! GL2(F3)

(when this representation is irreducible).

• In the fifth lecture, we discussed Serre’s conjecture. Because ρE,p has so little ramification,

the full strength of this conjecture would predict that it is the representation attached to a

modular form of weight 2 and level Γ0(2), but no such form exists, a contradiction. Serre’s full

conjecture was not known at the time FLT was proven, but his simpler ‘epsilon conjecture’

(on level lowering for modular representations) was known. This is enough to show that if

ρE,p is modular (of weight 2 and some level), then it must be so of weight 2 and level 2. Thus,

weight 2 modularity of ρE,p would prove FLT.

• This brings us to now. We know ρE,3 is modular (when its irreducible). If we knew that E

itself was modular, e.g. that ρE,3 : GQ ! GL2(Z3) was modular, then we could conclude that

ρE,p : GQ ! GL2(Zp) (and so also ρE,p) is modular too, and so arrive at a contradiction via

Serre’s epsilon conjecture. ⊙

To finish this story, Wiles and Taylor-Wiles proved

Theorem 2. Let E be as above. For any prime ℓ, if ρE,ℓ is modular (and irreducible), then ρE,ℓ

is modular as well.

The rough strategy for proving this theorem is to study all the ways of deforming/lifting ρE,ℓ :

GQ ! GL2(Fℓ) to Galois representations over larger (complete and/or artinian) rings A (e.g.

A = Zℓ), and then to show that all such deformations satisfying appropriate local conditions

(modelled e.g. on properties of ρE,ℓ, our main representation of interest) must in fact be modular.

In this talk, we want to set the stage for carrying out such an argument. We will introduce the

basic objects and definitions that come into play and hopefully get a sense for what work needs to

1For technical reasons, one should assume that p ≥ 5, that a ≡ −1 mod 4, and that 2 | b. See the first lecture in
this seminar for why.
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be done in order to prove such a modularity lifting result. These notes are mostly based on [Gee22]

(supplemented by [Zho]) and [B1̈3]. The paper [CHT08] (especially section 2) has also been helpful.

By the end (of this semester), we will not prove Theorem 2.2 Instead, we will largely follow

[Gee22] and so prove something like the following:

Theorem 3 ([Gee22, Theorem 5.2]). Fix a prime p > 3. Let F be a totally real number field,

and choose some L/Qp large enough that L contains the images of all embeddings F ↪! Qp. Let

O = OL. Suppose that ρ : GF ! GL2(O) is a continuous, geometric3 representation such that ρ

is modular, say ρ ∼= ρf,λ for some modular form f . Further suppose that

(1) For all σ : F ↪! L, HTσ(ρ) = HTσ(ρf,λ) (i.e. ρ, ρf,λ have the same Hodge-Tate weights)

(2) For all v | p, ρ|GFv
and ρf,λ|GFv

are crystalline.

(3) p is unramified in F

(4) For all σ : F ↪! L, the elements HTσ(ρ) differ by at most p− 2.

(5) Im ρ ⊃ SL2(Fp).

Then, ρ is modular.

Remark 4. In [Gee22, Section 6], Gee discusses what sort of work would be needed to relax the

hypotheses in Theorem 3. At the very least, I think it will be reasonable for us to aim to prove

(something like) this for p ≥ 3 instead of at least 5. Certainly, in order to have the theorem apply

to some Frey curves (even if it still doesn’t apply to enough of them to deduce FLT), we’ll want to

allow p = 3. In Appendix A, I’ll say more about (my understanding of) which (semistable) elliptic

curves Theorem 3 applies to. ◦

With all that out of the way, it’s probably about time we get into the actual material that will

be present in the talk.

1 Universal Deformation Rings (start of actual material)

We want to study ways of lifting a mod p representation GQ ! GLn(Fp) to one valued in GLn(A)

where, for example A is a finite extension of Zp (or even something more exotic like some version

of a Hecke algebra). As it turns out, there is often a universal such lifting GQ ! GLn(A
univ) from

which all others are pushed forward. Our first task is to make this precise.

Notation 1.1. We fix the following notation throughout:

• p is a rational prime

2This is mostly because this whole area is new to me, so what I can plan for us to do is limited by a combination
of my naivety and what approachable-seeming notes I can find.

3i.e. unramified almost everywhere and de Rham at all places above p
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• F is a finite field of characteristic p, andW (F) is the ring of integers in the unramified extension

of Qp with residue field F.

Note 1. Witt was a nazi, so I’m gonna try to not call W (F) by its usual name.

Note 2. After finishing these notes, I realized I never actually use the notation W (F) for

anything, so I guess the above is just a public service announcement.

• O = OL denotes the ring of integers in some local field L/Qp with residue field F (so

W (F)[1/p] ⊂ L).

• CO will denote the category of local artinian O-algebras with residue field F.

• ĈO will denote the category of complete local noetherian O-algebras with residue field F.

Warning 1.2. The adjective ‘noetherian’ appearing above stops ĈO from literally being

pro–CO , the pro-category on CO . •

Remark 1.3. Given A ∈ ĈO , we let mA ⊂ A denote its maximal ideal. Note that the

structure map O ! A gives a canonical identification F ∼
−! A/mA. ◦

Note 3. After finishing these notes, I realized I don’t really ever use CO , so I guess I didn’t

need to define it.

• G will denote a profinite group.

• ρ : G! GLn(F) is a fixed continuous representation.

Definition 1.4. Choose A ∈ ĈO . A lift (or framed deformation) of ρ to A is a continuous repre-

sentation ρ : G! GLn(A) such that ρ mod mA = ρ. On the other hand, a deformation of ρ to A

is an equivalence class of lifts, where ρ ∼ ρ′ ⇐⇒ ρ′ = aρa−1 for some a ∈ ker(GLn(A)! GLn(F)).
⋄

Remark 1.5. Let V = F⊕n, equipped with G-action specified by ρ, and let β = (e1, . . . , en)

denote the canonical (ordered) F-basis on V . Then, a deformation of V is equivalently a finite free

A-module VA w/ continuous G-action equipped with an isomorphism VA ⊗A F ∼
−! V . A framed

deformation is such a VA along with a(n ordered) basis βA which becomes identified with β upon

passing from A to F. ◦

Notation 1.6. We consider the two functors Dρ, D
□
ρ : ĈO ! Set given by

Dρ(A) = {deformations of ρ to A}
D□

ρ (A) = {framed deformations of ρ to A} .

The first basic result in the theory is that D□
ρ is always representable.
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Warning 1.7. Dρ is not always representable. As is often the case when one encounters non-

representable functors, the issue is lies in the objects being parameterized having too many auto-

morphisms. When EndF[G](ρ) = F (i.e. ρ is Schur), then there is no issue and Dρ is representable.

If more automorphisms exist though, one is better served by replacing Dρ with the corresponding

category cofibered in groupoids, see e.g. [B1̈3, Section 1.6]. •

1.1 Constructing the universal framed deformation

Let’s prove representability of D□
ρ in a few steps.

(1) First suppose that G is finite.

Write G = ⟨g1, . . . , gs | r1(g1, . . . , gs) , . . . , rt(g1, . . . , gs) ⟩. Consider the ring (remember n =

dim ρ)

R = O
[
Xk

i,j | i, j = 1, . . . , n; k = 1, . . . , s
]
/I,

where I is the ideal generated by the coefficients of the matrices

rℓ(X
1, . . . , Xs)− In where Xk =

(
Xk

i,j

)n
i,j=1

.

Thus, R is cooked up exactly so that it admits a representation ρ : G ! GLn(R) sending

gk 7! Xk. This R is not necessarily complete, so let J ⊂ R be the kernel of the map

R ! F which sends Xk 7! ρ(gk), and set R□
ρ := lim −

n

R/J n. Then, ρ naturally extends to a

representation ρ□ : G! GLn(R
□
ρ ) and one can check that (R□

ρ , ρ
□) “represents” D□

ρ .

Warning 1.8. The scare quotes are there because while R□
ρ is certainly a complete, local

O-algebra w/ residue field F such that

D□
ρ (A) = Hom(R□

ρ , A)

for any A ∈ ĈO , we still have not shown that R□
ρ is noetherian. •

(2) Now say that G is an arbitrary profinite group.

Write G = lim −
i

G/Hi with i ranging over some directed poset I of open, normal subgroups

Hi ◁ G which are contained in ker(ρ). For each i, (1) above yields a universal pair (R□
i , ρ

□
i ),

and now one defines (
R□

ρ , ρ
□
)
:= lim −

i

(
R□

i , ρ
□
i

)
.

(3) Show that R = R□
ρ is noetherian.

This will not be the case for arbitrary G, but we will see exactly the condition we need for

this to hold.
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Exercise. Choose {αi}i∈I ⊂ mR whose images generate mR/(m
2
R,mO), the “relative cotangent

space of O ! R”. Then, the map

φ : OJxi : i ∈ IK −! R

xi 7−! αi

is surjective.

By the above exercise, to show that the above constructed R = R□
ρ is noetherian, it will

suffice to show that mR/(m
2
R,mO) is finite dimensional. We now take a detour to do this...

Definition 1.9. Let D : ĈO ! Set be a functor such that D(F) consists of a single point. Its

Zariski tangent space is tD := D(F[ε]), where F[ε] := F[ε]/ε2. ⋄

Remark 1.10. tD always has a natural F-action of “scalar multiplication.” If D satisfies D(F[ε]×F

F[ε]) ∼
−! D(F[ε]) ×D(F[ε]) (e.g. if D is representable), then tD supports an addition law as well.

In this case, it is naturally an F-vector space. ◦

Exercise. Suppose D : ĈO ! Set is representable, say by A. Then, there is a natural F-linear
isomorphism

tA := HomF
(
mA/(m

2
A,mO),F

) ∼
−! HomO(A,F[ε]) ≃ D(F[ε]) = tD.

The above shows that A has the same tangent space as the functor it represents.

Lemma 1.11. Let R = R□
ρ be the universal lifting ring constructed earlier. Then, the fol-

lowing are in bijection

(1) tR = HomF
(
mR/(m

2
R,mO),F

)
(2) tD□

ρ

(3) liftings of ρ to F[ε]

(4) the set of cocycles Z1(G, adρ), where adρ : G ! Aut(Mn(F)) ∼= GLn2(F) is the conjugation

action of G (in other words, adρ ∼= ρ⊗ ρ∨).

Proof Sketch. That (1),(2),(3) are in bijection follows from the most recent exercise and expanding

definitions. Let’s show that (3) is in bijection with (4). Given a cocycle φ ∈ Z1(G, adρ), the

corresponding lifting ρ : G! GLn(F[ε]) is given by

ρ(g) :=(1 + φ(g)ε) ρ(g).

Conversely, given ρ : G! GLn(F[ε]) lifting ρ, one first defines θ : G!Mn(F) via ρ(g) = ρ(g)+θ(g)ε

and then checks that g 7! θ(g)ρ(g)−1 is a 1-cocycle in Z1(G, adρ). ■

6



Corollary 1.12. With R as above,

dimF tR = dimF H
1(G, adρ)− dimF H

0(G, adρ) + n2.

Proof. This follows from the exact sequence

0 −! H0(G, adρ) −! adρ −! Z1(G, adρ) −! H1(G, adρ) −! 0. ■

Corollary 1.13. R = R□
ρ is noetherian (and so an element of C̃O) if4 H1(G, adρ) is finite-

dimensional.

To understand the size of H1(G, adρ), one can use inflation-restriction. Let G′ := ker ρ. Then,

we have a left exact sequence

0 −! H1(G/G′, adρ) −! H1(G, adρ) −! H1(G′, adρ)G/G′
.

Note that G/G′ and (the vector space underlying) adρ are both finite, so H1(G, adρ) is finite-

dimensional if and only if H1(G′, adρ)G/G′
is. Since G′ acts trivially on adρ, we have

H1(G′, adρ) = Homcts(G
′, adρ) = Homcts(G

′,Fp)⊗Fp
adρ,

which is finite-dimensional if and only if Hom(G′,Fp) is.

Definition 1.14. We say G satisfies Mazur’s condition Φp if Hom(G′,Fp) is finite for every open

subgroup G′ ⊂ G. ⋄

Thus, the discussion so far has proven the following.

Theorem 1.15. The framed deformation functor D□
ρ : ĈO ! Set is always pro-representable5 by

some (R□
ρ , ρ

□). If, furthermore, G satisfies Mazur’s condition Φp, then Dρ is representable, i.e.

R□
ρ is noetherian.

As a consequence of Corollary 1.12, we can write R□
ρ as a quotient

π : OJx1, . . . , xdK↠ R□
ρ , where d := h1(G, adρ)− h0(G, adρ) + n2

(send the xi’s to lifts of a basis for t∨
R□

ρ

). This tells us that R□
ρ has a presentation with d generators.

How many relations does it require? Let J = kerφ.

Proposition 1.16. Let m = (mO , x1, . . . , xd) be the maximal ideal of OJx1, . . . , xdK. There exists

an injection HomF(J/mJ,F) ↪! H2(G, adρ).

This is proved, for example, in [Zho, Lecture 7]. Thus, the presentation π has at most dimH2(G, adρ)

many relations.

4I’m pretty sure this is secretly an if and only if, but I didn’t think too deeply about this
5i.e. represented by a ring which is an inverse limit of objects in CO
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Corollary 1.17. Assume G satisfies Mazur’s condition Φp.

(1) Then,

dimR□
ρ ≥ d+1−dimF H

2(G, adρ) = n2+1−dimH0(G, adρ)+dimH1(G, adρ)−dimH2(G, adρ).

(2) If dimH2(G, adρ) = 0, then

OJx1, . . . , xdK
∼
−! R□

ρ

1.2 Brief discussion of the universal deformation

What about the deformation functor Dρ without framings?

Theorem 1.18. If ρ is Schur, then Dρ is representable, say by (Runiv
ρ , ρuniv). We call Runiv

ρ the

universal deformation ring.

Proof Sketch. Let P̂GLn denote the formal completion of PGLn,O along its identity section.6 Then,

P̂GLn acts on X = Spf R□
ρ via conjugating liftings and the Schur condition ensures that this action

is free. One can then construct Runiv
ρ as (the O-algebra whose Spf is the formal scheme) X/P̂GLn.

See [B1̈3, Theorem 2.1.1] for details. ■

(Alternatively, one can argue as in [DDT07, Thereom 2.36].)

We have already gotten a hint that tangent spaces are important, so we record the following

Lemma 1.19. Let R = Runiv
ρ be the universal deformation ring constructed earlier. Then, the

following are in bijection

(1) tR = HomF
(
mR/(m

2
R,mO),F

)
(2) tDρ

(3) deformations of ρ to F[ε]

(4) H1(G, adρ)

(5) Ext1(ρ, ρ)

Proof Sketch. If you view a deformation of ρ to F[ε] as a finite free F[ε]-module V whose reduction

mod ε is VF (the module underlying ρ), then it becomes clear that V sits in an extension

0 −! εVF −! V −! VF −! 0,

and this assignment gives the bijection (3)!(5). To connect everything else to (4), one could

either

6This has functor of points P̂GLn(A) = ker(PGLn(A)! PGLn(F)), see [B1̈3, Exercise 2.8.1].
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• Show that the construction in Lemma 1.11 assigns two liftings to F[ε] to cohomologous cocycles

exactly when they are conjugate; or

• consider the following construction: given an extension 0 ! VF ! V ! VF ! 0 with VF

the F[G]-module underlying ρ, one can tensor with V ∨
F to get an extension 0 ! adρ !

V ⊗ V ∨
F ! adρ ! 0, and then consider the image of id ∈ H0(G, adρ) under the coboundary

map H0(G, adρ)! H1(G, adρ) of this extension; or

• argue that M ⇝ ExtiG(F, (−)⊗ ρ∨) and M ⇝ ExtiG(ρ,−) are (co)effacable δ-functors (on the

category of continuous, discrete F[G]-modules) which agree with i = 0 and so must agree for

higher i (and also note that H1(G, adρ) = Ext1G(F, adρ)). ■

Definition 1.20. Let φ : D′ ! D be a natural transformation of functors ĈO ! Set. We say φ is

formally smooth if for any surjection A! A′ in CO (i.e. A,A′ both artinian), the induced map

D′(A) −! D′(A′)×D(A′) D(A)

is surjective. ⋄

Proposition 1.21. The natural transformation D□
ρ ! Dρ sending a lifting of ρ to its deformation

class is formally smooth. Thus, if Dρ is representable, then

R□
ρ
∼= Runiv

ρ Jx1, . . . , xrK where r := n2 − h0(G, adρ).

Proof. That this map is formally smooth follows from simply expanding definitions; it is the tau-

tological statement that, given A! A′, if you have a lifting of ρ to A′ which is conjugate to some

lifting to A, then it is isomorphic to some lifting to A.

Suppose that Dρ is representable, so we have R□
ρ ! Runiv

ρ . Let m□ := mR□
ρ

and m := mRuniv
ρ

.

Considering the surjection F[ε] ε=0
−−! F, we in particular see that

HomF
(
m□/(m

2
□,mO),F

)
−! HomF

(
m/(m2,mO),F

)
is surjective, so m/(m2,mO) ↪! m□/(m

2
□,mO) is injective. Choosing r generators for the cokernel

(possibly by Corollary 1.12 + Lemma 1.19) and lifting them to m□, we obtain a surjection

Runiv
ρ Jx1, . . . , xrK↠ R□

ρ .

Formally smoothness in fact implies that this is an isomorphism. It’s an isomorphism on tangent

spaces (i.e. on F[ε]-points) by construction. One can then induct on the length of an artinian

O-algebra A to show that it’s an isomorphism on A-points in general. ■

Remark 1.22. When ρ is Schur, one has h0(G, adρ) = 1 (since H0(G, adρ) = EndF[G] ρ = F by

assumption), so R□
ρ is (ismorphic to) a power series ring in n2 − 1 variables over Runiv

ρ . According
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to [Gee22, Exercise 3.9], the universal lifting

ρ□ : G −! GLn

(
Runiv

ρ JXi,jK
n
i,j=1 /(X1,1)

)
is ρ□ =(In +(Xi,j)) ρ

univ(In +(Xi,j))
−1

. ◦

Slogan. R□
ρ and Rρ have equivalent singularities.

2 Deformation Problems and Galois Deformations

Continue to use the notation from Notation 1.1. We will soon specialize to the case that our

profinite group G is (a quotient of) the Galois group of some p-adic or number field.

Exercise. Prove that both of the following groups satisfy Mazur’s condition Φp:

• The absolute Galois group GL for L/Qp a finite extension.

• The maximal quotient GK,S of GK (for K/Q a number field) which is unramified outside a

specified finite set S of places of K.

Before specializing to one of the above cases, we introduce the notion of a deformation problem.

The universal lifting ring R□
ρ is generally too big; in practice, one is not interested in all liftings of

a given residual representation, but only those which are “nice enough”. For example, if ρ : GQ !

GL2(Fp) is a modular representation, and we want to show some lifting ρ : GQ ! GL2(Zp) is also

modular, then we better hope at the very least that ρ has the right determinant and is geometric;

if we want ρ to be modular of a specified level N , then we’d also want it to be unramified away

from N .

Thus, the deformation rings one works with in practice are certain quotients of R□
ρ which classify

liftings satisfying specified desirable conditions.

Definition 2.1. A deformation problem D is a collection of liftings (R, ρ) of (F, ρ) (with R ∈
ob ĈO) satisfying the following

(1) (F, ρ) ∈ D

(2) If f : R! S is a morphism in ĈO and (R, ρ) ∈ D, then (S, f ◦ ρ) ∈ D.

(3) If f : R ↪! S is an injective morphism in ĈO , then (R, ρ) ∈ D if and only if (S, f ◦ ρ) ∈ D

(4) Suppose that R1, R2 ∈ ob ĈO and I1, I2 are closed ideals of R1, R2, respectively, equipped

with an isomorphism f : R1/I1
∼
−! R2/I2.

If (R1, ρ1), (R2, ρ2) ∈ D and f(ρ1 mod I1) = ρ2 mod I2, then their fiber product

R := R1 ×R1/I2 R2 := {(r1, r2) ∈ R1 ⊕R2 : f(r1 mod I1) = r2 mod I2} ,

equipped with ρ := ρ1 ⊕ ρ2 is in D as well.
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(5) If (R, ρ) is a lifting of (F, ρ) and I1 ⊃ I2 ⊃ . . . is a sequence of ideals of R with
⋂

j Ij = 0

such that (R/Ij , ρ mod Ij) ∈ D for all j, then (R, ρ) ∈ D.

(6) If (R, ρ) ∈ D and a ∈ ker(GLn(R)! GLn(F)), then (R, aρa−1) ∈ D. ⋄

Remark 2.2. Let K := ker
(
GLn(R

□
ρ )! GLn(F)

)
. Then, K ↷ R□

ρ as follows. Each a ∈ K acts

via the homomorphism R□
ρ ! R□

ρ corresponding to the lifting

a−1ρ□a : G! GLn(R
□
ρ )

of ρ (recall End(R□
ρ ) = D□

ρ (R
□
ρ )). ◦

Proposition 2.3. Let D be a deformation problem. Then, there exists a K-invariant ideal I(D) ⊂
R□

ρ such that a lifting ρ : G ! GLn(R) of ρ lies in D if and only if the kernel of the induced map

R□
ρ ! R contains I(D), i.e. if and only if R□

ρ ! R factors through R□
ρ /I(D).

(See [Gee22, Lemma 3.17] for more on the connection between deformation problems and K-

invariant ideals)

Proof. Let J denote the set of ideals I of R□
ρ such that (R□

ρ /I, ρ
□) ∈ D. By property (3) of

Definition 2.1, (R, ρ) ∈ D if and only if the kernel of the induced map fρ : R□
ρ ! R is in J . We

claim that J has a minimal element, which we’ll call I(D), that is contained in all other elements.

First note that J is non-empty by property (1) of Definition 2.1. Furthermore, properties (4) and

(5) tell us that J is closed under (arbitrary) finite intersections and nested countable intersections.

Taken together, this means that J is closed under (arbitrary) countable intersections.7 Thus, it

suffices to show that J is countable (and then I(D) =
⋂

I∈J I). This is true simply because every

R ∈ ĈO has only countably many ideals.8 ■

Remark 2.4. Given a deformation problem D, let D□
ρ : ĈO ! Set (not to be confused with

D□
ρ ) denote the functor sending A to the set D□

ρ (A) of framed deformations ρ : G ! GLn(A) of

ρ : G! GLn(F) such that (A, ρ) ∈ D. Then, Proposition 2.3 tells us that D□
ρ is represented by the

ring R□
ρ /I(D) =: R□,D

ρ . ◦

The above notion of deformation problem (seemingly) says nothing about determinants. How-

ever, these are easy to handle/fix.

Construction 2.5. Fix a character χ : G! O× such that χ⊗O F = det ρ. Let D be a deformation

problem. Then, the functor

D□
ρ,χ(A) := {ρ : G! GLn(A) | det ρ = χ and (A, ρ) ∈ D}

is represented by “the quotient of R□,D
ρ by det ρ− χ” (where ρ : G! GLn(R

□,D
ρ ) is the universal

object). Here’s one way to make this precise. First realize that we have a ring R□
det ρ representing

7Given, I1, I2, . . . ,∈ J , notice that
⋂

n≥1 In =
⋂

n≥1

(⋂n
k=1 Ik

)
8Hint: every ideal of R contains mn

R for some n, and every quotient R/mn
R is artinian (so only has finitely many

ideals)
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liftings of det ρ. Thus, we get two maps R□
det ρ ⇒ R□,D

ρ representing the two choices of liftings

det ρ : G !
(
R□,D

ρ

)×
and χ : G ! O× !

(
R□,D

ρ

)×
. The functor D□

ρ,χ is represented by the

coequalizer

R□,D
ρ,χ := CoEq

(
R□

det ρ ⇒
(
R□,D

ρ

)×
)
. 8

Remark 2.6. Alternatively, we can construct R□,D
ρ,χ above as the quotient of R□,D

χ by the ideal

generated by the elements det ρ(g)− χ(g) ∈ R□,D
χ . ◦

Exercise. Prove or disprove the following

• For fixed χ : G ! O× lifting det ρ, the collection Dχ of (A, ρ) such that det ρ = χ is a

deformation problem.

• For deformation problems D1,D2, the collections D1 ∪ D2 and D1 ∩ D2 are deformation

problems.

2.1 Galois Deformations with Local Conditions

We’ve finally done enough setup to start talking about the specific sort of deformation rings we

actually care about. Continue to use Notation 1.1.

Setup 2.7. Fix a number field F/Q and choose embeddings F ↪! F v for all places v of F . Fix

a finite set S of places of F , let FS/F be the maximal extension unramified outside S, and set

G := GF,S := Gal(FS/F ).

Definition 2.8. A global Galois deformation problem S = (F, S,O, ρ, χ, {Dv}v∈S) is a tuple

consisting of

• F, S,O as before

• ρ : GF,S ! GLn(F) a continuous representation, which we’ll assume to be Schur

• χ : GF,S ! O× continuous such that χ mod mO = det ρ

• Dv a deformation problem for ρ|Gv
. ⋄

Remark 2.9. As suggested by [Gee22, Section 3.20], one could make this definition in a more

general context, e.g. G a profinite group equipped with maps Gv ! G from some collection of

other profinite groups (w/ no relation to Galois theory). ◦

Definition 2.10. Choose a subset T ⊂ S (possibly T = ∅), and let S be a global Galois deformation

problem. Let D□,T
S : ĈO ! Set be the functor

D□,T
S (A) :=

{(
ρ, {αv}v∈T

)}
/ ∼,

where

12



• ρ : G! GLn(A) is a lift of ρ

• αv ∈ ker(GLn(A)! GLn(F)) for all v ∈ T

• det ρ = χ

• ρ|Gv ∈ Dv for all v ∈ S,

and the relation ∼ is generated by

(ρ, {αv}) ∼
(
βρβ−1, {βαv}

)
for all β ∈ ker(GLn(A)! GLn(F)) .

An element of D□,T
D is called a T-framed deformation of ρ of type S. ⋄

Remark 2.11. A T -framed deformation of ρ is a deformation (not lifting!) of ρ with specified

local behavior at S (and with fixed determinant) in addition to framings at T . In particular, given

(ρ, {αv}v∈T ), ρ|Gv
is not a well-defined element of Dv (it’s not ∼-invariant), but α−1

v ρ|Gv
αv is (when

v ∈ T ).

Recall that the universal deformation ring Runiv
ρ|Gv

may not exist if ρ|Gv
is reducible, while the

universal framed deformation ring R□
ρ|Gv

always exists. Considering T -framed deformations allows

one to better study deformations of ρ which become reducible when restricted to some Gv’s. ◦

Theorem 2.12. Choose a subset T ⊂ S, and let S be a global Galois deformation problem. Then,

D□,T
S is representable by some R□,T

S ∈ ĈO .

Notation 2.13. If T = ∅, we set Runiv
S := R□,∅

S . If T = S, we set R□
S := R□,S

S .

(The below is my best attempt at making sense of how one constructs this)

Proof Sketch. Convince yourself that the functor A⇝ ker(GLn(A)! GLn(F)) is representable, say
by B. Now, it’s not too hard to show that the functor sending A to the set of all T -framed liftings

of ρ of type S is represented by a suitable quotient of R□,D
ρ,χ ⊕ B⊕#T , where D is the deformation

problem consisting of reps which are locally in Dv for all v. Call this quotient R. Now, one can

construct R□,T
S as the quotient of R by its natural P̂GLn-action. ■

Thus, we finally have rings R□,T
S which control deformations of ρ with specified determinant and

local behavior. The ultimate goal is to understand these rings well enough to say that every such

deformation of ρ must be modular (this will amount to showing that R□,T
S is essentially some Hecke

algebra). Understanding R□,T
S in particular means controlling its Krull dimension. The utility of

this is seen in statements like the following.

Lemma 2.14. Let A be a complete noetherian local domain. If AJx1, . . . , xnK↠ R is a surjection

onto a complete local ring of dimension n+ dimA, then it is an isomorphism.

Proof. Let p ⊂ R be a minimal prime (so dimR = dim(R/p)). Then, the compositionAJx1, . . . , xnK↠
R↠ R/p is an isomorphism (the kernel must be a height 0 prime), so AJx1, . . . , xnK↠ R must be

an isomorphism as well. ■
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Remark 2.15. To see the actual sort of statements one uses in the end, check out these notes on

patching. ◦

Thus, if we eventually construct some surjection R□,T
S ↠ T that we hope to be an isomor-

phism, it could be useful to know things like the dimensions of these rings and the number of

generators/relations needed to write down presentations for them.

With that said, we end this section by noting that R□,T
S is naturally an algebra over

Rloc
S,T :=

⊗̂
v∈T

R□,Dv

ρ|Gv ,χ

(need v ∈ T in order to have a well-defined element α−1
v ρ□,Tαv of Dv over R□,T

S ). In a later

talk, we will discuss the number of generators/relations needed to present R□,T
S over Rloc

S,T , akin to

observations made in and above Corollary 1.17 (see [Gee22, 3.23]).

3 Intro to Hecke Algebras and R = T?
Our eventual goal, as has maybe been alluded to a few times now, is to show that some suitable

universal deformation ring R is in fact a Hecke algebra (and then use this to deduce that all

deformations represented by R are modular). In order to make sense of this, we at least need to

produce a map from R to some Hecke algebra T, i.e. we need to construct some T-valued Galois

representation. We (hopefully briefly) explain how in the current section.

Remark 3.1. The below (Section 3.1) is my preferred way of thinking of modular forms and Hecke

operators. I feel empowered to present them this way because I’m assuming the audience already

has some familiarity with these objects. For other perspectives on this material, you can see e.g.

[DDT07, Section 3.3] or [The, Lecture 8] (for sources concerned w/ modularity lifting), [DS05] (for a

introduction to modular forms/Hecke operators), and/or [Gro90] (for more info on the perspective

adopted below). If you really want lots for relevant information, check out this book. ◦

I’m gonna try to be somewhat quick in this section.

3.1 Defining Modular Forms and Hecke Algebras
I’m not

100% sure

I have all

my defini-

tions correct

yet, so take

this section

w/ a grain

of salt.

Notation 3.2. Fix some integerN ≥ 1. Let X1(N)/Z[1/N ] denote the moduli stack parameterizing

triples (S,E/S, α : µN,S ↪! E) where S is a Z[1/N ]-scheme, E is a generalized elliptic scheme over

S, and α is an embedding of S-group schemes. Write X1(N) for the coarse space of X1(N), so this

is always a scheme.

(X1(N) is a scheme if N ≥ 5. Even if N is small, you won’t lose much if you pretend in your

head that this is a scheme)

Warning 3.3. Some others prefer to use Z/NZ in place of µN above. This has the disadvantage

that the Tate curve Gm/qZ naturally has µN as a subscheme instead of Z/NZ. So, using Z/NZ,
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you can only define q-expansions of modular forms over Z[1/N, ζN ]-algebras, but I’m getting ahead

of myself... •

Over X1(N) there is a universal generalized elliptic curve π : E ! X1(N) equipped with a

canonical embedding of µN .

Definition 3.4. The Hodge bundle on X1(N) is the line bundle ω := π∗ωE/X1(N), where ωE/X1(N)

is the relative dualizing sheaf. A little less scary sounding, this is equivalently the pullback

σ∗Ω1
E/X1(N) of the sheaf of relative differentials along the identity section σ : X1(N)! E. ⋄

Definition 3.5. Consider any Z[1/N ]-algebra R. The space of modular forms of weight k and

level Γ1(N) over R is

Mk(N,R) := H0(X1(N)R, ω
⊗k).

Similarly, a cusp form is a section of ω⊗k(−cusps). ⋄

Remark 3.6. Aren’t modular forms supposed to be fancy functions on the upper half place? Say

R = C. Given any τ ∈ H := {z ∈ C : Im z > 0}, consider the elliptic curve

Eτ := C/(Z⊕ Zτ) ∼
−−−−−−!
exp(2πiz)

C×/qZ where q = e2πiτ.

Let α be the natural embedding µN (C) ↪! C×/qZ = Eτ, and let φ = (Eτ, α) ∈ X1(N)(C).
Now, let f ∈ Mk(N,C) be a modular form over C. Note that φ∗ω is simply the 1-dimensional

C-vector space H0(Eτ, (Ω
1
Eτ

)⊗k) ∼= H0(Eτ,O) of kth tensor powers of invariant differentials on Eτ.

Thus, it has a basis given by (dzz )⊗k, where z is the parameter on C.9 Then, we may define f(τ) ∈ C
via

φ∗f = f(τ)

(
dz

z

)⊗k

∈ H0(Eτ, (Ω
1
Eτ

)⊗k).

This is how you recover the usual definition of modular forms from this one. ◦

Remark 3.7. You can also think of a modular form as a (sensible) rule which assigns to any pair

(E,α) defined over (some scheme S defined over) R, an element f(E,α) ∈ H0(S, ω⊗k), where ω is

the Hodge bundle on S. ◦

Let’s define the Hecke operators.

Definition 3.8. For each d ∈ (Z/NZ)×, we have the diamond operator ⟨d⟩, which we’ll think of

as the automorphism of X1(N) given by

⟨d⟩ (E,α) = (E, dα). ⋄

Definition 3.9. For each prime p ∤ N , we consider the moduli stack X1(N ; p)/Z[1/N ] parameter-

izing tuples (S,E/S, α, β) where (S,E/S, α) ∈ X1(N)(S) and β : E ! E′ is an isogeny of degree

9The differntial dz on C is invariant under translation z 7! z+ c (for any c ∈ C) and so descends to a(n invariant)
differential on Eτ = C/(Z ⊕ Zτ). Under the isomorphism Eτ ≃ C×/qZ, dz  [ d(log(z)/(2πi)) = dz/(2πiz). Thus,
dz/z is an invariant differential on Eτ and so generates H0(Eτ,Ω1).
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p. This has two maps X1(N ; p) ⇒ X1(N) given by (E,α, β) 7! (E,α) and (E,α, β) 7! (E′, β ◦ α).
We’ll think of the Hecke correspondence Tp as the correspondence

X1(N ; p)

X1(N) X1(N)

⋄

(there are p+ 1 isogenies E ! E′ of degree p; think about order p subgroups of (Z/pZ)2)

Warning 3.10. In the above (and below) examples, I’ve really only properly defined X1(N ; p)

away from the cusps. For a reference that’s a bit more careful, see e.g. [Gro90, Section 3]. •

Definition 3.11. For each prime p | N , we let X1(N ; p)/Z[1/N ] be the moduli stack parametrizing

tuples (S,E/S, α, β) where (S,E/S, α) ∈ X1(N)(S) and β : E ! E′ is a degree p isogeny such that

imα ∩ kerβ = 0. As before, we’ll think of the Hecke correspondence Up as the correspondence

X1(N ; p)

X1(N) X1(N)

In fact, we’ll often write Tp in place of Up even when p | N . ⋄

Remark 3.12. The diamond operator and Hecke correspondences all act on the space of mod-

ular forms. For example, Tp sends a modular form f to the modular form f |Tp (when p ∤ N)

corresponding to the rule (see Remark 3.7)10

f |Tp(E,α) =
1

p

∑
β:E!E′

β∗(f(E′, βα))

(If p | N , only sum over isogenies for which kerβ∩imα = 0). More simply, ⟨d⟩ acts via f | ⟨d⟩ (E,α) =

f(E, dα). ◦

Warning 3.13. Shouldn’t we worry about the division by p above, at least if p ∤ N? No, it all

works out. f |Tp is still defined over R instead of over R[1/p]. The easiest way to see this is to just

work out the effect on q-expansions.11 •

Remark 3.14. ⟨d⟩ and Tp induce analogous correspondences on the coarse space X1(N), and hence

also act on the Jacobian J1(N) := JacX1(N) (since correspondences naturally act on divisors). We

define the Hecke algebra T(N) of level N to be the subring T(N) ⊂ End(J1(N)Q) generated

10Note that Tp acts on modular forms via 1
p
times the usual action of a correspondence of sections of a line bundle.

11The Tate curve gives a ZJqK point of X1(N) w/ a canonical basis for (sections of) its Hodge bundle. Evaluating
a modular form on this Tate curve and then expression it as some (R⊗ZJqK)-multiple of the canonical basis element
let’s you define q-expansions over R.
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(over Z) by the actions of the diamond operators ⟨d⟩ and the Hecke correspondences Tp (for all p).

Similarly, we define the anemic Hecke algebra T′(N) of level N as the subring T0(N) ⊂ T(N)

generated by the diamond operators ⟨d⟩ and the Hecke operators Tp for p ∤ N . ◦

Warning 3.15. Since I’m realizing T(N) inside the endomorphism ring of the Jacobian, I guess

this is really (a quotient of) the “weight 2” Hecke algebra. In general, you get a “weight k” Hecke

algebra inside End(Sk(N,R)); this weight will be reflected e.g. in the determinant of the Galois

representation attached to characters of T(N). •

3.2 R = T?
For my talk,

I’ll prob-

ably skip

the above

and jump

straight to

here after

defining the

various uni-

versal defor-

mation/lift-

ing rings

Fix some integer N ≥ 1.

Remark 3.16. T(N) is a finite, free Z-algebra, e.g. since it’s contained in EndQ(J1(N)). In

particular, it is integral over Z so it has (finitely many) minimal primes which are exactly the ones

living over (0) ⊂ Z and every nonminimal prime is maximal (and lives over some (p) ⊂ Z). ◦

Remark 3.17. The above remark holds also for the anemic Hecke algebra T0(N). Furthermore,

this T0(N) is reduced.12 Hence, there is an embedding

T0(N) ↪!
∏

min p⊂T0(N)

T0(N)/p,

where each T0(N)/p above is a characteristic zero domain which is finite over Z (so an order in

some number field). ◦

Fix a prime ℓ, and let Tℓ := T0(N)⊗Z Qℓ, so Tℓ is a finite, free reduced Qℓ-algebra.

Fact (Compare [The, Proposition 2.5, Lecture 8]). Prime ideals of Tℓ are in bijection with Galois

orbits of normalized newforms in S2(N,Qℓ).

Thus, to each prime p ⊂ Tℓ, one can associate a modular representation (the one associated to

any of the corresponding newforms)

ρp : GQ −! GL2(Tℓ/p).

Taking a product over all such p gives a representation landing
∏

p GL2(Tℓ/p). One can show (See

e.g. [The, Theorem 3.1, Lecture 8]) that this representation really lands in GL2(Tℓ) (note that

Tℓ ↪!
∏

Tℓ/p since it is reduced), and so it produces our desired representation

ρ : GQ −! GL2(Tℓ).
12Pretend I realized T0(N) as a ring of endomorphisms for S2(N,Z[1/N ]) instead. For the usual Petersson inner

product, it acts by normal [DS05, Theorem 5.5.3] and commuting operators, so S2(N,C) has a basis of simultaneous
eigenvectors for T0(N) (some elements of this basis will be oldforms, and so won’t be eigenvectors for T(N). This is
why this argument won’t proved reducedness for T(N), but I’m getting ahead of myself...). Any T ∈ T0(N) is trivial
iff it acts trivially on this basis, so one gets an injection T0(N) ↪!

∏
C by taking the eigenvalue of T ∈ T0(N) on

each element of this basis.
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Remark 3.18. I believe (but am not sure I could actually prove) that the above representation is

really the action of GQ on the ℓ-adic Tate module Vℓ(J1(N)) = Tℓ(J1(N)) ⊗ Q (note that Tℓ acts

Galois-equivariantly on Vℓ(J1(N)) since its action on J1(N) is defined over Q). This is why I chose

to realize these Hecke algebras in the endomorphism ring of J1(N) instead of in the endomorphism

ring of S2(N,Z[1/N ]). ◦

I’ll leave elucidating the relevant properties of this representation for another talk, but suf-

fice it to say that if one sets up an appropriate global Galois deformation problem S, then this

representations produces a map

Runiv
S −! Tℓ

from the corresponding universal lifting ring. It seems it is usually not supposed to be too hard

to check that this map is a surjection. The goal of an (R = T)-theorem is to show that it is an

isomorphism.

Warning 3.19. Really, Tℓ is the wrong ring to consider. The deformation ring Runiv
S one sets

up will be deformations of some fixed modular representation. This modular representation comes

some eigenform over Fℓ (i.e. some map T0(N)! Fℓ, i.e. some maximal ideal of T0(N) over (ℓ) ⊂ Z,
i.e. some maximal ideal of T0(N) ⊗ Zℓ). Thus, the correct ring to consider is really Tm := the

completion of the localization of T0(N)⊗ Zℓ at the maximal ideal m corresponding to the residual

representation under consideration. You end up building ρ : GQ ! GL2(Tm) not from all (Galois

orbits of) normalized newforms, but only from those whose associated residual representation is

isomorphic to the one you care about (the one attached to m). •
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Appendices

A Applicability of Theorem 3 to elliptic curves
TODO:

Write this

section

In brief,

• The condition that p > 3 is sad for us. We want p = 3 so we can apply the theorem to ρE,3

(which is known to be modular by Langlands-Tunnell)

• Condition (2) is essentially asking for good reduction at all places above p. In the setting of

Frey curves, these means it’d mainly be applicable to Fermat triples (a, b, c) such that 3 ∤ abc.

• Condition (3) is no big deal; for Fermat, we only care about F = Q anyways.

• Say something about Hodge-Tate weights....
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