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1 Lecture 1

1.1 Course info

What are the prerequisites?

• Homological algebra (abelian categories, derived functors, spectral sequences)

• sheaf theory (sheaf cohomology)

• schemes (Hartshorne II + III)

What are the goals of this course?

• Basics of étale cohomology

– étale morphisms

– Grothendieck topologies, étale topology

– étale cohomology

– some computations: étale cohomology of curves

(Following Milne’s “Lectures on Étale Cohomology” supplemented with Frietals-Kiehl).2

• Prove the Weil conjectures, hopefully more than one way

• If time, more advanced topics. Potentially...

– Weil II; or

– formality; or

– other topics (e.g. monodromy)

(Katz’s AWS notes, among other references)

This will be fairly fast-paced since there is a lot to cover. We still won’t have time to prove every single
theorem we will need though.

1.2 What is étale cohomology?

Let X be a variety over C.

Definition 1.1. For us, a variety is a geometrically integral, finite type, separated scheme. ⋄

Can associate to X, the singular cohomology of its analytic space

X(C)an ⇝ Hi(X(C)an;Z).

What’s special about these groups?

• There are f.g. Z-modules.
2Milne has another book called “Étale Cohomology” which is also good and covers more
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• Hi(X(C)an;C) has extra structure (mixed Hodge structure)

• cycle classes

• ...

The goal of étale cohomology is to do a similar thing for more general nice schemes. To X a “nice
scheme” we can associated Hi(Xét,Z/ℓnZ). Taking an inverse limit over all n, you get ℓ-adic cohomology
Hi(Xét,Zℓ). Tensoring with Qℓ gives Hi(Xét,Qℓ). Can also take cohomology with “twisted coefficients.”

What kind of schemes are nice?

• X = SpecOK with K a number field

• X a variety over an algebraically closed field

• X a variety over a non-algebraically closed field.

Remark 1.2. The last two cases behave differently, e.g. cohomology of X/k vanishes in degree above
2 dimX, but this is not true for varieties over general fields. ◦

We will also see related invariants. Given (X,x) (here, x a geometric point), we’ll associated πét
1 (X,x),

a certain profinite group. There are even more invariants (beyond the scope of this course)

• higher homotopy groups (in some cases)

• an entire homotopy type.

Note that the cohomology theory we construct will have to be weird.

Theorem 1.3 (Serre). There does not exist a cohomology theory for schemes over Fq with the following
properties:

(1) functorial

(2) Kunneth

(3) H1(E) = Q2

Slogan. There’s no cohomology theory with Q-coefficients.

Proof. Let E be a super singular elliptic curve. Then, End(E)⊗Q is a non-split quaternion algebra R.

Fact. There are no algebra homomorphisms R!M2×2(Q).3

Exercise. functoriality + Kunneth imply that the action End(E) ↷ E gives an action End(E) ↷ H1(E),
i.e. a morphism End(E)!M2×2(Q), a contradiction.

■

Exercise. Prove the same thing for Qp coefficients where p | char k.
3Like, literally none at all
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1.3 Weil Conjectures

Let X be a variety over Fq (geom integral, f.t., separated). We associate to X its zeta function

ζX(t) = exp

(∑
n>0

#X(Fqn)
n

tn

)
.

Note that ∂t log ζX(t) is a (usual) generated function for #X(Fqn).

Slogan. The locations of zeros/poles of a meromorphic function control the growth rate of the coefficients
of the Taylor series of its log-derivative.

This is saying ζX is a function whose zeros/poles control the growth rate of the number of Fqn points
of X.

Exercise. Make this precise for rational functions (i.e. ratios of polynomials).

Conjecture 1.4 (Weil Conjectures).

(1) ζX(t) is a rational function.

(2) (functional equation) Suppose X is smooth, proper of dimension n. Then,

ζX(q−nt−1) = ±q nE
2 tEζX(t),

where E is the “Euler characteristic” (to be defined).

(3) (Riemann hypothesis) All roots/poles of ζX(t) have absolute value qi/2 for i ∈ Z.

(4) Suppose again that X is smooth and proper. The number of roots/poles with absolute value q−i/2

is equal to the ith Betti number of XFq
(to be defined4).

Proof. (1) Dwork proved this using p-adic methods. It also follows from finite dimensionality of étale I think his
proof is
given in the
last chapter
of Koblitz

cohomology groups.
(2) Grothendieck (will follow from Poincaré duality).

See
(sub)section
24.3 for (1)
and a bit on
(2)

(3–4) Deligne. ■

The first proof we give of the Weil conjectures will be close to Deligne’s original proof.

1.3.1 Euler product

Notation 1.5. We use |X| to denote the set of closed points of X.

Note that

ζX(t) = exp

(∑
n>0

#X(Fqn)
n

tn

)
=
∏
x∈|X|

exp

(
tdeg x +

t2 deg x

2
+ . . .

)
.

If x ∈ |X| is a point of degree n (i.e. κ(x) = Fqn), then how many Fqk points does it contribute?
Equivalently, how many morphisms are there SpecFqk ! Specκ(x) = SpecFqn (over SpecFq), i.e.

4Already defined if X lifts to characteristic 0, since we know what the Betti numbers of a complex manifold are
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how many morphisms are there Fqn ! Fqk (over Fq). By Galois theory, the answer is 0 if k ∤ n and
n = #Gal(Fqn/Fq) if k | n. This reasoning gives the last equality above. However, why stop there?
Recognizing the Taylor series of log(1− x), we continue

ζX(t) =
∏
x∈|X|

exp

(
tdeg x +

t2 deg x

2
+ . . .

)
=
∏
x∈|X|

exp
(
− log(1− tdeg x)

)
=
∏
x∈|X|

1

1− tdeg x

=
∏
x∈|X|

(
1 + tdeg x + t2 deg x + . . .

)
=
∑
n≥0

(
#Galois stable subsets of X(Fq) of size n

)
tn

=
∑
n≥0

#Symn(X)(Fq) · tn

Above, SymnX = Xn/Σn. To get the second to last equality, partition a Galois-stable subset of X(Fq)
into its Galois orbits (each will correspond to some closed point5, if I understood correctly). For the last
equality, an Fq-point of Symn(X) is just n choices of Fq-points of X, without an ordering, and it comes
from an Fq point exactly when these choices of Galois-stable.

1.3.2 The case of curves

We can now prove the first Weil conjecture for curves.

Theorem 1.6. Suppose X is a smooth, proper curve over Fq. Then, ζX(t) is rational.

Proof. Note that there is a map SymnX ! PicnX sending D 7! O(D). What are the fibers of this
map? The fiber above O(D) is the (complete) linear system of divisors linearly equivalent to D, i.e. it is
PΓ(X,O(D)). Note that

dimPΓ(X,O(D)) = deg(D) + 1− g + dimH1(X,O(D))− 1

by Riemann-Roch. If degD ≫ 0 (in fact, degD > 2g − 2), then H1(X,O(D)) = 0 by Serre duality (+
the fact that line bundles of negative degree have no nonzero global sections). This, if n > 2g − 2, the
fibers of SymnX ! PicnX are isomorphic to Pn−g.

Exercise. We may assume, WLOG, that X(Fq) ̸= ∅.

With this reduction made, Picn(X) ∼= Picn+1(X) for all n (via tensoring with O(p) for some Fq-point
p). This tells us that

#Symn(X)(Fq) = #Pn−g(Fq) ·#Pic0(X)(Fq)
5of degree equal to the size of the orbit
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for all n > 2g − 2. Thus,

ζX(t) = poly(t) +
∑

n>2g−2

#Pic0(X)(Fq) ·
(
1 + q + q2 + · · ·+ qn−g

)
tn.

Exercise. Show that this is a rational function (hint: geometric series).

■

What does the functional equation say in the place of curves?

Theorem 1.7.
ζX(q−1t−1) = ±q

2−2g
2 t2−2gζx(t).

Proof. Exercise. Use Serre duality. ■

We’ll do RH for curves later in the course (and then RH for all varieties).

1.3.3 Some Proof Sketches + Serre’s Analogue

Let’s sketch the proof of rationality in general.

Theorem 1.8 (Dwork). Suppose X/Fq is a variety. Then, ζX(t) is a rational function.

Proof. (Following Grothendieck) The idea is to take a Frobenius map Frob : X ! X, and realize X(Fq) =
fixed points of Frob on XFq

. Then use the “Lefschetz fixed point formula”

#X(Fqn) =
2 dimX∑
i=0

(−1)iTr
(
Frobn ↷ Hic(XFq

,Qℓ)
)
.

Lemma 1.9. If V is a f.d. vector space and F : V ! V is a linear map, then

exp

(∑
n>0

Tr(Fn)

n
tn

)

is rational.

Proof. Appealing to eigenvalues, suffices to treat the case where dimV = 1. Then,

exp

(∑ αn

n
tn
)

= exp(− log(1− at)) =
1

1− αt

which is rational. ■

Plugging Lefschetz into the definition of the zeta function gives an alternating product of things of
the form given in the lemma, so shows the zeta function is rational. ■

Key inputs above include

• Lefschetz fixed point formula

• finite dimensionality of étale cohomology (with compact support)
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Exercise. Try to figure out how Poincaré duality should give functional equation. Try lemma on vector
space where V has a bilinear form and F preserves it up to scaling.

Seems we won’t have time to do the Kähler analogue of RH, but maybe we’ll state it at least.

Theorem 1.10 (Serre). Let X be a smooth, projective variety over C and [H] ∈ H2(X(C)an;Z) is a
hyperplane class. Now, suppose F : X ! X is an endomorphism such that F ∗[H] = q[H] for some
q ∈ Z>0. We define the Lefschetz number

L(Fn) :=

2 dimX∑
i=0

(−1)i Tr((F ∗)
n ↷ Hi(X,Q)).

We also define

ζX,F (t) = exp

∑
n≥1

L(Fn)

n
tn

 .

Then, ζX,F (t) satisfies the Riemann hypothesis, i.e. zeros/poles are half-integer powers of q (equivalently,
eigenvalues of F ∗ acting on Hi(X,C) all have absolute value qi/2).

The proof of this will look different from our eventual proof(s) of RH for varieties, but still good to
know it.

Next time: prove this + étale morphisms.

2 Lecture 2

2.1 Finishing Serre’s Analogue

We left off last time with a statement of a theorem of Serre. We start off this time by proving it.

Theorem 2.1 (Serre). Let X be a smooth, projective variety over C and [H] ∈ H2(X(C)an;Z) is a
hyperplane class. Now, suppose F : X ! X is an endomorphism such that F ∗[H] = q[H] for some
q ∈ Z>0. Then the eigenvalues of F ∗ on Hi(X,C) all have absolute value qi/2. Same i as

the cohomol-
ogy degree

Let’s recall some properties of singular cohomology which will be useful for the proof.

Fact.

• We have cup products. In particular, we name

L : Hi(X,C) −! Hi+2(X,C)
α 7−! α ⌣ [H]

• the Hard Lefschetz theorem says, among other things, that

Hj(X,C) ≃ imL⊕Hjprim

with the decomposition canonical gives a choice of hyperplane class. This Hj
prim is “primitive
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cohomology” and decomposes canonically as

Hjprim =
⊕
p+q=j

Hp,qprim

(i.e. it interacts well with Hodge decomposition).

• There’s also the Hodge index theorem: given α, β ∈ Hk(X)prim, there is a natural pairing

⟨α, β⟩ =
(√

−1
)k ∫

X

α ∧ β ∧ [H]n−k.

This bilinear form is definite6 on each Hp,qprim.

The upshot is that cohomology comes from two pieces, one piece (imL) coming from lower degree terms
(so maybe can control inductively), and one piece (Hjprim) which decomposes into further pieces which
carry canonical, definite bilinear forms.

Proof Sketch of Theorem 2.1. We want to show that the eigenvalues of F ∗ ↷ Hk(X,C) have absolute
value qk/2. Note that it suffices to do this for Hkprim. Indeed, if α ∈ Hk−2(X,C), we can inductively
assume its eigenvalue has absolute value q(k−2)/2, and then

F ∗(α ⌣ [H]) = F ∗α ⌣ F ∗[H] = λα ⌣ q[H] = qλ(α ⌣ [H])

so α ⌣ [H] has eigenvalue with absolute value qk/2.
This reduces us to the primitive case. Let α ∈ Hkprim be an F ∗-eigenvector. Since F ∗ preserves the

Hodge decomposition, we may assume that α ∈ Hp,qprim s.t. p+ q = k. This pairing is sesquilinear, so

|λ|2 ⟨α, α⟩ = ⟨F ∗α, F ∗α⟩

= ik
∫
F ∗α ∧ F ∗α ∧ [H]n−k

=
ik

qn−k

∫
F ∗(α ∧ α ∧ [H]n−k)

=
qnik

qn−k

∫
α ∧ α ∧ [H]n−k

= qk ⟨α, α⟩

Above, we have used the fact that F ∗ ↷ H2n(X,C) (top degree cohomology) via multiplication by qn.
You can show this using Poincaré duality (top cohomology is generated by [H]n) or Lefschetz fixed point.
Since ⟨α, α⟩ ≠ 0 (the form is definite on Hp,q

prim), we conclude that qk = |λ|2 as desired. ■

Slogan. Structures on cohomology =⇒ RH (or, this analogue of it).

We’ll want to do something similar algebraically. We will not succeed entirely. There will be no
analogue of the Hodge decomposition, and we don’t know the analogue of the Hodge index theorem, but
we will still see “shadows” of these structures.

6i.e. ⟨α, α⟩ = 0 =⇒ α = 0
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2.2 Étale morphisms

Definition 2.2. Let f : X ! Y be a morphism of schemes. We say that f is étale if it is locally of
finite presentation, flat, and unramified. ⋄

Recall 2.3. f above is unramified if it satisfies any (hence all) of the equivalent conditions

• Ω1
X/Y = 0

• all residue field extensions are separable.7

• it is smooth of relative dimension 0

• it is formally étale. For any nilpotent ideal I ⊂ A in a ring A (i.e. In = 0 for some n), the lifting
problem

SpecA/I X

SpecA Y

f∃!

always has a unique solution.

Can think about this as saying you can lift tangent vectors/infitesimal thickenings.

• locally standard étale. For each x ∈ X (set y = f(x)), there exists a U ∋ x and V ∋ y such that
f(U) ⊂ V , and we have

V = SpecR and U = Spec(R[x]h/g)

with g′ (the derivative) a unit in R[x]h and g monic.

To interpret this, note that SpecR[x] = A1
R is the affine line over R. Quotienting out by g just

gives the vanishing set V (g) = SpecR[x]/(g), and inverting h corresponds to removing the points
at which h vanishes.8 The fact that g′ is a unit tells us that g has no double roots in the fibers
(above SpecR). All in all, we’ve taken some hypersurface in A1

R and then removed all double roots
of this hypersurface (maybe plus some other points).

Exercise. Check that standard étale morphisms are étale. ⊙

Example. multiplication by [n] : E ! E on an elliptic curve E if n is invertible in the base (e.g. E/k
and char k ∤ n). △

Example. Gm ! Gm given by tn  [ t, where Gm = Spec k[t, t−1], if n prime to char k.

Exercise. Show this is étale (hint: ∂tn

∂t = ntn−1 is a unit) △

Example. Gm ↪! A1 via k[t] ! k[t, t−1] is étale. It is visible locally of finite presentation, flat, and
Ω1

Gm/A1 = 0. △

In fact,

Proposition 2.4. Any open immersion is étale.
7I think this should really say if x 7! y, then the local rings satisfy f∗(my)OX,x = mx where f∗ : OY,y ! OX,x is the

local ring map
8Maybe I should have said these last two in the other order
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Example (An étale morphism which is not finite onto its image). Gm \ {1}! Gm via the squaring map
t2  [ t (working in characteristic ̸= 2). This is an étale surjection, but not proper (so not finite). We’ve
deleted one point in the fiber above 1. △

Example. Any finite separable field extension is étale. △

Non-example. Set X = Spec k[x, y]/(xy). Then its normalization X̃ ! X is not étale since it is not
flat. ▽

Non-example. A1 f
−! A1 via t2  [ t is not étale (ramified at 0). The relative Kähler differentials here

are Ω1
f = k[t]dt/d(t2) = k[t]dt/2tdt which is supported at 0 (if char ̸= 2).

This is finite flat but not étale. ▽

Non-example. Consider A1 F
−! A1 via t 7! tp in characteristic p. Then,

Ω1
F = k[t]dt/d(tp) = k[t]dt,

so this is finite, flat with non-torsion Ω1, but still not étale. This map is called relative Frobenius. ▽

Example. Say we have f = (f1, . . . , fm) : Am ! Am. Then f is étale in a neighborhood of (a1, . . . , am)

if

det

(
∂fi
∂xj

∣∣∣∣
(a1,...,am)

)
is a unit. △

Proposition 2.5. Properties of étale morphisms

(1) Open immersions are étale

(2) compositions of étale morphisms are étale9

(3) base change of étale is étale

(4) (2 out of 3) If φ ◦ ψ and φ are étale, then so is ψ (exercise).

Proposition 2.6. Étale morphisms on varieties over k = k induce isomorphisms on complete local rings
at closed points.

Proof. Exercise (hint: use criterion for formall étaleness). ■

Corollary 2.7 (informal). Any property that can be checked at the level of complete local rings is true
for the source of an étale morphism if it is true for the target.

Exercise. Find φ,ψ such that φ ◦ ψ and ψ are étale, but φ is not.

2.3 Sites

Sites will be a generalization of topological spaces. In particular, they will allow us to generalize the
notion of a sheaf.

9Hint: use cotangent exact sequence for Ω1
X/Y
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Question 2.8. What parts of the definition of a topological space do you need to define the notion of a
sheaf?

• Need open sets and inclusions (just to define a presheaf), i.e. you need a “category of open sets.”
This is actually all you need to define a presheaf.

• Need to make sense of the sheaf condition: this says that a section to a sheaf is determined by its
values on a cover, and furthermore, you can glue sections which agree on intersections.

– Need a collection a morphisms which form “covers”.

– Need existence of certain fiber products (i.e. “intersections”).10

Let’s end with a “pre-definition” of a Grothendieck topology.

Definition 2.9. A category C with a collection of “covering families” {Xα
fα−! X}α∈A satisfying some

axioms which we will give next time is called a site. The collection of families is the topology. ⋄

Warning 2.10. There are multiple (> 2) definitions/conventions of a ‘site’ which are different from each
other. We use the least general but easiest to work with. •

Example. IfX is a topological space, and C is its category of open sets (whose morphisms are inclusions),
then {Uα ! U} is a covering family if Uα covers U in the usual sense. This defines a site. △

Example. Say M is a manifold. Let C be the category of manifolds M ′ f
−! M over M s.t. f is locally

on M ′ an isomorphism. Say {Mα !M ′} is a covering family their images cover M ′. △

Example. Let X be a scheme. Let Xét be the category of étale morphisms Y ! X. We call {Xα
fα−! X ′}

a covering family if
⋃
im(fα) = X. △

Remark 2.11. Étale morphisms are always open maps. ◦

We’ll say more next time.

3 Lecture 3

3.1 Last time

Last time we proved Serre’s Kähler analogue of RH, introduced éale morphisms, and gave motivation
for sites. Our goal today is to introduce sites and so generalize the notions of topological spaces and of
sheaves of spaces.

3.2 Sites + (pre)sheaves

Definition 3.1 (Grothendieck topology on a category C/site). The data of, for each X ∈ ob(C),
a collection of sets of morphisms {Xα ! X}α, called covering families, such that

(1) (intersections exist) If Xα ! X appears in a covering family, and Y ! X is arbitrary, then the
fiber product Xα ×X Y exists.

10Note that if U, V ⊂ X are open subsets of X, then U ×X V = U ∩ V
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(2) (intersecting w/ a cover gives a cover) If {Xα ! X} is a covering family, and Y ! X is arbitrary,
then {Y ×X Xα ! Y } is a covering family.

(3) (composition of covers are covers) If {Xα ! X}β is a covering family, and for each α, {Xαβ ! Xα}β
is a covering family, then

{Xαβ ! Xα ! X}αβ

is a covering family.

(4) (iso are covers) If f : X
∼
−! Y is an isomorphism, then {X f

−! Y } is a covering family.

⋄

Example. Let X be a topological space, and let C = Open(X), so the objects are open subsets of X, and
the morphisms are inclusions (in particular, there is at most one morphism between any pair of objects).
We say {Uα ! U} is a covering family if

⋃
α Uα = U . △

Example. Let X be a scheme.

• The small étale site Xét is the category whose objects are étale morphisms Y ! X, and whose
morphisms are X-morphisms, i.e. diagrams g below is

étale by 2
out of 3Y1 Y2

X

g

A family {Yα
fα−! Y } is a covering family if

⋃
im(fα) = Y .

• The big étale site XÉt is the category whose objects are all X-schemes with morphisms maps over
X. We say {Uα

fα−! U} is a covering family if all fα are étale and
⋃

im(fα) = U .

△

Example. Let X be a complex analytic space. The analytic étale site Xan-ét has objects complex
analytic spaces Y f

−! X s.t. locally on Y , f is an analytic isomorphism, and whose morphisms are
morphisms over X. Here, covers are what you expect. △

Remark 3.2. Sh(Xan-ét)
∼
−! Sh(Xtop), the category of sheaves on the analytic étale site of some complex

analytic space is canonically equivalent to the category of sheaves on the underlying topological space.
Proving this will be an exercise (once we have the definitions).11 ◦

Example. The fppf topology (fidelment plat de presentation finie12) is the site Xfppf whose objects
are fppf morphisms Y ! X, and whose morphisms are morphisms over X. The covers are what you
expect. △

Example. One can also define/study the Nisnevich, Crystalline, infinitesimal, cdh, arc, ... sites. △

Onto sheaves...
11The point is that a cover in the analytic étale site can always be refined to an honest cover in the usual topology
12faithfully flat of finite presentation
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Definition 3.3. Let C,D be categories. A D-valued presheaf on C is a contravariant functor F : C!

D. ⋄

Remark 3.4. If X is a topological space, then a D-valued presheaf on X is the same as a presheaf on
Open(X). ◦

Definition 3.5. Let C be a site (i.e. a category with a Grothendieck topology). A sheaf F is a presheaf
such that

F (U)!
∏
α

F (Uα)⇒
∏

(α,α′)

F (Uα ×U Uα′)

is an equalizer diagram for all covering families {Uα ! U}. ⋄

Remark 3.6. The two arrows
∏
α F (Uα)⇒

∏
(α,α′) F (Uα ×U Uα′) are induced by the projections Uα ×U

Uα′ ⇒ Uα, Uα′ . This being an equalizer says two things (suppose F is valued in Set for concreteness)

• (”exactness on the left”) F (U)!
∏
α F (Uα) is injective.

• (”exactness on the right”) sections sα ∈ F (Uα) agreeing on overlaps (i.e. sα|Uα×UUβ
= sβ |Uα×UUβ

)
glue to some global section s ∈ F (U) (with s|Uα

= sα).

◦

Definition 3.7. A morphism F1 ! F2 of (pre)sheaves is simply a natural transformation. ⋄

Let’s give some examples os sheaves on XÉt.

Theorem 3.8. Any representable functor is a sheaf on XÉt (in fact, any representable functor is a sheaf
on the big fppf site XFppf ).

Example. µn, represented by Spec k[t]/(tn − 1), is the sheaf

µn(U) = {f ∈ OU (U) : fn = 1} .

△

Example. Oét
X (U) = OU (U) is a sheaf represented by A1

X . △

Example. The constant sheaf Z/ℓnZ is represented by the constant group scheme (Z/ℓZn)×X. Here,

Z/ℓnZ(U) = Homcts(U
top,Z/ℓnZ).

△

Example. Gm(U) = OU (U)× is represented by the group scheme Gm,X = SpecZ[t, t−1]×Z X. △

Example. The functor Pn : U 7! HomX(U,PnX) is a (set-valued) sheaf. △

These are sheaves, but we have not proved that yet. We will later. In the meantime, let’s see a new
definition(ish).
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Definition 3.9 (sorta-kinda). Let’s take for granted for the moment that Z/ℓnZ is a sheaf on XÉt, and
that the category of abelian sheaves on Xét is abelian with enough injectives.13 Let ΓX : Ab(Xét)! Ab

be the global sections functor, ΓX(F ) = F (X). We define étale cohomology with coefficients in Z/ℓnZ
to be the derived functors of global sections

Hi(Xét,Z/ℓnZ) := RiΓX(Z/ℓnZ).

⋄

Warning 3.10. Even just showing cokernels exist in the category of abelian sheaves on a site is non-trivial
(try as exercise). •

Example. Consider the map Gm
tn t
−−−! Gm and suppose n is invertible on the base. This gives a map

of sheaves. On the Zariski topology, this is

XZar : O× f 7!fn

−−−−! O×.

Similarly, on the étale topology, it is
Xét : O×

ét
f 7!fn

−−−−! O×
ét .

Claim 3.11. This map is in general not an epimorphism on the XZar, but it is an epimorphism on Xét.

Proof. First we show it is not an epimorphism on the Zariski site. Take X = SpecR and n = 2. In this
case, we’re just asking if R× t7!t2

−−−! R× is surjective? The answer is no.
Now onto the étale site. Given f ∈ Gm(U), we want an étale cover of U such that f obtains an nth

root on that cover. Form the fiber product

U ×Gm Gm Gm

U Gm

ét z [zn

f

Now, f has an nth root upstairs. This construction is equivalent to considering V (zn − f) ⊂ A1
U , where

z is the coordinate on A1; here, z is the nth root.

Exercise. Check the details.

■

△

Remark 3.12. Gm
t 7!tn
−−−! Gm will always be an epimorphism in Sh(Xfppf). The point is that this map is

always flat (only étale when n invertible in the base). ◦

Definition 3.13. Let T1,T2 be sites. A continuous map f : T1 ! T2 is a functor F : T2 ! T1 which
preserves fiber products, and sends covering families to covering families. ⋄

13If you are a sheaf on XÉt, then you restrict to a sheaf on Xét.
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Example. Given f : X ! Y a continuous map of spaces, we can define a functor

Open(Y ) −! Open(X)

U 7−! f−1(U)

which is a continuous map of sites. △

4 Lecture 4

Last time we defined sites, sheaves, and morphisms on sites. Today we talk about descent!

Recall 4.1 (morphism of sites). If T1,T2 are sites, then a morphism (continuous map) T1 ! T2 of sites
is a functor f−1 : T2 ! T1 such that

(1) f−1 preserves fiber products; and

(2) f−1 sends covering families to covering families.

⊙

Example. Let X be a scheme. Then there are natural continuous maps

XFppf ! XÉt ! Xét ! Xzar.

In every case, the morphism is given by the natural inclusion going the other way. △

Warning 4.2. There are many conventions on what gets called a “Grothendieck topology” or “site”.
What we defined is sometimes called a “Grothendieck pre-topology” (can make sense of a topology without
requiring fiber products using what are called ‘sieves’) People also sometimes talk about topos (topoi?)
which are categories equivalent to the category of sheaves on some site. Lots of what we do can be done
using the language of topoi instead, but we won’t use it. •

“I don’t know if you saw this over here... I put three exclamation points by descent because it’s maybe
one of my favorite topics in all mathematics.”

4.1 Descent!!!

We have defined sheaves on sites and written down a bunch of functors, but we haven’t actually proven
anything is a sheaf yet.

Question 4.3. How do you check if some functor is a sheaf on Xét/Xfppf? How do you construct sheaves?

Theorem 4.4.

(1) If Y is an X-scheme, then the functor

Z 7! HomX(Z, Y )

is a sheaf on XFppf (hence on XÉt, Xét, ...).
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(2) Given F ∈ QCoh(X), the functor (
Z

f
−! X

)
7! Γ(X, f∗F )

is a sheaf on XFppf (hence on XÉt, Xét, . . . ).

Notation 4.5. In this case, we write F ét for the associated sheaf on Xét.

Question 4.6 (Audience). Is the (big) fppf site the finest topology for which this holds?

Answer. No. There’s a notion of a morphism of effective descent, and you can use those to define a
topology. There’s also the fpqc topology which is arguably finer, but then runs into set theoretic issues.
So it’s not clear there is a finest topology since you may eventually run into set-theoretic difficulties
(which can possibly be avoided if you make different choices in how you set things up). ⋆

Let’s start with (2). We’ll actually prove something a little more general. Say U =
⊔
Ui ! X is an

fppf cover of X.

Question 4.7. Suppose F ∈ QCoh(U). When does it come from a quasi-coherent sheaf on X? More
precisely, what extra structure do you need to “descend it” to QCoh(X)?

Question 4.8. Given F1,F2 ∈ QCoh(X) and a morphism f : F1|U ! F2|U , when does f come from
X?

Example. Say U =
⊔
Ui ! X is a Zariski cover. In this case, the data we need to get a sheaf on X is

a collection of isomorphisms (”gluing data”)

Fi|Ui∩Uj

∼
−! Fj |Ui∩Uj

satisfying a cocycle condition on triple intersections. What about morphisms? A morphism F ! G is
the same as morphisms F |Ui ! G |Ui which commute with the gluing data. △

Definition 4.9. Say U f
−! X is some morphism. Descent data for a qcoh sheaf on U/X is

(1) A qcoh sheaf F ∈ QCoh(U) on U

(2) gluing data φ : π∗
1F

∼
−! π∗

2F where π1, π2 : U ×X U ! U the two projections.

(3) a cocycle condition
π∗
23φ ◦ π∗

12φ = π∗
13φ

where πij : U ×X U ×X U ! U ×X U is projective from the ith factor onto the first factor and from
the jth factor onto the second factor.

⋄

Exercise. Unpack this definition in the case of a Zariski cover U =
⊔
Ui ! X.
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Definition 4.10. Given Descent data (F , φ) and (G , ψ), a morphism (F , φ) ! (G , ψ) is a map
h : F ! G such that

π∗
1F π∗

1G

π∗
2F π∗

2G

π∗
1h

φ ψ

π∗
2h

commutes. ⋄

Let’s state the main theorem now.

Theorem 4.11 (Descent for quasi-coherent sheaves). Suppose U f
−! X is fppf. Then, f∗ induces

an equivalence of categories between QCoh(X) and descent data on U/X.

Remark 4.12. Given a F ∈ QCoh(X), how do we get descent data on U? Consider f∗F ∈ QCoh(U)

along with gluing data
(f ◦ π1)∗F

∼
−! (f ◦ π2)∗F

on U ×X U coming from the fact that f ◦ π1 = f ◦ π2 : U×U ! U ! X, so we get an iso from pulling
back the identity id : F = F . ◦

Example. Say U =
⊔
Ui is a Zariski cover of X. What’s a vector bundle? Take O⊕n

Ui
∈ QCoh(Ui). To

glue to a vector bundle on X, we need isos

φij : O⊕n
Ui∩Uj

∼
−! O⊕n

Ui∩Uj

such that
φjk|Ui∩Uj∩Uk

◦ φij |Ui∩Uj∩Uk
= φik|Ui∩Uj∩Uk

.

△

Example. Say L/K is a Galois extension with Galois group G. Then, SpecL ! SpecK is an étale
cover. Descent data on SpecL/SpecK is a qcoh sheaf on SpecL (i.e. an L-vector space V ) with an
isomorphism

φ : π∗
1V

∼
−! π∗

2V

satisfying the cocycle condition. Let’s unpack this a little...

SpecL×Spec k SpecL = SpecL⊗k L =
⊔

σ:L
∼−!L

SpecL =
⊔

Gal(L/k)

SpecL

(a trivial14 torsor for the Galois group).

Exercise. Convince yourself that descent data in this setting is the same as Galois descent data.

△

Let’s prove the theorem now.

Proof of Theorem 4.11. We need to show that f∗ is fully faithful and essentially surjective. good ref-
erence: ch.
6 of Néron
models by
BLR

14The identity map gives a basepoint
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(full faithfulness) Given F1,F2 ∈ QCoh(X), we have

HomX(F1,F2)
f∗

−! HomU (f
∗F1, f

∗F2)
π∗
1

⇒
π∗
2

HomU×XU (q∗F1, q
∗F2)

where q = f ◦ π1 = f ◦ π2 : U ×X U ! X. Full faithfulness amounts to the claim that this is an
equalizer diagram. This follows from

Claim 4.13. g ∈ HomU (f
∗F1, f

∗F2) is a morphism of descent data if it maps to the same thing
under π∗

1 , π
∗
2 .

Verifying this claim is left as an exercise. With this claim, we’re reduced to showing this is an
equalizer diagram. Note that if F1 = O, then this exactly shows that F ét (or even F fppf ) is a
sheaf. In order to prove this is an equalizer, we’ll make use of the following lemma.

Lemma 4.14. Suppose R! S is a faithfully flat ring morphism, and let N be an R-module. Then,

N
n 7!n⊗1
−−−−−! N ⊗R S

id⊗ id⊗1

⇒
id⊗1⊗id

N ×R S ×R S

is an equalizer diagram.15

Proof. Here’s the big trick: WLOG the map R ! S splits, i.e. there’s a back map σ : S ! R so
S ! R ! S is the identity. The point is that this is an equalizer diagram iff it is after faithful
flat base change,16 so we can replace R ! S with S ! S ⊗R S which now has a section given by
multiplication.

Now suppose R f
−! S splits via r : S ! R. First, N ! N ⊗R S is injective since this map now splits

via id⊗r : N ⊗R S ! N . This just leaves exactness in the middle. We define r̃ : S ⊗R S ! S via
s1 ⊗ s2 7! s1 · f(r(s2)). Now note that

idN ⊗r̃(n⊗ s⊗ 1− n⊗ 1⊗ s) = n⊗ s− n⊗ f(r(s)) = n⊗ s− n · r(s)⊗ 1,

so if n ⊗ s ⊗ 1 − n ⊗ 1 ⊗ s = 0 (in kernel of differential), then n ⊗ s = n ⊗ r(s) ⊗ 1 (in image of
differential). This is the proof of pure tensors (we’ve shown if in kernel, then in image). Doing it
for general tensors is left as an exercise. ■

We’re out of time, so we will finish the proof next lecture...

■

One last remark

Remark 4.15. Say R! S is faithfully flat. Then,

N ! N ⊗ S ! N ⊗ S ⊗ S ! · · ·! N ⊗ S⊗r ! · · ·

is always exact. Here, the maps are the usual alternating sum thing. ◦
15This is the case F1 = O,F2 = Ñ , U = SpecS, and X = SpecR
16Being an equalizer is equivalent to 0 ! N ! N ⊗R S ! N ⊗R S⊗R S being exact, where the last map is the difference

of the two maps appearing in the (claimed) equalizer diagram
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5 Lecture 5

Last time we started fppf descent, but did not finish. Recall that the ultimate goal was to show that
qcoh sheaves on X and representable functors both give sheaves on Xét, Xfppf. We were in the midst of
proving a descent theorem for qcoh sheaves last time when class ended.

5.1 Jumping back in where we left off...

Recall that we were proving

Theorem 5.1 (Descent for quasi-coherent sheaves). Suppose U f
−! X is an fppf covver. Then, f∗

induces an equivalence of categories

f∗ : QCoh(X)
∼
−!

{
descent data for

qcoh sheaves on U/X

}
.

Proof.

(fully faithful) Recall that we had reduced full faithfulness to the claim that, given F1,F2 ∈
QCoh(X), the diagram

HomX(F1,F2)
f∗

−! HomU (f
∗F1, f

∗F2)
π∗
1

⇒
π∗
2

HomU×XU (q∗F1, q
∗F2) ,

where π1, π2 : U ×X U ! U are the projections and q = f ◦ π1 = f ◦ π2 : U ×X U ! X, is an
equalizer. Towards this goal, we had proven the following lemma.

Lemma 5.2. Suppose R! S is a faithfully flat ring morphism, and let N be an R-module. Then,

N
n 7!n⊗1
−−−−−! N ⊗R S

id⊗ id⊗1

⇒
id⊗1⊗id

N ×R S ×R S

is an equalizer diagram.

Let’s use this to prove full faithfulness. We first reduce to the case where U ! X is affine. We leave
this as an exercise.17 Now we’re in the affine case R ! S faithfully flat (U = SpecS,X = SpecR)
and N,M are R-modules. We want

HomR(M,N)! HomS(M ⊗R S,N ⊗R S)⇒ HomS⊗RS(M ⊗R S ⊗R S,N ⊗R S ⊗R S)

to be an equalizer diagram. Injectivity of the first map (exactness on the left) follows from injectivity
of N ! N ⊗R S. Similarly, exactness in the middle follows from exactness in the middle of the
diagram in the lemma. Secretly, this is all just left exactness of HomR(M,−).

(essentially surjective) Say we have an fppf cover U f
−! X and we’re given descent data (F , φ) on

U/X. We want some G ∈ QCoh(X) such that G ∗ ∼
−! F (and this iso respects gluing data). Again,

17Need to use that the map is of finite presentation (even just that it’s quasicompact)
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we reduce to the affine case, and by “we” I mean “you, the reader” since this is left as an exercise.
Now we have R f

−! S and an S-module M with descent data

φ :M ⊗R S
∼
−! S ⊗RM,

an iso of S ⊗R S modules (satisfying a cocycle condition). We have two maps

M ⇒ S ⊗M

given by m 7! 1⊗m and m 7! φ(m⊗ 1). Now, set

K = eq(M ⇒ S ⊗M),

the equalizer of this diagram. We claim that the natural map K ⊗R S ! M is an isomorphism
(compatible with descent data). As before, we reduce to the case that R ! S has a section, and
then this case is easy (pull back along section).

■

Corollary 5.3. If F ∈ QCoh(X), then the presheaf F ét on Xét,

F ét(U
π
−! X) = (π∗F )(U),

is a sheaf on Xét.

Proof. We actually only need full faithfullness above. Say U f
−! V is an étale cover. We want

F (V )! F (U)⇒ F (U ×V U)

to be an equalizer diagram. This is precisely the diagram

HomV (OV ,F )! HomU (OU , f
∗F )⇒ HomU×V U (OU×V U , q

∗F )

from before. ■

Example. Oét
X : (U ! X) 7! Γ(U,OU ) is a sheaf. △

If you think back to the beginning of last class, we still need to show that representable functors are
sheaves. This is acheived in the following theorem.

Theorem 5.4. Say p : U ! X is an fppf cover. Then the functor

p∗ : Sch /X !

{
Descent data for
schemes on U/X

}
is fully faithful.

Proof. As an exercise, reduce to the case where everything is affine (in fact, enough to simply reduce to
the case of AffSch /X).
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Let Y, Z be X-schemes. We need to show that

HomX(Y, Z)! HomU (p
∗Y, p∗Z)⇒ HomU×XU (q

∗Y, q∗Z)

is an equalizer (here q : U ×X U ! U ! X). By the exercise, we may assume Y = SpecOY and
Z = SpecOZ where OY ,OZ are qcoh sheaves of OX -algebras. Now, this diagram is

HomOX -alg(OZ ,OY )! HomOU -alg(p
∗OZ , p

∗OY )⇒ HomOU×XU -alg(q
∗OZ , q

∗OY )

which is indeed an equalizer by descent for qcoh sheaves.18 ■

Corollary 5.5. If Z ∈ Sch /X, then Hom(−, Z) is a sheaf on Xfppf, XÉt, Xét, etc.

Remark 5.6. p∗ is not essentially surjective in general for schemes. Descent data for scheme relative
to an étale cover U/X is called an algebraic space. When this pullback functor is an equivalence of
categories, one calls it effective descent. Descent is effective for affine schemes as well as for polarized
schemes (i.e. schemes with a choice of (relatively) ample line bundle). ◦

We now have a bunch of examples we know are sheaves.

Example.

• Gm : U 7! OU (U)×

• µℓ : U 7!
{
f ∈ OU (U) : f ℓ = 1

}
• Z/ℓZ : U ! Homcts(U,Z/ℓZ)

• Hilbp(t)(Pn)

• Pn

are all sheaves. △

Exercise. Work out Galois descent from this point of view.

5.2 Étale Cohomology

We “defined” étale cohomology earlier, but there were a few missing details we needed to fill in. These
were

• The category of abelian sheaves in Xét is abelian.

• This category has enough injectives

We won’t have time to do this today (only like 10 minutes left), but we can mention the crucial ingredients.

Remark 5.7. Both of these facts are true for the category of abelian sheaves on any site. We won’t prove
them in this generality, but this is still good to know. ◦

The crucial ingredient will be the following theorem.
18Need to check descent works with maps of algebras, not just modules, but this is easy
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Theorem 5.8. Say τ is a site. Then the forgetful functor

Sh(τ)! Psh(τ)

has a left adjoint, which we call sheafification.

We’ll prove this for τ = Xét. We need some preliminaries. Say f : τ1 ! τ2 is a continuous morphism
of sites (so really f−1 : τ2 ! τ1).

• (pushforward) Given G ∈ Sh(τ1), we define f∗G ∈ Sh(τ2) via

(f∗G )(U) := G (f−1(U)).

Exercise. f∗G is a sheaf, not just a presheaf.

We’re out of time, so next time it’s stalks, sheafification, Sh(Xét) being abelian, etc.

6 Lecture 6

Last time we talked about fppf descent. Today, it’s cohomology.
We begin with some remarks that came up last time/in the discord.

• Let X be a scheme. We showed last time that there is an equivalence of categories

QCoh(Xzar)
∼
−! QCoh(Xét)

∼
−! QCoh(Xfppf)

between the categories of quasi-coherent sheaves on “small” sites above X. What about the big
sites? Well,

QCoh(XZar)
∼
−! QCoh(XÉt)

∼
−! QCoh(XFppf).

• We need a small correction from last time. We claimed that étale descent data for schemes was the
same thing as an algebraic space, but this is not quite true. It is true that étale descent data for
schemes gives an algebraic space, but not all arise in thi s fashion.

What’s the goal for today? Fill in some remaining gaps, so we can actually define étale cohomology.

Goal. The category of abelian sheaves on Xét is abelian with enough injectives.

Once we have this, we can define étale cohomology as the right derived functor(s) of global sections.
Recall that the crucial ingredient in proving this category is abelian is the following.

Theorem 6.1. Let τ be any site. The forgetful functor Sh(τ)! Psh(τ) has a left adjoint, called sheafi-
fication (we’ll prove only for Xét).

6.1 Sheaf Operations

It’ll be useful to define some sheaf operations.
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Recall 6.2. Let f : τ1 ! τ2 be a continuous map of sites. For G ∈ Sh(τ1), we define the pushforward
sheaf

f∗G : U 7! G (f−1(U)).

Showing this is a sheaf (and not just a presheaf) is left as an exercise. ⊙

Example. Let f : X ! Y be a map of schemes. Then we get a (continuous) map f : Xét ! Yét between
small étale sites given by f−1(U/Y ) := U ×Y X/X. Hence, we get a functor f∗ : Sh(Xét)! Sh(Yét). △

Example. Let k be an algebraically closed field, and let ιx : Spec k ! X be a geometric point of X.
Note that Sh((Spec k)ét) = Set (exercise19). Given F ∈ Sh(Spec két) = Set, we have

(ιx)∗F (U ! X) = F (U ×X x) = F (
⊔

Spec k) =
∏

F (Spec k)

where the (co)products above are over preimages of Spec k in U . △

Warning 6.3. Sheaves on Spec két when k is not algebraically closed are not just sets. We’ll see later
that they’re discrete G-modules, where G = Gal(ks/k). •

Definition 6.4. A sheaf of the form (ιx)∗F as in the previous example is called a skyscraper sheaf . ⋄

What about pullbacks? We won’t be able to define them yet (since we don’t know how to sheafify),
but we can define pullbacks to geometric points (a sheaf on Spec k is a set, so easy to sheafify).

Definition 6.5. Let ιx : Spec k ! X be a geometric point (so k = k), and let F ∈ Sh(X) be a sheaf on
X. The pullback of F to x, or stalk of F at x, is the set

Fx := lim−!
(U,u)

F (U)

where the direct limit is taken over diagrams

u U

x X

geom pt

ét

ιx

⋄

Remark 6.6. Note we don’t have to be at a closed point for the above definition to work. We could take
e.g. a geometric generic point. ◦

Example. Take F = Z/ℓZ and x ↪! X any geometric point. Then,

ι∗xZ/ℓZ = Z/ℓZ.

In short, the (U, u) with U connected are cofinal and on each of them F (U) = Z/ℓZ. △
19Hint: the point is that an étale cover of Spec k is a bunch of disjoint copies of Spec k (note k = k), so any sheaf is

determined by its value on Spec k
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Example. Take F = Oét
X . Then,

ι∗xO
ét
X = Osh

X,x,

the strict Hensalization of the usual Zariski stalk. △

Lemma 6.7. Suppose F ,G are sheaves of abelian groups on Xét. Then, TFAE

(1) F ! G is an epimorphism

(2) F ! G is locally surjective, i.e. given s ∈ G (U), there exists an étale cover U ′ ! U such that
s|U ′ is in the image of F (U ′).

(3) Fx ! Gx is surjective for all geometric points x! X

Proof. ((2) =⇒ (1)) Say we have

F
f
−! G

a

⇒
b

H

such that the two compositions agree. We want to show a = b. Say we have some s ∈ G (U). Then there
is a cover U ′ ! U and a t ∈ F (U ′) such that f(t) = s|U ′ , so a(s|U ′) = a(f(t)) = b(f(t)) = b(s|U ′) ∈ H ,
and so a(s) = b(s) since U ′ was a cover of U (sheaf condition). Hence, a = b, so f is epic.

((1) =⇒ (3)) (Contrapositive) Suppose Fx ! Gx is not surjective for some geom point x, and let
Λ = coker(Fx ! Gx). Consider the diagram

F ! G
0

⇒ (ιx)∗Λ,

where the bottom map from G is the natural map into that skyscraper sheaf. By definition, both
compositions are 0, but the two arrows on the right don’t agree, so F ! G is not epic.

((3) =⇒ (2)) Fix some s ∈ G (U). We want to find U ′ ! U so that s|U ′ comes from F (U ′). Choose
x ∈ U . We know Fx ! Gx is surjective. By definition, this means there exists some étale neighborhood
(V, v) of x so that s|V is in the image of F . Now choose x′ not in the image of V , and keep going... ■

Lemma 6.8. Suppose 0! F ! G !H is a sequence of abelian sheaves on Xét. Then, TFAE

(1) The sequence is exact20

(2) 0! F (U)! G (U)!H (U) is exact for all U .

(3) 0! Fx ! Gx !Hx is exact for all geometric points x.

Proof. Exercise. ■

Corollary 6.9. Sheafification exists for Psh(Xét)

Proof. We essentially reproduce the proof for topological given e.g. in Hartshorne. The first step is to
construct an “espace étalé”

For each x ∈ X, choose a geometric point x lying over x. Given a presheaf F ∈ Psh(Xét), we define

Esp(F ) =
∏
x

(ιx)∗Fx.

20i.e. F ! G is a monomorphism, and is the kernel of G ! H , where ‘kernel’ means equalizer of G
H
⇒
0
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Note that this is a sheaf. There is a natural map of presheaves F ! Esp(F ). We let F a be the subsheaf
of Esp(F ) generated by F , i.e.

F a(U) = {s ∈ Esp(F )(U) : s locally in image of F} .

Note that F a is indeed a sheaf. Checking that F 7! F a is left adjoint to the forgetful functor is left as
an exercise. ■

Corollary 6.10. Colimits exist in Sh(Xét).

Proof. Colimits exist for presheaves (compute pointwise) and left adjoints send colimits to colimits. In
particular,

colimi∈I Fi = (colimPsh,i Fi)
a.

■

Corollary 6.11. Shab(Xét) is an abelian category.

Proof.

• limits exist (defined pointwise)

• cokernels exist (cokernels are colimits)

• images are coimages by checking on stalks (coker ker = ker coker)

■

Out of time. Pick up next time.

7 Lecture 7

Last time: stalks, sheafification, Sh(Xét) is abelian.

Remark 7.1. We clear up an issue from before. We earlier claimed that there is a morphism Xfppf ! Xét,
but this is actually no such thing. The point is that Xfppf consists of schemes which (among other
things) are of finite presentation above X, while schemes in Xét are only required to be locally of finite
presentation above X. What is true is that we have a zig-zag

Xfppf ! Xét, fin pres  Xét

and the right arrow induces an equivalence on Sh(−) under pushforward. So there’s still an adjoint pair
of functors between sheaves on Xét and sheaves on Xfppf. ◦

7.1 Enough Injectives

Recall we were working towards the definition of sheaf cohomology. We still need to have enough injectives.

Theorem 7.2. Shab(Xét) has enough injectives.
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Proof. Let F ∈ Shab(Xét) be an abelian sheaf. We want an injective sheaf I w/ F ↪! I . For each
x ∈ X, choose a geometric point x ! x ! X, and let I(x) be an injective abelian group with a map
Fx ↪! I(x). Now, we claim that I :=

∏
x(ιx)∗I(x) works.

The map F ↪! I is given by sending sections to their germs. To check this is a monomorphism, one
just checks on stalks. Checking that I is injective is left as an exercise. ■

We now know that the category of abelian sheaves on Xét has enough injective.

Remark 7.3. Thi sis true for abelian sheaves on any site, but the proof in general is substantially harder.
◦

7.2 Inverse images

Let f : X ! Y be a map of schemes.

Definition 7.4. The presheaf inverse image is the functor f−1 : Psh(Yét)! Psh(Xét) given by

(f−1F )(V
ét
−! X) = lim−!F (U ! X)

with limit taken over diagrams
V U

X Y

ét ét

This same definition actually works for any map of sites. ⋄

Fact (Exercise). f−1 is left adjoint to the pushforward

f−1 : Psh(Tét)⇄ Psh(Xét) : f∗.

Definition 7.5. The sheaf inverse image is the functor f∗F := (f−1F )a, the sheafification of the
presheaf inverse image. ⋄

Remark 7.6. sheafification is a left adjoint, and left adjoints preserve left adjoints, so f∗ is left adjoint to
f∗. ◦

Example. If ι : x ↪! X is a geometric point, then ι∗F = Fx. △

Example. If f : X ! Y is any morphism, then f∗Z/ℓZ = Z/ℓZ. △

Example. In general, if you have Y f
−! X and F = HomX(−, Z), then

f∗F = HomY (−, Y ×X Z).

△
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7.3 Étale Cohomology

Recall 7.7. Given an abelian sheaf F ∈ Sh(Xét), its étale cohomology is

Hi(Xét,F ) = RiΓ(X,F ).

⊙

How do we compute this? Choose an injective resolution

F ! I 0 ! I 1 ! · · ·

and then
Hi(Xét,F ) = Hi(Γ(X,I •)).

Remark 7.8. This is how you compute (right) derived functors in general. For example,

Riπ∗F = Hi(π∗I
•)

which are sheaves on Yét. Here, π : Xét ! Yét. ◦

Exercise. Liπ∗G = 0 if i > 0. Pullback is exact.

Basic properties of étale cohomology:

(1) H0(Xét,F ) = F (X) = Γ(X,F )

(2) Hi(I ) = 0 for i > 0 when I injective.

(3) Given a short exact sequence 0! F1 ! F2 ! F3 ! 0 of sheaves on Xét, we get a (natural) long
exact sequence

· · ·! Hi−1(Xét,F1)! Hi−1(Xét,F2)! Hi−1(Xét,F3)! Hi(Xét,F1)! · · ·

Example. Let k be a field. Then, Sh((Spec k)ét) is equivalent to the category of discrete G-modules
(choose sep closure ks and then G = Gal(ks/k)). The natural functor is

ι : Sh((Spec k)ét) −! Discrete G-modules
F 7−! lim−!

ks/L/k

F (SpecL)

Think of as “evaluation on separable closure.” The claim is that this is well-defined (i.e. really lands in
discrete G-modules), and is an equivalence of categories.

Let’s sketch a proof of this. We can describe the inverse functor. Given étale V ! Spec k, we can
write V =

⊔
i Spec ki with ki/k separable, so we send a discrete G-module M to the sheaf

V 7!
∏
i

MGal(ks/ki).

Check that this works. △
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Corollary 7.9.
Hi((Spec k)ét,F ) = Hi(G, ιF ).

Proof. We know that
Γ(Spec k,F ) = (ιF )G,

so H0 ↔ ι invariants, so étale cohomology is the derived functor of invariants (i.e. group cohomology). ■

Note important above that we were dealing with discrete G-modules. Continuous group cohomology is
not actually a derived functor. This is related to why people don’t take étale cohomology directly with
sheaves like Zℓ.

7.4 Čech Cohomology

Recall there’s a more computable version of cohomology which is often useful, so let’s introduce it in
present contexts.

Warning 7.10. Čech cohomology does not always compute étale cohomology (this is already true for
sheaf cohomology on bad spaces). •

Warning 7.11. Čech cohomology is not actually computable, but it will still be useful. This is because,
in general, acyclic covers do not exist.21 •

Say we have an étale cover U =
⊔
i Ui ! X, and let F ∈ Sh(Xét) be an abelian sheaf. From this, we

get the diagram (a simplicial X-sheaf?)

X U U ×X U U ×X U ×X U · · ·

(think of as double, triple, etc. intersections). Applying our sheaf, we get a diagram (a cosimplicial sheaf
of abelian groups)

F (U) F (U ×X U) F (U ×X U ×X U) · · ·
d0

d1

The usual alternating sum construction flattens this into a chain complex, called the Čech complex,

Č•(U/X,F ) : 0! F (U)! F (U ×X U)! · · ·

whose nth differential

dn =

n∑
i=0

(−1)idi

is given by the alternating sum of the differentials in the diagram from before. The total Čech complex
is

Č•(Xét,F ) := lim−!
{Ui!X}i

Č•(U/X,F ),

21This is a main difference between étale cohomology and say singular cohomology of manifolds (which are locally
contractible). We may see later that schemes are locally K(π, 1)’s, so étale cohomology can be computed in terms of group
cohomology. This is due to Artin (if I heard correctly)
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with direct limit taken over all covering families.

Definition 7.12. We define Čech cohomology as

Ȟ
i
(U/X,F ) = Hi(Č•(U/X,F ))

and
Ȟ
i
(Xét,F ) = Hi(Č•(Xét,F )).

⋄

Warning 7.13. There are set-theoretic issues with taking a direct limit over all covers. There are (at
least) two ways to resolve this. We resolve by (implicitly) working with Xét, fin. pres •

Proposition 7.14. Ȟ
0
(U/X,F ) = Ȟ

0
(Xét,F ) = H0(Xét,F )

Proof. This follows directly from the sheaf condition.

F (X)! F (U)! F (U ×X U)

is exact. This equates first and last terms. For middle, use that directed limits are exact. ■

Proposition 7.15. Ȟ
i
(U/X,I ) = Ȟ

i
(Xét,I ) = 0 if i > 0 and I is injective.

Proof. We’ll give a different description of Čech cohomology. It is enough to show that Č•(U/X, d) is
exact away from 0. Let ZU = Z[HomX(−, U)], i.e. ZU (V ) is the free abelian group on HomX(V,U).

Claim 7.16. We can rewrite the Čech complex as

Č•(U/X,I ) : Hom(ZU ,I )! Hom(ZU×XU ,I )! Hom(ZU×XU×XU ,I )! · · ·

This is basically just Yoneda’s lemma. Note the above comes from a cosimplicial diagram

ZU ZU×XU ZU×XU×XU · · ·
d0

d1

which is independent of the choice of sheaf. Now it is enough to show that

Z! ZU ! ZU×XU ! · · ·

is exact. This is because Hom(−,I ) is an exact functor. This is actually a special case of the following
fact: given a set S,

Z! ZS ! ZS×S ! ZS×S×S ! · · ·

is always exact for any set S.

Proof. Base change to ZS (flat Z-module supported everywhere), and then there’s a natural homotopy.
■

This finishes the proof. ■
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This shows that Čech cohomology agrees with étale cohomology in degree 0, and they both vanish on
injectives. For them to agree, Čech cohomology would need to be a δ-functor.

Theorem 7.17. If for all short exact sequences 0 ! F1 ! F2 ! F3 ! 0 in Sh(Xét), the induced
sequence

0! Č(Xét,F1)! Č(Xét,F2)! Č(Xét,F3)! 0

is also exact, then Ȟ
i
(Xét,F )

∼
−! Hi(Xét,F ) for all i,F .

Proof. We’ll see this next time using the Čech-to-derived spectral sequence. ■

Remark 7.18. The above sequence of Čech complexes is always left exact, but not always right exact. ◦

Theorem 7.19 (Milne, III). The above condition holds if X is quasi-compact, and if any finite subset
of X is contained in an affine (e.g. X quasi-projective). Remember:

Čech coho-
mology com-
putes étale
cohomol-
ogy when
X quasi-
compact
and any
finite sub-
set is con-
tained in an
affine (e.g.
X quasi-
projective)

8 Lecture 8

Recall that our current goal is to understand how to compute Étale cohomology. Last time we introduced
Čech cohomology. Given an étale cover U

ét
↠ X, this is the cohomology of the complex

Č(U/X,F ) : F (U)! F (U ×X U)! F (U ×X U ×X U)! · · · ,

or, for something more intrinsic to Xét, cohomology of the complex

Č(Xét,F ) = lim−!
U/X

Č(U/X,F ),

with colimit taken over covers of X.

Warning 8.1. Ȟ
i
(Xét,F ) is not in general isomorphic to derived functor cohomology. •

Theorem 8.2 (Milne, Étale Cohomology Sect. III). Čech cohomology is canonically isomorphic to
derived functor cohomology if X is quasi-compact and satisfies: any finite subset of X ic contained in an
affine (true e.g. if X is quasi-projective).

Remark 8.3. There is a version of Čech cohomology with covers replaced by “hypercovers” and this does
always compute derived functor cohomology. ◦

8.1 Čech-to-derived spectral sequence

Start with an injective resolution

F ! I 0 ! I 1 ! I 2 ! · · ·

Given a cover22 U ! X, we get a sequence of complexes (a double complex)

Č(U/X,I 0)! Č(U/X,I 1)! · · · .
22Can also make this work for covers consisting of mulitple objects over X
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The horizontal differential is coming from our injective resolution, and the vertical differentials are coming
from the Čech complex. Let’s expand this out a bit

...
...

I 0(U ×X U) I 1(U ×X U) · · ·

I 0(U) I 1(U) · · ·

Č•(U/X,I 0) Č•(U/X,I 1) · · ·

To a double complex, one can associate two spectral sequences.

• In one case, you start by computing horizontal cohomology and then vertical cohomology. Doing
this gives a spectral sequence with E2-page

Ei,j2 = Ȟ
i
(U,H j(F ))

where H j(F ) is the presheaf V 7! Hjét(V,F ).

• In the other case, you start by computing cohomology in the vertical direction, and then in the
horizontal direction. Doing this gives a spectral sequence with E2-page

Ei,j2 =

Hi(X,F ) if j = 0

0 otherwise.

(recall Čech cohomology of an injective sheaf vanishes in positive degree). Note that this sequence
visibly degenerates with E2 = E∞.

Both of these spectral sequences have the same E∞-page, so we see that the first case is really a spectral
sequence

Er,s2 = Ȟ
r
(U,H s(F )) =⇒ Hr+s(Xét,F ).

Exercise. Last time, we claimed that if Č•(Xét,−) is exact on Shab(Xét), then Ȟ
∗
= H∗. Prove this using

the Čech-to-derived spectral sequence.

8.1.1 Mayer-Vietoris

Let U = U0 ∪ U1 be a Zariski-open cover of U .

Proposition 8.4 (Mayer-Vietoris sequence). There exists a functorial long exact sequence

· · · −! Hs(U,F )! Hs(U0,F )⊕Hs(U1,F )! Hs(U0 ∩ U1,F )! Hs+1(U,F )! · · ·

Proof. Apply Čech-to-derived s.s. to the cover U0 ⊔ U1 ! U .
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Exercise. Show that the Čech complex

F (U0 ⊔ U1)! F ((U0 ⊔ U1)
×U2)! F ((U0 ⊔ U1)

×X3)! · · ·

is quasi-isomorphic to
F (U0 ⊔ U1)! F (U0 ∩ U1).

Given this, the Čech to derived E2-page vanishes except for the first 2 columns. The differentials in
this s.s. gives the Mayer-Vietoris sequence. In general, if you have an E2-spectral sequence with only two
non-vanishing columns, then that data is the same as that of some long exact sequence. ■

Remark 8.5. The exercise in the previous proof uses that we’ve taken a Zariski cover. ◦

8.2 Computing Étale Cohomology

Theorem 8.6. Say X is a scheme, and F ∈ QCoh(X). Then,

Hi(X,F ) = Hi(Xét,F
ét) = Hi(Xfppf,F

fppf ).

Remark 8.7. Already a non-trivial version of something like this appeared in Hartshorne:

ExtiQCoh(X)(OX ,F ) = Hi(QCoh(X),F ) = Hi(XZar,F ) = ExtiSh(XZar)
(Z,F ).

This (the middle equality) was because injective qcoh sheaves are flasque. ◦

Proof of Theorem 8.6. We’ll prove the theorem only in the special case that X is quasi-compact, sepa-
rated, and Čech cohomology computes derived functor cohomology.

First, we claim every cover can be refined to a finite cover by affines. This follows from quasi-
compactness. Now, suppose X is affine, and U ! X is an fppf affine cover (so U affine). Then,
Č(U/X,F ) is exact if F = M̃ is quasi-coherent. Indeed, if U = SpecB and X = SpecA, then this
complex is just our old friend

M ⊗B !M ⊗B ⊗B !M ⊗B ⊗B ⊗B ! · · · ,

the Amitsar complex. This is exact by the usual faithful flat base change to get a section argument.
This tells us that

Ȟ
i
(U/X,F ) =

F (X) if i = 0

0 otherwise.

for F qcoh, and U,X both affine. From this, we see that indeed

Ȟ
i
(Xét,F

ét) =

F (X) if i = 0

0 otherwise.

when X affine, since affine covers are cofinal.
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Now say X is quasi-compact, separated, and Čech cohomology computes derived functor cohomol-
ogy. Take an affine cover U ! X, and use the Čech-to-derived spectral sequence to finish (note that
intersections of affines are affine). ■

Example. Say X = Pn and F = OX . Then,

Hi(Pnét,Oét
Pn) =

k if 0

0 otherwise.
△

Example. Say X/Fp is a quasi-projective variety. We can compute Hi(Xét,Fp). We claim the sequence

0! Fp ! Ga
xp−x
−−−! Ga

of sheaves is exact. This is true at the level of representing objects (or just check by hand). In fact, we
claim that

0! Fp ! Ga
xp−x
−−−! Ga ! 0

is exact, i.e. that Ga ! Ga above is an epimorphism, e.g. given f ∈ OU (U) = Ga(U), we need to solve
xp − x = f étale-locally on U . Consider the base change

Ga ×Ga
U Ga

U Ga.

xp−x
f

Since xp − x is étale (it’s derivative −1 is invertible), the left vertical map is étale too, so win.
The upshot is we have a long exact sequence

0! H0(Xét,Fp)! H0(Xét,Ga)! H0(Xét,Ga)! H1(Xét,Fp)! H1(Xét,Ga)! H1(Xét,Ga)! H2(X,Fp)! · · ·

where Hi(Xét,Ga) = Hi(X,OX), and the maps Hi(X,OX)! Hi(X,OX) above are all x 7! xp − x. △

Example. If X = A1 = SpecFp[t] in the previous example, we have

0! H0(A1
ét,Fp)! Fp[t]

t7!tp−t
−−−−−! Fp[t]! H1(A1

ét,Fp)! 0,

so H0(A1
ét,Fp) = Fp, but H1(A1

ét,Fp) is the cokernel which is huge. △

9 Lecture 9

Last time:

• Čech-to-derived s.s.

• Mayer-Vietoris

• étale cohomology of qcoh sheaves
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• étale cohomology of Fp in char. p

Recall 9.1. Say X/Fp. Get an Artin-Schreier exact sequence of sheaves on Xét

0 −! Fp −! Oét
X

t 7!tp−t
−−−−−! Oét

X −! 0.

Can get something similar over any base of characteristic p. This gives a long exact sequence

· · ·! Hi−1(X,OX)! Hi(Xét,Fp)! Hi(X,OX)! Hi(X,OX)! · · · .

It can still be tricky to compute cohomology of Fp, but we can at least work things out in special cases. ⊙

Example. Say X = SpecA is affine, so Hi(X,OX) = 0 for i > 0 which means Hi(Xét,Fp) = 0 for i > 1.
We’re left with

0! H0(X,Fp)! A
t7!tp−t
−−−−−! A! H1(Xét,Fp)! 0,

so H0(X,Fp) = Fπ0(X)
p , as always, and H1(Xét,Fp) is the cokernel of the Artin-Schrier map which is not

finitely generated in general. △

Remark 9.2. If X/Fp is proper, then Hi(Xét,Fp) is finite dimensional. This is by proper pushforward for
coherent cohomology (i.e. Hi(X,OX) is finite dimensional). ◦

Example. Say E an elliptic curve over k = k of characteristic p. Then it’s not too hard to show that

H1(E,Fp) =

Fp if E ordinary

0 if E supersingular

One may expect instead for this to have been 2-dimensional. △

Étale cohomology with Fp-coefficients in characteristic p may not work to prove the Weil conjectures, but
it still gives something interesting/useful.

Example. Recall that Hi((Spec k)ét,F ) is Galois cohomology of F (ks) := lim−!
ks/L/k

F (L). Underlying

this is the equivalence of categories between Shab(Spec két) and discrete G-modules. We can make this
explicit using Čech cohomology.

Let U = SpecL with L/k a separable field extension (so U an étale cover of Spec k). Then, we get a
Čech complex

Č(U/ Spec k,F ) = F (U)! F (U ×k U)! · · · .

Now assume L/K Galois with G = Gal(L/K). Then we can rewrite this complex as

Č(U/ Spec k,F ) = F (U)! F (G× U)! F (G×G× U)! · · · .

Exercise. This complex is the same as the standard complex computing Hi(G(L/k),F (U)).

Taking direct limits, one then sees that Č((Spec k)ét,F ) is quasi-isomorphic to the usual complex
computing Galois cohomology. △

Question 9.3 (Audience). When can you compute étale cohomology as some kind of group cohomology?
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Answer. You can do this if your space is a K(π, 1). This is kind of a non-answer since in algebraic
geometry, the definition of a K(π, 1) is essentially that it is a space whose étale cohomology is group
cohomology of its fundamental group. ⋆

The goal of the next few classes is to actually compute étale cohomology of some spaces. Specifically...

Goal. We cant to compute the étale cohomology of curves over k = k, i.e.

Hi(Cét,Z/ℓnZ)

where ℓ ̸= char k.

Today we’ll try to do this for i = 0, 1.

9.1 Cohomology of Curves (Really, G-torsors and interpretation of H1)

Remark 9.4.
H0(Cét,Z/ℓnZ) = Z/ℓnZ. ◦

Computing H1 will be a little more involved. In order to do this, we will give an interpretation of
H1(Xét,F ) in terms of torsors. These will formalize the notion of a principal, homogeneous space (think
principal G-bundles in topology).

Definition 9.5. Let G be a sheaf of (not necessarily abelian) groups on Xét. The idea to defining a
G-torsor will be to let it be a sheaf F ∈ Sh(Xét) (of sets) with a G-action s.t. G acts simply transitively
on every fiber.

Here’s the actual definition. A G-torsor is a sheaf T ∈ Sh(Xét) with an action G× T
a
−! T such that

(a, π2) : G×X T −! T ×X T

(g, t) 7−! (gt, t)

is an isomorphism.23 All fiber products in this definition are over X. ⋄

Remark 9.6. T × T
∼
−! G× T , so if you pull back to T , you get a trivial torsor. ◦

Example. G is a G-torsor (trivial torsor). △

Example. Suppose G is a finite group, and G ∈ Sh(Xét) is the corresponding constant sheaf. Then a
G-torsor is a finite étale cover with Galois group G (there’s an equivalence of categories here). △

Example. Gm : U 7! OU (U)× is the sheaf represented by Spec k[t, t−1]. A line bundle minus its 0 section
will give an example of a Gm-torsor. Say L is a line bundle. Then you get a Gm-torsor

SpecX

(⊕
n∈Z

L ⊗n

)
.

We’ll see in a bit that there’s a natural bijection between Gm-torsors and line bundles. △
23monic = free and pointwise surjective = transitive
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Example. G = GLn. The claim is that GLn-torsors are in natural bijection with rank n vector bundles.
To a rank n vector bundle E , associate the bundle of frames IsomXét(O

⊕n, E), a sheaf whose value on
some cover U are isomorphisms between O⊕n

U and E|U .
Given a GLn-torsor T , one way of recovering a vector bundle is taking (T × O⊕n

X )/GLn (quotient
taken in the category of étale sheaves). Not obvious this is a vector bundle, so something to check here.
Also, the GLn-action is the diagonal one. △

Definition 9.7. A G-torsor T is split by a cover U ! X if T |U is isomorphic to G|U (as a torsor). ⋄

This is being “locally trivial.”

Remark 9.8. Suppose T is representable, and T ! X is a cover. Then, T is split by T . ◦

Example. Suppose G is a finite étale group scheme over X, and T is a G-torsor split by some U ! X.
Then,

(1) T is representable.

(2) T is split by T .

Proof. ((1) =⇒ (2)) T ×X U ! U is a cover because it is finite, étale (here, assuming T representable),
so T ! X is itself a cover. Previous remark then shows that T splits itself.

(1) Observation: T |Uét is representable since it is isomorphic to G|Uét (definition of being split by
U ! X). We now appeal to effectivity of descent for affine schemes (finite maps are affine) to conclude
that T |Uét descends to a (unique up to iso) representable sheaf T over Xét. ■

△

Remark 9.9. Ȟ
1
(U/X,G) makes sense for G an sheaf of groups, even it they’re non-abelian, with the

same definition. ◦

Proposition 9.10. There is a bijection{
G-torsors T

split by U ! X

}
 ! Ȟ

1
(U/X,G).

Proof. Say φ : T |Uét

∼
−! G|Uét as torsors. Let π1, π2 : U ×X U ⇒ U be the two projections. Since T is a

sheaf on Xét, we get a commutative diagram

π∗
1T |Uét π∗

2T |Uét

π∗
1G π∗

2G.

∼

π∗
1φ π∗

2φ

∼

The bottom arrow in the above diagram is an element of Γ(U ×X U , G).24 The claim is that the cocycle
condition implies that this is an element of ker d. The other claim is that if T1 ≃ T2, then the cocycles
you get differ by coboundary. These two claims are left as exercises. ■

Corollary 9.11. {locally trivial G-torsors}/ ∼ ∼
−! Ȟ

1
(Xét, G).

24Automorphism of a trivial G-torsor is an element of G
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Proposition 9.12. This gives25

Ȟ
1
(τ,F )

∼
−!

{
locally trivial
F -torsors

}
∼
−! H1(τ,F )

where τ is any site, and F is a sheaf of groups (abelian groups to get the isomorphism to derived functor
cohomology).

Remark 9.13. It is always that case that Čech Ȟ
1

computes derived functor H1, and this is via the same
proof as usual with sheaf cohomology. ◦

Theorem 9.14 (Hilbert 90).

Ȟ
1
(Xzar,GLn)

∼
−! Ȟ

1
(Xét,GLn)! Ȟ

1
(Xfppf,GLn)

and these are all bijections.

Proof. Need to show that (locally split) torsors are the same. A locally split GLn-torsor is fppf descent
data for a vector bundle (element of Čech Ȟ

1
), so we win by fppf descent for vector bundles. ■

10 Lecture 10

Question 10.1 (Audience). If you have a sheaf which is representable after an étale base change, was it
representable to begin with?

Answer. In general, no, since descent for sheaves is not always effective. It will be representable by an
algebraic space though. ⋆

Remark 10.2. What we’ve been calling a torsor, some sources (e.g. Stacks project) call a pseudo-torsor.
What we’ve been calling a locally trivial torsor, some sources instead call a torsor. ◦

Recall we ended last time with a proof of “Hilbert 90”

Theorem 10.3. The maps

H1(Xzar,GLn) H1(Xét,GLn) H1(Xfppf,GLn)

are all bijections.

Theorem 10.4. Let τ ∈ {Xzar, Xét, Xfppf}. The data of a GLn-torsor split by some τ-cover U ! X is
the same as descent data for a vector bundle relative to U/X. We have

U ×X U
π1

⇒
π2

U
π
−! X,

and π∗T ≃ π∗G. Hence the natural iso π∗
1π

∗T
∼
−! π∗

2π
∗T corresponds to an iso

G|U×XU = π∗
1π

∗G
∼
−! π∗

2π
∗G = G|U×XU .

25Locally trivial torsors are those split by some cover
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This is exactly given by a section of G. Now, a section of GLn (an invertible matrix) on double inter-
sections of a cover (satisfying a cocycle condition) is precisely descent data for a vector bundle. Finally,
fppf descent tells us that descent data for vector bundles is always effective. Hence,

H1(τ,GLn) ≃ iso classes of rank n vector bundles.

Exercise. Find other groups for which Hilbert 90 is (or is not) true.

Remark 10.5. Suppose G is an affine, flat X-group scheme. Are all G-torsors representable by a X-
scheme? Yes, using affineness (by same proof as last time). ◦

Question 10.6. Given a G-torsor T , which is fppf-locally trivial, is it étale-locally trivial.

Answer. In general no, but yes if G is smooth. Here’s a proof sketch: start with the pullback

T ×X T T

T X

Then, T ×X T ! T is a trivial G-torsor, and T ! X is smooth (since G! X is and T ! X has the same
fibers). The hard part is to show one can find some closed U ↪! T such that U ↪! T ! X is étale. ⋆

Let’s go back to thinking about Hilbert 90.

Example. X = Spec k, n = 1. Note that we have

H1(Gal(ks/k), (ks)
×
) = H1((Spec k)ét,Gm) = H1(Spec kzar,Gm) = Pic k = 0.

So this Hilbert 90 does give what’s more often called Hilbert 90. △

Example. Let X be any scheme, and set n = 1. Then,

H1(Xét,Gm) = PicX. △

Example. Let ℓ be a number invertible on X (i.e. ℓ ∈ OX(X)×). Let’s compute H1(Xét, µℓ). We use

the Kummer sequence 1! µℓ ! Gm
z 7!zℓ
−−−! Gm ! 1. This gives us

0! H0(Xét, µℓ)! H0(Xét,Gm)
(−)ℓ

−−−! H0(Xét,Gm)! H1(Xét, µℓ)! Pic(X)
[ℓ]
−! Pic(X)! H2(Xét, µℓ)! · · ·

Now suppose H0(X,OX) = k = k. Then,

H0(Xét, µℓ) = µℓ(k) and H1(Xét, µℓ) = Pic(X)[ℓ]. △

Example. Can we compute H1(Xét,Z/ℓZ) whereX/k = k and char k ∤ ℓ. In this case, we have Z/ℓZ ≃ µℓ Z/ℓZ can
be repre-
sented by
Spec k[t]/(t(t−
1) . . . (t −
(ℓ− 1)))

via picking a primitive ℓth root of unity. Hence, Hi(Xét,Z/ℓZ) ≃ Hi(Xét, µℓ) (not Galois equivariant since
iso depends on choice) whenever k contains a primitive ℓth root of unity. △
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10.1 Geometric Interpretation

Suppose X is an affine scheme over a field k = k. We have computed H1(Xét,Fp) = coker(OX(X)
t 7!tp−t
−−−−−!

OX(X)) where p = char k. We have also computed H1(Xét,Z/ℓZ) in terms of a long exact sequence.
This groups means something: one gives Fp-torsors and the other Z/ℓZ-torsors.

Question 10.7. How would one explicitly write down the associated torsors?

Say we have [Y ] ∈ H1(Xét,Fp) = coker(OX(X)
t7!tp−t
−−−−−! OX(X)). Here, Y = {yp − y = a} where

a ∈ OX(X), called an Artin-Schrierer covering.

Now say ℓ ̸= char k and Pic(X) = 0, and we have [Z] ∈ H1(Xét, µℓ) = coker(O×
X

t7!tℓ
−−−! O×

X). Then,
Z =

{
zℓ = f

}
with f ∈ O×

X .

Remark 10.8. Explicitly writing down covers belongs to the theory of explicit geometric class field theory,
which gives recipes for writing down abelian covers of curves. ◦

10.2 Cohomology of Curves (mostly for real, this time)

Goal. Let X be a smooth curve over k = k. Then, ‘curve’
means ge-
ometrically
integral, sep-
arated, finite
type

Hi(Xét,Gm) =


OX(X)× if i = 0

Pic(X) if i = 1

0 if i > 1

(note we’ve done i = 0, 1 already)

Corollary 10.9. Say X is a smooth, proper, connected curve over k = k, and ℓ ̸= char k, then

Hi(Xét,Z/ℓnZ) =


Z/ℓnZ if i = 0

Pic(X)[ℓn] = (Z/ℓnZ)2g if i = 1

Z/ℓnZ if i = 2

and it vanishes if i > 2.

Proof. We need a black box from the theory of abelian varieties. The Jacobian Jac(X) = Pic0(X) of a
curve is a g-dimensional abelian variety, so Jac(X)[ℓn] = (Z/ℓnZ)2g. Also, this Jacobian sits in a short
exact sequence 0! Jac(X)! Pic(X)

deg
−−! Z! 0, so Pic(X)[ℓn] = Jac(X)[ℓn]. Lastly, we need to know

that Jac(X)(k) is a divisible group, so coker(Pic(X)
[ℓn]
−−! Pic(X)) = coker(Z [ℓn]

−−! Z) = Z/ℓnZ.26

Now, the Kummer sequence 1 ! µℓn ! Gm ! Gm ! 1 (note µℓn = Z/ℓnZ since we’re over k = k

with ℓ ̸= char k) gives

0! H1(Xét,Z/ℓnZ)! Pic(X)
[ℓn]
−−! Pic(X)! H2(Xét,Z/ℓnZ)! 0.

Thus, H1(Xét,Z/ℓnZ) = Pic(X)[ℓn] = (Z/ℓnZ)2g, and H2(Xét,Z/ℓnZ) = coker(Pic(X)
[ℓn]
−−! Pic(X)) =

Z/ℓnZ. ■
26snake lemma
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Remark 10.10. These isomorphisms will not be Galois equivariant (the Galois action on Z/ℓnZ is trivial,
but the actions on the RHS here will be via the cyclotomic character). ◦

Ok, so we need to show that Hi(Xét,Gm) = 0 for i > 1. The proof will have three ingredients

(1) Leray spectral sequence

(2) Divisor exact sequence

(3) Brauer groups

10.3 Pushforwards and Leray s.s.

Recall 10.11. If f : X ! Y is a morphism of schemes, we get a pushforward functor f∗ : Sh(Xét) !

Sh(Yét). Given F ∈ Sh(Xét), we have

f∗F (U ! Y ) = F (U ×Y X).

Recall that this functor is left exact, so we get right derived functors

Rif∗ : Shab(Xét)! Shab(Yét). ⊙

Intuition. Think of these derived functors as taking cohomology of the fibers. This is not literally true
in general.

Remark 10.12. In general, Rif∗F is the sheafification of the presheaf V 7! Hi(f−1(V ),F ). ◦

Proposition 10.13. If f is a finite morphism (e.g. a closed immersion), then Rif∗ = 0 for i > 0.

Proof. We show that f∗ is right exact in this case. We leave this as an exercise (show stalk of f∗F at y
in Y is just

⊕
x∈f−1(y) Fx). ■

Proposition 10.14. For any morphism f : X ! Y , f∗ preserves injectives.

Proof. This is true for any functor with an exact left adjoint (exercise). ■

Corollary 10.15 (Leray spectral sequence). Say f : X ! Y and g : Y ! Z be morphisms of
schemes. Then there is an E2-spectral sequence

Rig∗ ◦Rjf∗F =⇒ Ri+j(g ◦ f)∗F .

As a special case, if Z = Spec k and k = k, then we get

Hi(Y,Rjf∗F ) =⇒ Hi+j(X,F ).

Proof. Spectral sequence of a composition of functors (Tohoku). In general, given two functors between
abelian categories with the first one sending injectives to injectives, you get a similar sequence.

Explicitly, say F ! I • is an injective resolution. Then, Rif∗F = H i(f∗I •) and f∗I • is a complex
of injectives. We want

Hi+j(g∗f∗I
•) = Ri+j(g ◦ f)∗F .

39



Take spectral sequence of filtered complex f∗I • with filtration given by the truncations τ≤pf∗I •. ■

11 Lecture 11

Last time we introduced the Leray spectral sequence. Given a composition X f
−! Y

y
−! Z, we obtained a

spectral sequence
Rig∗R

jf∗(−) =⇒ Ri+j(g ◦ f)∗(−).

11.1 Continuing with pushforwards

Example. Say we have π : X ! Spec k with k some field. The composition π∗ followed by global sections
gives a spectral sequence

Hi(k,Rjπ∗F ) =⇒ Hi+j(Xét,F ).

On the left, we have Galois cohomology, and the Galois module corresponding to Rjπ∗F is Rjπ∗F (ks) =

Hj(Xks ,F ). Hence, the spectral sequence is really

Hi(k,Hj(Xét,ks ,F )) =⇒ Hi+j(Xét,F ).

△

Remark 11.1. Say k is a finite field, and X/k is a smooth projective variety. Galois cohomology of a
finite field is simple

Hi(k, V ) =


V G if i = 0

VG if i = 1

0 if i > 1

◦

Remark 11.2. Say X π
−! Y is a smooth, proper morphism (say, for now, of varieties over C). There’s a

leray spectral sequence over the analytic site giving

Hi(Y,Rjπ∗Q) =⇒ Hi+j(X,Q).

Fact (Deligne). This spectral sequence degenerates at E2.

First proof of this uses Weil II. ◦

Proposition 11.3. Say we have π : X ! Y . Then, Riπ∗F is the sheaf associated to the presheaf

U 7! Hi(π−1(U)ét,F ).

Proof. Let F ! I • be an injective resolution. Then, H i(π∗I ) =: Riπ∗F . Now, note that we have a
commutative diagram

Sh(Xét) Sh(Yét)

Psh(Xét) Psh(Yét),

π∗

forget

π∗

a
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where a denotes sheafification. Furthermore, note that π∗ is exact as a functor Psh(Xét) ! Psh(Yét),
and sheafification is also exact. Hence,

Riπ∗F = H i(π∗I
•) = H i(a ◦ π∗ ◦ forget(I •)) = a ◦ π∗

(
H i(forget(I •)

)
.

By definition, H i(forget(I •)) is the functor sending U 7! Hi(U,F ). Thus, the above equality is exactly
what we wanted to prove. ■

Remark 11.4. This is true more generally for arbitrary morphisms of sites. ◦

Example. Say X is an integral scheme, with generic point ι : η ↪! X. Let F ∈ Sh(ηét); we want to
understand Riι∗F . At least, let’s try to compute its stalks. Say x! X is a geometric point. Then,

(
Riι∗F

)
x
= lim−!

(U,u)

(Riι∗F )(U) = lim−!
(U,u)

Hi(Uη,F |Uη
).

Exercise. Define OX,x to be the stalk of OX at x, and define Kx = Frac(OX,x). Then,

(Riι∗F )x = Hi(KX ,F |Kx). △

Recall that we have the following goal.

Goal. Understand Hi(X,Gm) where X is a curve over k = k (and i > 1).

We want to relate this question to questions in Galois cohomology.

11.2 Cohomology of curves (we meet again)

Proposition 11.5. Let X be a regular variety over k (maybe to sep closed), and suppose η ↪! X is the
generic point. Then there is a short exact sequence of sheaves on Xét:

0! Gm
res
−−! η∗Gm

div
−−!

⊕
Z⊂X

codim 1

ιZ∗Z! 0.

Proof. We first show Gm ! η∗Gm is injective. We claim Gm(U)! Gm(Uη) is injective. This is precisely
O×
U !

⊕
i Oηi where ηi runs over the generic points of U . This map is indeed injective.

Now exactness in the middle. Say we have f ∈ η∗Gm(U) s.t. div(f) = 0. We want f to come from
Gm(U). It is enough to show that f is regular (by the same argument, f−1 will also be regular). This
boils down to

A =
⋂

p ht 1

Ap

(by normality, which is implied by regularity).
Now we show η∗Gm !

⊕
Z⊂X

codim 1
ιZ∗Z is surjective. We claim that every Weil divisor is locally

principal, i.e. is Cartier. This is true by regularity. ■
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Corollary 11.6. There is a long exact sequence

· · ·! Hi−1(Xét,
⊕
Z⊂X

codim 1

ιZ∗Z)! Hi(Xét,Gm)! Hi(Xét, η∗Gm)! Hi(Xét,
⊕
Z⊂X

codim 1

ιZ∗Z)! · · ·

The terms involving pushforwards can be computed using the Leray spectral sequence.

Proposition 11.7. Say X is a curve over k = ks. Then,

Hi(Xét,
⊕
Z⊂X

codim 1

ιZ∗Z) = 0 for i > 0.

Proof. It is enough to show that for z ∈ X of codim 1 (a closed point), Hi(Xét, ιz∗Z) = 0 for i > 0. There
is a Leray spectral sequence

Hi(Xét, R
iιz∗Z) =⇒ Hi+j(zét,Z).

Note that

Rjιz∗Z =

ιz∗Z if j = 0

0 otherwise.

since pushforward along closed immersions are exact. Also,

Hs(zét,Z) =

Z if i = 0

0 otherwise.

since z is spec of a separable closed field. Hence, we have a spectral sequence with just one column, so
it’s degenerate, and we see that

Hi(Xét, ιz∗Z) = Hi(zét,Z) =

Z if i = 0

0 if i > 0
. ■

Corollary 11.8. Say X is a smooth curve over k = ks. Then,

Hi(Xét,Gm)
∼
−! Hi(Xét, η∗Gm) for i > 1.

Let’s compute this now. We use the Leray spectral sequence once more:

Hi(Xét, R
jη∗Gm) =⇒ Hi+j(η,Gm).

Recall from a previous example/exercise that

(Rjη∗Gm)x = Hj(Kx,Gm).

We will win if we can prove...

Theorem 11.9. Suppose

• K is the function field of a curve over a separably closed field; or
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• K = Kx = Frac(OX,x) is the strictly Henselian field associated to a geometric point of a curve over
a separably closed field.

Then, Hi(K,Gm) = 0 for i > 0.

Remark 11.10. This shows that Rjη∗Gm = 0 for j > 0 since all its stalks vanish. This then gives
Hi(Xét, η∗Gm) = Hi(η,Gm). Applying the theorem once more tells us that this vanishes if i > 0. ◦

Thus, we’ve reduced computation of étale cohomology of curves to Galois cohomology.
Lots of what we’ve done has been fairly formal, but this new goal theorem is not formal. It’ll take a

while to prove, and will involve introducing new notions.

11.3 Brauer groups

Let X be a scheme.

Definition 11.11 (Cohomological Brauer group).

Brcoh(X) = H2(Xét,Gm)tors. ⋄

We will understand this geometrically in terms of PGLn-torsors.

Claim 11.12. There is a natural map

⋃
n

{
étale-locally split
PGLn -torsors

}
−! H2(Xét,Gm).

The main point is that there is a short exact sequence 1 ! Gm ! GLn ! PGLn ! 1 of sheaves of
groups onXét.27 The idea then is the use the associated long exact sequence which includes H1(Xét,PGLn)!

H2(Xét,Gm), but this does not quite make sense since PGLn is not abelian. However, we can be hands
on.

Say we have T which is a locally trivial PGLn-torsor. We want to produce [T ] ∈ H2(Xét,Gm). We
start with [T ] ∈ Ȟ

1
(Xét,PGLn). Choose a trivializng U ! X s.t. T |U = PGLn |U . From this, we get a

cocycle in PGLn(U ×X U). What next? Find out next time...

12 Lecture 12

Today, we talk about Brauer groups.
Recall that our current goal is to prove the following.

Goal. Let C be a smooth curve over k = k. We have computed H0(C,Gm) = O×
C (C) and H1(C,Gm) =

Pic(C). We still want to show that Hi(C,Gm) = 0 if i > 1.

Recall 12.1. We have reduced the i = 2 case to questions about Galois cohomology; in particular, to
understanding Hi(k(C),Gm) and Hi(kx,Gm), Galois cohomology of the function field and of the strictly
henselian local rings. ⊙

27It if right exact since GLn ! PGLn is smooth, and so has sections étale locally. Alternatively, GLn ! PGLn is a
Gm-torsor and so (Zariski)-locally trivial, so it’s even an epimorphism in the Zariski topology
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Recall 12.2. For a scheme X, we defined the cohomological Brauer group

Brcoh(X) = Br′(X) = H2(Xét,Gm)tors.

We started defining the Brauer group. We claimed there was a map

⋃
n

{
étale-locally split
PGLn -torsors

}
δ−−! H2(Xét,Gm),

and we defined the Brauer group Br(X) to be the image of this map. ⊙

How do we define δ above? It is the boundary map⋃
n

H1(Xét,PGLn)
δ
−! H2(Xét,Gm)

arising from the short exact sequences

1 −! Gm −! GLn −! PGLn −! 1

of sheaves of groups on Xét.

Note 1. A good reference for (partial) LES of cohomology of sheaves of non-abelian groups is Giraud’s
book ‘Cohomologie Non-Abelienne’ See e.g. sec-

tion III.3
and/or IV.4

What one gets is a “long exact sequence of pointed sets” terminating at H2(Xét,Gm) (uses that Gm
lands in the center of GLn).

We can make δ explicit in terms of Čech cohomology. Start with [T ] ∈ H1(Xét,PGLn), so T is a PGLn-
torsor split by some cover U ! X. On U ×X U the descent data (so satisfies cocycle) is given by some
section in Γ(U ×X U ,PGLn). After refining U , we can lift this descent data to a section Γ(U ×X U ,GLn)

(no longer necessarily satisfies cocycle). Consider

π∗
23s · π∗

12s · (π∗
13s)

−1 ∈ Γ(U ×X U ×X U ,GLn).

By construction, this becomes one 1 when pushed to PGLn, so really it lives in the kernel Γ(U ×X U ×X
U ,Gm). This is a 2-cocycle representing an element of H2(Xét,Gm) (exercise).

Slogan. δ([T ]), the Brauer class of T , is the obstruction to lifting T to a GLn-torsor.

We’ve defined the map δ. We don’t yet know that its image is a group, or that its image lies in the
cohomological Brauer group.

12.1 Geometric interpretations of PGLn-torsors + Brauer classes

General principle: Suppose T ∈ Sh(Xét) (e.g. T a scheme) and G = Aut(T ). Then, there is a natural
bijection between {

locally split
G-torsors

}
 !

{
forms of

T

}
.
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By a form28 of T , we mean a sheaf on Xét which is locally isomorphic to T .
Starting with a form F or T , the Isom sheaf Isom(T, F ) gives a locally split (right) G = Aut(T )-torsor.

Conversely, given a locally split G-torsor τ, the sheaf quotient (τ× T )/G will be a form of T . Think prin-
cipal G-
bundles and
associated
bundle con-
struction

Warning 12.3. This is a bijection of sets. It is not, in general, an equivalence of categories. •

Question: Is
it always an
equivalence
of groupoids,
though?

Answer:
Yes. It’s
functorial
for isomor-
phisms
of forms
(thought
not general
morphisms)
by construc-
tion.

Example. (locally split) GLn-torsors are vector bundles. △

Say G = PGLn. What are some objects with Aut = PGLn? The principal example is AutX(Pn−1
X ) =

PGLn (exercise29).

Corollary 12.4. There’s a natural bijection between

{PGLn -torsors} !
{
forms of Pn−1

}
.

Elements of the RHS are called Severi-Brauer Schemes.

Theorem 12.5 (Noether-Skolem). Let R = Matn×n(A). Then, Aut(A) = PGLn.

Corollary 12.6. Bijection

{PGLn -torsors} ! {forms of Matn×n} .

Elements of the RHS are called Azumaya algebras, up to spelling.

12.2 Twisted Sheaves

Let U ! X be an étale cover, and choose α ∈ Γ(U ×X U ×X U ,Gm) representing some [α] ∈ H2(Xét,Gm).

Definition 12.7. An α-twisted sheaf is a qcoh sheaf F on U and an isomorphism φ : π∗
1F

∼
−! π∗

2F

which satisfies the cocycle condition up to α, i.e.

π∗
23φ ◦ π∗

12φ = α · π∗
13φ. ⋄

Example. Go back and look at our construction of the map δ. △

Notation 12.8. We let QCoh(X,α) denote the category with

• objects: α-twisted sheaves

• morphisms: morphisms of sheaves on U which commute w/ φ

Example. QCoh(X, 1) ≃ QCoh(X) via étale descent for quasi-coherent sheaves. △

Proposition 12.9. Suppose α, α′ are 2-cocycles for Gm.

(1) [α] ∈ Br(X) ⇐⇒ ∃ an α-twisted vector bundle. Basically
showed this
when defin-
ing δ

(2) QCoh(X,α) is an Abelian category with enough injectives (if X is ‘nice’).
28Sometimes also called a twist
29non-trivial. Need something like theorem on formal functions at some point
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(3) There’s a tensor functor ⊗ : QCoh(X,α) × QCoh(X,α′) ! QCoh(X,αα′). There’s also a Hom
functor Hom : QCoh(X,α)×QCoh(X,α′)! QCoh(X,α′α−1)

(4) There are functors
Symn,

∧n
: QCoh(X,α)! QCoh(X,αn).

(5) QCoh(X, 1)
∼
−! QCoh(X)

Proof. For (1), if you have an α-twisted vector bundle, projectivizing it will give an honest-to-God
PGLn-torsor, so [α] ∈ Br(X). Other direction immediate from construction of δ.

Exercise: Try to prove (3,4). ■

Corollary 12.10. Br(X) is a group.

Proof. Say we have α, α′ ∈ Br(X). Let E be an α-twisted vector bundle, and similarly for E ′. Then, E⊗E ′

is an αα′-twisted vector bundle, so αα′ ∈ Br(X). For inversion, E∨ is an α−1-twisted vector bundle, so
α−1 ∈ Br(X). ■

Proposition 12.11. Suppose α is a 2-cocycle for Gm. Then,

[α] is trivial ⇐⇒ ∃α-twisted line bundle.

Proof. (!) If [α] is trivial, then OX is an α-twisted line bundle. There’s an implicit lemma here: if
[α] = [α′], then QCoh(X,α) ∼= QCoh(X,α′) (easy exercise).

( ) Say there’s an α-twisted line bundle L . Descent data for L is the same as a global section
β ∈ Γ(U ×X U ,Gm), and δ(β) = α which exactly says it’s trivial in the Brauer group.

Here, α coming from short exact sequence 1! Gm ! Gm ! PGL1 ! 1 and PGL1 = 1.

■

Corollary 12.12. Suppose E is an α-twisted vector bundle of rank n. Then, [α] ∈ H2(Xét,Gm) is
n-torsion.

Proof.
∧n E is an αn-twisted line bundle, so [αn] = [α]n is twisted. ■

Corollary 12.13. Br(X) ≤ Br′(X) = H2(Xét,Gm)tors.

Let’s give some examples of Brauer classes.

Example. X =
{
x2 + y2 + z2 = 0

}
over R is a smooth conic with no rational points. So X ̸∼= P1

R, but
XC ≃ P1

C. Hence, X is a non-trivial twisted form of P1
R, and in fact, δ([X]) generates Br(R) = Z/2Z. △

Example. The Hamilton Quaternions are a central division algebra over R (hence a Azumaya algebra)
which also represents the generator of Br(R) = Z/2Z. △
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For going between severi-brauer varieties and azumaya algebras, consider the diagram

Severi-Brauer

α-Twisted sheaf E

Azumaya algebras

P(·)

End(·)
moduli of certain ideals

Remark 12.14. Descent data for schemes is not always effective, so there’s extra argumentation needed
to know that P(E) is a scheme. The main point is that the anticanonical bundle of projective space is
(very) ample, and polarized descent data for schemes is effective. ◦

Example. Br(Qp) = Q/Z △

Remark 12.15. Over a field k, any 2-torsion Brauer class is represented by a ‘quaternion algebra’. ◦

Example. There is a map

0 −! Br(Q) −!
⊕
v

Br(Qv)
Σ
−! Q/Z −! 0

In particular, if α ∈ Br(Q), then α|Qv
= 0 for almost all v (exercise30). △

Let’s interpret multiplication.

• Suppose A1,A2 are Azumaya algebras representing α1, α2. Then, A1 ⊗A2 is an Azumaya algebra
representing α1α2.

• Suppose P1 = P(E) and P2 = P(E ′) are SB’s representing α1, α2. Then, P(E ⊗ E ′) represents α1α2.

Remark 12.16. Severi-Brauer varieties (I think) come with a map to projective space via the anticanonical
bundle. ◦ I’m actually

not so sure
this is true

Open Question 12.17 (Period-index question). Given α ∈ Br(X), what is the minimum rank (or
gcd of the ranks) of an α-twisted vector bundle?

Next time: we’ll use stuff from today to understand Hi(k,Gm).

Theorem 12.18.

(1) Say k(C) is function field of a curve over k = k. Then,

H2(k(C),Gm) = 0.

(2) Say Kx is strictly Henselian dvr. Then,

H2(Kx,Gm) = 0.

30Use SB interpretation
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13 Lecture 13

Goal. Finish talking about Brauer groups and finally compute the cohomology of curves.

13.1 Last time

We discussed definition of Brauer group, and showed that it is a group.
Given a 2-cocycle α representing a class [α] ∈ Br(X), we discussed the category of α-twisted sheaves

which led us to two other ways of interpreting the Brauer group: Severi-Brauer schemes, and Azumaya
algebras. Recall these were connected via

Severi-Brauer

α-Twisted sheaf E

Azumaya algebras.

P(·)

End(·)
moduli of certain ideals

We want to use this geometric interpretation to prove the following

Theorem 13.1 (Tsen’s theorem). Suppose k is a C1 field (AKA a quasi-algebraically closed
field), i.e. for any homogeneous polynomial f ∈ k[x1, . . . , n] with deg < n, f has a non-trivial zero.
Then, Br(k) = 0.

We will also prove

Theorem 13.2. Suppose K is either

(1) the function field of a curve over an algebraically closed field; or

(2) the fraction field of a strictly Henselian dvr

Then K is quasi-algebraically closed.

Hence, K as above has trivial Brauer group.

13.2 This time (Finishing computation of cohomology of curves)

Definition 13.3. Let E be an α-twisted sheaf, so End(E) is an Azumaya algebra. The reduced norm
Nm : End(E) ! End(

∧top E) = OX is given by functoriality of
∧

, e.g. take top exterior power of an
endomorphism. ⋄

Proposition 13.4. Given f ∈ End(E), f is invertible if and only if Nm(f) is a unit.

“A matrix is invertible iff its determinant is a unit.”

Proof. Invertibility can be checked locally, and locally End(E) is a matrix algebra. This fact holds for
matrix algebras. ■

Now, we can proof Tsen’s Theorem.
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Proof of Theorem 13.1. Let k be quasi-algebraically closed. Given [α] ∈ Br(k), we want an α-twisted line
bundle. We have some α-twisted vector bundle E . We want some non-trivial subbundle of E if rank E > 1

(and then induct). How do we do this? Could have an endomorphism of E with nontrivial (co)kernel, i.e.
find f ∈ End(E) such that Nm(f) = 0.

Note that reduced norm is a function Nm : End(E)! k whose source is a rank(E)2 dimensional affine
space, so Nm is a (homogeneous) polynomial in rank(E)2 variables.31 At the same time, deg(Nm) = rank E
(since Nm = det after suitable extension). Thus, we get our desired f (when rank E > 1) since k is C1.
Set E ′ = ker(f), and α-twisted vector bundle of strictly lower rank. Rince, wash and repeat to get an
α-twisted line bundle, but the existence of such a thing implies [α] = 0 ∈ Br. ■

Corollary 13.5. If k is quasi-algebraically closed, then H2(k,Gm) = 0.

Proof idea. For a field, H2(k,Gm) = Br(k). This equality is actually true in a lot of situations (though
not for general schemes). To show this for fields, you can write down an explicit central simple algebra
using a 2-cocycle (done e.g. in Serre’s ‘Local Fields’). ■

We next want to show that certain fields are quasi-algebraically closed, i.e prove Theorem 13.2. We
will actually only prove half of it here, and give a reference for the other case.

Proof of first case of Theorem 13.2. Let k = k(C) be the function field of some curve C over an alge-
braically closed field L. Given f ∈ k(C)[x1, . . . , xn] homogeneous with deg f < n, we want a non-trivial
zero of f in k(C)n.

Idea: choose an ample divisor D on C, and consider f as a function

f : Γ(C,O(mD))n −! Γ(C,O((deg f)mD +D′))

(m ∈ Z some integer) with D′ coming from the poles of the coefficients of f . Hence, f gives a map of
irreducible affine spaces over L = L.

What are the dimensions of these spaces? Using Riemann-Roch, we know

dimΓ(C,O(mD))n ∼ nm and dimΓ(C,O((deg f)mD +D′)) ∼ (deg f)m.

Recall deg f < n by assumption, so for m ≫ 0, we get a map X ! Y w/ dimX > dimY . Thus, the
dimension of any non-empty fiber is positive. Note that f−1(0) is non-empty since it is homogeneous so
0 ∈ f−1(0). Thus, dim f−1(0) > 0 so f−1(0) contains some non-trivial L point and we win. ■

Corollary 13.6. Br(k(C)) = H2(k(C),Gm) = 0.

Remark 13.7. Fraction fields K of strictly Henselian dvrs are also C1. This is proved e.g. in Lang’s thesis.

Exercise. Prove this in the case that K is equicharacteristic 0.

Hence, Br(K) = H2(K,Gm) = 0 for K = Frac(strictly Henselian dvr). ◦

Theorem 13.8 ((Less general version of) Tate’s theorem). Let K be as above (e.g. k(C) or Kx,
function field of curve over L = L or frac field of strictly Henselian dvr). Then, Hi(k,Gm) = 0 for all
i > 0.

31Take some field extension under which E splits, and then Nm is just the determinant
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Proof. The goal is Hi(Gal(L/k), L×) = Hi(L/K,Gm) = 0 for all finite, separable Galois extensions L/K
(recall Čech cohomology is exactly computing Galois cohomology in this case).

(1) We know this vanishes for i = 1, 2. i = 1 is Hilbert 90 and i = 2 follows from Tsen’s theorem (for
L = K) + the inflation-restriction exact sequence.

(2) Now suppose L/K is cyclic. Cohomology of cyclic groups is 2-periodic, so we win by the i = 1, 2

cases.

(3) Now suppose L/K is nilpotent. Let C ≤ Gal(L/K) be normal + cyclic (exists since L/K nilpo-
tent32) so we get a short exact sequence

1 −! C −! Gal(L/K) −! G′ −! 1

with G′ nilpotent as well. We know vanishing for C and for G′ (by induction), so we get the result
for Gal(L/K) by inflation-restriction.

(4) Now say L/K general.

Recall 13.9. p-groups are nilpotent. The class equation tells you that p-groups always have
nontrivial center, so keep quotient by centers. ⊙

For Gp ≤ Gal(L/K) a p-Sylow, Hi(Gp, L×) = 0 by part (3). Now consider the map

Hi(Gal(L/K), L×) ↪!
⊕
p

Hi(Gp, L
×) = 0.

This map is injective, so we win. Why is it injective. Recall the (co)restriction maps

res : Hi(Gal(L/K), L×)⇄ Hi(Gp, L
×) : cor

satisfy res ◦ cor = [G : Gp] which is prime to p, so res is injective away from prime-to-p torsion. ■

Corollary 13.10. Let C be a smooth curve over an algebraically closed field. Then,

Hi(Cét,Gm) = Hi(k(C),Gm) for i > 1.

Proof. Before, we showed Hi(Cét,Gm) ≃ Hi(Cét, η∗Gm) for i > 1 (by divisor exact sequence). We now
claim Hi(Cét, η∗Gm) = Hi(k(C),Gm). The Leray spectral sequence tells us that to show this claim it
suffices to know that Riη∗Gm = 0 for i > 0, but the stalks of this sheaf are Hi(Kx,Gm) = 0. ■

Corollary 13.11.
Hi(Cét,Gm) = Hi(k(C),Gm) = 0 for i > 1

Proof. Combine previous corollary with Tate’s theorem. ■
32being solvable is enough
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Corollary 13.12.

Hi(Cét,Gm) =


Gm(C) if i = 0

Pic(C) if i = 1

0 if i > 1

Corollary 13.13.

Hi(Cét, µn) =



µn if i = 0

Pic(C)[n] if i = 1

Z/nZ if i = 2 and C proper

0 otherwise

where n is prime to char k.

Proof. Apply the Kummer sequence 1 ! µn ! Gm ! Gm ! 1. For the i = 2 case, need to know that
Pic0(C) is divisible when C proper and Pic(C) is itself divisible when C is not proper (exercise). ■

Remark 13.14. The description in the last corollary is Galois equivariant. For a non-Galois equivariant
description, PicC[n] = (Z/nZ)2g when C proper. ◦

Remark 13.15. Above theorem uses more than Brauer group vanishes. It uses that Brauer group vanishes
for all finite extensions. This is in fact true more generally for C1 fields (all finite extensions are C1). ◦

Question 13.16 (Audience). For torsors, if you have a section, then you’re trivial? Is something similar
true more general for twists? Like, a Brauer-Severi is often trivial if it has a rational point, and a rank
n vector bundle with n linearly independent sections is trivial, so maybe there is something you can say
in general involving sections? (paraphrase)

Answer. The case of Brauer-Severis is a little special. If one has a section, then its Brauer class vanishes,
but this does not mean that is is a trivial form of Pn; it only means it is a Zariski-locally33 trivial form
of Pn. Over something like Spec k, Zariski-locally trivial = trivial.k

Let’s give a proof of ‘Severi-Brauer with section has trivial Brauer class.’ A Severi-Brauer is a
projectivization P(E) of a twisted vector bundle E . What is a section of P(E)? Well, it is a twisted
subline bundle (or twisted quotient line bundle, depending on conventions), and we’ve said that having
a twisted line bundle means the corresponding Brauer class vanishes.

In general, not sure what a general criterion for a form to be trivial should be. ⋆

Remark 13.17. This computation was the first sign that étale cohomology is a good cohomology the-
ory (looks like singular cohomology). The second big piece of evidence was Artin computing the étale
cohomology of A2 \ 0 which looks like the 3-sphere (punctured C2). ◦

We’ve achieved our first big goal: cohomology of curves. Next time, we start building towards Poincaré
duality, cohomology with compact support, ...

33Trivial Brauer class means it comes from an element of H1(Xét,GLn) = H1(Xzar,GLn), i.e. that your Severi-Brauer is
P(E) for some not twisted vector bundle E on X. This vector bundle is (Zariski) locally trivial, so P(E) is (Zariski) locally
P(On

X) = Pn
X
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14 Lecture 14

Last time we computed the étale cohomology of curves. Today we will talk about compactly supported
cohomology and Gysin sequences. We want to focus on computational aspects of étale cohomology until
we get to Weil conjecture stuff. There will be some big theorems we will need along the way, but we will
not be proving them.

14.1 Extension by zero

Let j : U ↪! X be an open embedding.

Definition 14.1. Extension by zero is the functor j! : Shab(U)! Shab(X) (“j lower shriek”) defined
as the sheafification of

(V ! X) 7!

F (V ×X U) if im(V ) ⊂ U

0 otherwise.
⋄

Remark 14.2. We will later see ‘lower shriek’ for more general morphisms, but it requires input from
Nagata compactification. ◦

Proposition 14.3 (Exercise). j! is left adjoint to j∗.

Proof idea. Check the adjoint property on presheaves, and then use adjoint property of sheafification. ■

Proposition 14.4.

(j!F )x =

Fx if x ∈ im j

0 if x ̸∈ im j

This is immediate from the definition.

Corollary 14.5. j! is exact.

(check on stalks).
This is useful for “excision”

Proposition 14.6. Suppose F ∈ Shab(Xét) and inclusions U
j
↪! X

ι
 ↩ Z = X \U (with U Zariski open

and Z Zariski closed in X). Then there is an exact sequence

0 −! j!j
∗F −! F −! ι∗ι

∗F −! 0

(the above maps are the (co)units from the relevant adjoint pairs).

Proof. Check on stalks. Choose a geometric point x ∈ X.

• First suppose x ∈ U . This sequence then becomes

0 −! Fx
id−−! Fx −! 0 −! 0

which is exact.
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• Now suppose x ∈ Z. This sequence then becomes

0 −! 0 −! Fx
id−−! Fx −! 0

which is exact. ■

Definition 14.7. Suppose F ∈ Shab(Uét) and j : U ↪! X is an open embedding with X proper. Then,
Cohomology with compact support is defined as

Hic(Uét,F ) := Hi(Xét, j!F ). ⋄

Remark 14.8. To define compactly support cohomology for a (smooth) manifolds, one usually defines it as
the cohomology of the de Rham complex of compactly-support differential forms, i.e. forms which vanish
outside a compact set. if X is a smooth manifold and X ↪! M with M a compact smooth manifold,
then any compactly support form on X give rise to a compactly support form on M via extension by 0.
Since M is compact, all forms on it are compact, so compactly supported (de Rham) cohomology of M is
just usual cohomology of M . The upshot is that compactly supported cohomology on X can be studied
in terms of usual cohomology of M , and this is the idea we’re trying to capture in the above algebraic
definition. ◦

Question 14.9. (1) Why does such an X exist, and (2) why does this definition not depend on j,X?

There’s an obvious construction to the existence of such an X. Proper schemes are always separated,
so if U is not separated, then it cannot be open inside a proper scheme. This is all that can go wrong.

Theorem 14.10 (Nagata). If U ! S is a separated S-scheme, then there exists a universally closed
S-scheme X ! S, and an open embedding U ↪! X over S. When U ! S is finite type, then we can take
X to be proper over S.

Applying this when S is a point resolves question (1). Resolving question (2) requires proper base
change which will give independence for torsion sheaves.

Proposition 14.11. Let U be a connected regular curve over k = k, and assume char k ∤ n. Then, there
is a canonical iso H2

c(Uét, µn) ≃ Z/nZ.

Proof. Let j : U ↪! X be the open embedding into the canonical regular compactification, and let
Z = X \ U ι

↪! X be inclusion of the complement. To understand Hi(X, j!µn), we use the short exact
sequence

0 j!j
∗µn µn i∗i

∗µn 0

j!µn
⊕

skyscraper sheaves

This gives a long exact sequence

· · · Hic(U, µn) Hi(X,µn) Hi(X, ι∗ι
∗µn) Hi+1

c (U, µn) · · ·
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First note that

Hi(X, ι∗ι
∗µn) =


⊕
pts

µn(k) if i = 0

0 if i > 0

since ι∗ι∗µn is a sum of skyscraper sheaves34 support of the finite set of points Z. Hence, we have the
sequences (below, we’re assuming U ̸= X)

0 H0
C(U, µn) H0(X,µn)

⊕
z∈Z µn(k) H1

c(U, µn) H1(X,µn) 0

H0(X, j!µn) µn(k) Pic(X)[n]

0

∆

and
0 H2

c(U, µn) H2(X,µn) 0

Z/nZ

This finishes the computation of H2
c(U, µn). What is H1? It’s some extension

0 −!

⊕
µn(k)

µn(k)
−! H1

c(U, µn) −! Pic(X)[n] −! 0

with µn(k) embedded diagonally. ■

14.2 Proper Base Change + Finiteness results

Definition 14.12. Suppose F ∈ Sh(Xét) is a sheaf (of sets) on Xét. We say it is constructible if both

(1) For every i : Z ↪! X, a closed embedding, there exists a non-empty open U ⊂ Z such that (i∗F )|U
is locally constant, i.e. there exists a cover V ! U such that i∗F |V is constant.

(2) The stalks of F are finite. ⋄

Example. If U ↪! X is open, then j!µn is constructible. The stalks are either 0 or µn so finite. Given
i : Z ↪! X, if Z ∩ U = ∅, then i∗j!µn = 0 which is constant. If Z ∩ U ̸= ∅, then (i∗j!µn)|Z∩U is locally
constant; it is isomorphic to µn on Uét which is not constant because of the Galois action, but which
becomes constant after taking the cover where you adjoin all nth roots of unity. △

Example. Suppose F is represented by a quasi-finite X-scheme. △

Theorem 14.13 (Hard). Let f : XÉt ! Xét be the obvious morphism, and let F ∈ Sh(XÉt) be a sheaf
on the big étale site such that

(1) The natural map F  f∗f∗F is an isomorphism; and
34Use Leray spectral sequence Hi(X,Rjι∗ι∗µn) =⇒ Hi+j(Z, µn) to get vanishing higher cohomology. The point is

Rjι∗ι∗µn = 0 for j > 0 since ι∗ is exact as it’s the pushforward along a finite map
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(2) f∗F is constructible.

Then F is represented by a quasi-finite X-scheme.

So any constructible sheaf on the small étale site is representable (by a scheme in XÉt. A quasi-finite
X-scheme may not live in small étale site).

Theorem 14.14. Suppose π : X ! S is a proper morphism and F ∈ Shab(Xét) is a constructible abelian
sheaf on the small étale site of X. Then, Riπ∗F is constructible for i ≥ 0, with stalks

(
Riπ∗F

)
s

∼
−! Hi(Xs,F |Xs

)

for all geometric points s ∈ S.

Corollary 14.15. Suppose X is proper over k = ks, and suppose F ∈ Shab(Xét) is constructible. Then,

(1) Hi(Xét,F ) is finite.

(2) If k ⊂ L each a separably closed field, then the natural map

Hi(Xét,F )
∼
−! Hi(XL,ét,F |XL,ét)

is an iso.

Proof. Constructible sheaves on Spec k are finite groups (recall k = ks), so we get (1). For (2), both
groups are stalks of the constant sheaf (Riπ∗F ) (at the geom points Spec k = Spec k and SpecL !

Spec k). ■

Non-example. Take X = A1
Fp

and let F = Z/pZ. We showed before (End of section 8.2) that

H1(Xét,Z/pZ) is infinite. ▽

Corollary 14.16 (Proper base change theorem). Say we have a Cartesian diagram

X ′ X

T S.

f ′

π′ π

f

For any F ∈ Shab(Xét), there is a natural map

f∗
(
Riπ∗F

)
−! Riπ∗f

∗F .

If π is proper and F is torsion, then this map is an isomorphism.

Proof idea. Construct this map using adjointness. Then check it’s an isomorphism on stalks where it
reduces to the previous theorem. ■

Warning 14.17. Above idea works for constructible sheaves, but theorem stated for torsion sheaves, so
one needs more input. •
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15 Lecture 15: Proper base change (continued)

Last time we started discussing proper base change. Let’s continue down this path (though we won’t
prove it). We recall the statement

Theorem 15.1. Say π : X ! S is a proper morphism, and F ∈ Shab(Xét) is a constructible sheaf of
abelian groups on the small étale site of X. Then, Riπ∗F is constructible for i ≥ 0 with stalks

(Riπ∗F )s ≃ Hi(Xs,ét,F |Xs,ét)

for all geom pts s ↪! S.

Corollary 15.2. For π : X ! S proper, the formation of Riπ∗F (F torsion) commutes with base
change.

Remark 15.3. To go from constructible to torsion, use that any torsion sheaf is a filtered colimt of
constructible sheaves. ◦

How does one prove this stuff. Here are some of the key ideas

• Reduce to the case where π is a relative curve.

Image X is quasi-projective. After blowing up, you can factor π as a sequence of maps, each of
which is a relative curve. Then use Leray spectral sequence.

• Use Devissage to reduce to the case where F = µn.

On a big open, F is locally constant, so honestly constant after taking some cover. Then some
push-pull argument gets you to the µn case.

• Now π : X ! S is a relative curve, and F = µn. Get long exact sequence

0! π∗µn ! π∗Gm ! π∗Gm ! R1π∗µn ! R1π∗Gm ! R1π∗Gm ! R2π∗µn ! 0

(secretly, Riπ∗Gm = 0 for i ≥ 2) coming from Kummer sequence. Goal is to show that π∗µn, R1π∗µn,
and R2π∗µn are represented by quasi-finite S-schemes.

Key geometric input (Grothendieck): in this situation (i.e. proper relative curve), R1π∗Gm =

PicX/S is representable by an S-scheme which is locally of finite type. Note that PicX/S is the
sheafification of the functor

T 7! Pic(XT )/p
∗ PicT where p : XT ! T.

Then get

R1π∗µn = ker

(
PicX/X

[n]
−−! PicX/S

)
and understanding properties of the Picard functor then shows that R1π∗µn is a quasi-finite S-
scheme. Also that R2π∗µn = coker(PicX/S

[n]
−−! PicX/S) is quasi-finite.

How does one actually use proper base change?
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Example. Say we have π : X ! S a smooth, proper curve, and we want to compute Hi(Xét,Z/nZ)
(assume n invertible on S). We have a Leray spectral sequence

Hr(Sét, R
sπ∗Z/nZ) =⇒ Hr+s(Xét,Z/nZ).

We know Rsπ∗Z/nZ is constructible by proper base change, and we know the stalks

(Rsπ∗Z/nZ)s = Hsét(Xs,Z/nZ).

The ranks of these talks does not depend on s. One we know more, we’ll be able to say that this is
a locally constant sheaf, and that there are techniques for computing ranks of cohomology for locally
constant sheaves on curves. △

Example. Say π : X ! S is a proper curve. We know over the open locus in S where π is smooth,
Rsπ∗Z/nZ is locally constant. △

Warning 15.4. If you have a locally constant sheaf on S, the Galois action on the fibers may “vary.”
For example, if you have an elliptic curve over a base, then the n-torsion of the curve is a locally constant
sheaf over the base, but the Galois action really depends on the specific elliptic curves showing up. •

Proposition 15.5. Suppose U is a separated scheme, and F is a constructible sheaf on U . Then,

Hic(U,F ) := Hi(Xét, j!F ) where j : U
open
↪! X = proper

does not depend on X.

Proof. Choose two compactifications j1 : U ↪! X1 and j2 : U ↪! X2. We want Hj(Xi, ji!F ) to be
independent of i. Consider (j1, j2) : U ! X1×X2. This may not be open, so setX = im(j1, j2) ⊂ X1×X2.
This reduces the case of

U X proper

X1 proper

j

j1
π

We want to compare the cohomology of j!F on X with the cohomology of j1!F on X1. We use the Leray
spectral sequence

Hr (X1, R
sπ∗j!F ) =⇒ Hr+s(X, j!F ).

Let’s compute the derived pushforwards above. Since π is proper (map between proper schemes), we
have π is an iso-

morphism
over the im-
age of U

(Rsπ∗j!F )x = Hs(π−1(x)ét, j!F ) = 0 if s > 0

(if x ∈ im j, above is cohomology of a (geometric) point. If not, F is 0). Hence the spectral sequence
degenerates immediately, and we get an equality

Hr(X1, π∗j!F ) = Hr(X, j!F ).

Exercise. π∗j!F ≃ j1!F . Construct map and check on stalks.
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This exercise finishes the proof. ■

Remark 15.6. Usually one uses the proper base change theorem to compute stalks. ◦

Proposition 15.7.

(1) Given short exact sequence 0! F ! G !H ! 0 of constructible abelian sheaves on Uét, we get
a LES in Hic(U,−).

(2) If F is constructible, Hic(Uét,F ) is finite.

Proof. (1) Want LES Hi(X, j!F ) ! Hi(X, j!F ) ! Hi(X, j!G ) ! Hi+1(X, j!H ) and so on, where
j : U ↪! X with X proper. Recall that j! is exact, so this arise from short exact sequence 0 ! j!F ! Remember:

j! exact be-
cause it’s
stalks are
simple

j!G ! j!H ! 0.
(2) Enough to show that j!F is constructible on X because then Hi(Xét, j!F ) is finite by proper base

change theorem. To show it is constructible, there are two things to check.

• The stalks are finite.

This is because the stalks of F were already finite.

• Given T ⊂ X closed, j!F |T is locally constant on an open of T .

Consider T ∩U . If nonempty, it’s an open subset of T which is closed in U , so it has an open subset
on which F is locally constant. If T ∩ U = ∅, then j!F |T = 0 which is already constant. ■

15.1 Purity, Gysin sequence, cohomology w/ supports

Let Λ = Z/nZ (always assume n invertible on the base). We let ShΛ denote (the category of) sheaves of
Λ-modules.

Example. µn is a sheaf of Λ-modules. △

Notation 15.8. Given F ∈ ShΛ, we set

F (r) := F ⊗Λ µ
⊗r
n .

When we study Gysin sequences, we’ll see some twists appearing.
Here’s a general way of relating cohomology on an open to cohomology on the complement: cohomol-

ogy with supports. Let Z
closed
⊂ X with complement U

open
⊂ X. Consider the functor

ΓZ : Shab(Xét) −! Ab

F 7−! ker (Γ(X,F )! Γ(U,F ))

i.e.
ΓZ(X,−) = ker (Γ(X,−)! Γ(U,−)) .

We call this global sections support on Z.

Exercise. This functor is left exact.
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Definition 15.9. We define cohomology with support to be the right derived functors H∗
Z(X,−) of

ΓZ . ⋄

Theorem 15.10. There is a functorial long exact sequence (here, − ∈ Shab(Xét)) This is a
Hartshorne
exercise· · ·! HiZ(Xét,−)! Hi(Xét,−)! Hi(Uét,−)! Hi+1

Z (Xét,−)! · · ·

Proof. Set the notation U j
−−−!
open

X
ι
 ↩ Z with X \ U = Z. Recall the short exact sequence

0! j!j
∗Z! Z! ι∗ι

∗Z! 0.

We want to reinterpret the LES coming from this sequence.

Claim 15.11.
Hom(ι∗ι

∗Z,F ) ≃ ΓZ(Xét,F ).

This is because we have an exact sequence

0 Hom(ι∗ι
∗Z,F ) Hom(Z,F ) Hom(j!j

∗Z,F )

Γ(X,F ) Hom(j∗Z, j∗F )

Γ(U,F |U )

so Hom(ι∗ι
∗Z,F ) is precisely the kernel of this restriction map, as claimed.

As a consequence of the claim, we see that

HiZ(Xét,F ) ≃ ExtiShab(Xét)
(ι∗ι

∗Z,F ),

so our desired long exact sequence is simply the LES of Ext applied to our initial short exact sequence. ■

Theorem 15.12. Suppose Z
closed
⊂ X are k-schemes for some field k, and suppose Z,X are smooth. Also

assume Z is of pure codimension c in X. Then for F ∈ Shab(Xét) locally constant constructible (i.e.
locally constant with finite stalks), there is a canonical isomorphism Question: Is

this like a
Thom iso-
morphism?

Answer:
Yes. A bit
more on this
next lecture.

Hr−2c(Z,F (−c)) ∼
−! HrZ(X,F )

for all r ≥ 0.

Example. Say Z = pt ⊂ A1 over k = k with char k ∤ n so c = 1. Then,

Hr−2(pt,Z/nZ(−1)) ≃ Hrpt(A1
ét,Z/nZ) =

Z/nZ(−1) if r = 2

0 otherwise.

We can compute this even without the theorem.
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We have a long exact sequence

Hipt(A1,Z/nZ)! Hi(A1,Z/nZ)! Hi(Gm,Z/nZ)! Hi+1
pt (A1,Z/nZ)

We know35

Hi(A1,Z/nZ) =

Z/nZ if i = 0

0 if i > 0

We have a LES for computing cohomology of Gm

Hi(Gm, µn)! Hi(Gm,Gm)! Hi(Gm,Gm)! Hi+1(Gm, µn)

The beginning part looks like

0! µn(k)! k[t, t−1]×
[n]
−−! k[t, t−1]× ! H1(Gm, µn)! Pic(Gm)

[n]
−−! Pic(Gm).

Note that Pic(Gm) = 0 and that k[t, t−1]× = k× × tZ. Hence get short exact sequence Remember:
If Z ⊂ X

is an irre-
ducible sub-
set in codi-
mension 1,
you get an
exact se-
quence Z !
Pic(X) !

Pic(U) ! 0

(assuming X
‘nice’. See
Hartshorne
section 2.6)

0! Z/nZ! H1(Gm, µn)! 0.

Thus, H1(Gm, µn) = Z/nZ so H1(Gm,Z/nZ) = Z/nZ(−1). Combining this with previous calculation
(for A1) reproves the result. △

We’ll sketch the proof of the theorem next time, and use it to compute the cohomology of projective
space.

16 Lecture 16

Last time we talked about purity, the Gysin sequence, and cohomology with supports.

16.1 Picking up where we left off

Assumption. Always assume F order prime to char k, meaning its stalks have orders prime to char k.

We were trying to understand the following theorem.

Theorem 16.1. Let Z ↪! X be a closed immersion of smooth k-schemes, and let c = codimX Z. Then
for F lcc (i.e. locally constant constructible, i.e. locally constant w/ finite stalks),

Hr−2c(Z,F (−c)) ∼
−! HrZ(X,F )

for all r ≥ 0.

Think of this as a computation of cohomology with supports. Recall we worked out an example of
this last time.

35Have Kummer sequence Hi(A1, µn) ! Hi(A1,Gm) ! Hi(A1,Gm) ! Hi+1(A1,Gm). Use Pic(A1) = 0
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Corollary 16.2 (Gysin sequence). Suppose we have X,Z as above, and let U = X \ Z be the (open)
complement of Z. Then, for 0 ≤ r < 2c− 1, the restriction map

Hr(Xét,F )! Hr(Uét,F )

is an isomorphism, where F is any lcc sheaf. For big r, there is a long exact sequence

0 −! H2c−1(X,F ) −! H2c−1(U,F |U ) −! H0(Z,F (−c)) −! H2c(X,F ) −! H2c(U,F ) −! H1(Z,F (−c)) −! · · ·

Remark 16.3. Theorem 16.1 is referred to as “purity” since it’s saying36 that cohomology doesn’t change
if you remove something in high codimension; “it’s supported purely in low dimension” ◦

Remark 16.4 (Topological situation). What are these maps H2c−1+i(U,F |U ) ! Hi(Z,F (−c))? Let Z̃
be a deleted neighborhood of Z (e.g. take a small ε-ball around it and then delete Z), so π : Z̃ ! Z is
homotopic to a sphere bundle over Z. The Leray spectral sequence37 only has two nonzero rows, so gives
way to a long exact sequence

· · ·! H2c−1+i(Z,F )! H2c−1+i(Z̃,F )! Hi(Z,F )! H2c+i(Z,F )! · · ·

(Thom-Gysin exact sequence). ◦

Let’s prove the corollary now.

Proof of Corollary 16.2, assuming Theorem 16.1. In the LES of cohomology with supports, replace HrZ(X,F )

with Hr−2c(Z,F (−C)) (note this vanishes if r < 2c). ■

Example (Cohomology of projective space). Fix a field k = k. Assume char k ∤ n (assume this throughout
the lecture). Recall

Hi(A1, µn) =

µn if i = 0

0 if i > 0

Fact (By Kunneth). We’ll see the Kunneth theorem later. It implies that

Hi(An, µn) =

µn if i = 0

0 if i > 0

To compute the cohomology of projective space, we use the Gysin sequence for Pn−1 ↪! Pn (codim
c = 1 here). This gives Hr(Pn,Z/nZ) = Hr(An,Z/nZ) for 0 ≤ r < 1 (which is super useful), and also a
long exact sequence (note µn(−1) = Z/nZ)

0! H1(Pn, µn)! H1(An, µn)! H0(Pn−1,Z/nZ)! H2(Pn, µn)! H2(An, µn)! H1(Pn−1,Z/nZ)! · · ·

We see immediately that H1(Pn, µn) = 0 and

Hi(Pn, µn) ≃ Hi−2(Pn−1,Z/nZ) for i ≥ 2.

36First part of the Gysin seq corollary
37maybe call it the Serre spectral sequence in the topological setting
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By induction, we see that

Hr(Pn,Z/nZ) =

(Z/nZ)
(
−r
2

)
if r even and r ≤ 2n

0 otherwise.

△

Now let’s sketch the proof of purity.

Proof Sketch of Theorem 16.1. We have j : U
open
↪! X

cl
 ↩ Z : ι where Z = X \ U .

(Step 1: Reduce to a local statement) We first define upper shriek Special case
of upper
shriek in
Verdier du-
ality

ι!F = ι∗ ker (F ! j∗j
∗F ) ∈ Sh(Zét)

“sections of F supported on Z.”

Proposition 16.5. ι∗ is left adjoint to ι!. Note ι∗ is
exact, so be-
lievable it
has a right
adjoint (in
addition to
its let ad-
joint ι∗)

Proof of this proposition is left as an (easy?) exercise.

Corollary 16.6. ι! is left exact, and preserves injectives.

Remember:
If you have
an exact left
adjoint, then
you preserve
injectives

Claim 16.7 (Local version of purity). Say Z,X,F as in the theorem. Then,

R2cι!F = ι∗F (−c)

and
Rrι!F = 0 for r ̸= 2c

(r = 0 case clear since F locally constant constructible).

Let’s show that this claim implies the theorem.

– Γ(Z, ι!F ) = ΓZ(X,F )

This follows from expanding definitions.

– The Grothendieck spectral sequence then gives

Hr(Z,Rsι!F ) =⇒ Hr+sZ (X,F ),

i.e. RΓ◦Rι! = RΓZ (uses ι! preserves injectives). This spectral sequence has only one column,
by the claim, so it degenerates immediately and you get

Hr(Z, ι∗F (−c)) = Hr+2c
Z (X,F ).

(Step 2: Prove the local statement) It’s a local claim. One can reduce to the case (Am,Am−c) using In the end,
this pair
looks kinda
like a sphere
bundle

the structure theorem for smooth morphisms. Then, do induction on m, c. The base case is
m = 1, c = 1 which is the example we did at the end of last class. ■
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16.2 Comparison Theorems (e.g. Artin comparison) + Elementary fibrations

Definition 16.8. An elementary fibration is a diagram

U Y Z

S

j

f
h

i

g

such that

(1) j is a Zariski-open immersion s.t. j(U) is fiberwise dense in Y , i.e. for each s ∈ S, Us ⊂ Ys is
dense. Z = Y \ U is the complement of U with i : Z ↪! Y a closed embedding

(2) h is smooth and projective with geometrically irreducible fibers, and it has relative dimension 1

(3) g is finite étale

⋄

Usually U is the object of interest. We write it as an open inside a smooth, proper curve bundle over
S s.t. the complement of U is finite étale. The key thing is the following.

Slogan. Topology of the fibers of f are constant.

This is meaningless in general, but over C it is at least saying the fibers are all Riemann surfaces of
the same genus with the same number of points removed.

Proposition 16.9 (Artin). Suppose X is smooth over k = k. For each scheme-theoretic x ∈ X, there
exists a Zariski open U ∋ x s.t. U fits into an elementary fibration.

The proof of geometrically pretty involved. The idea is to puck a U , embed in Pn, and then project
down (away from a point or linear subspace?) until the base has dimension dimU −1. They will be some
bad loci which you need to delete.

Theorem 16.10. Suppose X is a variety over C, and that F is a constructible, abelian sheaf on Xét.
There are three sites coming into play

Xan-ét

Xan Xét

π an

(1) π induces an isomorphism on the cohomology of all abelian sheaves (in fact, it induces an equivalence
of categories)

π∗ : Sh(Xan)
∼
−! Sh(Xan-ét)

(2) an∗ : Hi(Xét,F )
∼
−! Hi(Xan-ét, an∗F ).

Recall 16.11 (Maybe this is a defn, not a recall?). Xan is the site associated to the Euclidean topology
on the Xan. i.e. its objects are open sets, the morphisms are inclusions, and covers are open covers.

Xan-ét is the category of complex-analytic spaces mapping to Xan via local analytic isomorphisms,
and covers are covers. ⊙
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Corollary 16.12. For F as in the theorem, there is a canonical isomorphism

Hi(Xét,F )
∼
−! Hi(Xan,F an).

Above, F an is π∗an∗F .

We will prove this for X smooth and F lcc via the theory of elementary fibrations.

Exercise. Prove (1) of the theorem.

We’ll do (2) next time.

17 Lecture 17

Today we’ll talk about comparison theorems and then hopefully introduce the fundamental group.

17.1 Comparison Theorems, continued

Last time we stated the following theorem.

Theorem 17.1. Let X be a variety over C. Then, there is a zig-zag of sites

Xan-ét

Xan Xét

π an

such that

(1) π∗ induces an equivalence of categories

Sh(Xan)! Sh(Xan-ét)

(2) an∗ : Hi(Xét,F )
∼
−! Hi(Xan-ét, an∗F ) is an iso when F constructible.

Corollary 17.2. If F is a constructible abelian sheaf on Xét, then there is a canonical iso

Hi(Xét,F )
∼
−! Hi(Xan,F an) where F an = π∗an∗F .

We left (1) as an exercise last time. Here’s how you do it

Proof of (1). Given F ∈ Sh(Xan-ét), we want F an ∈ Sh(Xan) an isomorphism π∗F an ∼
−! F . In the

other direction, given F ∈ Sh(Xan), we want an iso (π∗F )
an ∼
−! G .

We can simply take F an := π∗F . The two desired isos now are the (co)unit of the adjunction between
π∗, π

∗. These are isos essentially because a local isomorphism can be refined to an honest open cover. ■

Now let’s prove two (when X smooth and F locally constant).

Claim 17.3. It is enough to show
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(1) F ! an∗an∗F is an iso

(2) Rian∗an
∗F = 0 for i > 0

Proof. You the leray spectral sequence (for the morphism an : Xan-ét ! Xét)

Hi(Xét, R
jan∗an

∗F ) =⇒ Hi+j(Xan-ét, an∗F ).

The claim implies that the E2-page only has one column with values Hi(Xét,F ), so (2) of the theorem
follows. ■

Let’s prove (1) from the claim.

Proof of (1). We want to show F ! an∗an∗F is an iso. We will do this in the case that F is locally
constant. This is a local statement, so we may as well assume F is constant, so F = Λ for some Λ. In
this case, we need to show that

Γ(U,Λ)! Γ(Uan, an∗Λ)
∼
−! Γ(Uan,Λ)

is an isomorphism. Thus, it’s enough to show that

π0(U
an)! π0(U)

is a bijection. Recall we’re assuming X (hence U) is smooth.

• We can pass to a connected component to assume that U is connected.

• Further, we may assume U fits into an elementary fibration.

U Y Z

S

j

f
h

i

g

This is because U has a smaller open fitting into such a thing by Proposition 16.9 and since U is
smooth, it is connected ⇐⇒ a dense open is connected.

• Suppose Uan (hence Y an) is not connected, so write Y = Y1 ∪ Y2. Note these Yi’s are unions of
fibers of h (to get this, you have to prove the theorem for curves directly38). Hence, h(Y1), h(Y2)
are (unions of) connected components of S.39 Now we’re done by induction on dimension. ■

Now let’s prove the second statement: Rian∗an∗F = 0 for i > 0

Proof of (2). Again, we only handle to locally constant case. This is local, so we may assume F is
constant. We may also assume that U fits into an elementary fibration. We want Rian∗Λ = 0 for i > 0

where an : Uan-ét ! Uét for U in an elementary fibration. Recall these derived pushforwards are the
sheaficiation of the presheaves of “cohomology of the pullbacks.” We claim it suffices to prove the following
lemma

38The analytification of curves are Riemann surfaces, so this is easy
39h is smooth so open. It is proper so closed. Hence is sends connected components to connected components
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Lemma 17.4. Suppose U is connected and smooth over C, and F is lcc on Uan-ét (i.e. locally constant
with finite fibers) and r > 0. Then, for any s ∈ Hr(Uan-ét,F ), there exists an étale cover {Ui ! U} s.t.
s|Uan

i
= 0.

That is, we can kill analytic étale cohomology classes with honest étale covers.

Corollary 17.5. The stalks (Rran∗F )x = 0, so Rran∗F = 0.

Thus, we finish by proving this lemma. WLOG U sits in an elementary fibration

U Y Z

S

j

f
h

i

g

We have s ∈ Hr(Uan-ét,F ) which we compute via leray

Hi(S,Rjf∗F ) =⇒ Hr(Uan-ét,F ).

Note RjF∗ is the sheafification of
(
V 7! Hj(f−1(V ),F )

)
. By induction (we haven’t done base case yet),

we can kill the contributions coming from Rjf∗F for j > 0. We’re left with contributions from (assume
j = 0 now) Hi(S, f∗F ). Since we’re in an elementary fibration, f∗F is again lcc. Since S has lower This is a

topological
computation
since things
here com-
puted in the
analytic site
(recall F

lcc on Uan-ét

here)

dimension than U , we’re done by induction hypothesis.
This just leaves the base case, where dimU = 1. We have F an lcc sheaf on the analytic-étale site

on a Riemann surface. We want to kill s ∈ Hi(Uan-ét,F ) for i = 1, 2 (since we’re on a Riemann surface)
by passing to algebraic étale covers of U .

• Kill i = 2. Pass to any affine cover (e.g. delete a finite set of points).

• Kill i = 1. We have s ∈ H1(Uan-ét,Λ), and we want {Ui ! U} an étale cover s.t. s|Uan-ét
i

= 0. Note
that s corresponds to some Λ-torsor over Uan-ét, i.e. a covering space of Uan with Galois group Λ.

Claim 17.6 (Riemann existence theorem). There is an equivalence of categories

Uf-ét
∼
−! U f-an-ét

between finite, étale covers of U and finite, analytic covers of Uan (i.e. finite covering spaces).

In the present case, s ∈ H1(Uan-ét,Λ) corresponds to some Us ! Uan which is a finite local analytic
isomorphism. Riemann existence then implies that (Us ! U) = (V ! U)

an for some algebraic
V ! U . Then, s|V = 0 because torsor kill their corresponding cohomology classes (recall remark
9.6). ■

This concludes the proof of Theorem 17.1, at least when X smooth and F lcc. This let’s now compute
many examples of étale cohomology.
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Example. Say X is a K3 surface over C. Then,

Hi(Xét,Z/nZ) =


Z/nZ if i = 0, 4

0 if i ̸∈ {0, 2, 4}

(Z/nZ)22 if i = 2

Why? Because we’re over C so it must be the same as the singular cohomology of an analytic K3. △

Non-example. For X = Gm,C one has

H1(Xét,Z) = 0 but H1(Xan,Z) = Z.

(note that Z is not constructible, e.g. since its fibers are not finite). Objects here corresponds to Z-
torsors over Gm. There is one analytically, given by the exponential map exp : C ! C×, but this is not
an algebraic morphism (and neither are any of its powers). ▽

17.2 Étale fundamental groups

Definition 17.7. Let X be a locally noetherian scheme. Consider the finite étale site Xf.ét whose
objects are finite, étale morphisms Y ! X; whose morphisms are morphisms over X; and whose covers
are topological covers. ⋄

Remark 17.8. If X is connected, all morphisms are covers. ◦

Definition 17.9. Let x be a geometric point of X. Then there is a fiber functor

Fx : Xf.ét −! FinSet

Y/X 7−! Yx.

The étale fundamental group is the group

πét
1 (X,x) := Aut(Fx)

with topology the coarsest (i.e. fewest open) one such that

πét
1 (X,x)! Aut(Fx(Y ))

is continuous for all Y (Aut(Fx(Y )) is discrete). ⋄

Example. Say X = Spec k. Take x : Spec k ! Spec k. Note that

Xf.ét = (finite étale k-algebras)op .

In this case,
πét
1 (Spec k, x) = Gal(ks/k)

(exercise). △
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“I was gonna give you some nice examples first, but let me give you some mean examples.”

Example. Take A1
k where char k = p > 0. Recall (from end of Lecture 8)

H1(A1
k,ét,Fp) = coker

(
k[t]

t7!tp−t
−−−−−! k[t]

)
which is huge. This is saying that A1

k has many Fp-covers. Hence, one should expect πét
1 (A1

k) to be really
big. In fact,

H1(A1
k,ét,Fp) = Hom(πét

1 (A1
k, x)

ab,Fp)

from which we see πét
1 (A1

k) is not topologically finitely generated. △

Example. Say E is an elliptic curve over k = k with char k = p > 0. Then, we’ll see,

πét
1 (E) = lim −

n

E[n] =


Zp ×

∏
ℓ ̸=p

Z2
ℓ if E ordinary∏

ℓ̸=p

Z2
ℓ if E supersingular.

Note this is (probably) not the profinite completion of a discrete group. △

Example. Say X is normal /C and connected. Then,

πét
1 (X,x)

∼
−! π1(X

an, x)∧

where ∧ is profinite completion. △

18 Lecture 18

Last time we introduced the étale fundamental group.
Let X be a normal variety over a field k.

Recall 18.1. FÉt(X) is the category whose objects are finite étale morphisms Y ! X and whose
morphisms are X-morphisms. ⊙

Given a geometric point x! X, we defined the functor

F : FÉt(X) −! Set

Y/X 7−! Yx

Recall 18.2. The étale fundamental group of X based at x is

πét
1 (X,x) = Aut(Fx).

⊙

Example. When X = Spec k, this is the absolute Galois group and the choice of basepoint is the same
as a choice of algebraic closure. △
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18.1 Fundamental Group

Theorem 18.3 (SGA1). FÉt F
−! finite continuous πét-sets is an equivalence of categories.

Remark 18.4. In present context (normal variety over a field) this is mostly a restatement of Galois theory
of the fraction field. ◦

Corollary 18.5. For A1
k, where char k > 0, πét

1 (A1
k, x) is not topologically finitely generated.

Proof. H1(A1
k,Fp) is not finitely generated. We claim that

Homcts(π
ét,Fp)

∼
−! H1(A1

k,Fp) = {Fp-torsors} .

Note Fp ↷ Fp by addition, so we get a map

Homcts(π
ét
1 (A1

k),Fp)!
{

fin. cts πét
1 -sets s.t. the action

factors though a map πét
1 (A1

k)! Fp

}
(an element of the LHS gives an action πét

1 (A1
k) ↷ Fp). By theorem from SGA1, these are the same as

Fp-torsors. ■

Corollary 18.6. For any x1, x2 geometric points of X,

πét
1 (X,x1) ≃ πét

1 (X,x2)

(this uses assumption that X is a variety, at least that it’s connected).

Proof. The first step is that we have an equiv of categories πét
1 (X,x1)-sets

∼
↔ πét

1 (X,x2) (since both
equiv to FÉt(X)). The second step – a nontrivial exercise – is that the category determines the abstract
group. ■

In fact, the iso above is well-defined up to inner conjugacy. To choose an iso, choose a sequence of
specializations and generalizations

x1 ⇝y1 ⇝ y2 ⇝· · ·⇝ x2.

Notation 18.7. x⇝ y means that y is a specialization of x, i.e. y is in the closure of x.

Claim 18.8. If x specializes to y, then there is a natural transformation η : Fx ! Fy

Proof. We let η(Y/X) : Yx ! Yy be the map η(Y/X)(z) = z ∩ Yy, where z is the closure of z. ■

Theorem 18.9 (Comparison Theorem for Fundamental Groups). Let X be a normal variety over
C, and choose some x ∈ X(C). Then, there is a map

πét
1 (X,x) π1(X

an, xan)

which induces an isomorphism after taking profinite completions.
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Proof. Recall πét
1 (X,x) := Aut(Fx). Covering space theory tells us that

π1(X
an, xan) = Aut(F an

x : Cov(X)! Set).

Hence, it is enough to show that we have a commutative diagram

FÉt Cov(X)

Set

an

Fx F an
x

where an induces an equivalence FÉt ∼
−! FinCov(X). This equivalence is Riemann existence. ■

Corollary 18.10. If X is a smooth proper curve of genus g over C, then

πét
1 (X) =

〈
a1, b1, . . . , ag, bg

∣∣∣∏[ai, bi] = 1
〉∧

Apparently, this is the only known proof of this (i.e. no known algebraic proof).
What if we’re not over C? There’s a sequence of maps Xk ! X ! Spec k. This induces

Theorem 18.11. The sequence

1 −! πét
1 (Xk, x) −! πét

1 (X,x) −! Gal(k/k) −! 1

is short exact.

Remark 18.12. Surjectivity follows from geometric connectedness of X (running assumption that X is a
variety). Giving the whole proof of exactness is non-trivial. ◦

18.2 Specialization maps

Assumption. Assume X is proper and flat over a complete dvr R w/ geometrically connected fibers.

Notation 18.13. Let K = Frac(R) and k = R/m.

Theorem 18.14. Given x! Xk on the special fiber, the natural map

πét
1 (Xk, x)! πét

1 (X,x)

is an isomorphism of topological groups.

“Can anyone tell me why this is true? This is a very non-trivial theorem.”

Proof. Need to show that the category of finite étale covers are the same, i.e. that

FÉt(X)
res
−−! FÉt(Xk)

is an equivalence of categories.
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Let’s prove essential surjectivity. Given Y ! Xk finite étale, we want to construct Y! X̂, the formal
scheme obtained by completing X at the maximal ideal of the base m.

We need a digression on deformation theory. We need to lift Y over X mod mn where m is our
maximal ideal. We’ll do this one n at a time. The first step looks like

Y ?

Xk X ×R/m2

ét

We want to understand existence and uniqueness properties of ?. In general, we want to look at

Yn ?

X ⊗R/mn X ×R/mn+1

ét

Let I be the ideal defining the embedding X ⊗ R/mn ↪! X ⊗ R/mn+1. The general principal in Question:
Is this the
right embed-
ding?

deformation theory is that the existence of such a ? (an object making the diagram Cartesian and the
right arrow flat) is controlled by an obstruction class, usually living in some H2, and the set of such
objects form a torsor for some H1.

In the present case, one obtains a construction class in obs ∈ Ext2Xk
(Ω1

Y/Xk
,I ). If obs = 0, then

there exists Yn+1 flat over X ⊗R/mn+1 making the diagram Cartesian. The set of such Yn+1, up to iso,
is a torsor for Ext1Xk

(Ω1
Y/Xk

,I ). For us, Y ! Xk is étale, so Ω1
Y/Xk

= 0 so both of these groups vanish.
Hence, there’s a unique Yn+1.

Exercise (conormal exact sequence). Yn+1/X ⊗R/mn+1 is étale.

This gives us a unique Y ! X̂ lifting Y . Now we want some Y ! X. Since X is proper, this is
immediate from formal GAGA.

The same sort of argument gives full faithfulness (exercise). ■

Where does this deformation theory stuff come from? One uses Čech cohomology. First show that
locally on X, you can find the necessary lifts. Smooth maps locally look like affine space and you can
lift affine space. Now you need to try to glue these lifts together. Pick some local isomorphisms between
them; these typically won’t satisfy the cocycle condition, and their failure to do so will be an element of
H2, and really a Čech cocycle representing an element of Ext2. Then you need to figure out how many
ways there are to glue.

Corollary 18.15. Given X as above (e.g. proper and flat over a dvr) as well as η ! XK a geometric
over the generic fiber specializing to some ξ ! Xk in the special fiber, we get a specialization map

sp : πét
1 (XK , η)! πét

1 (Xk, ξ)

(not an iso in general).
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Proof. (XK , η)! (X, η) so we get

πét
1 (XK , η)! πét

1 (X, η)
∼
−! πét

1 (X, ξ)
∼
 − πét

1 (Xk, ξ),

so our map is this composition. ■

Theorem 18.16. If X is normal, then sp is surjective.

Proof. Given Y ! X finite étale with Y connected, then YK is also connected (use Zariski-Zagata purity;
Y is the normalization of X in the function field of Y ). ■

Corollary 18.17. X is normal, flat and proper over R. Say we have η, ξ as above. Then,

πét
1 (XK , η)! πét

1 (Xk, ξ)

is also surjective.

Theorem 18.18. If X is a variety over k alg. closed of char. 0, and L/k is an extension of algebraically
closed fields, then

πét
1 (XL)! πét

1 (X)

is an iso.

Proof idea. Galois descent (exercise). ■

Remark 18.19. Note above false in characteristic p, e.g. already for the affine line. ◦

Example. Suppose X is a smooth, proper curve over k = k of characteristic p > 0. Then, πét
1 (X,x) is

topologically generated by at most 2g(X) elements. △

Proof. The first step is to lift to characteristic 0 (the obstruction to doing so lives in some Ext2 which
vanishes since X is a curve), and then algebrize by formal GAGA. Now, we have a surjective specialization
map

πét
1 (XK)! πét

1 (X),

and the LHS can be computed over C. This finishes the proof. ■

For a singular curve, this is false using geometric genus, but probably true using arithmetic genus
(exercise if you want).

Theorem 18.20 (SGA1). Say X as above. Then,

πét
1 (XK)! πét

1 (Xk)

induces an isomorphism of prime-to-p completions, where p = char(k).

Remark 18.21. There are analogous theorems for non-proper varieties w/ snc (simple normal crossings)
compactification (a good reference is Grothendieck-Murre) for the “tame fundamental group.” ◦
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Proposition 18.22. There’s an equivalence of categories

{lcc sheaves on Xét}
∼
 −

{
finite cts

πét
1 -modules

}
.

Proof. lcc sheaves are represented by finite étale covers. ■

Notation 18.23. Given a finite continuous πét
1 -module M , we lset FM denote the corresponding lcc

sheaf on Xét.

Theorem 18.24. Assume X is connected. There’s a canonical map

Hicts(π
ét
1 (X,x),M) −! Hi(Xét,FM )

(LHS is continuous group cohomology) which induces an iso on H0 and H1.

Proof. Morally, if you have a (topological) space X it has a covering space which is a π1-torsor, so it has
a map X ! Bπ1, and this is the pullback on cohomology.

Mathily, we have a functor of sites f : Xét ! FÉt(X).

Claim 18.25 (exercise). Sh(FÉt(X)) = πét
1 -sets and FM = f∗M .

Furthermore, R1f∗FM = 0. Why? If you have a cohomology class with coefficients in an lcc sheaf,
then you can kill it by a finite étale cover (torsor kill themselves). Use leray ss to finish. ■

19 Lecture 19

Last time we talked about the étale fundamental group pretty quickly. We’ve kinda been speeding up to
make sure we have enough time to get to the Weil conjecture by the end.

19.1 Fundamental Group Stuff Reviewed

We arrived last at an equivalence of categories.

Recall 19.1. There’s an equivalence of categories

{lcc abelian sheaves on Xét}  !

{
finite discrete
πét
1 -modules

}
FM  − [ M

⊙

What is this correspondence again? Say F is an lcc sheaf of abelian groups on Xét. It is locally
constant, so locally representable by constant schemes above X. The sheaf condition gives gluing data,
and descent is effective for finite maps, so F is in fact represented by a finite étale X-scheme. A finite
étale X-scheme is a finite πét

1 -set, and F is a module (not just a set) since it’s valued in abelian groups.
In the other direction, a finite discrete πét

1 -module gives rise to a finite étale X-scheme YM , and
the sheaf Hom(−, YM ) is represents is an lcc sheaf of abelian groups. It is locally constant since it’s
represented by a finite étale X-scheme (e.g. pullback to Galois closure of covering to split it), and it’s
abelian since we started with a module.
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Recall 19.2. Assume X is connected. There’s a canonical map

Hicts(π
ét
1 (X,x),M) −! Hi(Xét,FM )

(LHS is continuous group cohomology) which induces an iso on H0 and H1. ⊙

Proof. There’s a continuous map of sites Xét
π
−! FÉt(X) since finite étale X-schemes are in particular

étale X-schemes.

Claim 19.3. There’s an equiv of categories FÉt(X) ≃ Finite cts πét
1 -sets.

It’s a general fact about group cohomology that Looking at
sheaves on
the category
of continu-
ous πét

1 -sets
is appar-
ently closely
related to
‘anima’

Shfin.ab (finite cts πét
1 -sets

)
≃
{
cts discrete finite πét

1 -modules
}

(think, sheaves on Spec két are Galois module), sheaves of finite abelian groups on finite continuous
πét
1 -sets are the same as continuous discrete finite πét

1 -modules.
Now, our map of sites in the beginning induces

Hi(FÉt(X),M)
π∗

−! Hi(Xét, π
∗M).

We can show this is an iso in low degrees using the leray spectral sequence. In particular, one shows
Riπ∗π

∗M = 0 for i = 1. ■

Corollary 19.4. H1(πét
1 (X,x);M) = H1(Xét,FM ). Remember:

H1
ét of

abelian lcc
sheaves is
that same as
H1(πét

1 ;−)

(recall earlier proof that fundamental group of affine line in positive characteristic is not topologically
finitely generated).

Remark 19.5. If M is a trivial πét
1 -module, then H1(πét

1 (X,x),M) = Hom(πét
1 (X,x),M), so we can use

corollary to compute maps out of πét
1 in some cases. ◦

19.2 Finiteness Theorem

This will be one of the big inputs for proving Weil.

Theorem 19.6. Let X be a k-variety with k = ks separably closed, and suppose F is a constructible
sheaf on Xét. If

(1) X is proper; or

(2) the stalks of F all have order prime to char(k)

then Hr(Xét,F ) is finite.

Non-example. H1(A1
ét,Z/pZ) is not finite. ▽

Proof Sketch. (1) This we already know because of proper base change.
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(2) We induct on dimX. It is true in dimensions 0 and 1.40 We’ll sketch the proof when X is smooth
(a simplifying assumption to make proof more accessible). We also assume U = X fits into an elementary
fibration

U Y Z

S

i

f
h

j

g

(so Y ! S smooth and proper of rel. dim 1, and Z ! S finite étale).

It’s not immediately obvious why this reduction is allowed. The idea is that we can cover X by things
fitting into elementary fibrations, and then use the Čech-to-derived spectral sequence to get finiteness
of cohomology for X. However, the issue is the intersections may not fit into elementary fibrations, but
you can still cover the intersections with opens that though and then end up forming a hypercover, and
making use of this.

Now one has to do some devissage to reduce to the case that F is lcc (make some Gysin argument). One day
I’ll not be
scared by
this word,
but not to-
day

Now we may assume F is lcc. Consider leray

Hi(S,Rjf∗F ) =⇒ Hi+j(U,F ).

By induction on dimension, it is enough to show that Rjf∗F is constructible for all j ≥ 0. Note f = h◦ i,
so we can use the composition of functors spectral sequence

Rsh∗R
ti∗F =⇒ Rs+tf∗F .

Note that h is a proper morphism, so it’s enough to show that Rji∗F are constructible (by proper base
change).

First consider the case where F is actually constant, F = Λ. Then, i∗F = ΛY , which is constructible,
since U is a dense open. Further (purity exercise), Rii∗Λ = j∗Λ(?) is a pushforward of some twist of Λ
along j : Z ↪! Y . Again by purity, Rii∗Λ = 0 for i > 1. Since one can reduce to the case of F constant,
we’re done. ■

Remark 19.7. We use that the order is prime to characteristic in the purity step at the end. ◦

Remark 19.8. To reduce to smooth case, can make uses of alterations. ◦

19.3 Sheaves of Zℓ-modules

Recall 19.9. The goal of this course is to count points on varieties over finite fields. We’ll do this by
taking some Frobenius action on cohomology, and taking some traces. If we want these traces to have a
hope of counting something, they better live in characteristic 0. ⊙

Warning 19.10. A ‘sheaf of Zℓ-modules’ is not a sheaf. •

Definition 19.11. A sheaf of Zℓ-modules is a sequence of sheaves (Mn, fn+1 :Mn+1 !Mn) if
40Technically, we haven’t quite proved it in dimension 1; we’ve only proved it for smooth curves; and it’s a little more

work to get it for singular curves (e.g. compare with normalization). However, it secretly suffices to know it in dimension
0 for the sake of this argument.
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(1) each Mn is a constructible sheaf of Z/ℓnZ-modules.

(2) each fn+1 induces an isomorphism

Mn+1/ℓnMn+1
∼
−!Mn.

⋄

Motivation. Given an ℓ-complete Zℓ-module N , we have N = lim −
n

N/ℓnN , so the data of N is the same

as the data of (N/ℓnN, transition maps). Above, we’ve made a definition in terms of the ‘discrete data’
since it’s not a priori clear how to incorporate the topology on Zℓ into a direct definition.

Example. Taking Mn = Z/ℓnZ with fn+1 : Z/ℓn+1Z! Z/ℓnZ given by the natural quotient map gives
a canonical example. △

Note that in the example above, the stalks are all Z/ℓnZ so the inverse limit of them is a free Zℓ-
module.

Definition 19.12. A flat sheaf of Zℓ-modules (Mn, fn+1 : Mn+1 ! Mn) is a sheaf of Zℓ-modules
such that41

0!Ms
ℓn
−!Mn+s !Mn ! 0

is exact (for all s, n?). ⋄

Motivation. This exactness characterizes flat ℓ-complete Zℓ-modules.

Definition 19.13. Suppose (Mn, fn+1) is a sheaf of Zℓ-modules. We define its cohomology to be

Hr(Xét,M) = lim −
n

Hr(Xét,Mn) and Hrc(Xét,M) = lim −
n

Hrc(Xét,Mn).

⋄

Example. Suppose X is a smooth proper curve of genus g over a field k = ks (and char k ̸= ℓ). Then,
(recall Corollary 13.13)42

Hi(Xét,Zℓ) = lim −Hi(Xét,Z/ℓnZ) =



Zℓ if i = 0

Tℓ(JacX)(−1) if i = 1

Zℓ(−1) if i = 2

0 if i > 2

where Zℓ is the example Zℓ-sheaf we saw before ((Zℓ)n = Z/ℓnZ). Forgetting the Galois actions, we have

H0(Xét,Zℓ) = Zℓ, H1(Xét,Zℓ) = Z2g
ℓ , and H2(Xét,Zℓ) = Zℓ,

which is what cohomology of a smooth proper genus g curve should look like. △
41For the first map, picking a lift along Mn+s ! Ms and then multiplying by ℓn is well-defined.
42Twist in i = 1 case since we’re using Zℓ instead of Zℓ(1) (i.e. since using Z/ℓZ instead of µℓ)
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Theorem 19.14. Let M be a flat sheaf of Zℓ-modules on a variety X/k with k separably closed. If X is
proper or ℓ ̸= char k, then

(1) Hr(Xét,M) is a f.g. Zℓ-module.

(2) There is a long exact sequence

· · ·! Hr−1(Xét,Mn)! Hr(Xét,M)
ℓn
−! Hr(Xét,M)! Hr(Xét,Mn)! · · ·

for each n.

Remark 19.15. Should think that the above LES is associated to the “SES” 0 ! M
ℓn
−! M ! Mn ! 0.

In reality, not a sense in which this short exact sequence really exists. One instead builds the LES out of
those coming from the exact sequences characterizing flatness. ◦

Proof. Exercise. Hint: reduce to the previous finiteness theorem, and then build the LES above out of
the LES’s in cohomology arising from 0 ! Ms ! Mn+s ! Mn ! 0 by taking limit as s ! ∞ (note
inverse limits are not exact). ■

Definition 19.16. A Zℓ-sheaf (M,fn+1) is locally constant if each Mn is locally constant (i.e. lcc
since Zℓ-sheaves have finite stalks built in). It is lisse if it is flat and locally constant. ⋄

Remark 19.17. lisse is a French word meaning smooth, but think of it as saying it is a local system. ◦

Warning 19.18. (M,fn+1) being locally constant ⇏ there exists a cover of X s.t. it is constant. •

19.3.1 πét
1 -reps associated to locally constant Zℓ-sheaves

Suppose M = (Mn, fn+1)n is a locally constant Zℓ-sheaf. For each n, we get a continuous representation
ρn : πét

1 (X,x) ! Aut(Mn,x) since Mn is an lcc sheaf which is the same think as a finite, discrete πét
1 -

module. Moreover, this representations live in a tower

Aut(Mn+1,x)

πét
1 (X,x) Aut(Mn,x)

ρn+1

ρn

Hence,

Corollary 19.19. {locally constant Zℓ-sheaves}↔ continuous representations of πét
1 on f.g. Zℓ-modules.

Similarly, {lisse Zℓ-sheaves}  ! continuous representations of πét
1 on f.g. flat (i.e. finite free) Zℓ-

modules.

Remark 19.20. Usually, M becomes constant after pullback to a cover only when the corresponding
representation has finite image (which is a rare occurrence). ◦

Exercise. A finitely generated flat (abstract) Zℓ-module is automatically free (use Zℓ noetherian and
local). Hence, being flat as a discrete module is the same as being flat as a topological module (at least
in the f.g. case).
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19.3.2 Qℓ-sheaves

The category of Qℓ-sheaves is the localization of the category of Zℓ-sheaves at ℓ.

Definition 19.21. A Qℓ-sheaf is a Zℓ-sheaf. A morphism of Qℓ-sheaves M ! N is a diagram Buzzphrase:
‘localization
of a category
at a Serre
subcategory’
(or some-
thing)

M ′

M N

f g

such that f, g are morphisms of Zℓ-sheaves, and f : M ′ ! M has finite kernel and cokernel. Given a
Qℓ-sheaf M , we define

Hi(Xét,M) =

(
lim −
n

Hi(Xét,Mn)

)
⊗Qℓ and Hic(Xét,M) =

(
lim −
n

Hic(Xét,Mn)

)
⊗Qℓ.

⋄

Remark 19.22. A morphism M ′ ! M with finite kernel and cokernel with induce an isomorphism of
Qℓ-cohomology groups defined above. ◦

Given a Qℓ-sheaf whose underlying Zℓ-sheaf is locally constant, you get a continuous representation

ρ : πét
1 (X,x)! GLn(Qℓ),

and in fact this gives an equivalence of categories. To get a functor in the other direction

Claim 19.23 (Exercise). ρ as above is conjugate to a representation into GLn(Zℓ).

Proof Sketch. Enough to show all maximal compacts in GLn(Qℓ) are conjugate to GLn(Zℓ). Consider
Znℓ ⊂ Qnℓ . The stabilizer of Znℓ in πét

1 is open (so finite index). Now consider
∑
g∈πét

1 / Stab
g · Znℓ . This

is stable under πét
1 and f.g. so iso to Znℓ (any f.g. torsion-free Zℓ-module is free43). Picking a basis of∑

g∈πét
1 / Stab

g · Znℓ gives conjugation into GLn(Zℓ), so then we win since this is the same as a lisse Zℓ
sheaf. ■

20 Lecture 20

20.1 Last time

Finished up discussion of étale π1, and then introduced Zℓ- and Qℓ-sheaves. In nice (i.e. ‘lisse’) cases,
these are same as continuous πét

1 -representations. This time we introduce a grab-bag of topics needed for
Weil stuff.

20.2 Smooth Base Change

Like proper base change, the proof is too complicated to give in a course. We may say a little about it
later when we get to vanishing cycles.

43modules over a PID
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Theorem 20.1 (Smooth Base Change). Say we have a Cartesian diagram (Below, π f.type separated)

X ′ X

T S

f ′

π′ π

f

If F is a constructible sheaf on X, (F )x always has order invertible on the base, and f is smooth, then

f∗ (Rrπ∗F )! Rrπ′
∗f

′∗F

is an isomorphism for all r ≥ 0.

Remark 20.2. Still applies when f is an inverse limit of smooth morphisms.

• f is the inclusion of a generic point

• fraction field of a strict henselization

• . . .

◦

Let’s say a bit about intuition. In topology, what causes cohomology to fail to compute with base
change? This generally happens if the cohomology of the fiber of a point is different from the cohomology
above fibers of nearby points. One reason we should expect it to commute e.g. will base change to the
generic point is that the generic topology in families is constant.

Theorem 20.3 (smooth + proper base change theorem). Suppose π : X ! S is smooth and
proper, F is an lcc sheaf on X, and #Fx invertible on S. Then, Rrπ∗F are lcc.

It’s nonobvious, but this follows from the smooth base change theorem.

Exercise (Important exercise). Find a counterexample if you drop the hypothesis on the orders of the
fibers.

Hint: Family of elliptic curves in char. p s.t. generic fiber is ordinary, but at least one fiber is
supersingular, and take F = Fp. The claim for this hint is that (R1π∗Fp)x = Fp if Ex ordinary, but is 0

if it is supersingular. Use proper base change to conclude that this stalk is

H1(Ex,Fp) = Homcts(π
ét
1 (Ex),Fp) =

Fp if ordinary

0 if semisimple
.

Need to show that πét
1 (Ex) =

∏
ℓ Tℓ(Ex) is the total Tate module.

Let X be a scheme, with geometric points η, ξ of X. Suppose η ⇝ ξ (η specializes to ξ).

Claim 20.4. There is a non-canonical specialization map Fξ ! Fη where F is any constructible sheaf
on Xét.

Construction 20.5. First recall the definition of these stalks: Fξ = lim−!
(U,u)

F (U). We want a map

Fξ = lim−!
(U,u)

F (U) 99K lim−!
(V,v)

F (V ) = Fη.
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Note that U as above is an étale X-scheme so im(ξ) ⊂ im(U). Since ξ generalizes to η means that η
also factors through im(U). Thus, U is also an étale neighborhood (in a weak sense) of η. To make U
an actual étale neighborhood of η, pick some v ∈ U lifting η (this is the choice). Once we know we can
make these choices compatibly, we get our map Fξ ! Fη.

All the dependence above boils down to a choice of a map OX,ξ ! Ox,η (above construction applied
to sheaf Oét

X ).

In practice, say R is a dvr with reside field k and fraction field K. If π : X ! SpecR is a proper
morphism and we take F = Riπ∗

(
Z/ℓZ

)
, then we get a map

Hi(Xk,Z/ℓZ) = Fk ! FK = Hi(XK ,Z/ℓZ),

called a cospecialization map.

Remark 20.6. Intuitively, if you have a family X ! ∆ of a disk, then it retracts to its special fiber X0,
so this retraction gives a map from a generic fiber to the special fiber and so a map in cohomology going
the other direction. ◦

Proposition 20.7 (Exercise). Let F be a constructible sheaf. Then, F is lcc ⇐⇒ all cospecialization
maps are isomorphisms.

Corollary 20.8 (to Smooth + proper base change theorem). Let π : X ! S be smooth and proper, let F

be an lcc sheaf on Xét s.t. #(Fx) is invertible on S. Given η, ξ geometric points of S with specialization
η ⇝ ξ, the cospecialization map

Hi(Xξ,F |Xξ
)

∼
−! Hi(Xη,F |Xη

)

is an isomorphism.

Corollary 20.9. Let k be a field of characteristic p > 0, and X/k be a smooth, proper variety. Then if
X lifts to characteristic 0, one can compute is Fℓ/Zℓ-cohomology for ℓ ̸= k.

Let’s explain what this is saying.

• Lift to characteristic 0

This means there exists a smooth, proper R-scheme X/R (R a dvr) s.t. R/mR = k and Xk ≃ X.
It’s important that X is a scheme.

Non-example. If H2(X,TX) = 0, get a formal list, which is not enough. ▽

However, in above example, if you can also formally lift an ample line bundle, then formal GAGA
implies the existence of a lift.

Example. If X is projective, H2(X,TX) = 0 and H2(X,OX) = 0, then you can lift to char. 0. △

Example. Curves can be lifted to characteristic 0 since both relevant H2’s vanish.

Abelian varieties also lift (even though both H2’s don’t vanish). This is nonobvious.

K3s also work (due to Deligne) △
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Example. Hypersurfaces and complete intersections in Pn lift. Just pick lifts of the defining
equations. △

• “Can compute cohomology.” By smooth and proper base change theorem, it is enough to compute
cohomology XK , where K is the fraction field of a dvr to which X lifts. Consider L := Q(coeffs of
polys defining X). Then, K ⊃ L ⊂ C. Hence, we have maps

XK XC

XL

(1) These maps induce isomorphisms on cohomology

(2) Cohomology of XC is computable (via Artin comparison)

Why is (1) true?

Proposition 20.10. Let X/k be a variety with k = k, and let k ⊂ L be an extension of algebraically
closed fields. Then, if F is a constructible sheaf on Xét s.t. #Fx is invertible in k, then

Hi(Xét,F )! Hi(XL,ét,F |XL
)

is an isomorphism.

Proof. This follows from smooth base change. There’s extra to argue in characteristic p, but in
characteristic 0, an extension of fields is a direct limit of smooth morphisms (e.g. separable field
extensions). In characteristic p, show that étale cohomology is insensitive to inseparable field
extensions (e.g. if you have an étale morphism, it descends uniquely through inseparable field
extensions). ■

20.3 Künneth formula + cycle class maps

After this, one more topic (Poincaré duality + Lefschetz trace) before Weil conjectures.

Theorem 20.11 (Künneth formula). Suppose X,Y are proper k-schemes and k = k. Suppose F is a
constructible sheaf of Z/ℓnZ-modules on Xét, and G is a constructible sheaf on Yét. Then, in the derived
category Db(Ab), the canonical map

RΓ(Xét,F )
L
⊗RΓ(Yét,G )! RΓ((X × Y )ét,F

L
⊗ G )

is an isomorphism.

Corollary 20.12. There is a spectral sequence⊕
i+j=s

Tor
Z/ℓnZ
−r

(
Hi(Xét,F ),Hj(Yét,G )

)
=⇒ Hr+s((X × Y )ét,F ⊗ G )

if F or G is a sheaf of flat Z/ℓnZ-modules.
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Note this spectral sequence can be infinite (Tor can be nonvanishing in arbitrary negative degree).
However, suppose F = G = Z/ℓnZ and that their cohomologies are free Z/ℓnZ-modules; then all Tor’s
vanish for r ≥ 1, so you just get that the cohomology of the product is the tensor product of the
cohomologies, as a graded ring.

Corollary 20.13. Over Zℓ, just get an exact sequence

0 −!
⊕

r+s=m

Hr(Xét,Zℓ)⊗Hs(Xét,Zℓ) −! Hm((X×Y )ét,Zℓ) −!
⊕

r+s=m+1

TorZℓ
1 (Hr(Xét,Zℓ),Hs(Xét,Zℓ)) −! 0.

Since tor dimension of Zℓ is one (Since Zℓ is a PID).

Non-example. Consider X = Y = A1/k with k = k and char k = p > 0. Then, Künneth is false in this
case, even for H1. To see this, just compare H1’s of A1 and A2. ▽

Where does the map in Kunneth come from? This comes from cup products

Hr(Xét,F )⊗Hs(Yét,G )! Hr+s((X × Y )ét,F ⊗ G ).

These exist always for sheaves of abelian groups on a site. To make things concrete, we’ll describe them
in Čech cohomology, so say we have {U}! X and {V}! Y covers. Then, {U ×V}! X × Y is a cover,
and the map of Čech cohomology is simply (f, g) 7! f ⊗ g.

21 Lecture 21

Last time, we introduced cup products and the Kunneth formula.

21.1 Cup products and Künneth

Let’s recall cup products in Čech cohomology. Say X,Y are k-schemes with sheaf F ,G of Z/ℓnZ-modules
on Xét, Yét, respectively. Say U ! X and V ! Y are covers. Then, there’s a map

Hi(Č(U/X,F ))⊗Hj(Č(V/Y,F )) −! Hi+j(Č(U × V/X × Y,F ⊠ G )),

where F ⊠ G is the sheaf pr∗1 F ⊗ pr∗2 G on Xét × Yét. This is induced by a map of complexes

Tot(Č(U/X,F )⊗ Č(V/Y,F )) −! Č(U × V/X × Y,F ⊠ G ).

Given f ∈ Či(U/X,F ) and g ∈ Čj(V/Y,G ), we get

f, g 7! f ⊠ g ∈ Či+j(U × V/X × Y,F ⊠ G )

with f ⊠ g defined in the obvious way.

Exercise. Check that this gives a morphism of complexes.

Remark 21.1. Čech cohomology does not always compute derived functor cohomology. Nevertheless, cup
products always exist in derived functor sheaf cohomology over a site (see e.g. Iversen’s book). ◦
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This brings us (back) to Künneth.

Proposition 21.2 (Künneth Formula (simple version)).

(1) Let X,Y be proper varieties over k. Let Λ = Z/ℓnZ or Λ = Zℓ (the latter choice is a Zℓ-sheaf, not
a sheaf).

If H∗(X,Λ) or H∗(Y,Λ) is a free Λ-module, then the cup product

∪ : H∗(X,Λ)⊗H∗(Y,Λ)! H∗(X × Y,Λ)

is an isomorphism of graded groups (in fact one of graded rings44).

(2) If X,Y are as above (i.e. proper), then

∪ : H∗(X,Qℓ)⊗H∗(Y,Qℓ)! H∗(X × Y,Qℓ)

is an isomorphism of graded rings always.

Recall 21.3 (Fancy Künneth, Theorem 20.11). Let X,Y be proper k-schemes (k = k)45, F ∈ Sh(Xét)

constructible, and G ∈ Sh(Yét) constructible. Then, there is a quasi-isomorphism

RΓ(Xét,F )
L
⊗RΓ(Yét,G )

∼−−! RΓ((X × Y )ét,F
L

⊠ G )

in Db(Ab). ⊙

Remark 21.4. When X,Y are say projective, so Čech cohomology computes derived functor cohomology,
can take RΓ to be the Čech complex, and then the above map is just the cup product. ◦

Example. Let’s compute H∗(C × P1,Qℓ) where C a smooth proper curve over k = k. Recall

H∗(C,Qℓ) =


Qℓ if ∗ = 0

Vℓ(JacC)(−1) if ∗ = 1

Qℓ(−1) if ∗ = 2

and vanishes for ∗ > 2. Above Vℓ(JacC) = Tℓ(JacC)⊗Qℓ. Hence,

H∗(P1,Qℓ) =


Qℓ if ∗ = 0

0 if ∗ = 1

Qℓ(−1) if ∗ = 2.

44The ring structure comes from H∗(X,Λ)⊗H∗(X,Λ)
∪
−! H∗(X ×X,Λ)

∆∗
−−! H∗(X,Λ)

45k = ks is enough

83



Thus, we see

H∗(C × P1,Qℓ) =



Qℓ ∗ = 0

Vℓ(JacC)(−1) ∗ = 1

Qℓ(−1)⊗Qℓ(−1) ∗ = 2

Vℓ(JacC)(−2) ∗ = 3

Qℓ(−2) ∗ = 4.

△

Question 21.5. What info does H∗(Xk,ét,Qℓ) carry?

(1) Over Fq: gives point counts.

(2) Over K a f.g. field: Galois reps on H∗(Xk,ét,Qℓ) conjecturally carry geometric info (might touch
on this if we get to cycle classes today)

(3) In general, they give linear algebraic invariants attached to your space which are in principle com-
putable.

Proof sketch of fancy Künneth for Zℓ-sheaves. The idea is use leray spectral sequence. To compute some-
thing on X × Y , we can project to X and then project to Y . But we’ll do this in the derived category
instead of directly using spectral sequences, since it makes things a little cleaner.

(Step 1) Projection formula

Claim 21.6 (Projection formula). Say f : X ! S with F a flat Zℓ-sheaf (or flat Z/ℓnZ-
sheaf) on Xét, and G a bounded above complex of abelian sheaves on S. Then there is a natural
quasi-isomorphism

(Rf∗F )⊗ G
∼
−! Rf∗(F ⊗ f∗G ).

Proof idea. If G = Zℓ, this is the identity map. In general, reduce to this case. ■

Example. Hi(Xk, µℓ) ≃ Hi(Xk,Z/ℓZ) ⊗ µℓ. This is the case where F = Z/ℓZ and G = µℓ and
f : Xk ! Spec k. △

(Step 2) Consider the diagram
X × Y

X Y

Spec k

p

q

h

f

g

and now assume F ,G are constructible sheaves of Z/ℓnZ-modules. To keep this simple, let’s further
assume F is a sheaf of flat Z/ℓnZ-modules. We want to compute Rf∗F ⊗Rg∗G . By the projection
formula, we have an isomorphism

Rf∗F ⊗Rg∗G
∼
−! Rf∗(F ⊗ f∗Rg∗G )
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(if F not flat, use derived tensor product). Proper base change further gives an iso

Rf∗(F ⊗ f∗Rg∗G )
∼
−! Rf∗(F ⊗Rp∗q

∗G ).

A second application of the projection formula now says

Rf∗(F ⊗Rp∗q
∗G )

∼
−! Rf∗(Rp∗(p

∗F ⊗ q∗G ))
∼
−! Rh∗(F ⊠ G ). ■

Remark 21.7.

• Above works for an arbitrary base S. It doesn’t have to be Spec k.

• g being proper would have been enough.

• We also could have assume ℓ invertible on S and f smooth (and then used smooth base change) ◦

21.2 Cycle class maps

Assumption. X is a non-singular variety over k, a field a characteristic p ̸= ℓ. Question:
Is ‘non-
singular’
smooth or
regular?

Answer:
I think
smooth since
we appeal
to purity at
some point

Motivation. Over C, if you have some d-dimensional (smooth) subvariety Z ↪! X and a 2d-form ω ∈
H2d
dR(X), then you can integrate ω over Z. Thus, a choice of Z gives a linear function ω 7!

∫
Z
ω|Z ∈ C

on H2d
dR. By poincaré duality, this is the same thing as a class [Z] ∈ H2 dimX−2d

dR .

We want something like this in ℓ-adic cohomology.

Notation 21.8. Let Cr(X) be the free abelian group on prime cycles (irreducible subvarieties) of
codimension r

Goal. Define a map clr : Cr(X) ! H2r(X,Λ(r)) where Λ = Z/ℓnZ,Zℓ,Qℓ. This map will be functorial,
and cl1 : C1(X)! H2(X,Λ(1)) (when Λ = Z/ℓnZ) will be the familiar map

cl1 : C1(X)! Pic(X) = H1(X,Gm)
κ
−! H2(X,Λ(1))

where κ is the Kummer map arising from the short exact sequence

1 −! µℓn −! Gm
ℓn−−! Gm −! 1.

Definition 21.9. For Z nonsingular of codimension r, we define

clr(Z) : image 1 ∈ H0(Z,Λ)
∼
−! H2r

Z (X,Λ(r))! H2r(X,Λ(r))

(first iso by purity, Theorem 16.1). Then we extend by linearity. ⋄

What about for singular Z?

Lemma 21.10. Let Z ⊂ X of codimension r. Then,

HsZ(X,Λ) = 0 for s < 2r.
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Moreover,
H2r
Z (X,Λ) = H2r

Z\Zsing(X \ Zsing,Λ).

Note that Z \ Zsing ⊂ X \ Zsing is a smooth pair.

Proof idea. Induction on dimension of Z, filter by singular locus, and appeal to another long exact
sequence involving cohomology with supports. ■

Remark 21.11. So we’ve obtained a map cl : Cr(Xk) ! H2r(Xk,Λ(r)). This map is Galois equivariant.
Hence it restricts to

r-cycles defined/k −! H2r(Xk,Λ(r))
Gk . ◦

Conjecture 21.12 (Tate Conjecture). Suppose X is smooth, projective over k, a f.g. field (e.g.
fraction field of a variety). Then, the map

Cr(X)⊗Qℓ −! H2r(Xk,Qℓ(r))
Gk

is surjective.

Remark 21.13. This is really a rational conjecture. It is known to be false if you replace Qℓ with Zℓ, and
is super false if you replace it with Z/ℓnZ. ◦

Example. SupposeX,Y are smooth, projective varieties of dimensionm. Assume H2m((X×Y )k,Qℓ(m))Gk ̸=
0. This should imply there is a cycle X × Y w/ non-trivial cycle class α (up to Qℓ-linear combination).
If you think of α as a map on cohomology, then this is saying that the map is induced by a cycle.

If X,Y are abelian varieties, this is saying any map between ℓ-adic Tate modules comes from a map of
abelian varieties. Tate proved this over finite fields, and Faltings proved it over arbitrary f.g. fields. △

Remark 21.14. cl factors through cycles mod ‘rational equivalence’ as well as cycles mod ‘algebraic
equivalence’. If you mod out by the kernel of it, then we call this considering cycles up to ‘homological
equivalence’. ◦

Next time: Chern classes.

22 Lecture 22

Last time: Künneth + cycle class amps.
Today: Chern classes of vector bundles + Poincaré duality.

22.1 Chern Classes

What are Chern classes?
Let X be a smooth projective k-field. These properties are not needed for everything (in particular,

not for the definition of Chern classes), but they are needed for some of the nicer properties of Chern
classes.

Goal. Given a vector bundle E on X, we wish to construct cohomology classes ci(E ) ∈ H2i(X,Zℓ(i)).
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Example. When i = 1, we want c1(E ) ∈ H2(X,Zℓ(1)). We can actually already construct this.
Recall that Zℓ(1) is the Zℓ-sheaf corresponding to the sequence

Zℓ(1) = (· · · −! µℓn −! µℓn+1 −! · · · ) .

The short exact sequence 1! µℓn ! Gm
x 7!xℓm

−−−−−! Gm ! 1 give rise to the Kummer maps κℓn : PicX !

H2(X,µℓn). These maps are compatible, so glue to give a map

κ : PicX ! H2(X,Zℓ(1)) = lim −
n

H2(X,µℓn).

We define c1(E ) := κ(det(E )). △

Theorem 22.1. There exists a unique assignment E ⇝ ci(E ) satisfying

(1) Functorial under pullbacks, i.e. f∗(ci(E )) = ci(f
∗E )

(2) c1(E ) = κ(det(E ))

(3) Multiplicative under exact sequences, i.e. if we define the total Chern class

c(E ) := 1 + c1(E ) + c2(E ) + · · · ∈
⊕
i

H2i(X,Zℓ(i)),

then for any s.e.s. 0! E1 ! E ! E2 ! 0, one has c(E ) = c(E1)c(E2).

Proof Idea. Same as in topology. Analyze the cohomology of P(E ) from which the Chern classes can be
extracted. This gives a construction. For uniqueness: use induction on the rank. Consider π : P(E )! X

and note that
0! V ! π∗E ! O(1)! 0

π∗E has a line bundle quotient, so c(V ) and c(O(1)) are determined as is c(π∗(E )) = (1+ c1(O(1)))c(V ).
Then use that π∗ : H∗(X)! H∗(P(E )) is injective. ■

Remark 22.2. Multiplicativity in short exact sequences means that we actually have a map

K∗(X)
c
−!
⊕
i

H2i(X,Zℓ(i)),

a (multiplicative) map of sets, where K∗(X) is the free abelian group on iso classes of vector bundles on
X modulo [E ] = [E1] + [E2] if there is a short exact sequence 0! E1 ! E ! E2 ! 0.

One can modify these to get an actual ring homomorphism

γ : K∗(X)!
⊕
i

H2i(X,Qℓ(i)).

The product on the LHS is tensor product while on the RHS it is cup product. ◦

We can use this to reinterpret the cycle class map. Let C∗(X) denote the Chow groups of X, cycles
modulo rational equivalence. The compositions

C∗(X)
ch−1

−−−! K∗(X)Q
γ
−!
⊕

H2i(X,Qℓ(i))

87



is the cycle class map from before (in particular, the cycle class map is a ring homomorphism).

Fact. For X smooth projective, ch induces an isomorphism

C∗(X)Q
∼
−! K∗(X)Q.

22.2 Poincaré duality

Fix X a smooth variety over k = ks, and let Λ = Z/mZ with m invertible in k.

Theorem 22.3 (Poincaré duality). The cup product induces a perfect pairing

Hi(Xét,Λ)×H2 dimX−i
c (Xét,Λ(d))

⌣
−! H2 dim(X)

c (Xét,Λ(d))
Tr
−! Z/mZ

where Tr is a canonical isomorphism.

Motivation. Suppose X is an oriented manifold. Integration gives a canonical isomorphism

HdimX
c (X,R)

∫
−! R,

the “trace map.” This makes wedge product

Hi(X,R)×HdimX−i
c (X,R) −! HdimX

c (X,R)
(ω, η) 7−! ω ∧ η

a perfect pairing.

In the algebraic setting, our variety X is canonically oriented (analogous to complex manifolds being
canonically oriented).

Proof Sketch of Theorem 22.3. Need to construct trace map, and show cup product is a perfect pairing. Tony Feng’s
notes are a
good refer-
ence

(1) We claim something more general. Let f : X ! S be a smooth, compactifiable46 morphism w/
geometrically connected fibers. We claim there exists a canonical map

Tr : R2df!f
∗F (d)! F where d = reldim(f).

Recall 22.4. Say we compactify f as

X X ′ Sι

f

f̃

Then, we define Rif!G := Rif̃∗ι!G . ⊙

This Tr will satisfy

• For curves/separable closed field, agrees with computation we did earlier.47

46i.f. f factors as X ↪! X′ ! S with X ↪! X′ an open embedding, and X′ ! S proper
47Apparently we computed compactly support cohomology of µn before, and for curves over ks, basically everything is

µn
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• functorial in F

• compatible with base change

• If f is étale (d = 0)
f!f

∗F ! F

is the counit of the adjunction between f! and f∗.

• Compatible w/ compositions.

Tr is the unique natural transformation satisfying all of this.

Proof Sketch. Say we have X g
−!
ét

AnS
π
−! S (always true locally of any smooth morphism). Com-

patibility with compositions says it’s enough to define Tr for g, π. For g, it is the counit of the
adjunction for g!, g∗. For π, things are more tricky. One need to essentially redo the computation
of compactly support cohomology of A1 but now over a base. We can factor π into a sequence
AnS ! An−1

S ! · · ·! A1
S ! S of relative curves, and then use the curve case. To do this

e.g. use
smooth
base change
(Theorem
20.1) so you
can do com-
putation
over a point
and then
pull back to
S

This gives a construction in this special (“local”) case. It’s not obvious it satisfies all the properties
we claimed. At least, we can say how to do the construction in general. Mayer-Vietoris let’s one
reduce to this case.

Why is this well-defined/unique? Uniqueness is not bad; our construction for “standard étale maps”
forced by axioms. For well-definedness, we had to choose an open set U and choose an étale map
U ! AnS . The choice independence of choice of U , take common refinements and argue some
diagram(s) commute. For choice of étale map, suppose we have

X A1
S

A1
S S

ét

ét

Can reduce to the case of relative curves, and then we’re in luck since the map for curves we
computed long ago is very canonical. ■

Claim 22.5. If X f
−! S has geometrically connected fibers, then

R2df!f
∗F (d) −! F

is an isomorphism.

For this, reduce to the case of relative curves via structure theorem for smooth morphisms. In the
case of relative curves, check on stalks.

■
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23 Lecture 23

Last time we started talking about Poincaré duality. Let X be a smooth variety over k = ks of dimension
d. We talked about the construction of the trace map

H2d
c (X,Λ(d))

Tr
−!
∼

Λ

where Λ = Z/ℓnZ, Zℓ or Qℓ.
Today we want to sketch the use of this for proving Poincaré duality, and then introduce the Lefschetz

fixed point formula. After that, we should have all the preliminaries we need to start proving the Weil
conjectures.

23.1 Poincaré Duality, continued

Theorem 23.1. Let X be a smooth variety over k = ks of dimension d. The cup product induces a
perfect pairing

Hic(X,Λ(d))×H2d−i(X,Λ)
∼
−! H2d

c (X,Λ(d))
Tr
−!
∼

Λ

when Λ = Qℓ.

What’s the idea behind the proof of this? Find a relative version (Verdier duality). Let f : X ! Y

be a morphism of k-varieties. Then there’s a map

Rf! : D
c(X)! Dc(Y )

where Dc(−) is the (bounded) derived category of constructible sheaves on −, i.e. category of
bounded complexes of abelian sheaves48 on the étale site with constructible cohomology sheaves (and
with quasi-isos formally inverted).

The idea now is to construct a right adjoint to Rf!. This will be an f ! : Dc(Y )! Dc(X). One then
computes that if f is smooth of pure dimension d, then f !(F ) = F (d)[2d]. Finally, adjointness will imply
that

Rf∗RHomDc(X)(F , f !G )
∼
−! RHomDc(Y )(Rf!F ,G ),

i.e. we have a canonical equivalence of the above bi-functors.
What does the above have to do with Poincaré duality?

Example. Take X a smooth variety, Y a pt, F ,G = Λ (a constant sheaf, think Q
ℓ
). Then we get an

isomorphism

Rf∗Λ(d)[2d] = Rf∗Hom(Λ,Λ(d)[2d]) = Rf∗Hom(Λ, f !Λ)
∼
−! RHom(Rf!Λ,Λ)

Looking at the front end, this complex (object of the derived category) computes Hi+2d(X,Λ(d)). On
the other end, we have a spectral sequence

Exti(Hjc(X,Λ),Λ) =⇒ Hi+j(RHom(Rf!Λ,Λ).

48Use abelian sheaves instead of constructible sheaves e.g. so you can take injective resolutions w/o worry
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If Λ = Q
ℓ
, the Ext-stuff vanishes, and we’re just left with an isomorphism

H−j
c (X,Λ)∨ ≃ Hj−2d(X,Λ(d)),

which is just Poincaré duality. There’s still more to do. This gives a paring which one needs to compare
with the cup product, for example.

When Λ = Zℓ, the spectral sequence is non-trivial (may actually have Ext-terms) since torsion gets
involved. △

What’s the modern construction of f ! look like? It’s due to Neeman, and the idea is to use Brown
representability (not classical Brown, but one of it’s more categorical analogues). What is the functor
Hom(−, f !G )? Well, it’s an adjoint, so this functor must be Hom(Rf∗(−),G ). One checks that this is
representable (via Brown), and then now you need to compute it for f smooth. For this,

(i) Reduce to the case f : X ! S is smooth of relative dimension 1, F = Λ (take a resolution + some
dévissage49), and G constructible.

Now it’s a non-trivial ‘direct computation’. One simply trick is that if s is a point, then can reduce
to situation over C.

(ii) (locally) write any smooth map as a composition of relative curves.

There are details left out. Things aren’t so straightforward.

Warning 23.2. One subtlety we ignored is that we were working with derived categories of sheaves, but
also wanting to allow Λ = Zℓ or Λ = Qℓ, but these aren’t literal sheaves. Sounds like one *can* construct
e.g. a derived category of Zℓ-sheaves in some generality, but that this is hard. One thing that helps here
is that, for making sense of our statements (e.g. making since of the use of Ext), one mainly only needs
the derived category of Zℓ-sheaves on a point, and this is easier to make sense of. In particular, these
are just (continuous) Zℓ-modules, so you only need to be able to make sense of continuous Zℓ-modules.
Something like this. The upshot is subtly abounds, but things can be done rigorously with work. •

Let’s mention some stuff Poincaré duality gets us.

Corollary 23.3. Let X be a smooth variety of dimension d over k = ks. Then, Hi(X,F ) = 0 for i > 2d

(where we assume #Fx prime to char k).

Proof. dual to something in negative degree. ■

Remark 23.4. True for arbitrary varieties of dimension d. ◦

Non-example. Let X be a curve/Fq. Then, H3
c(X,Λ(1)) ̸= 0. ▽

23.2 Lefschetz Fixed Point Formula

Let X be a smooth projection over k = ks with a map φ : X ! X.
49Whatever that means
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Theorem 23.5 (Lefschetz Fixed Point Formula). Let Γφ ⊂ X × X be the graph of φ, and let
∆ ⊂ X ×X be the diagonal. Then,

deg(Γφ ·∆) =

2d∑
i=0

(−1)iTr
(
φ∗ ↷ Hi(Xét,Qℓ)

)
.

Remark 23.6. Above, Γφ ·∆ is the intersection of 2 cycles of codim dimX, on X×X. It’s degree deg Γφ ·∆
is then a number. We have not talked much about intersection theory here, so in this class, we’ll think
of this as

deg Γφ ·∆ = Tr (cl(Γφ)⌣ cl(∆)) ,

the trace of the cup products of their cycle classes. ◦

Corollary 23.7. deg(∆ ·∆) = χ(Hi(X,Qℓ)), the Euler characteristic.

We’ll apply to this to φ = Frob in order to count rational point over a finite field.

23.2.1 Gysin maps

Let π : Y ! X be a proper map between smooth varieties X,Y . Let’s go ahead and assum efor now that
X,Y are also proper. Then we get a dual map

π∗ : Hr(Y,Λ)! Hr−2c(X,Λ(−c)),

where c = reldim(π) = dim(Y ) − dim(X). This map is Poincaré dual to π∗. What are some properties
of this?

(1) If y ∈ Hr(Y ) and x ∈ H2 dimY−r(x), then

TrX(π∗(x)⌣ y) = TrY (X ⌣ π∗(y))

(this is what is means to be a dual map)

(2) If π is a closed immersion, then π∗(1) = cl(Y ) (unwind definitions)

(3) (π1 ◦ π2)∗ = (π1)∗ ◦ (π2)∗

(4) (projection formula)
π∗(y ⌣ π∗(x)) = π∗(y)⌣ x.

(5) If π finite of degree d, then
π∗ ◦ π∗ = d Id .

Most of these follow from (1). (5) is trickier.
In general (X,Y not proper), get a map

π∗ : Hrc(Y,Λ)! Hr−2c
c (X,Λ(−c))

using cohomology with compact supports. Similarly, if X is smooth but not proper, get Lefschetz formula
w/ compactly supported cohomology.
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23.2.2 Example

Example. Say X = P1
k=ks (and char k = 0 to keep things simple). Consider φ : x 7! xn. How many

fixed points does this have? There are n + 1 of them, {0,∞} ∪ µn−1. These all have multiplicity one
since xn − x = 0 is separable (similarly check at ∞). Hence, #Γφ ·∆ = n+ 1. At the same time,∑

i≥0

(−1)iTr(φ|Hi(P1,Qℓ)) = Tr(φ∗|H0(P1,Qℓ)) + Tr(φ∗|H2(P1,Qℓ)) = 1 + n.

On H0, φ∗ = Id (H0 is sections to the constant Qℓ sheaf, so connected components of P1). What’s going
on on H2? We’re on a curve, so recall

H2(P1, µℓn) = coker

(
PicP1 L 7!L ℓn

−−−−−−! PicP1

)
,

so (over k = ks so µℓn = Z/ℓnZ)

H2(P1,Qℓ) =

(
lim −
n

coker

(
PicP1 [ℓn]

−−! PicP1

))
⊗Qℓ.

What does φ do to line bundles? It acts by multiplication by [n] on PicP1, and so acts the same way on Think about
transition
functions

H2(P1,Qℓ). Hence, it’s trace is n (keep in mind dimHi = 1 for i = 0, 2). △

23.2.3 Proof

Let’s sketch a proof of Lefschetz. We start with a lemma.

Lemma 23.8. Consider φ : X ! Y , and suppose we’re given y ∈ H∗(Y,Qℓ). Fix (for all time), an iso
Qℓ

∼
−! Qℓ(1) (so we can ignore twists showing up with cycle classes). Then,

φ∗(y) = p∗ (cl(Γφ)⌣ q∗y) ,

where we have projections X p
 − X × Y

q
−! Y .

Remark 23.9. To see what happens to y, take the ‘preimage’, ‘intersect’ with the graph, and then ‘push
forward’. ◦

Proof. Exercise (and/or look at Milne). The content is the definition of p∗ + projection formula. ■

Lemma 23.10. Suppose eri is a basis of Hr(X,Qℓ), one basis for each r. Let f2d−ri be the dual basis of
H2d−r(X,Qℓ(d)). Then,

clX×X(Γφ) =
∑

φ∗(eri )⊗ f2d−ri ,

under the Künneth isomorphism

H∗(X ×X,Qℓ(d)) ≃ H∗(X,Qℓ)⊗H∗(X,Qℓ(d)).

We’ll prove this next time (you can also try it as an exercise if you want).
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24 Lecture 24: Last Day of “Foundational” Material

Last time we started talking about the Lefschetz fixed point formula. Let X be a smooth projective
variety50/k = ks, and let φ : X ! X be some map. Lefschetz tells us that

Γφ ·∆ =

2 dimX∑
i=0

(−1)i Tr(φ|Hi(X,Qℓ)).

Example. Say X =
⊔n
i=0 Spec k is a bunch of points, and we have φ : X ! X. Then,

#fixed points of φ = Tr(φ|QXℓ ).

In this case, φ acts by a permutation (matrix) on the finite set X. △

Exercise. Say f : P1 ! P1 is a degree d map (so it’ll have d+1 fixed points). Check that Lefschetz holds
in this case.

24.1 Proof of Lefschetz

We started the preparations for the proof last time. In particular, we stated the following lemmas (X,Y
smooth, proper below).

Lemma 24.1. Consider φ : X ! Y , and suppose we’re given y ∈ H∗(Y,Qℓ). Fix (for all time), an iso
Qℓ

∼
−! Qℓ(1) (so we can ignore twists showing up with cycle classes). Then,

φ∗(y) = p∗ (cl(Γφ)⌣ q∗y) ,

where we have projections X p
 − X × Y

q
−! Y .

Exercise. Prove this.

Lemma 24.2. Suppose eri is a basis of Hr(X,Qℓ), one basis for each r. Let f2d−ri be the dual basis of
H2d−r(X,Qℓ(d)). Then,

clX×X(Γφ) =
∑

φ∗(eri )⊗ f2d−ri ,

under the Künneth isomorphism

H∗(X ×X,Qℓ(d)) ≃ H∗(X,Qℓ)⊗H∗(X,Qℓ(d)).

Example. If φ = id, then cl(Γφ) = cl(∆) =
∑
eri ⊗ f2 dimX−r

i . △

Proof. Write cl(Γφ) =
∑
ai⊗ fi for unique ai ∈ H∗(X,Qℓ), which is possible since H∗(X ×X,Qℓ) is free

as a (right) H∗(X,Qℓ)-module.

Goal. Compute ai’s to show ai = φ∗(ei).
50Can drop ‘smooth’ and ‘projective’ with extra work
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Observe (recall ei, fj are dual bases)

φ∗(ei) = p∗(cl(Γφ)⌣ q∗ei) = p∗

∑
j

(aj ⊗ fj)⌣ q∗ei


= p∗

∑
j

((aj ⊗ fj)⌣ (1⊗ ei))


= p∗

∑
j

aj ⊗ (fj ⌣ ei)


= p∗

∑
j

aj ⊗ δije
2 dimX
1


= p∗(ai ⊗ e2 dimX

1 )

= ai.

This completes the proof. ■

Proof Sketch of Theorem 23.5. (Assume that the cycle class map sends the intersection product to the
cup product.)

We know that (last equality holds up to sign, cup product graded commutative)

cl(Γφ) =
∑

φ∗ei ⊗ fi and cl(∆) =
∑

ei ⊗ fi =
∑

fi ⊗ ei.

Hence,
cl(Γφ ·∆) = cl(Γφ)⌣ cl(∆) =

∑
(φ∗ei)fi ⊗ e2 dimX

1 .

We want Tr(the above) = Tr(φ|H∗), up to sign (we’re not keeping track of signs in this argument). This
is just linearly algebra

Fact. If ei is a basis of V , with dual basis e∨i , then

Tr(A) =
∑
i

e∨i (Aei).

■

Question 24.3. What is Γφ ·∆?

Claim 24.4. Γφ ·∆ is simple the number of fixed points of φ if they each have multiplicity 1.
If Y,Z ⊂ X are subvarieties of complimentary dimenion (and X smooth), then (Y · Z)p = 1 if

• Y,Z smooth at p

• TpY ∩ TpZ = 0.

Lemma 24.5. This is satisfies for Γφ,∆ if X smooth, and 1 is not an eigenvalue of φ-action on TpX

for p any fixed point of φ.
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Proof left as exercise.

Example. Hypotheses of lemma are true for X/Fp with φ : X ! X the absolute Frobenius map. △

24.2 Frobenius maps

There are a few different Frobenii, so let’s set straight which is which.
Let X be a variety over Fq.

• (absolute Frobenius) This is the Fq-morphism Frobq : X ! X sending fq  [ f on sheaves. This
is a natural endomorphism of the identity functor. To apply Lefschetz, we need to be over an
algebraically closed field, so absolute Frobenius won’t do.

• (relative Frobenius) Consider the Cartesian diagram

X ′
Fq

XFq

SpecFq SpecFq.Frobq

Since X is defined over Fq, there is a canonical isomorphism XFq
≃ X ′

Fq
.

Example (Affine setting). Say X = SpecFq[x1, . . . , xN ]/I so XFq
= SpecFq[x1, . . . , xN ]/I. Then,

X ′
Fq

= SpecFq ⊗Fq
Fq[x1, . . . , xN ]/I with the left Fq acted on through Frobeinus. We have an

isomorphism
Fq ⊗Fq

Fq[x1, . . . , xN ]/I
∼
−! Fq[x1, . . . , xN ]/I

coming from multiplication, a⊗ f(x1, . . . , xN ) 7! a1/qf(x1, . . . , xN ). △

Back to the case at hand, relative Frobenius is the map F q
XFq/Fq

below

XFq

XFq
XFq

SpecFq SpecFq

F q

XFq
/Fq

Frobq

⌜

Frobq

Claim 24.6. The fixed points of F q := F q
XFq/Fq

are precisely the Fq-rational points of X. Further-

more, all fixed points have multiplicity one.

Proof. First part is not difficult. For the second part, suffices to show F q induces the zero map on
tangent spaces. Consider

SpecFq[t]/(t2)! X
F q

−−! X.

We’re taking qth power, but q ≥ 2, so it kills t. ■
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24.3 Weil Conjectures

What were these again? Say X a variety over Fq.

Recall 24.7. The Zeta function of X is

ζX(t) = exp

∑
i≥1

#X(Fqi)
i

ti

 .

⊙

We would first like to show that this is a rational function of t. We need Lefschetz for this, so we’ll
stick to the case of X smooth projective. Later we’ll discuss a fancier version of Lefschetz allowing a
proof for more general X.

Proof of Rationality of Zeta Function for X Smooth, Projective. We define

Tr(F q|H∗(X)) =

2 dimX∑
i=0

(−1)i Tr(F q,∗|Hi(XFq
,Qℓ)).

We know from Lefschetz that #X(Fqi) = Tr(F q
i |H∗(X)) = Tr((F q)i|H∗(X)). Hence, the zeta function

is

ζX(t) = exp

∑
n≥0

Tr((F q)n|H∗(X))

n
tn

 .

To show this is rational, since Lefschetz involves only finitely many terms, it’ll suffice to show that

ζX,r := exp

∑
n≥1

Tr((F q)n|Hr(XFq
,Qℓ)tn

n


is a rational function.51 WLOG, we can write (λi ∈ Qℓ)

Tr((Fq)
n|Hr(XFq

,Qℓ)) =
∑

λni

(keep in mind that these cohomology groups are f.dim vector spaces). Thus,

ζX,r = exp

∑
n≥1

dimHr∑
i=1

λni t
n

n

 = exp

(
dimHr∑
i=1

− log(1− λit)

)
=
∏ 1

(1− λit)
∈ Qℓ(t)

is indeed a rational function. ■

We can strengthen things. We claim that ζX is in fact rational with integer coefficients. This is e.g.
because

d log ζX(t) =
∑

#X(Fqn)tn−1

51ζX(t) is an alternating product of these guys
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has integer coefficients.
We won’t go over the functional equation in detail. The point is to plug in Poincaré duality: Hi(X,Qℓ)

is dual to H2 dimX−i(X,Qℓ(d)), so there is a relationship between ζX,r(t) and ζX,2 dimX−r(q
dt). Figuring

out what this relationship exactly is pops out the functional equation.

24.3.1 Riemann Hypothesis

The remainder of the class will be on this. Let’s begin by recalling the statement.

Theorem 24.8. Say X smooth projective. The Frobenius action F q,∗ ↷ H∗(XFq
,Qℓ) has eigenvalues

λ1, . . . , λn ∈ Q, and for any embedding Q(λ1, . . . , λn) ↪! C, their absolute values are all equal to qr/2.

We already know these eigenvalues are algebraic numbers in many cases, e.g. for (smooth, projective)
hypersurfaces.

Example. Say X ⊂ Pn is a smooth projective hypersurface. Then,

H∗(X,Qℓ) = H∗(Pn,Qℓ) for ∗ < dimX

(because Pn \ X is affine + excision + Poincaré duality). Thus, H∗(X,Qℓ) is a twist of Qℓ unless
∗ = dimX. We know (from the proof of rationality) that the zeros/poles of ζX are algebraic numbers,
and now we know the only thing that can contribute interesting eigenvalues is the middle cohomology,
so all those eigenvalues must be algebraic (there can be no “cancellation”). △

Next time we start on Deligne’s proof of the Riemann hypothesis.

25 Lecture 25

Last time we discussed the rationality of the zeta function, at least for smooth projective varieties. We
left as an exercise showing that PD implies the functional equation. Today, we talk about the Riemann
hypothesis.

25.1 More Frobenii

There are like 4 of these in total. We talked about a couple before. Let’s finish off the list.
Say X0 is some variety over Fq, and let X = (X0)Fq

be its basechange to Fq.

• (absolute Frobenius) Frobabs : X ! X acting via fq  [ f on functions/sheaves. This is not a
morphism over Fq (it induces the q-power map on Fq, which is not the identity), but is one over Fq.

Question 25.1. This induces a map

Frob∗abs : H
∗(X,Qℓ)! H∗(X,Frob∗absQℓ) = H∗(X,Qℓ).

What map is this?
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Answer. This is the identity map. Why? The induced map of sites Frobabs : Xét ! Xét is naturally
isomorphic to the identity. As a functor, this sends U ét

−!
π
X to the fiber product U ×X,FrobX ! X.

We need to show this fiber product is canonically isomorphic to U over X. Well, take as our
isomorphism relative Frobenius

FU/X = (Frobabs,U , π) : U ! U ×X,Frob X.

Exercise. FU/X above is an isomorphism. Use that π : U ! X is étale.

⋆

Hence, absolute Frobenius is probably not what we want to tackle the Weil conjectures.

• (relative Frobenius) This is defined via the diagram.

XFq

XFq
XFq

SpecFq SpecFq

F q

XFq
/Fq

Frobq
abs

⌜

Frobq
abs

Here’s a more concrete description: recall X0/Fq with it’s absolute Frobenius Frobqabs,X0
: X0 ! X0

over Fq. Relative frobenius is just the base change FX/Fq
= Frobqabs,X0

× Fq.

Example. Say X = AnFq
= SpecFq[t1, . . . , tn]. Then

Frobabs : f 7! fp and FAn/Fq
: ti 7! tpi .

△

• (Arithmetic,geometric Frobenii) Instead of acting on the ti, we can act only on the coefficients.
Consider Fk := Frobabs : Fq ! Fq. We get two more Frobenii (recall X = Fq ×Fq

X0)

Fk × idX0 : X ! X and F−1
k × idX0 : X ! X.

The first (arithmetic Frobenius) raises coefficients to pth power, and the second (geometric
Frobenius) takes pth roots of the coefficients.

Remark 25.2. Frobabs,X = (Fk × idX) ◦ FX/k, absolute Frobenius is the composition of arithmetic
Frobenius and relative Frobenius. Hence, these two Frobenii act as inverses to each other on ℓ-adic
cohomology H∗(X,Qℓ). ◦

Assumption. From now on, ‘Frobenius’ will always mean relative Frobenius FX/k.

25.2 Riemann Hypothesis

What’s our goal now?
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Theorem 25.3 (Riemann Hypothesis). Let X0 be a smooth projective variety/Fq, and let X = X0,Fq
.

Then, the eigenvalues of F ∗
X/k ↷ Hi(X,Qℓ) are algebraic integers, and for any embedding Q(eigenvalues

αj) ↪! C, one has |αj | = qi/2.

This statement is false (slash needs to be modified) is you replace relative Frobenius with one of the
others.

We know the Riemann Hypothesis already in some cases.

Example (Hartshorne chpt. IV). We know this for curves. △

Example. If H2i(X,Qℓ(i)) is spanned by cycle classes, then we know RH for H2i(X,Qℓ).

Proof. Pick a basis of H2i(X,Qℓ(i)) consisting of cycle classes. Can extend base field to assume WLOG
that all cycles defined over Fq. Then,

CHi(X)Qℓ
↠ H2i(X,Qℓ(i))

is FX/k-equivariant, so it acts on H2i(X,Qℓ(i)) trivially. Hence, it acts on H2i(X,Qℓ) = H2i(X,Qℓ(i))(−i)
via the (−i)th power of the cyclotomic character χcyc. Now all the eigenvalues are simply qi = q2i/2. ■

△

Example. If S is a cubic surface, then H∗ is spanned by cycle classes. △

Remark 25.4. It really is special that the absolute values of the eigenvalues are the same independent of
the embedding into C. For example, β = 1 +

√
2 does note satisfy this,

∣∣1 +√
2
∣∣ ̸= ∣∣1−√

2
∣∣. ◦

Definition 25.5. If |α| is independent of the embedding, and |α| = qi/2, then we say α is a q-Weil
number of weight i. ⋄

Let’s get to the proof. We will closely follow Deligne’s original argument. First some reductions.

(i) We can replace Fq with Fqn . This has the effect of replacing FX/k with FnX/k and so raising the
eigenvalues αj to the nth power. Since αj satisfies the desired properties iff αnj does (replacing q
w/ qn), this is A-ok.

(ii) Enough to show a much weaker statement

Theorem 25.6. Say X smooth and projective of even dimension 2d, and let α be an eigenvalue of
FX/k on Hd(X,Qℓ). Then,

q
d
2−

1
2 < |α| < q

d
2+

1
2

for all embeddings Q(α) ↪! C.

Proof that Theorem =⇒ RH. The idea is to take products (“Tensor product trick”). Apparently,
Tao has a
blog post
giving more
examples of
this sort of
trick

Let Y be any smooth projective variety of dimension n (possibly not even). Consider Y 2M , a variety
of dimension 2nM . By Künneth, it’s middle cohomology is

H2nM (Y,Qℓ) =
⊕

i1,...,i2M∑
ij=2nM

⊗
j

Hij (Y,Qℓ).
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Taking all ij = n, for example, we see that

Hn(Y,Qℓ)⊗2M ≤ H2nM (Y 2M ,Qℓ).

Now the theorem tells us that for any eigenvalue α of FX/k ↷ Hn(Y,Qℓ), we have

qnM− 1
2 < |α|2M < qnM+ 1

2 .

Now we take (2M)th roots to see that

q
n
2 − 1

4m < |α| < q
n
2 + 1

4M .

Taking the limit as M !∞ gives |α| = qn/2.

This proves RH for middle cohomology of all varieties. We need it in other degrees. Poincaré
duality means it’s enough to do it for Hr(Y,Qℓ) for r > dimY . For this, we note that

Hr(Y,Qℓ)⊗A ⊗H0(Y,Qℓ)⊗B ≤ HAr+B(Y A+B ,Qℓ).

Choosing A,B appropriately can arrange that this is in middle cohomology. Since Frobenius acts
trivially on H0, we can repeat the same sort of argument (fill in details as exercise). ■

In order to proceed from here, we’ll need a generalization of Lefschetz fixed point formula for

• Non-proper varieties

• Non-constant sheaves

• Sheaves of modules over Z/ℓnZ.

Warning 25.7. The cohomology of modules over this ring is not free, so issues can arise in taking
a trace. •

25.3 Lefschetz for...

25.3.1 Non-proper varieties

Suppose U
j
↪! X

i
 ↩ Z = X \ U with X smooth proper variety and U an open subscheme. Recall the

exact sequence
0 −! j!Qℓ −! Q

ℓ
−! i∗Qℓ −! 0.

This gave rise to the Gysin sequence. Say we have an endomorphism φ : X ! X s.t. φ(U) ⊂ U and
φ(Z) = Z. Then (consider LES in cohomology coming from above short exact sequence),∑

(−1)r Tr(φ∗|Hr(X,Qℓ)) =
∑

(−1)r Tr(φ∗|Hrc(U,Qℓ)) +
∑

(−1)r Tr(φ∗|H∗(Z,Qℓ)).

If Z is smooth proper, can apply Lefschetz to X,Z in order to get that∑
(−1)r Tr(φ∗|Hrc(U,Qℓ)) = #Xφ −#Zφ
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where these numbers of fixed points are counted with multiplicity.

Question 25.8. #Xφ −#Zφ
?
= #Uφ

No, or we wouldn’t have asked.

Example. Say X = P1, U = A1, and Z = ∞. Consider

φ : [x0 : x1] 7! [x0 + x1 : x1].

Then, #Uφ = 0 (this is the map z 7! z + 1) and #Zφ = 1. However, counted with multiplicity,
#(P1)φ = 2 (You want x0x1 = x1(x0 + x1), i.e. x21 = 0). Note that 2− 1 ̸= 0.

Also note that φ is homotopic to the identity (consider [x0 : x1] 7! [x0 + tx1 : x1]) so it induces the
same action of cohomology, so Lefschetz tells us that #(P1)φ is the Euler characteristic 2. △

The issue is that computing multiplicity does not play nicely with restriction to a (closed) subscheme
in general. Hence, we get a Lefschetz fixed point formula ⇐⇒ #Uφ + #Zφ = #Xφ ⇐⇒ ∀x ∈ Zφ :

multp(x, Z) = multφ(x,X).

Example. If φ =Frobenius, this holds since all fixed points have multiplicity 1. △

Corollary 25.9. Say U is smooth with smooth compactification and smooth complement, then

#U(Fqn) =
∑

(−1)r Tr(F rU/k|H
r
c(U,Qℓ)).

These hypotheses are almost never satisfied, but that’s ok, because we can reduce.

Corollary 25.10. For U0 a variety over Fq. Then,

#U0(Fqm) =
∑

(−1)r Tr(FmU/k|H
r
c(U,Qℓ)).

To show this, one does some annoying dévissage induction on dimension. We know it for points. The
previous corollary gives it from curves. For surfaces, if we had resolution of singularities, we could find a
smooth compactification with singular complement built out of curves, and then induct. We don’t have
resolution of singularities, so this doesn’t quite work, but something like it does.

25.3.2 Non-constant sheaves

Let E be a lisse Qℓ-sheaf on X. Consider φ : X ! X. This gives rise to

H∗(X,E )! H∗(X,φ∗E ).

In order to take traces, we need additionally a map φE : φ∗E ! E . We then get

(φ∗, φE )
∗ : H∗(X,E )

φ∗

−−! H∗(X,φ∗E )
φE−−! H∗(X,E ).

If x ∈ Xφ is a fixed point, can look at stalks:

Ex = Eφ(x) = (φ∗E )x
φE−−! Ex.
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Question 25.11. ∑
x∈Xφ

Tr(φx|Ex)
?
=
∑
r

(−1)r Tr((φ,φE )|Hrc(X,E ))

Example. Say X a finite set. We have φ : X ! X, Qℓ-vector spaces Ex, and maps φE : Eφ(x)
φx−−! Ex

for all x. Then this says ∑
x∈Xφ

Tr(φx) = Tr
(⊕

φx :
⊕

Ex !
⊕

Ex
)
,

which is true since this just computing the trace of a block-diagonal matrix. △

26 Lecture 26

Recall 26.1. We’re trying to prove the Riemann hypothesis52. ⊙

Last time

• Discussed Frobenii

• preliminary reductions

e.g. to an inequality for the absolute values of eigenvalues of middle degree cohomology on an even
dimensional variety

• Lefschetz trace formula. Still a few issues to overcome

– non-proper varieties

– non-constant sheaves (e.g. local systems)

– sheaves over torsion rings (e.g. Z/ℓnZ)

26.1 Non-constant sheaves

For a non-constant sheaf E on Xét, one gets

φ∗ : Hi(Xét,E )! Hi(Xét, φ
∗E ).

To be able to trace traces, we need a map Hi(Xét, φ
∗E ) ! Hi(Xét,E ), so say we also are given φE :

φ∗E ! E . Note that this φE also gives us maps

Eφ(x) φ∗(E )x E=

φE ,∗

(φE )∗
.

If x = φ(x) is a fixed point, this is φE ,x : Ex ! Ex.

Goal. If X0 variety over Fq with X = (X0)Fq
. We want a theorem like

∑
x∈Xφ

Tr(φ∗ | Ex) =
∑
i≥0

(−1)iTr
(
(φ,φE )

∗ | Hic(Xét,E )
)
.

52for smooth varieties over a finite field

103



Note the LHS is more ’arithmetic’ while the RHS is more ‘geometric’.

Exercise. Say X is a finite set. Work out what the goal says in this case.

We’ll want to apply this when φ is Frobenius. Where does this φE come from?

Question 26.2. When is there a natural map FE : F ∗E ! E (F = relative Frobeinus).

Answer. If E comes from a sheaf on Xét.

Recall 26.3. Fabs : Xét ! Xét is naturally isomorphic to the identity. ⊙

Hence, E0 on X0/Fq, there is a canonical isomorphism F ∗
absE0

∼
−! E0. Restricting to Xét gives the

desired FE . ⋆

The theorem we actually want is the following

Theorem 26.4. Let U0 be a smooth curve over Fq, and let E0 be a locally constant Qℓ-sheaf on U0.
Then, ∑

x∈UF

Tr(Fx | Ex) =
∑
r≥0

(−1)r Tr (F | Hrc(U,E )) .

Definition 26.5. Let U0,E0 as above. The ζ-function of E0 is

ζ(U0,E0, t) := exp

∑
m

∑
x∈UFm

Tr (Fmx | Ex)
tm

m

 .

Our target theorem (+ finiteness theorems for étale cohomology) implies that ζ(U0,E0, t) is always ratio-
nal. ⋄

Example. If Ex = Qℓ, then ζ(U0,Qℓ, t) is ζU0(t). △

Example. Say π : X0 ! U0 is smooth proper morphism, and set E i
0 := Riπ∗Qℓ. Then,∏

i≥0

ζ(U0,E
i
0 , t)

(−1)i = ζX0
(t)

by the Leray spectral sequence for π.53 △

Some remarks

(1) We wrote the target theorem in terms of Hic. Using Poincaré duality, we could have written it
instead in terms of H2−i(X,E ∨(1)).

(2) Formula can be re-interpreted in terms of π1 (this remark only true for curves).

Recall 26.6. {
lisse Qℓ-sheaves

E on U0

}
 !

{
πét
1 (U0, u)-reps
into GL(Eu)

}
.

⊙
53To show this, use that the differentials are Frobenius equivariant
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LHS of formula was
∑
x∈UF=U0(Fq)

Tr(Fx | Ex). Given x ∈ U0(Fq), this is same as a map
SpecFq

x
−! U0; hence get a map Gal(Fq/Fq)! πét

1 (U0, x) on πét
1 ’s. Frobenius Fx ∈ Gal(Fq/Fq) gives

a well-defined conjugacy class [Fx] ∈ πét
1 (U0, x) ≃ πét

1 (U0, u). Thus the LHS has a group-theoretic
interpretation:

Tr(Fx | Ex) = Tr(Fx ∈ πét
1 (U0))

(Trace in the representation corresponding to the given sheaf).

On the RHS, we had Tr(F | Hic(U,E )) = Tr(F−1 | H2−i(U,E ∨(1))). Say U0 is affine. Then we can
give a group-theoretic interpretation of F−1 ↷ H2−i(U,E ∨(1)) because

H2−i(U,E ∨(1)) ≃ H2−i
ét (πét

1 (U, u),E ∨(1)x)

since affine curves are étale π1’s (true for any variety w/ cohomology vanishing above degree 1).
The action of F can be described group theoretically as follows: U0 ! SpecFq induces

1 −! πét
1 (U, u)! πét

1 (U0, u)! Gal(Fq/Fq) −! 1.

Claim 26.7. The outer action of Gal(Fq/Fq) ↷ πét
1 (U, u) induces action on Hi(πét

1 (U, u),E ∨(1)x)

agreeing w/ geometrically described Frobenius action.

How will we prove our target theorem?

• Formulation for lcc torsion sheaves

• Pass to cover to reduce to case of constant sheaves

• Pass to inverse limit to get statement for Qℓ-sheaves

Theorem 26.8. Let U0 be a smmoth, geometrically connected curve over Fq. Let E0 be an lcc sheaf of
flat Z/ℓnZ-modules (ℓ ̸= charFq). Then,∑

x∈UF

Tr(Fx | Ex) =
∑

(−1)r Tr(F | Hrc(U,E )).

What does the RHS above mean w/o the context of free modules?

Definition 26.9. Let R be a noetherian local ring. A perfect complex of R-modules is one that is
quasi-isomorphic to a bounded complex of finite free R-modules.54 ⋄

This will allow us to reinterpret the RHS in our theorem to a statement about a bounded complex of
finite free R-modules, where (an alternating sum of) traces makes sense.

Proposition 26.10. Let R be a noetherian local ring, and let M• be a complex of R-modules. Say
γ : P • ! M• is a quasi-isomorphism w/ P • bounded complex of f.g. free R-modules (slightly stronger

54Without local condition, would want it to be “locally quasi-isomorphic” to such a thing
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than M• being perfect). Suppose α :M• !M• is an endomorphism. Then, ∃β : P • ! P • so that

P • P •

M• M•

β

γ γ

α

commutes, β is well-defined up to homotopy, and

Tr(β | P •) :=
∑

(−1)r Tr(β | P r)

is independent of all choices.

Proof. Non-trivial homological algebra, but ”You’ll be able to do it if you sit down and try it.” ■

Remark 26.11. Not all complexes are perfect, e.g. note that perfect complexes have finite projective
dimension. ◦

Non-example. Take R = Z/ℓ2Z and M = Z/ℓZ. We view M as a complex of (Z/ℓ2Z)-modules
concentrated in degree zero. It is not q.iso to a bounded complex of f.g. free modules. Why?

Suppose it was, i.e. that we have P • : Z/ℓZ[0]. This is a projective resolution, so we would get
Tor

Z/ℓ2Z
i (Z/ℓZ,−) = 0 for i≫ 0. However, we have an projective resolution

· · · −! Z/ℓ2Z ·ℓ
−! Z/ℓ2Z ·ℓ

−! Z/ℓ2Z! Z/ℓZ! 0

which implies that
Tor

Z/ℓ2Z
i (Z/ℓZ,Z/Zℓ) = Z/ℓZ for all i.

▽

Here’s a criterion for checking when a complex is perfect

Proposition 26.12 (Mumford). Say R is a Noetherian local ring, and M• is a complex of R-modules.

• If Hr(M•) is f.g. for all r and Hr(M•) = 0 for r > m, then there exists quasi-iso Q• !M• w/ Qi

f.g. free s.t. Qr = 0 for all r > m.

• If in addition, Hr(Q• ⊗R N) = 0 for r < 0 and all f.g. R-modules N , then there exists a quasi-iso
Q• ! P • w/ P • a complex of f.g. free modules supported in degrees 0, 1, . . . ,m.

Proof Idea for Second Bullet Point. Replace Q0 w/ Q0/ imQ1, and then check it’s flat. Using Tor crite- Remember:
f.g. module
over noethe-
rian local
ring is free

rion for flatness to check. ■

Remark 26.13. Projection formula + finiteness theorems =⇒ for E flat lcc Z/ℓnZ-sheaf, the complex
RΓ(Uét,E ) satisfies the conditions of the theorem. Thus, RΓ(Uét,E ) is a perfect complex, so can make
sense of the expression

”
∑
r≥0

(−1)r Tr
(
F |Hi(U,E )

)
”

since we can computed it on a quasi-isomorphic bounded complex consisting of f.g. free modules. ◦

Won’t prove our target theorem since we’re low on time, and we want to get to the geometric content
of the Weil conjectures.
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26.2 Introduction to main geometric ideas of Weil II

Given X ⊂ Pn smooth projective variety, we’ll roughly want to find a map BlX
π
−! P1 s.t. the fibers have

mild singularities and s.t. the “monodromy” on the middle cohomology of the fibers has large image. Say
the fibers have dimension d. We’ll want to understand E := Rdπsm,∗Qℓ ∈ ShQℓ(U) where πsm : X0 ! U

is the restriction of π to the locus where π is smooth.
We’ll axiomatize the properties of sheaves like E above, and then analyze the consequences for

Hi(U,E ). This should allow us to do some sort of induction on dimension.

27 Lecture 27

27.1 Last time: Grothendieck-Lefschetz trace formula

Theorem 27.1. Let U0 be a curve over Fq, and let E0 be a locally constant Qℓ-sheaf on U0 (where ℓ ∤ q).
Then, ∑

x∈UF

Tr(Fx | Ex) =
∑
r≥0

(−1)r Tr (F | Hrc(U,E )) .

We did not prove this, but we said what the main strategy was. We then defined

ζ(U0,E0, t) := exp

∑
m

∑
x∈UFm

Tr(Fx | Ex)tm

m

 .

The theorem implies that this ζ-function is rational, and can be written in terms of the characteristic
polynomial of Frobenius F on Hic(U,E ).

27.2 Today: Study ζ(U0,E0, t) for very special E0 arising from Lefschetz fibra-
tions

Note 2. The recording freezes here and then resumes with “... because it’s the main lemma that goes
into the proof of the Riemann Hypothesis, we’ll discuss it in a little bit.”

Lemma 27.2 (MAIN LEMMA, all caps required). Let X0 be a smooth affine genus 0 curve55 over
Fq. Let X = (X0)Fq

, and let E be a locally constnat Qℓ-sheaf on X0 with corresponding representation E
of πét

1 (X0). Assume

(1) For each x ∈ |X| (closed points of X), Fx ↷ Ex the characteristic polynomial has rational coeffi-
cients, i.e. charpoly ∈ Q[t].

(2) There is a non-degenerate skew-symmetric form56

ψ : E × E ! Qℓ(−n).

(3) ρ : πét
1 (X) ! GL(E) actually lands in Sp(E,ψ), and im(ρ) is open in Sp(E,ψ), i.e. we have “big

monodromy.”
55in particular, geometrically connected
56Note πét

1 (X0) surjects on Gal(Fq/Fq), so Qℓ(−n) makes sense as a πét
1 -rep too
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Then,

(a) E has “weight” n, i.e. the eigenvalues α of Fx ↷ Ex have absolute value qn(deg x)/2 for any x ∈ |X|
for any embedding Q(α) ↪! C.

(b) F ↷ H1
c(X,E ) has rational characteristic polynomial, and for all eigenvalues α, |α| < qn/2+1 for

all embeddings Q(α) ↪! C.

(c) F ↷ H1(P1, j∗E ) has rational characteristic polynomial w/ all eigenvalues α satisfying

qn/2 < |α| < qn/2+1.

Imagine E = Riπ∗Qℓ with π : X ! P1 some family of varieties over P1, and say dimX even. You
should think that (c) above + leray gives contributions to middle dimensional cohomology with a bound
of the form we want (recall Theorem 25.6). Let’s give some more details.

Question 27.3. Where does E come from?

Definition 27.4. Let X be a smooth projective variety, with embedding |L | : X ↪! Pn via some
complete linear system. Let ℓ ⊂ P̌n be a line in the dual projective space, i.e. ℓ a linear family of
hyperplanes Ht. We say this is a Lefschetz pencil if

(1) The base locus (or axis) of the pencil A =
⋂
tHt intersects X transversely.57

(2) Xt = X ∩Ht is smooth for all t in a dense open U of ℓ

(3) For t ̸∈ U (where Xt singular), Xt has a unique singular point which is an ordinary double point:
ÔX,p ≃ k [t1, . . . , tN ] /(non-deg quadratic) (looks like vertex of a quadric cone).

⋄

Example.
{
X2 + Y 2 + tZ2 = 0

}
⊂ P2. For t ̸= 0, get a nice smooth quadric surface, but at t = 0 you

get the quadric cone which has an ordinary double point at its vertex. △

The Lefschetz pencils are nice because it’s easy to compute their monodromy.

Theorem 27.5 (Existence of Lefschetz pencils). Let X be smooth projective over k = k, and let L

be a very ample line bundle on X. Then, there exists some ℓ ⊂
∣∣L ⊗2

∣∣ such that ℓ is a Lefschetz pencil.

(Bertini argument, see SGA7 or Milne’s Étale Cohomology book)
Now let’s explain the strategy for the proof of RH: Let X0 be a smooth projective even dimensional

variety over Fq, say dimX0 = n + 1 (so n odd). We want the eigenvalues of F on Hn+1(X,Qℓ) (middle
cohomology) to satisfy qn/2 ≤ |α| ≤ qn/2+1.

(1) WLOG may assume X admits a Lefschetz pencil which descends to X0 (may need to replace Fq
with a finite extension in order to get the coefficients appearing in the equation for the pencil).

57intersection of tangent spaces has dimension dimX − 2?
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(2) Can replace X0 with the blowup BlAX0 = (X0 × ℓ) ×ℓ H ! ℓ where A is the base locus of the
Lefschetz pencil and H is the family of hyperplanes. This is a family over P1 w/ fibers (X0) ∩Ht.

Note that the cohomology of the blowup is built out of the cohomology of X, and the cohomology
of X ∩ (base locus) (which is codim 2 in X). The key claim is BlAX ! X induces injection
H∗(X) ↪! H∗(Bl).

So can assume X ! P1 a “Lefschetz fibration”.

(3) Enough to understand eigenvalues of Frobenius on the parts of the leray spectral sequence con-
tributing to the middle cohomology of X, i.e. on

(a) H2
(
P1, Rn−1π∗Qℓ

)
Rn−1π∗Qℓ will be a constant sheaf (this is not obvious). Hence, this is equal to Hn−1(Xt,Qℓ)(−1).
Let Y ⊂ Xt be a smooth hyperplane section (exists by Bertini). The Lefschetz hyperplane
theorem will tells us that

Hn−1(Xt,Qℓ) ↪! Hn−1(Y,Qℓ)

and this latter space is the middle cohomology of an even dimensional variety (dimY = n−1),
so can induct.

(b) H1(P1, Rnπ∗Qℓ)

This cases uses the MAIN LEMMA (LEMMA 27.2). The monodromy won’t be big in general,
but there will be a piece of it that is big. More details next time.

(c) H0(P1, Rn+1π∗Qℓ)

In good situations, this is again a constant sheaf. Win via application of Lefschetz hyperplane
+ Poincaré duality.

With the strategy written down, let’s prove the MAIN LEMMA.

Proof of MAIN LEMMA 27.2. Let E0 be a locally constant Qℓ-sheaf on X0 w/ Fx ↷ Ex having rational
char poly, skew-symmetric non-deg ψ : E × E ! Qℓ(−n) and big monodromy. We want to show that
(a) E has weight n.

Lemma 27.6 (Lemma 1). (E⊗(2k))πét
1 (X) = Qℓ(−kn)⊕N , i.e. this tensor-power has simple coinvariants.

Lemma 27.7 (Lemma 2). If for all k, ζ(X0,E
⊗2k
0 , t) converges for t < 1

qkn+1 , then E has weight n.

Let’s show these sublemma imply MAIN LEMMA (a). We first remark that lemma 1 gives the
hypothesis of lemma 2. To see this, note that

ζ(X0,E
⊗2k
0 , t) =

poly coming from H1
c(X,E

⊗2k)

det(1− F ∗t | H0
c) det(1− F ∗t | H2

c)
.

Above, H0
c(X,E

⊗2k) = 0 since X affine, so first factor in the denominator is 1. Furthermore,

H2
c(X,E

2k)
PD
= H0(X, (E ∨)⊗2k(1))∨ =

((
(E∨)⊗2k

)πét
1 (1)

)∨

= E⊗2k
πét
1

(−1) = Qℓ(−kn− 1)⊕N .
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Hence,

ζ(X0,E0, t) =
poly

(1− qkn+1t)N

which satisfies the hypotheses of lemma 2. We’ll talk about the proofs of these lemmas next time. ■

28 Lecture 28

28.1 Proof of MAIN LEMMA 27.2

Recall we were in the middle of proving the MAIN LEMMA.

Recall 28.1 (MAIN LEMMA 27.2). Let X0

open
⊂ P1

Fq
with X = (X0)Fq

. Let E be a locally constant
Qℓ-sheaf on X0, and let E be the corresponding πét

1 -representation. Assume

(1) Frobenius Fx ↷ Ex acting on the stalks have rational characteristic polynomial for x ∈ |X|

(2) There’s a non-deg skew-symmetric form ψ : E × E ! Qℓ(−n)

(3) π1(X)! Sp(E,ψ) has open image

Then,

(a) E has weight n, i.e. eigenvalues of Fx ↷ Ex have absolute value |α| = qn(deg x)/2 for all embeddings
Q(α) ↪! C

(b) F ↷ H1
c(X,E ) has rational characteritic polynomial and eigenvalues β satisfying |β| ≤ qn/2+2

(c) F ↷ H∗(P1, j∗E ), j : X ↪! P1, has rational char poly w/ eigenvalues γ satisfying

qn/2 ≤ |γ| ≤ qn/2+1.

⊙

Last time we reduced the proof of (a) to the following two lemmas...

Lemma 28.2. (⊗
2k

E

)
π1(X)

=
⊕

Qℓ(−kn).

Proof. First consider the case where k = 1. Note that

Homπ1(X)(E ⊗ E,Qℓ) = Hom((E ⊗ E)π1(X),Qℓ)

contains our skew-symmetric form ψ : E × E ! Qℓ(−n). Since π1 has dense image in Sp(E,ψ), we see
that (E ⊗ E)π1(X) = (E ⊗ E)Sp(E,ψ) from which it follows that Hom((E ⊗ E)π1(X),Qℓ) = span {ψ}.

For general k, we have

Hom((E⊗2k)Sp(E,ψ),Qℓ) = span

{∏
k

ψ(vi1 , vi2)

}
.
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This is a ‘linear algebra statement about coinvariants of the symplectic statement.’ Since each copy of ψ
contributes a Qℓ(−n) and each spanning element above contains k copies of ψ, we see the whole rep is
Qℓ(−kn)⊕N for some N . ■

Lemma 28.3. If for all k, ζ(X,E⊗2k, t) converges for t < 1
qkn+1 , then E has weight n.

Proof. We start off with the Euler product of these zeta functions:

ζ(X,E ⊗2k, t) =
∏
x∈|X|

1

det
(
1− Fxtdeg x | E ⊗2k

x

) .
Note that if the product converge, then each factor must converge. Hence, det

(
1− Fxt

deg x | E ⊗2k
x

)−1

converges for |t| < q−(kn+1). Hence each eigenvalue of Frobenius must satisfy |α| > q(deg x)kn+1. An
application of the tensor power trick now gives |α| ≥ q(deg x)n/2. The pairing then gives the other
inequality |α| ≤ q(deg x)n/2. ■

This proves (a) of the MAIN LEMMA.
Let’s start proving (b), i.e. that F ↷ H1

c(X,E ) has rational characteristic polynomial and eigenvalues
β satisfying |β| ≤ qn/2+2

Proof of (b) of MAIN LEMMA 27.2. We’re trying to understanding the zeta function ζ(X0,E , t); this
is controlled by Frob action on Hic(X,E ). First recall that H0

c(X,E ) = 0 since X affine. Furthermore,
H2
c(X,E ) = Eπ1(X)(−1) by Poincaré duality. Since π1 is dense in the symplectic group this is furthermore

H2
c(X,E ) = Eπ1(X)(−1) = ESp(E,ψ)(−1) = 0

(the standard representation of the symplectic group has no coinvariants). Thus,

ζ(X0,E , t) = det
(
1− F ∗t | H1

c(X,E )
)
=
∏
x∈|X|

1

det (1− Fxtdeg x | Ex)
.

These factors have rational coefficients, so their product det
(
1− F ∗t | H1

c(X,E )
)

does as well. This gives
the first part of (b).

To understand the eigenvalues, it suffices to show this product
∏

det(1− Fxt
deg x | Ex) converges for

|t| < 1/qn/2+1.58 Let ai,x be the eigenvalues of Fx ↷ Ex. It’s enough to show that

∑
i,x

∣∣ai,xtdeg x∣∣ converges for |t| < 1

qn/2+1
.

This follows from

(1) |ai,x| = q(deg x)n/2

Follows from MAIN LEMMA (a).

(2) # closed points of deg n is ≤ qn + 1

X is an (affine open) subset of P1 and P1(Fqn) = qn + 1. ■
58Poles of this are zeros of its reciprocals or something like that
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This just leaves part (c): F ↷ H∗(P1, j∗E ), j : X ↪! P1, has rational char poly w/ eigenvalues γ
satisfying

qn/2 ≤ |γ| ≤ qn/2+1.

Proof of MAIN LEMMA 27.2(c). Recall the short exact sequence (the third object is a sum of skyscraper
sheaves supported on the complement)

0 −! j!E −! j∗E −! i∗i
∗j∗E −! 0

where X0
j
↪! P1 i

 ↩ P1 \X0. The LES in cohomology looks like

0 H0(P1, j∗E ) H0(P1
Fq
, i∗i

∗j∗E ) H1
c(X,E ) H1(P1

Fq
, j∗E ) 0

H0
c(X,E ) H1(P1

Fq
, j!E )

δ

We first want to show that frobenius action on H1(P1, j∗E ) has rational characteristic polynomial. The
main point is that

charpoly
(
F |H1(P1

Fq
, j∗E )

)
=

charpoly
(
F | H1

c(X,E )
)
· charpoly(F | H0(P1, j∗E ))

charpoly(F | im δ)

and the details of checking that the RHS is rational is left as an exercise.
Let α be an eigenvalue of F ↷ H1(P1, j∗E ). Note that MAIN LEMMA (b) + the surjection above

show that |α| ≤ qn/2+1. For other pairing, use Poincaré duality, which gives a perfect pairing

H1(P1, j∗E )×H1(P1, j∗E
∨(1))! H2(P1,Qℓ(1)).

This sheaf E ∨(1) satisfies hypotheses of lemma, so can apply upper bound to it’s eigenvalues, concluding
the lower bound we want here. ■

28.2 Understanding j∗E for E locally constant on X

Proposition 28.4. Suppose U ⊂ Y is an affine open inside a proper geometrically connected curve over
k = k. Let Λ = Z/ℓnZ or Qℓ, ℓ ̸= char k. Let F be a sheaf of Λ-modules on Y . Then,

(a) F
∼
−! j∗j

∗F is an iso iff

(i) For all s ∈ Y \ U , the cospecialization map Fs ! Fη is injective

(ii) image of above cospecialization map is F Is
η , invariants of inertia group at s.

(b) For F a Qℓ-sheaf satisfying the above and locally constant on U , the cup product pairing

Hr(Y, j∗F )×H2−r(Y, j∗F
∨(1))! H2(Y,Qℓ(1))

is perfect.

(a) is a local computation, and (b) comes out of Verdier duality.
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28.3 Cohomology of Lefschetz Pencils

“I would love to just teach a whole course on this.”

Setup 28.5. Let X be a smooth projective variety with fixed embedding X ↪! Pn. Let L ⊂ P̌n be a
Lefschetz pencil. To this data, one associates the family of hyperplane sections

Xt

L = P1.

π

This satisfies

• generic fiber is smooth

• the singular fibers have unique singularities which are ordinary double points

Recall explicitly that Xt = BlA∩X X where A is the base locus of L.

Notation 28.6. Let S ⊂ P1 be the set of t ∈ P1 where Xt is singular.

Assumption. Assume that the fiber dimension is n = 2m+ 1 odd.

Notation 28.7. Let U = P1 \ S be the locus where π is smooth. Let I − s be tame inertia at s, and let
V = (Rnπ∗Qℓ)η, the ‘monodromy representation of this family.’

Claim 28.8.

(a) For r ̸= n, n+ 1, Rrπ∗Qℓ is locally constant (hence constant since πét
1 (P1) = 0). If all

fibers were
smooth, this
would be
true for all
r by smooth
and proper
base change
(Theorem
20.3

(b) Rnπ∗Qℓ|U is locally constant and tame (no wild inertia)

(c) For each s ∈ S, there exists a “vanishing cycle” δs ∈ V (m), well-defined up to sign, so that span {δs}
is dual to the cokernel of the cospecialization map Vs ↪! Vη.

(d) There’s an exact sequence

0 −! Hn(Xs,Qℓ)
cospec.
−−−−! Hn(Xη,Qℓ)

∪δs−−! Qℓ(m− n) −! 0

(e) σs ∈ Is ≃
∏
ℓ ̸=p Zℓ(1)

tℓ−! Zℓ(1). Given x ∈ V , σs(x) = x± tℓ(σs)(s ∪ δs)δs.

29 Lecture 29

29.1 Refresher on Lefschetz pencils and inertia

Hopefully we can finish sketching the proof of the Riemann hypothesis today.

Question 29.1 (Audience). Can you remind us how the inertia subgroup I is constructed?
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Answer. Start by recalling the context. We have a Lefschetz fibration X ⊂ Pn, a smooth projective
variety, along with a line L ⊂ P̌n (of hyperplanes) s.t. the base locus (intersection

⋂
H∈LH) intersects

X transversely; Xt := X ∩Ht is smooth for almost all t ∈ L; and finally, any singular Xt has a unique
singular point which is an ordinary double point (analytically-locally looks like cone point of a cone over
a non-deg quadratic). Recall that, by a Bertini argument, any smooth projective variety (maybe after
changing the projective embedding) admits such a Lefschetz pencil.

Let X := Blbase locusX. Get map π : X ! L with π−1(t) = Xt. We wanted to understand the
monodromy of this family, the higher push forwards of the constant sheaf through π. These will be
locally constant Qℓ-sheaves (on some subset(s) of L), and we wanted to understand how πét

1 acts on
them.

The question was about inertia subgroups of πét
1 . Let S ⊂ L be the set of points t so thatXt is singular.

Then, Riπ∗Qℓ|L\S is a locally constant Qℓ-sheaf for all i, so it corresponds to some representation

πét
1 (L \ S) −! GLn(Qℓ).

For each s ∈ S, can consider the inclusion SpecFrac ÔL,s ! L \ S. Base changing to k, we get a map If SpecA
is an affine
neighbor-
hood of
s ∈ L,
then L \ S
will have an
affine open
of the form
SpecAf ,
and Af !
FracAf =

FracA =

FracOL,s (or
something
like this)

πét
1 (SpecFrac ÔLk,s

)! πét
1 ((L \ S)k),

and the LHS above is called the inertia group at s ∈ S, and denoted Is. Abstractly, this just looks like
an absolute Galois group Gk((t)). Note that this is only well-defined up to conjugacy (omitted basepoints
in our discussion).

Intuition. L \ S is P1 minus finitely many points. The picture you should have in mind is that Is is
generated by small loops around s. You don’t get a normal subgroup, but (if I understood correctly) the
normal subgroup it generates is ker

(
πét
1 (L \ S)! πét

1 (L \ (S \ {s}))
)
.

Also, if char k = 0, then this inertia group is just Ẑ (get extensions by extracting roots of t).

⋆

Example. Consider the family of (affine) elliptic curves

E =
{
y2 = x(x− 1)(x− λ)

}
−! A1

(the coordinate on A1 is λ). This is smooth over A1 \ {0, 1}, but the fibers over 0, 1 are nodal cubics.
Let’s first consider the picture over C. Note that (topological π1)

π1
(
A1

C \ {0, 1}an
)
= ⟨γ0, γ1⟩

is free on two generators, a loop around 0 and a loop around 1. Note that R1π∗Qℓ is a locally constant
Qℓ-sheaf on A1 \ {0, 1}, so it corresponds to some representation

π1(A1 \ {0, 1}an)! GL2(Qℓ).
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One can compute analytically that (after choosing appropriate bases), this representation is

γ0 7!

(
1 2

0 1

)
and γ1 7!

(
1 0

2 1

)
.

Note that this is trivial mod 2.59 Also note that these two elements topologically generate an open
subgroup of SL2(Qℓ).

Daniel drew some pictures and explained what was going on, but I didn’t take notes on this... △

Warning 29.2. Properties of these representations depend on parity of cohomological degree. •

Example. Consider quadric surfaces {x2+y2+z2+tw2 = 0} −! P1
t . Here, inertia will act by reflections

on H2, i.e. π1(A1 \ 0) ≃ Z has generator acting on H2(Xt,Z) via

(
0 1

1 0

)
. △

When proving RH, we’ll use special properties of the symplectic group, and this is why we wanted to
reduce to the case of middle cohomology in even dimensional varieties.

29.2 Claims about Lefschetz fibrations w/ odd-dimensional fibers

Call the fiber dimension n = 2m− 1.

(1) For r ̸= n, n+ 1, the sheaves Rrπ∗Qℓ are locally constant on L (base of Lefschetz fibration).

Example. In elliptic curve example from earlier, we have fibers of dimension 1 = 2(1)− 1. Hence,
for r ̸= 1, 2 (i.e. for r = 0), we expect Rrπ∗Qℓ to be locally constant. Indeed, R0π∗Qℓ = π∗Qℓ = Qℓ
since all fibers are geometrically connected. △

Non-example. To see that R2π∗Qℓ need not be locally constant, imagine a family of genus 2
curves degenerating to two elliptic curves meeting at a point. ▽

(2) Rnπ∗Qℓ|L\S is locally constant (use smooth and proper base change), tame (tame inertia is Ẑ)

(3) For s ∈ S, get co-specialization map

0 −! Hn(Xs,Qℓ) −! Hn(Xη,Qℓ)
−∪δs−−−! Qℓ(m− n) −! 0.

Above, δs ∈ Hn(Xη,Qℓ)∨(m − n) = Hn(Xη,Qℓ(n))(m − n) = Hn(Xη,Qℓ(m)) is the image of
1 under the natural map Qℓ ! Hn(Xη,Qℓ(m)) dual to − ∪ δs. Concretely, the span of δs is
the kernel ker (Hn(Xη,Qℓ(m))∨ ! Hn(Xs,Qℓ)∨). This is why these are called vanishing cycles
(think, ‘homology’ class vanishing when restricted to special fiber).

(4) σs ∈ Is acts on x ∈ Hn(Xη,Qℓ) via (Picard-Lefschetz formula)

σs(x) = x± t(σs)(x ∪ δs)δs where t : Is ! Zℓ(1)

is the natural map (onto the Galois group of the extension obtained by only adding ℓ-power roots
of t).

59Ultimately because this representation has to act trivially on the 2-torsion of your elliptic curve
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Example. Returning to the elliptic curve example, we see that the vanishing cycle has cup product
2 with the other loop.60 Thus, the vanishing cycle isn’t quite the loop you might have expected,
but is instead twice it. This sort of corresponds to the fact that the lambda line mapping to M1,1

is not an isomorphism, but is instead ramified of degree 2. Don’t ask me why (though maybe ask
Daniel why). △

Let’s quickly recap the road to RH. We want to understand Hn+1(X,Qℓ) and will compute using the
Leray spectral sequence. The interesting part will be H1(P1, Rnπ∗Qℓ). Hence, we need to understand
this sheaf better.

Goal. Understand π1 acton on the span of the vanishing cycles in Hn(Xη,Qℓ(m)),

Let E ⊂ Hn(Xη,Qℓ) be the span of the vanishing cycles (get well defined span without twisting since
over algebraically closed field).

Proposition 29.3. E is stable under π1(L \ S) with orthocomplement

E⊥ = Hn(Xη,Qℓ)π1(L\S).

Proof. Use Picard-Lefschetz. First observe that {Is}s∈S generate (the tame piece of) πét
1 (L/S) (ultimately

b/c Is generate π1(P1 \ S) in characteristic 0). Hence, to show E is π1-stable, it is enough to show that
Is(δs′) ⊂ E, but this holds since

σs(δs′) = δs′ ± t(σs)(δs ∪ δs′)δs ∈ E.

Now, say x ∈ E⊥. Then, σs(x) = x so E⊥ ⊂ Hn(Xη,Qℓ)π
ét
1 , and the other direction is the same

argument. ■

Remark 29.4. We want to study the following filtration of middle cohomology

0 ⊂ E ∩ E⊥ ⊂ E ⊂ Hn(Xη,Qℓ).

Note that E ∩ E⊥ is constant (local system) by above. Similarly, Hn(Xη,Qℓ)/E is also constant (by
Picard-Lefschetz). The interesting piece is E/(E ∩ E⊥). ◦

We would like to apply MAIN LEMMA 27.2 to E/(E ∩ E⊥).

Proposition 29.5.

(1) char poly of Frob on E/E ∩ E⊥ are rational

(2) There’s non-deg skew-symmetric pairing

ψ :
E

E ∩ E⊥ × E

E ∩ E⊥ −! Qℓ(−n)
60Picture a torus. Picture a red loop going the long way around, and a blue loop going the short way around. We

degenerate by pinching the blue loop (giving a nodal curve, i.e. P1 with two points glued together). The red loop is the
“other loop” in the sentence before this footnote.
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(3) The image of
π1(L \ S)! Sp(E/E ∩ E⊥, ψ)

is open.

Proof. (1) Skip. Non-trivial but “not that bad.”
(2) Pairing inherited from cup product. This is obvious skew-symmetric since cup product is. Why

non-degenerate? Well, we modded out by the orthocomplement.
(3) First step is to show E/E∩E⊥ is absolutely simple as a π1-rep. Use Picard-Lefschetz + vanishing

cycles all conjugate to each other. Then, use the following result

Theorem 29.6 (Kazhdan-Marguliz). Let ψ be a non-deg symplectic form on a Qℓ-vector space W , and
let G ⊂ Sp(W,ψ) be a closed subgroup s.t.

(a) W is absolutely simple G-module (i.e. simple over algebraic closure)

(b) G is generated by transvections x 7! x± ψ(x, δ)δ

Then, G contains an open subgroup of Sp(W,ψ).

Proof sketch. First show G is an ℓ-adic Lie subgroup. Then it is enough to show that LieG = Lie Sp(W,ψ)

(and use ℓ-adic exponential). Property (b) tells us that LieG is generated by x 7! ±ψ(x, δ)δ. At this
point, one is reduced to linear algebra. ■

■

Thus, E/E ∩ E⊥ satisfies the hypotheses of the MAIN LEMMA 27.2.

30 Lecture 30

Plan today

• sketch remainder of proof of RH

• statement of main theorem in Weil II

• + some applications

30.1 Outline of proof of Riemann Hypothesis

We have reduced things to the following

Claim 30.1. Let X be even dimensional of dimension n+1. The eigenvalues α of Frob ↷ Hn+1(Xk,Qℓ)
satisfy the inequality

qn/2 ≤ |α| ≤ qn/2+1.

The proof of this is via induction on n
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(1) Find an embedding X ↪! PN s.t. there exists a Lefschetz pencil L.

Over an algebraically closed field, can do this (Theorem 27.5), and the claim is unphased by base
extension, so find one over k and then extend to a large enough (finite) subfield for this pencil to
still be defined.

(2) Enough to show theorem for Blbase locus(L)X because H∗(X) ↪! H∗(BlX), so we will replace X
with this blowup.

(3) Have Lefschetz fibration π : BlX ! P1. We want to understand Hn+1 of this blowup, so use Leray

Hi(P1, Rjπ∗Qℓ) =⇒ Hi+j(BlX,Qℓ).

The interesting groups are (want to show Frobenius eigenvalues satisfy desired inequality in each
of these groups)

(i) H2(P1, Rn−1π∗Qℓ)

This sheafRn−1π∗Qℓ is actually constant, so this is simply H2(P1,Hn−1(fiber)) = Hn−1(fiber)(−1).
The fiber is a variety of odd dimension n. Taking a hyperplane section Z, get a map

Hn−1(fiber) ↪! Hn−1(Z)

(weak Lefschetz for injectivity). The RHS is middle cohomology of an even dimensional variety,
so win by induction.

(ii) H1(P1, Rnπ∗Qℓ)

This is the sheaf we studied in terms of vanishing cycles, so recall the subspace E ⊂ Rnπ∗Qℓ
spanned by vanishing cycles. Let E⊥ be its orthocomplement. We break things into the pieces

(a) Rnπ∗Qℓ/E
This is a constant sheaf by Picard-Lefschetz. Done by Weak Lefschetz.

(b) E/E ∩ E⊥

Saw last time that this satisfies hypotheses of MAIN LEMMA 27.2, so we win in this case.

(c) E ∩ E⊥

This is a constant sheaf by Picard-Lefschetz. Done by Weak Lefschetz.

(iii) H0(P1, Rn+1π∗Qℓ)

In good situations, this is again a constant sheaf. Use the same argument as in (i) + Poincaré
duality.

30.2 Weil II + Applications

(A special case of?) the main theorem of Weil II is the following:

Theorem 30.2 (Deligne). Suppose U/Fq is a smooth geometrically connected (possibly non-proper) curve,
and let F be a Qℓ-sheaf on U which is pure of weight zero, i.e. Fx ↷ Fx has eigenvalues α s.t. |α| = 1 Can get in

this situa-
tion e.g. by
twisting a
sheaf which
is pure of
some other
weight

(under any embedding). Then, H1
c(UFq

,F ) is mixed of weights ≤ 1, i.e. eigenvalues α of Frobenius
satisfy |α| = qi/2 where i ∈ Z≥−1.
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Corollary 30.3 (by PD). H1(UFq
,F ) is mixed of weights ≥ 1.

In particular, the eigenvalues in the corollary can’t have absolute value 1 (in more particular, they
can’t be 1).

30.2.1 Application 1: Semisimplicity of some monodromy

Say π : X ! U is a smooth proper morphism of varieties over a field k. For each i, get

ρi : π
ét
1 (Uk, u)! GL

(
(Riπ∗Qℓ)u

)
(monodromy representation on fiber over u, or something like that).

Theorem 30.4 (Deligne). These representations ρi are semisimple, i.e. direct sums of irreducible rep-
resentations.

Proof. Step (i) reduce to case of finite fields. Note π,X,U are all defined over some f.g. Z-algebra (only
finitely many coefficients appear in description of everything). Then specialize to finite field61

Step (ii). Let E ⊂ Riπ∗Qℓ be a locally constant subsheaf. Want to show it has a complement, i.e.
that

0 −! E −! Riπ∗Qℓ −! F −! 0

splits. This extension gives an element of

Ext1πét
1 (UFq )

(F,E).

In fact it lives in a subgroup of this, it lives in the Frobenius invariants

Ext1πét
1 (UFq )

(F,E)Frob

(after replacing k with finite extension so things descend to ground field).
Step (iii) show Ext1πét

1 (UFq )
(F,E)Frob = 0. This group is the same as

H1(πét
1 (UFq

),Hom(F,E))Frob = H1
ét(UFq

,Hom(F,E))Frob.

Note that F,E have the same weight i (both subquotients of Riπ∗Qℓ), so Hom(F,E) has weight 0. Weil
II then tells us that H1(UFq

,Hom(F,E)) is mixed of weights ≥ 1 (in fact, of weights 1, 2), so 1 is not an
eigenvalue of Frob and we win. ■

30.2.2 Application 2: Chebotarev

Theorem 30.5 (Serre). Suppose X is normal with G-cover f : Y ! X, i.e. f finite étale w/ Galois
group G. Here, X,Y are geometrically connected Fq-varieties. Let ρ : πét

1 (X)! G be the representation Remember:
A finite étale
X-scheme is
a finite set
with action
of πét

1 (X)

determined by f . Let C ⊂ G be a conjugacy class. Then,

Remember:
Image
of Frob
under x∗ :

πét
1 (SpecFqn)!
πét
1 (X) is

well-defined
up to
conjugacy,
called Frobx

lim
n!∞

# {x ∈ X(Fqn) | Frobx ∈ C}
#X(Fqn)

=
#C

#G

61something something specialization map surjective on prime-to-p fundamental group something something
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(we will even see explicit error terms).

Serre did this using Lang-Weil estimates.

Proof. Let 1C : G! Qℓ be the indicator function of C. We want to count∑
x∈X(Fqn )

1C(ρ(Frobx)).

This looks somewhat Lefschetz-y. Note that we have a basis of (class) functions on G given by characters,
so we can rewrite ∑

x∈X(Fqn )

1C(ρ(Frobx)) =
∑

x∈X(Fqn )

∑
χ∈Ch(G)

aiχi(ρ(Frobx))

where
ai =

1

#G

∑
χi∈Ch(G)

#C · χi([C]).

That is, ∑
x∈X(Fqn )

1C(ρ(Frobx)) =
#C

#G

∑
x∈X(Fqn )

∑
χi∈Ch(G)

χi([C])χi(ρ(Frobx)).

We’d like to interpret this sheaf-theoretically. Given χi we get a Qℓ-sheaf Fχi associated to the repre-
sentation Remember:

A Qℓ-sheaf
is the same
thing as a
continuous
Qℓ-linear
πét
1 -

representation

Note that
this repre-
sentation
is weight 0

since it fac-
tors through
a finite
group, so
eigenvalues
are roots of
unity

πét
1 (X)

ρ
−! G

ρχi−−! GLni
(Qℓ)

(χi is a character, i.e. trace of a representation ρχi
). Unwinding definitions, we have that

χi(ρ(Frobx)) = Tr (Frobx ↷ (Fχi)x)

(χi is the trace of ρχi
). Hence, the sum from before becomes

#C

#G

∑
χ∈Ch(G)

∑
x∈X(Fqn )

χi(C) Tr (Frobx | (Fχi
)x) =

#C

#G

∑
χi∈Ch(G)

χi(C)

2 dimX∑
i=0

(−1)i Tr(Frob | Hic(XFq
,Fχi

)).

Two possibilities

(i) χi trivial

Get
∑2 dimX
i=0 Tr(Frob | Hic(XFq

,Qℓ)) = #X(Fqn).

(ii) χi non-trivial. Want

T (n, χ) :=

2 dimX∑
i=0

Tr
(
Frob | Hic(XFq

,Fχi
)
)

small, i.e. T (n, χ)/#X(Fqn) ! 0 as n ! ∞. Now, note that H2 dimX
c (XFq

,Fχi
) is dual to

H0(XFq
,F∨

χi
(dim)) = 0 because χi has no fixed part (non-trivial irreducible). Get contributions to Question:

What?the sum T (n, χ) from Hic(XFq
,Fχi

) for i < 2 dimX, so the eigenvalues of Frob have absolute value
qni/2 for i < 2 dimX. Thus, Note the

Betti num-
bers appear-
ing in the
error term
here

T (n, χ) ≤ q
2 dimX−1

2 ·n
∑

dimHic(XFq
,Fχi

),
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so T (n, χ)/qn dimX ! 0 as n!∞. Since #X(Fqn) grows like qn dimX , we win. ■
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31 List of Marginal Comments

o I think his proof is given in the last chapter of Koblitz . . . . . . . . . . . . . . . . . . . . . . . 3
o See (sub)section 24.3 for (1) and a bit on (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
o Same i as the cohomology degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
o g below is étale by 2 out of 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
o good reference: ch. 6 of Néron models by BLR . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
o Remember: Čech cohomology computes étale cohomology when X quasi-compact and any finite

subset is contained in an affine (e.g. X quasi-projective) . . . . . . . . . . . . . . . . . . . . . 29
o Z/ℓZ can be represented by Spec k[t]/(t(t− 1) . . . (t− (ℓ− 1))) . . . . . . . . . . . . . . . . . . 37
o ‘curve’ means geometrically integral, separated, finite type . . . . . . . . . . . . . . . . . . . . . 38
o See e.g. section III.3 and/or IV.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
o Think principal G-bundles and associated bundle construction . . . . . . . . . . . . . . . . . . 45
o Question: Is it always an equivalence of groupoids, though? . . . . . . . . . . . . . . . . . . . . 45
o Answer: Yes. It’s functorial for isomorphisms of forms (thought not general morphisms) by

construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
o Basically showed this when defining δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
o I’m actually not so sure this is true . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
o π is an isomorphism over the image of U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
o Remember: j! exact because it’s stalks are simple . . . . . . . . . . . . . . . . . . . . . . . . . . 58
o This is a Hartshorne exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
o Question: Is this like a Thom isomorphism? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
o Answer: Yes. A bit more on this next lecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
o Remember: If Z ⊂ X is an irreducible subset in codimension 1, you get an exact sequence

Z! Pic(X)! Pic(U)! 0 (assuming X ‘nice’. See Hartshorne section 2.6) . . . . . . . . . . 60
o Special case of upper shriek in Verdier duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
o Note ι∗ is exact, so believable it has a right adjoint (in addition to its let adjoint ι∗) . . . . . . 62
o Remember: If you have an exact left adjoint, then you preserve injectives . . . . . . . . . . . . 62
o In the end, this pair looks kinda like a sphere bundle . . . . . . . . . . . . . . . . . . . . . . . . 62
o This is a topological computation since things here computed in the analytic site (recall F lcc

on Uan-ét here) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
o Question: Is this the right embedding? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
o Looking at sheaves on the category of continuous πét

1 -sets is apparently closely related to ‘anima’ 74
o Remember: H1

ét of abelian lcc sheaves is that same as H1(πét
1 ;−) . . . . . . . . . . . . . . . . . 74

o One day I’ll not be scared by this word, but not today . . . . . . . . . . . . . . . . . . . . . . . 75
o Buzzphrase: ‘localization of a category at a Serre subcategory’ (or something) . . . . . . . . . . 78
o Question: Is ‘non-singular’ smooth or regular? . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
o Answer: I think smooth since we appeal to purity at some point . . . . . . . . . . . . . . . . . 85
o Tony Feng’s notes are a good reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
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o To do this e.g. use smooth base change (Theorem 20.1) so you can do computation over a point
and then pull back to S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

o Think about transition functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
o Apparently, Tao has a blog post giving more examples of this sort of trick . . . . . . . . . . . . 100
o Remember: f.g. module over noetherian local ring is free . . . . . . . . . . . . . . . . . . . . . . 106
o If all fibers were smooth, this would be true for all r by smooth and proper base change (Theorem

20.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
o If SpecA is an affine neighborhood of s ∈ L, then L \ S will have an affine open of the form

SpecAf , and Af ! FracAf = FracA = FracOL,s (or something like this) . . . . . . . . . . . 114
o Can get in this situation e.g. by twisting a sheaf which is pure of some other weight . . . . . . 118
o Remember: A finite étale X-scheme is a finite set with action of πét

1 (X) . . . . . . . . . . . . . 119
o Remember: Image of Frob under x∗ : πét

1 (SpecFqn) ! πét
1 (X) is well-defined up to conjugacy,

called Frobx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
o Remember: A Qℓ-sheaf is the same thing as a continuous Qℓ-linear πét

1 -representation . . . . . 120
o Note that this representation is weight 0 since it factors through a finite group, so eigenvalues

are roots of unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
o Question: What? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
o Note the Betti numbers appearing in the error term here . . . . . . . . . . . . . . . . . . . . . . 120
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C1 field, 48
G-torsor, 34
Xan-ét, 63
α-twisted sheaf, 45
Qℓ-sheaf, 78
F order prime to char k, 60
FÉt(X), 68
ζ-function of E0, 104
q-Weil number of weight i, 100
Xan, 63
étale, 8
étale cohomology, 13, 26
étale fundamental group, 67
Čech cohomology, 28
Čech complex, 27

absolute Frobenius, 96, 98
algebraic space, 20
Amitsar complex, 31
analytic étale site, 11
arithmetic Frobenius, 99
Arithmetic,geometric Frobenii, 99
Artin-Schreier exact sequence, 33
Artin-Schrierer covering, 38
Azumaya algebras, 45

big étale site, 11
big monodromy, 107
Brauer class of T , 44
Brauer group, 44

Chow groups, 87
Cohomological Brauer group, 43
cohomological Brauer group, 44
cohomology, 76
Cohomology with compact support, 53
cohomology with support, 59
compactifiable, 88
Comparison Theorem for Fundamental Groups,

69
constructible, 54
continuous map, 13

cospecialization map, 80
covering families, 10

derived category of constructible sheaves, 90
Descent data for a qcoh sheaf, 15
Descent for quasi-coherent sheaves, 16

effective descent, 20
elementary fibration, 63
Existence of Lefschetz pencils, 108
Extension by zero, 52

fiber functor, 67
fiberwise dense, 63
finite étale site, 67
flat sheaf of Zℓ-modules, 76
formally étale, 8
fppf topology, 11
functional equation, 3

geometric Frobenius, 99
global sections support on Z, 58
Grothendieck topology on a category C/site, 10
Gysin sequence, 61

Hard Lefschetz theorem, 6
Hilbert 90, 36
Hodge index theorem, 7

inertia group at s ∈ S, 114

Künneth formula, 81
Künneth Formula (simple version), 83
Kummer map, 85
Kummer sequence, 37

Lefschetz Fixed Point Formula, 92
Lefschetz number, 6
Lefschetz pencil, 108
Leray spectral sequence, 39
Lift to characteristic 0, 80
lisse, 77
Local version of purity, 62
locally constant, 54, 77
locally constant constructible (lcc), 59
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locally surjective, 23
lower shriek, 52

MAIN LEMMA, 107
Mayer-Vietoris sequence, 30
mixed of weights ≤ 1, 118
morphism of Qℓ-sheaves, 78
morphism of descent data of qcoh sheaves, 16

Noether-Skolem, 45

ordinary double point, 108

perfect complex, 105
Period-index question, 47
Picard-Lefschetz formula, 115
Poincaré duality, 88
polarized schemes, 20
presheaf, 12
presheaf inverse image, 25
prime cycles, 85
Projection formula, 84
projection formula, 92
Proper base change theorem, 55
pullback of F to x, 22
pure of weight zero, 118
purity, 61

quasi-algebraically closed field, 48

reduced norm, 48
relative Frobenius, 9, 96, 99
Riemann existence theorem, 66
Riemann Hypothesis, 100
Riemann hypothesis, 3

Severi-Brauer Schemes, 45
sheaf, 12
sheaf inverse image, 25
sheaf of Zℓ-modules, 75
sheafification, 21
skyscraper sheaf, 22
small étale site, 11
smooth + proper base change theorem, 79
Smooth Base Change, 79
specialization, 69
split by a cover, 35
stalk of F at x, 22
standard étale, 8

Tate Conjecture, 86
Tate’s theorem, 49
Tensor product trick, 100
total Čech complex, 27
total Chern class, 87
total Tate module, 79
transvections, 117
Tsen’s theorem, 48

unramified, 8
upper shriek, 62

vanishing cycles, 115
variety, 1
Verdier duality, 90

Weil Conjectures, 3

zeta function, 3
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