A Note on Auto. Forms. for Quat. Algs.

Niven Achenjang

Fall 2023

These are notes on Automorphic Forms for Quaternion Algebras, following [Gee22, Section 4], written for the MF learning seminar. They reflect my understanding (or lack thereof) of the material, so are far from perfect. They are likely to contain some typos and/or mistakes, but ideally none serious enough to distract from the mathematics. With that said, enjoy and happy mathing. These notes (and the accompanying talk) are pretty rough.

Contents

1	Reminder on Quaternion Algebras	1
2	Some Rep Theory	2

 ${\bf 3} \quad {\bf Modular \; Forms + Jacquet\text{-}Langlands}$

3

Our main reference is [Gee22, Section 4], though also see [Zho] (especially Lectures 13 - 17) for more details. The goal of this talk is not to cover all of [Gee22, Section 4], but to introduce enough of it for one to be able to read it on their own ahead of our last two talks after Thanksgiving.

1 Reminder on Quaternion Algebras

Note 1. For more info here, consult e.g. [Mil20, Chapter IV].

Setup 1. Let F be a field of characteristic not 2.

Definition 2. A quaternion algebra D/F is a 4-dimensional central simple F-algebra.

Fact. Any such D is isomorphic to an algebra of the form $H(a,b) = H_F(a,b) := F\langle i,j \rangle / (i^2 = a, j^2 = b, ij = -ji)$.

Fact. It is always the case that either $D \cong M_2(F)$ or D is a division algebra, i.e. every nonzero element is invertible.

Fact. $D \otimes_F \overline{F} \simeq M_2(\overline{F})$ is the algebra of 2×2 matrices over \overline{F} . Thus, quaternion algebras are twists of $M_2(F)$ (the converse holds to) and are classified by $H^1(F, \operatorname{Aut} M_2(F)) = H^1(F, \operatorname{PGL}_2)$.

¹All automorphisms of $M_2(F)$ are inner

Definition 3. On D, one can define a reduced norm $\operatorname{Nm}:D\to F$ such that $\alpha\in D$ is invertible if and only if $\operatorname{Nm}(\alpha)\neq 0$.

Example 4. If $D = M_2(F)$, then Nm : $D \to F$ is simply the determinant.

Example 5. If $D = H_F(a, b)$, then

$$Nm(\alpha + \beta i + \gamma j + \delta k) = (\alpha + \beta i + \gamma j + \delta k)(\alpha - \beta i - \gamma j - \delta k) = \alpha^2 - a\beta^2 - b\gamma^2 + ab\delta^2. \quad \triangle$$

Notation 6. Given D, we consider the associated F-algebraic group $G_D := \operatorname{Res}_{D/F} \mathbb{G}_m$ whose functor of points is

$$G_D(R) := (R \otimes_F D)^{\times}$$

for any F-algebra R.

Assumption. Now assume F is a number field.

Definition 7. For any place v of F, $D_v := D \otimes_F F_v$ is a quaternion algebra over the completion F_v . We say that D is ramified at v if D_v is a division algebra. We let S(D) denote the set of places at which D ramifies. \diamond

The fact that $H^1(F, \operatorname{PGL}_2) \cong \operatorname{Br}(F)[2]$ along with the short exact sequence (taking 2-torsion is left-exact, $(-)[2] = \operatorname{Hom}(\mathbb{Z}/2\mathbb{Z}, -)$)

$$0 \longrightarrow \operatorname{Br}(F) \longrightarrow \bigoplus_{v} \operatorname{Br}(F_v) \xrightarrow{\sum \operatorname{inv}_v} \mathbb{Q}/\mathbb{Z} \longrightarrow 0$$

of class field theory shows that S(D) classifies D up to isomorphism; it also shows that S(D) can be any even cardinality set of real or finite places of F.

Example 8.

- $S(D) = \emptyset \iff D \cong M_2(F)$
- For $F = \mathbb{Q}$, $S(D) = \{2, \infty\} \iff D \cong \mathbb{H} = H_{\mathbb{Q}}(-1, -1)$ is the (most obvious \mathbb{Q} -form of) usual Hamilton quaternions.

2 Some Rep Theory

Skip in talk?

Definition 9. A locally profinite group G is a topological group where every open neighborhood of $1 \in G$ contains a compact, open subgroup.

Fact. (locally) profinite \iff (locally) compact and totally disconnected.

Example 10. Let K/\mathbb{Q}_p be a finite extension, and let D/K be a central simple algebra. Then, $\mathrm{GL}_n(K), D^{\times}, \mathrm{GL}_n(\mathscr{O}_K), \mathscr{O}_D^{\times}$ (for $\mathscr{O}_D \subset D$ a maximal order) are all locally profinite. Similarly, $\mathrm{GL}_n(\widehat{\mathbb{Z}})$ and $\mathrm{GL}_n(\mathbb{A}_{\mathbb{Q},f})$ are locally profinite. \triangle

Definition 11. Let V be a (possibly infinite dimensional) \mathbb{C} -vector space, and let G be a locally profinite group. A representation $\pi: G \to \mathrm{GL}(V)$ (often abbreviated (π, V)) is smooth if the stabilizer of any $v \in V$ is an open subgroup of G. It is admissible if it is smooth and dim $V^U < \infty$ for all compact open $U \subset G$.

Assumption. Suppose that G supports a bi-invariant Haar measure μ . Thus, for any $\varphi \in C_c^{\infty}(G) := \{\text{smooth compactly supported functions } G \to \mathbb{C}\}$ – where smooth means there's some compact open $K \subset G$ such that $f(gk) = \varphi(g)$ for all $g \in G, k \in K$ – we have

$$\int_{G} \varphi(g) d\mu = \int_{G} \varphi(gh) d\mu = \int_{G} \varphi(hg) d\mu$$

for any $h \in G$.

Definition 12. We define the Hecke algebra to be the associative algebra $\mathcal{H}(G) := C_c^{\infty}(G)$ with product given by convolution:

$$(\varphi * \psi)(x) := \int_G \varphi(g)\psi(g^{-1}x)d\mu(g).$$

Sometimes, one will specify a compact open $K \subset G$ and then define $\mathcal{H}(G/K) := C_c^{\infty}(K \setminus G/K)$. \diamond

Fact. Let (π, V) be a smooth representation of G. Then, π induces a homomorphism $\mathcal{H}(G) \to \operatorname{End}_{\mathbb{C}}(V)$ where $\varphi \in \mathcal{H}(G)$ acts on V via

$$\pi(\varphi) \cdot v := \int_C \varphi(g)\pi(g) \cdot v d\mu.$$

Remark 13. If $K \subset \operatorname{Stab}(v)$ and φ is right K-invariant (e.g. $\varphi \in \mathcal{H}(G/K)$), then

$$\pi(\varphi) \cdot v = \sum_{g \in G/K} \mu(K) \varphi(g) \pi(g) \cdot v$$

is a finite sum. You can always arrange this by taking K sufficiently small.

3 Modular Forms + Jacquet-Langlands

Setup 14. Let F be a totally real number field, and let D/F be a quaternion algebra. Recall the algebraic group G_D/F and the set S(D) of ramified places.

We first define our spaces of (cuspidal) modular forms.

Construction 15 (Cusp forms of weight (k, η)). For each (real) place $v \mid \infty$, choose some integers $k_v \geq 2$ and $\eta_v \in \mathbb{Z}$ such that $w := k_v + 2\eta_v - 1$ is independent of v. Set $k = (k_v)_{v \mid \infty}$ and $\eta = (\eta_v)_{v \mid \infty}$, both in $\mathbb{Z}^{\oplus [F:\mathbb{Q}]}$.

Warning: lots of noncanonical choices incoming...

I have no idea what the significance of this w is

As our next piece of notation, if $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}_2(\mathbb{R})$ and $z \in \mathbb{C} \setminus \mathbb{R}$, we set $j(\gamma, z) := cz + d$. One can check that

$$j(\gamma \delta, z) = j(\gamma, \delta z)j(\delta, z). \tag{3.1}$$

For each (real) place $v \mid \infty$, define a subgroup $U_v \subset (D \otimes_F F_v)^{\times} = G_D(F_v)$ along with a U_v -rep (τ_v, W_v) as follows:

• if $v \in S(D)$ (i.e. if $D_v = D \otimes_F F_v$ is a division algebra), then we set $U_v := D_v^{\times} = G_D(F_v) \cong \mathbb{H}^{\times}$, where \mathbb{H} denotes the usual Hamilton quaternions (the unique non-trivial quaternion algebra over \mathbb{R}).

Let \mathbb{C}^2_v denote the 2-dimensional U_v -rep $U_v \hookrightarrow \mathrm{GL}_2(\overline{F}_v) \cong \mathrm{GL}_2(\mathbb{C})$ and then we let (τ_v, W_v) denote the representation

 $\left(\operatorname{Sym}^{k_v-2}\mathbb{C}^2\right)\otimes\left(\bigwedge^2\mathbb{C}^2\right)^{\eta_v}.$

• if $v \notin S(D)$ (i.e. if $D_v \cong M_2(\mathbb{R})$), then $D_v^{\times} \cong GL_2(\mathbb{R})$. In this case, we take $U_v = \mathbb{R}^{\times} SO(2)$. Furthermore, we take $W_v = \mathbb{C}$ and let U_v act on it via

$$\tau_v(\gamma) = j(\gamma, i)^{k_v} (\det \gamma)^{\eta_v - 1}$$

Now, set

$$U_{\infty} := \prod_{v \mid \infty} U_v, \ W_{\infty} := \bigotimes_{v \mid \infty} W_v, \ \text{and} \ \tau_{\infty} := \bigotimes_{v \mid \infty} \tau_v.$$

Let $\mathbb{A} = \mathbb{A}_{\mathbb{Q}}$ be the adeles and let \mathbb{A}^{∞} be the finite adeles. Finally, we let $S_{D,k,\eta}$ denote the space of functions $\varphi : G_D(\mathbb{Q}) \backslash G_D(\mathbb{A}) \to W_{\infty}$ satisfying

- (1) $\varphi(gu_{\infty}) = \tau_{\infty}(u_{\infty})^{-1}\varphi(g)$ for all $g \in G_D(\mathbb{A})$ and $u_{\infty} \in U_{\infty}$
- (2) There is a nonempty open subset $U^{\infty} \subset G_D(\mathbb{A}^{\infty})$ such that $\varphi(gu) = \varphi(g)$ for all $u \in U^{\infty}$, $g \in G_D(\mathbb{A})$
- (3) Let S_{∞} denote the set of infinite places of F and fix some $g \in G_D(\mathbb{A}^{\infty})$. By condition (1), the function

$$\begin{array}{cccc} \operatorname{GL}_2(\mathbb{R})^{S_{\infty} \setminus S(D)} & \longrightarrow & W_{\infty} \\ (\gamma_v)_{v \in S_{\infty} \setminus S(D)} & \longmapsto & \tau_{\infty}(\gamma) \varphi(g\gamma), \end{array}$$

where $\gamma = (\gamma_v)_{v|\infty}$ (and $\gamma_v = 1$ if $v \in S(D)$) descends² to a function

$$(\mathbb{C}\setminus\mathbb{R})^{S_{\infty}\setminus S(D)}\longrightarrow W_{\infty}.$$

We require the above function to be holomorphic (for all $g \in G_D(\mathbb{A}^{\infty})$).

²along the map
$$\operatorname{GL}_2(\mathbb{R}) \twoheadrightarrow \mathbb{C} \setminus \mathbb{R}, g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto g(i) = \frac{ai+b}{ci+d}$$

What's the significance of these U_v 's? U_v is the center of $G_D(F_v)$ times a maximal compact

I guess this is encoding the transformation law of usual modular forms?

I suppose this is asking φ to be 'smooth'. I think also corresponds to the level of usual modular forms

Skip this during the talk, just write "holomorphy condition" (4) If $S(D) = \emptyset$ (i.e. $D = M_2(F)$), then we also ask that

Cuspidality condition

$$\int_{F\setminus\mathbb{A}_F}\varphi\left(\begin{pmatrix}1&x\\&1\end{pmatrix}g\right)\mathrm{d}x=0\ \text{for all}\ g\in G_D(\mathbb{A})=\mathrm{GL}_2(\mathbb{A}_F).$$

If, furthermore, $F = \mathbb{Q}$, then we also demand that the function

$$\begin{array}{ccc} \operatorname{GL}_2(\mathbb{R}) & \longrightarrow & W_{\infty} \\
\gamma & \longmapsto & \varphi(g\gamma) \left| \operatorname{Im}(\gamma(i)) \right|^{k/2}
\end{array}$$

is bounded, for all $g \in G_D(\mathbb{A}^{\infty})$.

Note that $G_D(\mathbb{A}^{\infty})$ acts on $S_{D,k,\eta}$ via right translation, i.e. via

$$(g\varphi)(x) = \varphi(xg).$$

Example 16 ([Gee22], Exercise 4.9). Take $F = \mathbb{Q}, S(D) = \emptyset$ (so $G_D = \mathrm{GL}_{2,\mathbb{Q}}$), $k_{\infty} = k$, and $\eta_{\infty} = 1$. Define

$$U_1(N) = \left\{ g \in \operatorname{GL}_2(\widehat{\mathbb{Z}}) : g \equiv \begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}.$$

Gee takes $\eta_{\infty} = 0$ instead, but I'm confused by why

(1) The intersection of $GL_2(\mathbb{Q})^+$ and $U_1(N)$ inside $GL_2(\mathbb{A}^{\infty})$ is $\Gamma_1(N)$, the matrices in $SL_2(\mathbb{Z})$ congruent to $\begin{pmatrix} 1 & * \\ & 1 \end{pmatrix} \mod N$.

Proof. Say $\gamma \in \operatorname{GL}_2(\mathbb{Q})^+ \cap U_1(N) \subset \operatorname{GL}_2(\mathbb{A}^{\infty})$. Then, $\det \gamma \in \mathbb{Q}^+ \cap \widehat{\mathbb{Z}}^{\times} = \{+1\}$ (positive rational numbers which are p-adic units for all primes p), so $\gamma \in \operatorname{SL}_2(\mathbb{Z})$. The condition on $U_1(N)$ then becomes that $\gamma \equiv \begin{pmatrix} 1 & * \\ & 1 \end{pmatrix} \operatorname{mod} N$, so $\gamma \in \Gamma_1(N)$. Convince yourself of the other inclusion if you don't yet see it.

(2) The space $S_{D,k,0}^{U_1(N)}$ of $U_1(N)$ -invariant cusp forms can be identified with the usual space $S_k(\Gamma_1(N))$ of weight k holomorphic cusp forms for $\Gamma_1(N)$.

Proof Sketch. Take for granted the following facts:

$$\mathbb{A}^{\times} = \mathbb{Q}^{\times} \times \widehat{\mathbb{Z}}^{\times} \times \mathbb{R}_{>0}^{\times} \text{ and } \operatorname{GL}_{2}(\mathbb{A}) = \operatorname{GL}_{2}(\mathbb{Q})U_{1}(N)\operatorname{GL}_{2}(\mathbb{R})^{+}$$

(these are related to \mathbb{Q} having class number 1 and strong approximation for SL_2). Thus, the domain of any $\varphi \in S_{D,k,0}^{U_1(N)}$ can be identified with

$$GL_{2}(\mathbb{Q})\backslash GL_{2}(\mathbb{A})/U_{1}(N) = GL_{2}(\mathbb{Q})\backslash GL_{2}(\mathbb{Q})U_{1}(N) GL_{2}(\mathbb{R})^{+}/U_{1}(N)$$
$$= GL_{2}(\mathbb{Q})\backslash GL_{2}(\mathbb{Q}) GL_{2}(\mathbb{R})^{+}U_{1}(N)/U_{1}(N)$$

$$\simeq (\operatorname{GL}_2(\mathbb{Q}) \cap U_1(N) \cap \operatorname{GL}_2(\mathbb{R})^+) \setminus \operatorname{GL}_2(\mathbb{R})^+$$
$$= \Gamma_1(N) \setminus \operatorname{GL}_2(\mathbb{R})^+,$$

 \triangle

where the $U_1(N)$ and the $\mathrm{GL}_2(\mathbb{R})^+$ commute because $U_1(N) \subset \mathrm{GL}_2(\mathbb{A}^{\infty})$ (and $\mathrm{GL}_2(\mathbb{A}_{\mathbb{Q}}) = \mathrm{GL}_2(\mathbb{A}^{\infty}) \times \mathrm{GL}_2(\mathbb{R})$). Observe that $S_{D,k,0}^{U_1(N)}$ is identified with the space of functions $\varphi : \Gamma_1(N) \setminus \mathrm{GL}_2(\mathbb{R})^+ \to \mathbb{C}$ ($W_{\infty} = \mathbb{C}$ since $v \notin S(D)$) satisfying

- (1) $\varphi(gu_{\infty}) = j(u_{\infty}, i)^{-k}\varphi(g)$ for all $g \in GL_2(\mathbb{R})^+$ and $u_{\infty} \in \mathbb{R}_{>0}^{\times} SO(2)$. I chose $\eta_{\infty} = 1$ instead of 0 in order to get no determinant appearing above.
- (2) No need for an analogue of condition (2) in Construction 15 since the φ here are already invariant under $U_1(N)$.
- (3) The function

$$\widetilde{\varphi}: \operatorname{GL}_2(\mathbb{R})^+ \longrightarrow \mathbb{C}$$
 $\gamma \longmapsto j(\gamma, i)^k \varphi(\gamma)$

descends³ (along $GL_2(\mathbb{R})^+ \to \mathbb{H}$, $g \mapsto g(i)$) to a holomorphic map $\mathbb{H} \to \mathbb{C}$ (note $\mathbb{H} = GL_2(\mathbb{R})^+/(\mathbb{R}_{>0}^\times SO(2))$ since $\mathbb{R}_{>0}^\times SO(2) = \operatorname{Stab}_{GL_2(\mathbb{R})^+}(i)$).

(4) cuspidality condition.

As already hinted at above, the assignment $\varphi \mapsto \widetilde{\varphi}$ (where $\widetilde{\varphi} : \mathbb{H} = \operatorname{GL}_2(\mathbb{R})^+/(\mathbb{R}_{>0}^\times \operatorname{SO}(2)) \to \mathbb{C}$ is $\widetilde{\varphi}(\gamma) = j(\gamma, i)^k \varphi(\gamma)$) identifies the space of such functions with the space $S_k(\Gamma_1(N))$ of weight k holomorphic cusp forms for $\Gamma_1(N)$.

If you want, fill in some of the details missing above.

Example 17 ([Zho], Lecture 16). Call D a definite quaternion algebra if $S_{\infty} \subset S(D)$. In this case, if $U \subset G_D(\mathbb{A}^{\infty})$ is an open subgroup, then $S_{D,2,0}^U$ is simply the set of \mathbb{C} -valued functions on the finite set $G_D(\mathbb{Q})\backslash G_D(\mathbb{A})/G_D(\mathbb{R})U$.

Definition 18. A cuspidal automorphic representation of $G_D(\mathbb{A}^{\infty})$ of weight (k, η) is a (smooth, admissible) irreducible subquotient of $S_{D,k,\eta}$.⁴ \diamond

Fact. Any such representation is of the form $\pi = \bigotimes' \pi_v$ with $\pi_v^{\operatorname{GL}_2(\mathscr{O}_v)} \neq 0$ for almost all v, with π_v smooth, irreducible (+ admissible) rep of $G_D(F_v)$ for all v, and with the restriction in this restricted tensor product being that the vth component of a vector is in $\pi_v^{\operatorname{GL}_2(\mathscr{O}_v)}$ (which is 1-dimensional) for almost all v.

Fact (global Jacquet-Langlands).

(1) The only f.dimensional cuspidal automorphic representations of $G_D(\mathbb{A}^{\infty})$ are 1-dimensional representations which factor through the reduced norm; these only exist if $D \neq M_2(F)$.

³Use (3.1) to know that $\widetilde{\varphi}$ is invariant under right-translation by $U_{\infty} = \mathbb{R}^{\times}_{>0} \operatorname{SO}(2)$

 $^{^4}S_{D,k,\eta}$ is already semisimple and admissible, so I think this parenthetical is technically unnecessary

(2) There is a bijection between infinite-dimensional cuspidal automorphic representations of $G_D(\mathbb{A}^{\infty})$ of weight (k,η) and cuspidal automorphic representations of $GL_2(\mathbb{A}_F^{\infty})$ of weight (k,η) which are discrete series for all finite places $v \in S(D)$.

This bijection is compatible with (and so determined by) a local Jacquet-Langlands correspondence 5

Remark 19. Jacquet-Langlands allows one to attach Galois reps to infinite-dimensional cuspidal automorphic representations of $G_D(\mathbb{A}^{\infty})$.

Remark 20. One can use cyclic base change to show that if $r: G_F \to \mathrm{GL}_2(\overline{\mathbb{Q}}_p)$ becomes modular when restricted to G_E , for some finite solvable Galois extension E/F of totally real fields, then r must have been modular to begin with.

Fact. Let K be a number field, and let S be a finite set of (finite or infinite) places of K. For each $v \in S$, let L_v be a finite Galois extension of K_v . Then, there is a finite solvable Galois extension M/K such that, for each place w of M above a place $v \in S$, there is an isomorphism $L_v \cong M_w$ of K_v -algebras.

These facts will allow us to reduce our modularity lifting theorem to the case where we're working a quaternion algebra D over a totally real field F such that $S(D) = S_{\infty}$ (in which case, $S_{D,k,\eta}$ is especially simple; see Example 17).

Remark 21. In particular, even if we only care about $F = \mathbb{Q}$, the desire to make such a reduction would lead us to want to state the final theorem for (totally real) number fields beyond \mathbb{Q} (there's no quaternion algebra D/\mathbb{Q} with $S(D) = S_{\infty} = \{\infty\}$ since this set has odd cardinality).

Recall that the absolute Galois group of a local field is solvable

References

- [Gee22] Toby Gee. Modularity lifting theorems. Essential Number Theory, 1(1):73–126, oct 2022.
- [Mil20] J.S. Milne. Class field theory (v4.03). https://www.jmilne.org/math/CourseNotes/ CFTc.pdf, 1996 (Revised 2020). 1
- [Zho] Rong Zhou. Modularity lifting theorems. https://users.math.yale.edu/~rz289/ Galois_reps.pdf. 1, 6

⁵If $v \notin S(D)$, then $JL(\pi)_v = \pi_v$ and if $v \in S(D)$, then $JL(\pi)_v = JL(\pi_v)$