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1 Samit Dasgupta: Ribet’s Method

Note 1. These are slide talks, so quite likely they’ll be too fast for me to take good notes... On the other
hand, there are slides and lecture recordings on the workshop website.

1.1 Lecture 1 (7/26) – Ribet’s Method I: Converse to Herbrand’s Theorem

Today we want to describe Ribet’s theorem. Dick Gross called this theorem a ‘lightning bolt’ when it
first appeared.

Let p be an odd prime, let H = Q(µp), a CM field. Let G = Gal(H/Q) ∼= F×
p and consider

χ : GQ −! F×
p , σ(ζp) = ζχ(σ)p .

Notation 1.1.1. Let Cl(H) denote the class group of H, the group of fractional ideals modulo the
principal fraction ideals.

Let A = Cl(H)⊗Fp, the p-part of the class group. This has a natural G-action (i.e. A is an Fp-linear
G-rep), so we can write

A =

p−2⊕
k=0

Aχk

, Aχk

=
{
a ∈ A : σ(a) = χk(σ) · a, σ ∈ G

}
(since gcd(#G, p) = 1).

Theorem 1.1.2 (Ribet). Let k be a positive even integer, k ̸≡ 0 (mod p− 1). Then,

p | ζ(1− k) = −Bk

k
=⇒ Aχ1−k

̸= 0.

Remark 1.1.3. Herbrand had proven the other direction of this. ◦

Remark 1.1.4. The class number formula (dividing the results for H and H+) implies that p | ζ(1 − k)

for some positive even k implies that

A− :=
⊕

k even

Aχ1−k

̸= 0.

Ribet’s theorem is like a character-by-character refinement of what one would get just using the class
number formula. ◦

Here’s a diagram of Ribet’s method due to Barry Mazur (see Figure 1).
Whirlwind summary of Ribet’s proof:

• Eisenstein series

Ek =
ζ(1− k)

2
+

∞∑
n=1

σk−1(n)q
n ∈Mk.

Above, σk−1 is the (k − 1)st power divisor function.

• There exists g ∈Mk with constant term 1 (and integral Fourier coefficients). Define the cusp form

f = Ek − ζ(1− k)/2 · g ∈ Sk

1



ζ-functions Class Groups

Eisenstein Series Galois Cohomology Classes

Cusp Forms Galois Representations

Figure 1: A diagram of Ribet’s method

(In particular, do not just take g = 2Ek/ζ(1− k))

• If p | ζ(1− k), then f ≡ Ek (mod p).

This is because g has integral Fourier coefficients.

• The Deligne-Serre Lifting Lemma implies that there is a cuspidal eigenform with the same congru-
ence property.

• Galois representation associated to f :

ρ : GQ −! GL2(Zp).

• The congruence implies it is reducible mod p Question:
Should this
say irre-
ducible?

Answer:
No, See
e.g. proof
of Lemma
1.1.16

ρ mod p ≡

(
1 b(σ)

0 χk−1(σ)

)

• Cohomology class
κ(σ) = b(σ)χ1−k(σ) ∈ H1(GQ,Fp(χ

1−k)).

• Ribet shows this class is nonzero and unramified.

• Class field theory implies the existence of such a class is equivalent to Aχ1−k ̸= 0.

CFT gives the following lemma, where F = Q(µp) from now on Remember:
A is a quo-
tient of
Cl(F )

Lemma 1.1.5. Aχ1−k ̸= 0 if and only if there exists a Galois extension E/Q satisfying the following
conditions:

– E ⊃ F , and Gal(E/F ) ∼= Fp

– E is everywhere unramified over F

– The action of G on Gal(E/F ) via conjugation is given by the character χ1−k, i.e.

στσ−1 = τχ
1−k(σ) for σ ∈ Gal(E/Q) and τ ∈ Gal(E/F ).

2



Proof Sketch. Let H be the Hilbert class field of F , so H is everywhere unramified over F , and
Gal(H/F ) ∼= Cl(F ). Furthermore, the action of G = Gal(F/Q) on LHS via conjugation corresponds
to natural action on RHS.

If Aχ1−k ̸= 0, choose any nonzero functional Aχ1−k

! Fp, and let E be the fixed field of

Gal(H/F ) ∼= Cl(F )↠ A↠ Aχ1−k

! Fp.

This E has all the desired properties by construction. These steps are reversible, so get other
implication as well. ■

Recall 1.1.6. (First) Galois cohomology is

H1(GQ,Fp(χ
1−k)) = Z1/B1,

where
Z1 =

{
κ : GQ ! Fp : κ(στ) = κ(σ) + χ1−k(σ)κ(τ)

}
,

and
B1 =

{
κx(σ) = (1− χ1−k(σ))x : x ∈ Fp

}
.

⊙

Definition 1.1.7 (unramified classes). For each place v of Q, choose an inertia group Iv ⊂ Gv ⊂ GQ.
There is a restriction map

H1(GQ,Fp(χ
1−k)) −! H1(Iv,Fp(χ

1−k)).

We define H1
ur(GQ,Fp(χ

1−k)) to be the intersection of the kernels of these restriction maps. ⋄

Lemma 1.1.8. There exists a field extension E as in Lemma 1.1.5 iff

H1
ur(GQ,Fp(χ

1−k)) ̸= 0.

Proof. Let s : G! Gal(E/Q) (G = Gal(F/Q)) denote a splitting of the canonical projection Gal(E/Q)!

G (exists by size considerations, kernel and image have coprime sizes). Define

κ(σ) := σ · s(σ−1|F ) ∈ Gal(E/F ).

Exercise. This is a 1-cocycle, and is independent (mod coboundaries) of the section chosen.

We check κ is unramified at all places v of Q. If w is a place of F , then the restriction of κ to Iw is
clearly trivial since E is unramified over F . Now, we use inflation-restriction

0 −! H1(Iv/Iw,Fp(χ
1−k)) −! H1(Iv,Fp(χ

1−k)) −! H1(Iw,Fp(χ
1−k)).

Since |Iv/Iw| divides (p− 1),1 the left term vanishes. Hence, the image of κ in H1(Iv,Fp(χ
1−k)) vanishes

as well (since it’s restriction to Iw is 0).

1It’s a subquotient of Gal(F/Q) ≃ F×
p

3



We check κ is non-trivial. Altering κ by a coboundary amounts to choosing a different section in its
definition, so if κ is a trivial cohomology class, we may assume that it is even trivial as a cocycle (choose
a different section). However, then σ = s(σ|F ) which is absurd. This would imply that s is surjective
even though it’s mapping from a smaller group.

Exercise. Do the reverse direction. That is, given κ ∈ H1
ur(GQ,Fp(χ

1−k)) non-trivial, consider

κ|GF
∈ H1(GF ,Fp(χ

1−k)) = Hom(GF ,Fp).

Let E be the fixed field of the kernel of κ|GF
. Show that E has the desired properties. ■

Goal (Reduction of Ribet’s theorem). It suffices to show H1
ur(GQ,Fp(χ

1−k)) ̸= 0.

Remark 1.1.9. In fact, it suffices to show H1
ur(GQ,Fq(χ

1−k)) ̸= 0 for some p-power q. This is because, as
an abelian group, Fpr ∼= F⊕r

p . ◦

Much of the trick in using Ribet’s method is observing that the desired result can be restated as the
existence of some cohomology class.

Now we start on the LHS of the cycle from before, and we want to see how to get a Galois cohomology
class. Start with

Ek =
ζ(1− k)

2
+

∞∑
n=1

σk−1(n)q
n ∈Mk.

This is basically integral (except possible for the constant term). This is an element of Mk, the space of
weight k modular forms for SL2(Z).

Example. The numerators of the constant terms in E4, E6 are both = 1. △

Lemma 1.1.10. For every even k ≥ 4, there exists g ∈Mk with integer Fourier coefficients and constant
term 1. Specifically,

E4 =
1

240
+ . . . and E6 = − 1

504
+ . . . .

Proof. Write k = 4a+ 6b with a, b ≥ 0, and set g = (240E4)
a(−504E6)

b. ■

Now we let
g′ := Ek − ζ(1− k)

2
g ∈ Sk.

If p | ζ(1− k), then g′ ≡ Ek mod p.

Notation 1.1.11. Let R = Z(p) = Z[1/q : q ̸= p].

Note g′ ∈ Sk(R).

Theorem 1.1.12 ((Consequence of?) Deligne-Serre Lifting Theorem). Suppose p | ζ(1− k). Then
there exists a number field K, a prime ideal p | p, and a cuspidal eigenform f ∈ Sk(OK) such that

f ≡ g′ ≡ Ek mod p.

Proof. Let T denote the Hecke algebra of Sk(R).2 Since g′ is congruent to an eigenform, the map I guess
Eisenstein
series are
eigenforms
since cusp
forms span
a codim 1
subspace

2T = Z[Tℓ : ℓ]
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t 7! a1(t · g′) (mod p) is a ring homomorphism3 T ! Fp. Let m denote the kernel. Since p ∈ m is not
nilpotent, there exists a prime ideal P ⊂ m not containing p. Let K = Frac(T/P), a number field by
finite dimensionality of the space of cusp forms. We then define

f :=
∑
n≥1

Tnq
n,

where Tn denotes the image of the Hecke operator Tn ∈ T in the integral domain T/P. Since each Tn

satisfies a monic integer polynomial (by Cayley-Hamilton), it follows that f ∈ Sk(OK). The maximal
ideal m gives rise to a maximal ideal p of OK such that f ≡ g′ ≡ Ek (mod p). ■

Remark 1.1.13. The eigenform f is p-ordinary in the sense that ap(f) is a p-adic unit, since

ap(f) ≡ ap(Ek) = 1 + pk−1 ≡ 1 (mod p). ◦

Notation 1.1.14. Let E = Kp (completion at p), O = OE , and m be the maximal ideal of O.

Theorem 1.1.15 (Deligne, Hida, Wiles). There exists a continuous irreducible representation

ρ : GQ −! GL2(E)

such that

• ρ is unramified outside p

• For ℓ ̸= p, char(ρ(Frobℓ)) = x2 − aℓ(f)x+ ℓk−1

• Restricting to the one place it’s ramified,

ρ|Gp
∼=

(
η−1εk−1 ∗

0 η

)
,

where ε is the p-adic cyclotomic character, and η is an unramified character such that η(art(p)) =
αp(f). Here, αp(f) is the unit root of

x2 − ap(f)x+ pk−1 = 0.

The only thing from the thrid bullet point above we need to know about η is that it is unramified.

Lemma 1.1.16 (Ribet’s Lemma, Version 1). There exists a basis for ρ such that

• ρ =

(
a(σ) b(σ)

c(σ) d(σ)

)
∈ GL2(O),

• a(σ) ≡ 1, c(σ) ≡ 0, d(σ) ≡ χk−1(σ) mod m

• κ(σ) := b(σ) · χ1−k(σ) ∈ O/m is a cocycle defining a non-trivial class in H1(GQ, (O/m)(χ1−k)).
3ring homomorphism and not just linear map since g′ ≡ Ek

5



Proof. Modulo m,

char(ρ(Frobℓ)) ≡ x2 − (ℓk−1 + 1)x+ ℓk−1 = (x− 1)(x− ℓk−1)

is reducible. By Cebotarv density, we get

char(ρ(σ)) ≡ (x− 1)(x− χk−1(σ)) (mod m)

for all σ ∈ GQ. Fix τ ∈ GQ such that χk−1(τ) ̸≡ 1. Such a τ exists since k ̸≡ 1 (mod p− 1), so χk−1 ̸≡ 1.
By Hensel’s lemma, ρ(τ) has two distinct eigenvalues λ1, λ2 ∈ O such that

λ1 ≡ 1 and λ2 ≡ χk−1(τ) (mod m).

Choose a basis now such that

ρ(τ) =

(
λ1 0

0 λ2

)
.

We know (integrality condition by Cebotarev) that

Tr(ρ(σ)) = a(σ) + d(σ) ∈ O and Tr(ρ(στ)) = a(σ)λ1 + d(σ)λ2 ∈ O.

Mutiplying the first by λ1 and subtracting, we get (λ1 − λ2)d(σ) ∈ O. Since λ1 ̸≡ λ2 mod m, we see
that d(σ) ∈ O. Then we get a(σ) ∈ O.

At this point, we’re out of time, so we’ll pick up here next lecture... ■

1.2 Lecture 2 (7/27)

Our goal is

Theorem 1.2.1 (Ribet). Let k be a positive even integer, k ̸≡ 0 (mod p− 1). Then,

p | ζ(1− k) = −Bk

k
=⇒ Aχ1−k

̸= 0.

Last time we had constructed a congruence between a cuspidal eigenform f ∈ Sk(OK) and an Eisen-
stein series Ek. Attached to the eigenform was a Galois rep ρ : GQ ! GL2(E) which is unramified outside
of p. We were in the middle last time of proving Ribet’s Lemma

Lemma 1.2.2 (Ribet’s Lemma, Version 1, Lemma 1.1.16). There exists a basis for ρ such that

• ρ =

(
a(σ) b(σ)

c(σ) d(σ)

)
∈ GL2(O),

• a(σ) ≡ 1, c(σ) ≡ 0, d(σ) ≡ χk−1(σ) mod m

• κ(σ) := b(σ) · χ1−k(σ) ∈ O/m is a cocycle defining a non-trivial class in H1(GQ, (O/m)(χ1−k)).

Proof continued. We showed that

char(ρ(σ)) ≡ (x− 1)(x− χk−1(σ)) (mod m)

6



for all σ ∈ GQ. Since χk−1 ̸≡ 1 (mod p), we can choose τ ∈ GQ with χk−1(τ) ̸≡ 1. We used this to
construct λ1, λ2 ∈ O with λ1 − λ2 ∈ O× which were used to show that a(σ), d(σ) ∈ O. Since

Tr(ρ(σ)) ≡ a(σ) + d(σ) ≡ 1 + χk−1(σ) (mod m),

and similarly one gets
Tr(ρ(στ)) ≡ 1 + χk−1(στ) (mod m),

we can solve to obtain a(σ) ≡ 1, d(σ) ≡ χk−1(σ) (mod m).
The function GQ ! E given by σ 7! b(σ) has bounded image since GQ is compact and ρ is continuous.

It’s also not identically zero since ρ is irreducible. Therefore, there exists τ′ ∈ GQ for which b(τ′) ̸= 0

and ordp(b(τ
′)) is minimized. Conjugating by (

1 0

0 b(τ′)

)

leaves a(σ) and d(σ) unchanged, but replaces b(σ)⇝ b(σ)/b(τ′). We may therefore assume that b(σ) ∈ O

(since b(τ′) had minimal valuation) for all σ, and b(τ′) = 1.

Exercise. Show c(σ) ∈ m, and so

ρ(σ) =

(
1 b(σ)

0 χk−1(σ)

)
.

Now,
b(στ) = a(σ)b(τ) + b(σ)d(τ) ≡ b(τ) + b(σ)χk−1(τ) (mod m).

Define
κ(σ) = χ1−k(σ)b(σ) ∈ Z1

(
GQ,O/m(χ1−k)

)
.

Let’s show it’s non-trivial as a cohomology class. If κ is a coboundary, then

κ(σ) = (1− χ1−k(σ))x for some x ∈ O/m.

Plug in σ = τ to get
0 = (1− χ1−k(τ))x =⇒ x = 0 =⇒ κ = 0

(since χ1−k(τ) ̸≡ 1). This contradicts b(τ′) = 1, and concludes the proof of Ribet’s lemma. ■

It remains to show that κ is everywhere unramified.

• κ is unramified at all finite v ̸= p since ρ is

• κ is unramified at ∞ since p is odd (and 2 = #I∞ is relative prime to p)

• To show κ is unramified at p, we use Ribet’s Wrench:

ρ(σ) =

(
1 b(σ)

0 χk−1(σ)

)
, but ρ|Ip ∼=

(
χk−1 ∗
0 1

)

7



(since η in Theorem 1.1.15 is unramified). Since χk−1 ̸≡ 1, this can only happen if κ|Ip is a
coboundary. Have 1, χk−1 as both a sub and quotient will only happen if the representation is split
(on the inertia group) which only happens if κ|Ip is a coboundary.

This concludes the proof of Ribet’s theorem.

Exercise. Explicitly exhibit κ|Ip as a coboundary.

1.2.1 Generalizations

We showed
p | ζ(1− k) =⇒ p | #(Cl(F )⊗ Zp)

χ1−k

What if p2 | ζ(1− k)?
This is the type of question attempted to be answer by the Main Conjecture of Iwasawa Theory. We

should have p2 | #(Cl(F )⊗ Zp)
χ1−k

.

Warning 1.2.3. Hard to determine the group structure. •

One of the main obstracles in generalizing Ribet’s argument is that after construction a cusp form
g ∈ Sk such that g ≡ Ek (mod p2), there is no generalization of the Deligne-Serre Lifting Theorems that
yields a cuspidal eigenform f such that f ≡ g ≡ Ek (mod p2). A typical sigutation is that there are two
normalized cuspidal eigenforms f1, f2 ≡ Ek (mod p) and g = (f1 + f2)/2.

Working over Zp, consider Hecke algebra

T = {(a, b) ∈ Zp × Zp : a ≡ b (mod p)}

(Tℓ 7! (aℓ(f1), aℓ(f2))) acting on span of f1, f2. The (non-Eigen) cusp form g ≡ Ek (mod p2) yields a
Zp-algebra homomorphism

T −! Z/p2Z
Tℓ 7−! a1(Tℓg) = aℓ(Ek) = 1 + ℓk−1

.

Example. If g = (f1 + f2)/2, this is (a, b) 7! (a+ b)/2. △

In general, we won’t be able to say much about the structure of T: it is a Noetherian commutative
ring of characteristic zero. We have a homomorphism φ : T ! Z/p2Z sending Tℓ 7! 1 + ℓk−1. If we use
only Hecke operators away from the level, we can assume T is reduced. If we localize at the maximal ideal
containing the kernel of φ, we can assume T is local.

Example. Recall our toy example

T ∼= {(a, b) ∈ Zp × Zp : a ≡ b (mod p)} ,

with each copy of Zp corresponds to one cuspidal eigenform fi. Each has an associated Galois represen-
tation ρi : GQ ! GL2(Qp). We thus obtain

ρ = ρ1 × ρ2 : GQ −! GL2(Qp ×Qp),

8



and we note that Qp ×Qp = Frac(T) (total ring of fractions). △

Theorem 1.2.4. There exists a continuous irreducible representation

ρ : GQ −! GL2(K) where K = Frac(T),

such that

• ρ is unramified outside p.

• For ℓ ̸= p, char(ρ(Frobℓ)) = x2 − Tℓx+ ℓk−1.

•

ρ|GQp
∼=

(
η−1εk−1 ∗

η

)
(η still an unramified character).

Theorem 1.2.5 (Ribet’s Lemma, Version 1). Let T be a complete dvr with maximal ideal m. Let G
be a compact group. Suppose we are given

ρ : G −! GL2(K) with K = Frac(T),

continuous, irreducible s.t.

char(ρ(g)) = (x− χ1(g))(x− χ2(g)) (mod m)

for characters χ1, χ2 : G! T× with χ1 ̸≡ χ2 (mod m). Then, there exists a nonzero cohomology class

κ ∈ H1
(
G,T/m(χ2χ

−1
1 )
)
.

Theorem 1.2.6 (Ribet’s Lemma, Version 2). Let T be a reduced complete local Noetherian ring,
I ⊂ T an ideal. Suppose we’re given a compact group G and a continuous representation

ρ : G −! GL2(K), K = Frac(T)

such that
char(ρ(g)) ≡ (x− χ1(g))(x− χ2(g)) (mod I)

for characters χ1, χ2 : G ! T× with χ1 ̸≡ χ2 (mod m). Suppose that for each projection K ! k onto
a field, the projection of ρ is irreducible. Then, there exists a fractional ideal B ⊂ K and a surjective
cohomology class

κ ∈ H1
(
G, (B/IB)(χ2χ

−1
1 )
)
.

Definition 1.2.7. The cohomology class above being surjective means that the image of every repre-
sentative cocycle generates B/IB as a T-module. In other words... ⋄

We wan to prove version 2 of Ribet’s lemma now
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Proof Sketch of Lemma 1.2.6. Fix τ ∈ G s.t. χ1(τ) ̸≡ χ2(τ) (mod m). By hensel’s lemma, ρ(τ) has two
distinct eigenvalues λ1, λ2 ∈ T... Same argument as before shows a(σ), d(σ) ∈ T. Unlike the dvr case, we
will not be able to show that b(σ), c(σ) ∈ T. Note that

b(σ)c(τ) = a(στ)− a(σ)a(τ) ∈ T.

The data of (a(σ), d(σ), b(σ)c(τ)) for σ, τ ∈ G is known as a pseudorepresentation of G valued in T.
We won’t use the perspective of pseudoreps in this course.

We can still show a(σ) ≡ χ1(τ) and d(σ) ≡ χ2(σ) mod I as before. Let B be the T-module generated
by {b(σ) : σ ∈ G}. By continuity assumption, B is a f.g. T-submodule of K. The irreduciblity assumption
implies that B ⊗T K = K, so B is a fractional ideal. Note

b(στ) = a(σ)b(τ) + b(σ)d(τ) ≡ χ1(σ)b(τ) + b(σ)χ2(τ) (mod I),

and define
κ(σ) = χ−1

2 (σ)b(σ) ∈ Z1
(
GQ, B/IB(χ1χ

−1
2 )
)
.

Suppose
κ(σ) = κ′(σ) + (1− χ1χ

−1
2 (σ))x

for some cocycle κ′ valued in a proper T-submodule B′ ⊂ B/IB (i.e. that κ not surjective). Plug in
σ = τ to get

0 = κ′(τ) + (1− χ1χ
−1
2 (τ))x,

so x ∈ B′. Hence, κ(σ) ∈ B′ for all σ ∈ G. However, the elements κ(σ) = χ−1
2 (σ)b(σ) generate B as a

T-module by definition, so we have a contradiction. ■

Even though B may not be isomorphic to T as a T-module, in some sense B/IB is “as large as” T/I,
which is usually good enough for application. More precisely,

FittT(B/IB) ⊂ FittT(T/I) = I,

where Fitt dentoes the 0th Fitting ideal.

Definition 1.2.8. Let R be a commutative ring, and let M be a finitely presented R-module:

Rn f−−! Rm −!M −! 0.

The 0th Fitting ideal FittR(M) is the ideal ofR generated by allm×mminors of the matrix representing
the map f . ⋄

Example. If n = m, then we say M is quadratically presented over R, and FittR(M) = (det(f)). △

Exercise.

• The Fitting ideal does not depend on the chosen presentation

• FittR(R/I) = I for any ideal I ⊂ R
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• FittR(M) ⊂ AnnR(M)

• If R = Z, and M is a finitely generated abelian group, then FittZ(M) = 0 if M is infinite, but
FittZ(M) = (#M) is M is finite.

• If M ↠M ′, then FittR(M
′) ⊃ FittR(M)

• Base change: If S is an R-algebra, then

FittS(M ⊗R S) = FittR(M) · S.

(Note this is false for annihilators in place of Fitting ideal)

Corollary 1.2.9. If B ⊂ K = Frac(T) is a fractional ideal, then

FittT(B/IB) ⊂ FittT(T/I) = I.

Proof. AnnT(B) = 0, so FittT(B) = 0. Therefore, FittT/I(B/IB) = 0 (use base change), so FittT(B/IB) ⊂
I (use base change again?). ■

1.3 Lecture 3 (7/28)

Today we want to talk about the Brumer-Stark conjecture.

Setup 1.3.1.

• Let F be a totally real field

• Let H be a finite Galois extension, and a CM field

• Let G = Gal(H/F ), assumed abelian

• Let S be the set of infinite places and ramified places

• Let T be a finite set of places, disjoint from S

• Define
LS,T (χ, s) :=

∏
p̸∈S

1

1− χ(p)Nm(p)−s

∏
p∈T

(
1− χ(p)Nm(p)1−s

)
with χ a character on G = Gal(H/F ).

When χ is the trivial character, the second factor should cancel the pole at s = 1.

Fix a prime p of F and a prime P of H above p. Assume that p splits completely in H.

Conjecture 1.3.2 (Tate-Brumer-Stark). There exists u ∈ OH [1/p]× such that |u| = 1 under each
embedding H ↪! C,

LS,T (χ, 0) =
∑
σ∈G

χ−1(σ) ordP(σ(u))

for all characters χ of G, and u ≡ 1 (mod qOH) for all q ∈ T .
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This gives the existence of special units in the abelian extensions of totally real fields. Note in general,
we don’t know how to construct the abelian extensions of totally real fields.

This conjecture goes back to work of Stickelberger (showed Gauss sums had valuations related to zeta
values), Brumer, Stark, Tate, etc. Sounds like Brumer made the conjecture for finite places, Stark for
infinite places, and it was Tate who realized these were the same conjecture (just at different places).

Theorem 1.3.3 (D.–Kakde). There exists

u ∈ OH [1/p]× ⊗ Z[1/2]

satisfying the conditions of the Brumer-Stark conjecture.

(Remove the 1/2 above is motivation for last lecture(s). missed some stuff...)

Theorem 1.3.4 (Deligne-Ribet, Cassou-Noguès). There is a unique Θ ∈ Z[G] such that

χ(Θ) = LS,T (χ
−1, 0)

for all characters χ of G.

(In particular, LS,T ’s actually give algebraic integers. This better be true if Brumer-Stark is). The
fact you can get a (unique) such Θ in C[G] is obvious. The content is that you can get something in Z[G]
here.

Let’s look at class groups (to get relation to cohomology). Define (only kill principals generated by
things which are 1 mod all primes of T )

ClT (H) :=
I(H)

⟨(u) : u ≡ 1 (mod T )⟩
.

This is a G-module.

Remark 1.3.5. Brumer-Stark states that Θ annihilates ClT (H).
Saying that PΘ is trivial in the class group is saying that PΘ = (u) (with u ≡ 1 (mod T )). Taking

valuations of this equality at prime ideals gives the equation showing up in the Brumer-Stark conjecture. TODO:
Work this
out

There’s some subtley here at p = 2 which goes away if you invert 2.
To show this annihilation statement, it suffices to prove that

Θ ∈ AnnZp[G]

(
ClT (H)⊗ Zp

)
for all primes p. D.–Kakde are only able to do this for odd p. ◦

Let c be complex conjugation in G. Define

Zp[G]− = Zp[G]/(1 + c), M− =M/(1 + c)M

for any Z[G]-module M . Note c = −1 in Zp[G]−.
Below two thereoms are conjectures of Kurihara, Burns, and Sano. THey were proved by D.–Kakde.
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Theorem 1.3.6. For odd primes p, we have

Θ ∈ FittZp[G]−

(
ClT (H)∨−

)
⊂ AnnZp[G]−(Cl

T (H)∨) = Ann(ClT (H))

where ∨ is Pontryagin dual.

Theorem 1.3.7. For odd primes p, we have

FittZp[G]−

(
∇T

S (H)−
)
= (Θ).

We won’t define the nabla above, but it’s some G-module made from class field theory. There is a
canonical map

∇T
S (H)− ↠ ClT (H)∨−.

Therefore, the Kurihara-Burns-Sano conjecture implies the Brumer-Stark conjecture:

FittZp[G]−(∇
T
S (H)−) = (Θ) =⇒ Θ ∈ FittZp[G]−(Cl

T (H)∨−)

=⇒ Θ ∈ AnnZp[G]−(Cl
T (H)∨−)

=⇒ Θ ∈ AnnZp[G]−(Cl
T (H)−)

This is starting to look related to Ribet’s method. Though one needs to relate nabla to Galois cohomology.

Theorem 1.3.8. For a Z[1/2][G]−-module N , a surjection

∇T
S (H)− ↠ N

is equivalent to a cohomology class κ ∈ H1(GF , N) satisfying certain local conditions.

That is, D.-Kakde found a functor represented by ∇. At this point, they want a surjective cohomology
class living in a large module (or something like this?).

Corollary 1.3.9. To prove FittZp[G]−(∇T
S (H)−) ⊂ (Θ), it suffices to construct a Zp[G]−-module N , and

a cohomology class κ ∈ H1(GF , N) satifying local conditions such that FittZp[G]−(N) ⊂ (Θ).

Theorem 1.3.10. The inclusion above implies an equality:

FittZp[G]−(∇
T
S (H)−) = (Θ).

The hypothesis of the above corollary is the type of thing that Ribet’s method tries to produce.

1.3.1 Hilbert Modular Forms

Let F be a totally real field of degree n. If #Cl+(F ) = 1, a Hilbert modular form for F is a
holomorphic function

f : Hn −! C
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such that for all γ =

(
a b

c d

)
∈ GL+

2 (OF ) we have f |γ = f , where

f |γ(z1, . . . , zn) =
n∏

i=1

(cizi + di)
−kf

(
a1z1 + b1
c1z1 + d1

, . . . ,
anzn + bn
cnzn + dn

)
.

Above ai, bi, ci, di are the images of a, b, c, d under the n embeddings F ↪! R.

Remark 1.3.11. When n > 1, you get the necessary growth condition automatically. This is essentially
because the cusps are still points, and so have high codimension (functions have poles in codimension 1,
so can’t one at just a point). ◦

What about forms with level? Let n ⊂ OF be an ideal, and define

Γ0(n) =
{
γ ∈ GL+

2 (OF ) : c ∈ n
}
.

For χ : (OF /n)
× −! C×, we define the space Mk(n, χ) of nebentypus χ to be the holomorphic f :

Hn ! C such that... TODO: Fin-
ish defini-
tion, look at
slides

In the general case h = #Cl+(F ) ≥ 1, a Hilbert modular form will be an h-tuple of holomorphic
functions Hn ! C, each with a modularity property with respect to a certain congruence subgroup. A
more natural definition is as a function on a certain adelic space. A Hilbert modular form f is described
by its Fourier coefficients

c(m, f),m ⊂ OF nonzero, cλ(0, f), λ ∈ Cl+(F ).

Each coefficient above is ∈ C.

Remark 1.3.12. The nonzero ideals of OQ = Z are in bijection with the positive integers. ◦

Define
Mk(Z) := {f ∈Mk : c(m, f), cλ(0, f) ∈ Z always} .

In general, Mk(R) :=Mk(Z)⊗R.

Fact. For any R ⊂ C, we have

Mk(R) = {f ∈Mk : c(m, f), cλ(0, f) ∈ R always} .

In particular, there’s a C-basis for Mk consisting of integral forms.

A group ring valued modular form is an element of

Mk(G) = {f ∈Mk(Zp[G]) : χ(f) has nebentypus χ for all characters χ of G} .

Over a field, this would the direct sum of the forms of various nebentypi. With integral coefficients,
there’s an additional congruence condition baked in.

Example (Eisenstein Series). E1(G) ∈M1(G) defined by Question:
What is d?

Answer:
The degree
of the to-
tally real
field, i.e. n
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c (m, E1(G)) =
∑
a⊃m

(a,S)=1

σa, cλ(0, E1(G)) =
1

2d
Θ

(this must be modified in level 1). △

These Eisenstein series give the connection to Θ. Now consider

f = E1(G)Vk − Θ

2d
Hk+1(G)

(which is cuspidal at ∞) where Vk and Hk+1(G) have constant term 1. This is cuspidal at infinity.
Choose Vk ≡ 1 (mod pN ), where Θ | pN away from trivial zeros.

f ≡ E1(G) (mod Θ).

The existence of Vk and Hk+1(G) are non-trivial theorems of Jesse Silliman, generalizing reslults of Hida Apparently
doing/did
his postdoc
with Das-
gupta

and Chai. This can be modified to yield a cusp form f satisfying f ≡ E.
The congrunce f ≡ E1(G) (mod Θ) yields a homomorphism

φ : T −! Zp[G]−/(Θ), Tℓ 7! 1 + χ(ℓ),

where χ : GF ! G is the caononical character. Note this Hecke algebra T is a largely mysterious object.

Theorem 1.3.13 (Deligne, Carayol, Hida, Wiles). There exists a continuosu irreducible representation

ρ : GF −! GL2(K), K = Frac(T)

such that

• ρ is unramified outside p (and the level)

• For ℓ ̸= p,
char(ρ(Frobℓ)) = x2 − Tℓx+Nm(ℓ)k−1.

•

ρ|Gp
∼=

(
η−1εk−1 ∗

η

)
.

If I := ker(φ), we have
char ρ(Frobℓ) = ... (mod I).

This put’s us in the setting of Ribet’s Lemma 1.2.6. Applying it as a black box yields a fractional ideal
B ⊂ K = Frac(T) and a cohomology class

κ ∈ H1
(
GF , B/IB(χ−1)

)
.

We have FittT/I(B/IB) = 0, so FittZp[G]−/Θ(B/IB) = 0, so

FittZp[G]−(B/IB) ⊂ (Θ).
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Now apply Corollary 1.3.9, hopefully...
There are local conditions we need satisfied. Pretend for now that κ is unramified at p. Then all the

local conditions will be satisfied, and one gets ∇T
S (H)− ↠ B/ΘB. Hence,

Fitt(∇T
S (H)−) ⊂ Fitt(B/ΘB) ⊂ (Θ)

since B is a faithful Zp[G]-module.
How do you get a class unramified at p? “This is probably the deepest part of our paper.”

(Step 1) There is a non-zero divisor x ∈ Zp[G] such that we can construct a “higher congruence”

f ≡ E1(G) (mod xΘ)

– x measures “trivial zeros at p”

– Requires detailed construction of cusp form

– Calculation of constant terms of Eisenstein series at all cusps

(Step 2) Define
B′ = ⟨b(σ) : σ ∈ Ip, p | p⟩ ⊂ B, B = B/(xΘB,B′),

and
κ(σ) = [σ]−1b(σ) ∈ H1(GF , B).

κ is now tautologically unramified at p since we killed inertia above p. Hence, we get

∇T
S (H)− ↠ B.

(Step 3) A miracle:
Fitt(B) · (x) ⊂ Fitt(B/xΘB) ⊂ (xΘ).

Hence, Fitt(∇T
S (H)−) ⊂ Fitt(B) ⊂ (Θ) (x a non-zero divisor) as before.

Last talk tomorrow we’ll discuss new directions (for example, related to p = 2 part of Brumer-Stark).

Question 1.3.14 (Audience). Can you say a bit about what goes wrong with p = 2?

Answer. In application of Ribet’s lemma, have hypothesis χ1 ̸≡ χ2 (mod m). We need χ1 = 1 and
χ2 = χ. For us, χ(c) = −1 (c = complex conjugation), and 1 ̸≡ −1 (mod m) if m ∤ 2, so we’re good there.
However at 2, it’s possible that χ1 and χ2 become congruent. Hence, need a version of Ribet’s lemma
which handles this case (will be stated next time). ⋆

1.4 Lecture 4 (7/29) – Ribet’s Method IV, New Directions: The Residually
Inditinguishable Case

They’ve been working on this argument for a couple years and apparently just came up with the idea(s)
they needed a couple weeks ago.

Applications of Ribet’s method

16



• Main Conjectecure of Iwasawa Theory

Mazur–Wiles, Wiles

• Cases of Bloch-Kato

Bellaiche–Chenavier (spelling?)

• Main conjecture of Iwasawa theory for elliptic curves

Skinner–Urban

• Gross–Stark and Brumer–Stark conjectures, ETNC

D.–Darmon–Pollack–Kakde–Ventullo

• Class grou of Q(N1/p)

Lang–Wake

Theorem 1.4.1 (Ribet’s Lemma, Version 2, Theorem 1.2.6). Let T be a reduced complete local
Noetherian ring, I ⊂ T an ideal. Suppose we’re given a compact group G and a continuous representation

ρ : G −! GL2(K), K = Frac(T)

such that
char(ρ(g)) ≡ (x− χ1(g))(x− χ2(g)) (mod I)

for characters χ1, χ2 : G ! T× with χ1 ̸≡ χ2 (mod m). Suppose that for each projection K ! k onto
a field, the projection of ρ is irreducible. Then, there exists a fractional ideal B ⊂ K and a surjective
cohomology class

κ ∈ H1
(
G, (B/IB)(χ2χ

−1
1 )
)
.

This was state of the art until recent work proving...

Theorem 1.4.2 (Ribet’s Lemma, Version 3, ‘Residually indistinguishable case’, D.–Kakde–Silliman–Wang).
Let T be a reduced complete local Noetherian ring, I ⊂ T an ideal. Suppose given a compact group G and
a continuous representation

ρ : G −! GL2(K), K := Frac(T)

such that
char(ρ(g)) ≡ (x− χ1(g))(x− χ2(g)) (mod I)

for characters χ1, χ2 : G −! T×. Suppose that for each projection K ↠ k onto a field, the pro-
jection of ρ is irreducible. Then there exists a f.g. T-module M and a surjective cohomology class
κ ∈ H1(G,M(χ2χ

−1
1 )) such that FittT(M) ⊂ I.

We want to spend the rest of today going over the proof of this theorem. Warning: it is hard.

Theorem 1.4.3 (Ophir–Weiss, Hajjar Muñoz). The previous theorem holds when T is a dvr

Ophir–Weiss study versions of Ribet’s lemma in the residually indistinguishable case over a dvr...
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What’s the M appearing in the theorem? We can no longer choose a rigidifying bases and use the “b”
coefficient. Instead, they extend ρ to a T-algebra homomorphism

ρ : T[G] −!M2(K),

and define
∆i = T ⟨ρ(g)− χi(g) : g ∈ G⟩ and M := ∆1/∆1∆2

(I guess ρ acts by χ2 on M?)

Exercise. Show ∆1∆2 ⊂ ∆1.

Now define It’s possible
one of the
1’s below
was sup-
posed to be
a 2.

κ(g) := χ−1
1 (g) (ρ(g)− χ1(g)) ∈M.

Exercise. κ ∈ Z1(G,M(χ2χ
−1
1 )).

surjectivity of κ Let M ′ ⊂ M be a T-submodule, and suppose there’s κ′ ∈ Z1(G,M(χ2χ
−1
1 )) and

x ∈M such that
κ(g) = κ′(g) + (χ2χ

−1
1 (g)− 1)x.

By version 2 of Ribet’s lemma, we can and do assume χ1 ≡ χ2 (mod m), so

(χ2χ
−1
1 (g)− 1)x ∈ mM.

Therefore, κ(g) ∈ M ′ +mM , but κ(g) clearly generates M , so M = M ′ +mM . By Nakayama, one gets
that M =M ′. Question: Is

it clear that
M is finitely
generated?

Answer: G
compact, so
it will have
bounded im-
age. I think
this is the
key

Fitting ideal of M = ∆1/∆1∆2 It remains to prove that FittT(M) ⊂ I.

Assumption (Notational simplification). Let’s say χ1 = χ2, so M = ∆1/∆
2
1

Let ρ1, . . . , ρr denote T-module generates of ∆1. Write

ρiρj

r∑
k=1

δijkρk, δijk ∈ T.

There may be additional relations of the form

r∑
j=1

εijρj = 0, εij ∈ T.

Now, FittT(M) is the ideal generated by r × r determinants where each row has the form (δijk)
r
k=1 or

(εij)
r
j=1.

Remark 1.4.4. It’s easier to deal with rows of ε’s, so we can ignore them. Even logically, any row of ε’s
will be a difference of rows of δ’s. ◦

Let D = (δijk), as we slect some r pairs (i, j) and let k = 1, . . . , r. We want to show that det(D) ∈ I.
We are given Tr ρ(g)− 2χ(g) ∈ I and det ρ(g)− χ2(g) ∈ I.
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Exercise. Use these facts to show that Tr(A),det(A) ∈ I for all A ∈ ∆1.

I think at this point, I’m gonna go ahead and stop taking notes because these details are getting hairy.
See the slides on the website if you wanna know what went on...
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2 Lassina Dembélé: An Algorithmic Approach to Hilbert–Siegel

Modular Forms and the Paramodularity Conjecture

2.1 Lecture 1 (7/25)

Goal.

(1) Computational aspect of Hilbert-Siegel modular forms

(2) Study congruences of these forms

(3) Study modularity of abelian surfaces via concrete examples

2.1.1 Symplectic groups and inner forms

Setup 2.1.1.

• Let g ≥ 1 be an integer.

• Fix a number field F .

• We let J2g denote the matrix

J2g =

(
0 Ig

−Ig 0

)
∈ GL2g(F )

(with Ig the g × g identity matrix)

Definition 2.1.2. The symplectic group of genus g over F is the algebraic group over F defined by

GSp2g(A) =
{
M ∈ M2g(A) :M

tJ2gM = ν(M)J2g for some ν(M) ∈ A×}
with A any F -algebra. The similitude factor is the natural homomorphism

ν : GSp2g −! Gm.

We define Sp2g via the exact sequence

1 −! Sp2g −! GSp2g
ν−−! Gm −! 1,

and call it the special symplectic group. ⋄

Notation 2.1.3. Set G = GSp2g /F .

Definition 2.1.4. An inner form of G is an algebraic group G′/F such that G(F ) ∼= G′(F ). ⋄ Question:
Is it ob-
vious that
this implies
GF

∼= G′
F
?

Question:
Where does
the word
inner come
into play?

We will mostly be interested in the following inner forms of GSp2g /F .

Recall 2.1.5. A quaternion algebra over F is a rank 4 algebra

B = F ⊕ Fi⊕ Fj ⊕ Fk

20



with
i2 = a, j2 = b, and k = ij = −ji.

We require a, b ∈ F×. ⊙

Fact. For any quaternion algebra B/F , there exists infinitely many quadratic extensions K/F s.t. B⊗F

K ∼=M2(K). Such a K is called a splitting field of B.

Remark 2.1.6. Let B/F be a quaternion algebra. Note that

• it has an F -algebra involution : B ! B determined by i = −i and j = −j.

• it has a reduced trace: Tr(γ) = γ + γ = 2x if γ = x+ yi+ zj + wk.

• it has a reduced norm Nm(γ) = γγ.

Observe that the element γ satisfies the polynomial

T 2 − Tr(γ)T +Nm(γ),

which is called its minimal polynomial. ◦

Definition 2.1.7. Let B/F be a quaternion algebra. The unitary similitude group of genus g

attached to B is the F -algebraic group GUB
g /F whose A-points (for A an F -algebra) are

GUB
g (A) = GUg(B ⊗F A) =

{
M ∈Mg(B ⊗F A) :M

∗M = ν(M)Ig for some ν(M) ∈ A×}
(note this is the restriction of scalars of a group defined over B), where M∗ =

(
M
)t

. ⋄

Lemma 2.1.8. GUB
g /F is an inner form of GSp2g /F . Question:

Presum-
ably this
is coming
from a map
PGL2 !

AutGSp2g

(landing in
inner auto-
morphisms).
What is this
map? Pre-
sumably it’s
coming from
some map
GSp2 !

GSp2g I
guess?

Proof. Recall that B ⊗F F ∼=M2(F ). Hence, it is enough to show that

GUg(M2(F )) ∼= GSp2g(F ).

Note that GUg(M2(F )) ↪! M2g(F )  ↩ GSp2g(F ). The isomorphism GUg(M2(F ))
∼
−! GSp2g(F ) will be

of the form M 7! P tMP for a suitable permutation matrix P .

I may have
messed up
some of the
expressions
in this proof
below this
point

Example. Note that if A =

(
a b

c d

)
∈M2(F ), then

A =

(
d −b
−c a

)
and A∗ =

(
d −c
−b a

)
= J−1

2 AJ2.

△

Let

J̃2g =


J2 0

. . .

0 J2

 ∈M2g(F ).
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For any M = (Aij)1≤i,j≤g (each Aij a 2 × 2 matrix), set M∗ = J̃−1
2g M

tJ̃2g. Let P be the permutation
matrix such that

P tJ̃2gP = J2g.

Exercise. Show that

M∗M = ν · 1 =⇒ (M ′)tJ2gM
′ = νI2g for M ′ := P tMP.

■

Example. Let B/Q be the Hamilton quaternion algebra (i.e. i2 = −1 = j2 and k = ij = −ji). If we let
K = Q(i), one has B ⊗Q K ∼=M2(K). Can take

P =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


in the above proof, i.e. GUB

2
∼= GSp4 over K. △

2.1.2 Integral models

Recall G = GSp2g /F . Note that the matrix J2g appearing in the definition of G has integral coefficients,
so G is really the base change of an algebraic group GSp2g,Z /Z defined over the integers. Specifically,

GSp2g,Z(A) =
{
M ∈ M2g(A) :M

tJ2gM = ν(M)J2g for some ν(M) ∈ A×}
for any ring A. We let G := GSp2g,OF

be our preferred choice of integral model for G.

2.2 Lecture 2 (7/26)

Let’s take a digression into quaternion algebras.

2.2.1 Digressions on quaternion algebras

We want to cover the basic properties of quaternion algebras which we will need.

Recall 2.2.1. A quaternion algebra B/F is a rank 4 F -algebra with a basis

B = F ⊕ Fi⊕ Fj ⊕ Fk

such that i2 = a, j2 = b, and k = ij = −ji for some a, b ∈ F×. We denote this by writing

B =

(
a, b

F

)
.

⊙
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Example.

B =

(
1, 1

F

)
is the 2× 2 matrix algebra B ≃M2(F ). △

Example. If F = F is algebraically closed, then the only quaternion algebra over F is M2(F ).4 △

Example. Let F be a local field (e.g. Qp or R). Up to isomorphism, there are only two quaternion
algebras.5 One is M2(F ), and the other is the unique division quaternion algebra B. To construct this
division quaternion algebra, let K/F be the unique unramified quadratic extension, then K ⊂ B, and Question:

Why does B
contain an
unramified
quadratic
extension?

in fact, B ⊗F K ≃ M2(K). Take a uniformizer π ∈ K. Then, there is θ ∈ B such that θ2 = π (note

Question:
Why?

θ ̸∈ K since K unramified), and you can write B = K ⊕ Kθ. This simultaneously gives existence and
uniqueness. △

Let F be a number field, and let B/F be a quaternion algebra. Let p be a rational prime. Then,

F ⊗Q Qp ≃
∏
v|p

Fv

is a product of local fields. Accordingly,

B ⊗Q Qp ≃
∏
v|p

Bv

with Bv a quaternion algebra over Fv. We say that B splits at v (or is unramified at v) if Bv ≃M2(Fv).
Here is the most important theorem about quaternion algebras over number fields.

Theorem 2.2.2. Let F be a number field, and let B/F be a quaternion algebra. Let S = Ram(B) be the
set of places where B ramifies. Then, S is finite with even cardinality. Conversely, any such S is the set
of ramified places for a unique quaternion algebra over F .

Notation 2.2.3. Let MF be the set of places of F , and let QA /F be the set of quaternion algebras
over F .

To restate the theorem, we have a bijection{
S ⊂ MF

#S <∞ even

}
 ! (QA /F )/≃

given by Ram(B) [ B.

Example. Say B =
(
1,1
F

)
≃M2(F ). Then, Ram(B) = ∅. △

Example. Say B =
(

−1,−1
Q

)
(the Hamilton quaternions). Then, Ram(B) = {2,∞}. △

Example. Say B =
(

−1,−1

Q(
√
5)

)
. Then, Ram(B) = {∞1,∞2}. △

4In general, for a, b, λ, µ ∈ F , one has (
a, b

F

)
≃

(
aλ2, bµ2

F

)
5CFT gives Br(F )[2] ≃ 1

2
Z/Z
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Definition 2.2.4. The discriminant of a quaternion algebra B/F is the ideal

dB =
∏

v∈Ram(B)
v<∞

v

(I guess this is an OF -ideal) ⋄

Warning 2.2.5. Some people include v | ∞ in the definition of the discriminant. •

Example. B =
(

−1,−1
Q

)
=⇒ dB = (2) △

Example. B =
(

−1,−1

Q(
√
5)

)
=⇒ dB = (1) △

Definition 2.2.6. Let V be a f.dim F -v.s. A lattice in V is a f.g. OF -submodule L ⊂ V which spans
V over F . ⋄

(In particular, L does not have to be free)

Definition 2.2.7. An order O in B is an OF -lattice in B which is also a subring. We say O is a
maximal order if it is maximal for inclusion inside B. ⋄

Example. Say B =
(

−1,−1
Q

)
. Then,

O = Z⊕ Zi⊕ Zj ⊕ Zk

is an order in B. However, it is not maximal. It is contained in the order

OB = Z⊕ Zi⊕ Zj ⊕ Z
1 + i+ j + k

2

which is maximal.6 △

Remark 2.2.8. If O is an order inside B, then every nonzero element of O will satisfy a monic polynomial
with OF coefficients. ◦

Let O be an order inside B.

Definition 2.2.9. A left (resp. right) ideal I is an OF -lattice which is also a left (resp. right) O-module.
We say that I is a integral ideal if I ⊂ O. ⋄

(An ‘ideal’ as above is the analogue of a ‘fractional ideal’ in a number field)
Let I be an OF -lattice inside B. Set

OR(I) := {x ∈ B : Ix ⊂ I} and OL(I) := {x ∈ B : xI ⊂ I} .

Proposition 2.2.10. OR(I) and OL(I) are orders in B. Furthermore, I will be a right ideal for OR(I)

and a left ideal for OL(I).
6If I’m not mistaken, this is the subset of 1

2
Z⊕ 1

2
Zi⊕ 1

2
Zj ⊕ 1

2
Zk where very coefficient is in Z or in 1

2
Z \ Z.
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Class set Let B/F be a quaternion algebra. Let O be an order in B. Let I, J be left (resp. right)
ideals of O. We say that they are equivalent if there is some γ ∈ B× such that J = Iγ (resp. J = γI).
Now, we define the class sets

ClR(O) = {right O-ideals}/∼ and ClL(O) = {left O-ideals}/∼ .

Warning 2.2.11. These are just pointed sets, they do not have a natural group structure. •

Theorem 2.2.12. ClR(O) and ClL(O) are finite sets.

Remark 2.2.13.

(1) ClR(O) and ClL(O) do not have any group structure.

(2) There are class number formulas for ClR(O) and ClL(O) as well as algorithms to compute them.

◦

Theorem 2.2.14. Let OB be a maximal order inside B. Then, #ClR(OB) and #ClL(OB) is independent
of OB (i.e. it’s the same for any maximal order), and #ClR(OB) = #ClL(OB). This number is called
the class number of B.

Example. Let B =
(

−1,−1
Q

)
, and take

OB = Z⊕ Zi⊕ Zj ⊕ Z
1 + i+ j + k

2
.

Then, ClR(OB) = {[OB ]}. Note that this B supports a Euclidean algorithm. △

2.3 Lecture 3 (7/28)

2.3.1 Hermitian lattices and integral models for GUg

Let B/F be a quaternion algebra over a number field. Recall this has a reduced trace Tr : B ! F as
well as a reduced norm Nm : B ! F .

Let V be a free left B-module of finite rank g.

Definition 2.3.1. A quaternion Hermitian form on V is an F -bilinear form

Q : V × V −! B

satisfying

(i) Q(ax, y) = aQ(x, y) for any a ∈ B and x, y ∈ V

(ii) Q(y, x) = Q(x, y)

We say that Q is nondegenerate if Q(x, V ) = 0 =⇒ x = 0. ⋄

The following theorem highlights the parallels between the commutative and quaternionic settings for
Hermitian form.
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Theorem 2.3.2 (Shimura). Let Q : V × V ! B be a Hermitian form. Then, there exists a B-basis
e1, . . . , eg of V along with αi ∈ F such that

Q(ei, ej) = αiδij .

If, in addition, the norm Nm : B ! F is surjective, then we can choose the basis ei so that Q(ei, ej) = δij

(i.e. so that αi = 1 for all i).

Let O be an order inside B. A Hermitian lattice L inside V is an OF -lattice which is also a left
O-module ( =⇒ B · L = V ).

Example (Standard lattice). If V = Bn, can take L = On. △

Assumption. From now on, assume O = OB is maximal.

(Most of what we’ll say extends to the case of arbitrary order)

Definition 2.3.3. The dual lattice to L (w.r.t. the given pairing Q) is

L∨ := {x ∈ V : Q(x, L) ⊂ OB} .

The norm of L is the following two-sided ideal:

νQ(L) := {Q(x, y) : x, y ∈ L} .

⋄

Fact. νQ(L)−1L ⊂ L∨. This is essentially by definition:

Q(ax, y) = aQ(x, y) ∈ aνQ(L) ⊂ OB

for any a ∈ νQ(L)
−1 and x, y ∈ L.

Definition 2.3.4. We say that L is integral ifQ(L,L) ⊂ OB , i.e. Q restricts to a pairing L×L! OB . ⋄

Definition 2.3.5. We say that L is modular if νQ(L)−1L = L∨. We say that L is maximal if it is
maximal w.r.t. inclusion of lattices with the same norm. ⋄

Lemma 2.3.6. If L is integral and maximal, then L is self-dual and hence modular.

Proof. Integrality tells you that νQ(L) ⊂ OB . Maximality + the inclusion νQ(L)−1L ⊂ L∨ then tells you I think actu-
ally Lassina
claimed this
is an equal-
ity, but I
don’t see
why

that L = L∨. ■

This sec-
ond sentence
might not
actually hold
given what I
wrote in the
first. It’s not
clear to me
these two
lattices have
the same
norm...

Let L be an OB-lattice. Let M0
F denote the set of finite places. We get a family of local lattices

(Lv)v∈M0
F
. Conversely, let (Lv)v∈M0

F
be a family of local lattices such that Lv = O⊕g

B,v for almost all
v ∈ M0

F . Then, there exists a global lattice L ⊂ V giving rise to this family.

If you fix
an arbitrary
basis for V ,
it will be
integral at
almost all
places

Let L,M be OB-lattices in V . We say that L,M are in the same genus if there is some γv ∈ GUg(Bv)

(for all v ∈ M0
F ) such that

Mv = Lvγv
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(i.e. they are locally isomorphic). The genus of L is simply its equivalence class under this relation, i.e.
it is the set of all lattices ‘in the same genus’ as L. This genus of L is denoted by genG(L) (G = GUg).

Assumption. We fix an arbitrary choice of genus genG(L) and work only with lattices belong to it.

Definition 2.3.7. We say L,M ∈ genG(L) are equivalent if there is some γ ∈ GUg(B) such that M =

Lγ. The class set of genG(L) is the set of equivalence classes, and is denoted clG(L) := genG(L)/ ≃. ⋄

If L is a maximal integral lattice, we’ll let

GL := StabG(L) where G = GU(V ).

Can show that this will give an integral model of G. We will use the notation

ClGL
or ClGL

(L), genGL
(L).

Theorem 2.3.8. The class set Cl(GL) is finite.

Let GL/OF be an integral model. We can define the class set adelically as: I guess this
is why func-
tions on
BunG are
related to
automorphic
forms.

ClGL
= GL(ÔF )\GL(F̂ )/GL(F )

where F̂ = AF,f is the group of finite adeles, and ÔF =
∏

v∤∞ O×
F,v.

Algebraic automorphic forms Let U := G(OF ). Set

MGL
(U ;C) := {f : Cl(GL) −! C} .

This is called the space of algebraic automorphic forms of level U and trivial weight on GL(F̂ ).
Recall that G = GU(V ) is an inner form of GSp2g. By Langlands functoriality, we should expect that

this will give us a way to go from one of these simpler-seeming final objects to a Hilbert-Siegal modular
form. More on this next time.

2.4 Lecture 4 (7/29)

Yesterday we defined algebraic automorphic forms.

Remark 2.4.1. In order to use material from the last few lectures to compute automorphic forms, it is
important to know that the class group is finite and that it is computable. ◦

Most of what we said yesterday should be true for any Hermitian form, but for today, we’ll require
our forms to be positive definite.

Setup 2.4.2. We keep the setup/notation from last time. In particular, F is a totally real field, and Q

is a Hermitian form.

Assumption. We assume that Q is positive definite, i.e. that Q(x, x) > 0 if x ̸= 0.
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Under this assumption, the group GL(F ⊗Q R) will be compact. As a consequence, the group

ΓL = StabGL
(L)/O×

F

is finite.

Definition 2.4.3. The mass of the genus genG(L) is given by

MassG(L) :=
∑

[M ]∈ClG(L)

1

|ΓM |

(This is the groupoid cardinality of the groupoid of lattices in a given genus). ⋄

Theorem 2.4.4. Let L be a maximal integral lattice in V . Then, the mass of the genus of L is given by

MassG(L) =

(
1

2ng
L(M)

) ∏
v∈Ram(B)\{v|∞}

λv,

where I’m not sure
what M is

•

L(M) =

∣∣∣∣∣
g∏

r=1

ζF (1− 2r)

∣∣∣∣∣
•

λv =

g∏
r=1

(qrv + (−1)r) where qv = #OFv/pv.

• n = [F : Q]

Remark 2.4.5. Sounds like every maximal, integral lattice belongs to the same genus, the principal
genus? ◦

Example. Consider B =
(

−1,−1
Q

)
with maximal order

OB = Z⊕ Zi⊕ Zj ⊕ Z
1 + i+ j + k

2
.

Recall that OB has class number one, but what about higher rank lattices? Take V = Bg and L = Og
B

(I guess with g = 2?). The previous theorem will give

MassG(L) =
1

4
|ζQ(−1)ζQ(−3)| (2− 1)(4 + 1).

Now,

ΓL = StabG(L) =

{(
u 0

0 v

)
: u, v ∈ O×

B

}
∪

{(
0 u

v 0

)
: u, v ∈ O×

B

}
,

so #ΓL = 1152, MassG(L) = 1/#ΓL, and we have class number one again #ClG(L) = 1. △
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2.4.1 Algebraic automorphic forms

Let U = GL(ÔF ) ⊂ GL(F̂ ), a compact open. Let

MG(U) :=
{
f : ClG(L) −! C

}
,

a f.dim C-v.s. called the space of algebraic automorphic forms of level U and trivial weight.

Recall 2.4.6. Adelically, we have

ClG(L) = GL(ÔF )\GL(F̂ )/GL(F ).

⊙

In this setting, it is easy to define the Hecke action. Take finite v ̸∈ Ram(B), and recall

GL(Fv) = GSp2g(Fv).

These two groups will have the same (local) Hecke algebra Hv. To get the global Hecke algebra, one
combines all the Hv (for finite v ̸∈ Ram(B))

T :=
⊗

v ̸∈Ram(B)

Hv.

Jacquet-Langlands We won’t describe this correspondence in full generality. In the particular case
we are working in, this will tell us that MGL

(U) is isomorphic to a certain subspace of Hilbert-Siegal
modular forms as a Hecke module. In particular, if we can compute the Hecke module structure of this
f.dim vector space, we will automagically know there is a subspace of Hilbert-Siegal modular forms which
have the same Hecke structure.

2.4.2 Computing ClG(L) and ΓG(U)

Let p be a finite prime outside of Ram(B). Then, there are finitely many left, simple OB-modules P ⊂ OB

which contain p. We fix one such P.

Definition 2.4.7. We say that a lattice L′ is a p-neighbor of L if

L

L ∩ L′
∼=

OB

p
∼=

L′

L′ ∩ L
.

The set of p-neighbours is denoted Np(L). ⋄

Example. Say g = 1, so GU1(B) = B. Let L = OB . Fix some finite v ̸∈ Ram(B). Lassina drew a
picture of a hexagonal (in particular (3 = 2+1)-regular) tessellation. Apparently to pictures corresponds
somehow to the lattices of GL2(Qp) (for p = 2). Somehow this picture also corresponds to p-neighbors
(for p | p?). △

I got distracted, but apparently there’s some Hecke operator T1(p) acting on MG(V ) corresponding
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to the matrix

diag

1, . . . , 1︸ ︷︷ ︸
g

, π, . . . , π︸ ︷︷ ︸
g

 .

Explicitly, the action is
(T1(p)f)([L

′]) :=
∑

[M ]∈Np(L′)

f([M ]).

There are more Hecke operators similarly defined in terms of neighbors. In particular, if we can compute
p-neighbors, then we should be able to compute the Hecke module MG(U).

2.4.3 Computing p-neighbors

Recall that our lattice L is integral and maximal. Let

Q : L/pL× L/pL −! OB/p
Tr−−! Fp

be the reduction of Q modulo p. This is an Fp-symplectic form which is nondegenerate. Let X ⊂ L/pL

be a subspace. Then, we say that X is isotropic if

Q(X,X) = 0.

We call it a maximal isotropic (or a Lagrangian subspace) if it’s maximal w.r.t. inclusion of isotropic
subspaces.

Theorem 2.4.8. Let L (L/p) be the Grassmannian of Lagrangians. For M ∈ genG(L), let XM be the
image in L/pL. Then, the map

Np(L) −! L (L/pL), M 7! XM

is a bijection.
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3 Sol Friedberg: Automorphic Forms and the Langlands Pro-

gram: A Brief Introduction

3.1 Lecture 1 (7/25)

We want to start with this lecture with a big overview of the Langlands program, and then come back
to fill in some of the vaguer parts over the next few lectures.

Let K/Q be a finite Galois extension. We want to understand Gal(K/Q). For any finite group, a
natural way of understanding it is to look at representations

ρ : Gal(K/Q)! GL(V )

(say V complex n-dimensional vector space). To such a representation, Artin attached an Artin L-series
(i.e. a Dirichlet series) given by

L(s, ρ) :=

∞∑
n=1

an
ns

for Re(s) ≫ 0.

This was defined as follows

• If p is a prime of Z which is unramified in OK , then there is a conjugacy class Frp in Gal(K/Q).
We start with ∏

p unram

det
(
IV − ρ(Frp)p

−s
)−1

Note that each factor above is (the inverse of) a degree n polynomial in p−s.

• If p is ramified, replace V by V I (subspace fixed by inertia), so you get factors which are (inverses
of) polynomials of degree ≤ n in p−s.

(I think Sol said this converges for Re(s) > 1)

Example. Say K = Q. Then, ρ is trivial (and, say, 1-dimensional?), and L(s, ρ) = ζ(s) is the Riemann
zeta function. This has a meromorphic continuation to all of C (simple pole at s = 1), and satisfies some
functional equation. △

Example. Say K = Q(i). If p is odd, then

Frp =

 id if − 1 ≡ □ mod p

complex conjugation otherwise.

Consider the rep ρ : Gal(K/Q)! C× sending complex conjugation to −1. Then,

L(s, ρ) = L(s, χ) :=
∑
n≥1

χ(n)

ns

is a Dirichlet L-function attached to χ : (Z/4Z)× ! {±1} (the nontrivial map). We know L(s, χ) has
analytic continuation to all of C (no poles) + a functional equation relating L(s, χ) to L(1− s, χ). △
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Conjecture 3.1.1 (Artin). The Artin L-function L(s, ρ) is actually entire if ρ is irreducible and non-
trivial.

Theorem 3.1.2 (Brauer). L(s, ρ) always extends to a meromorphic function on C. Moreover, if we let

Λ(s, ρ) = Γ(s, ρ)L(s, ρ)

(for suitable Γ-factor Γ(s, ρ)), then

Λ(s, ρ) =W (ρ)Λ(1− s, ρ),

where |W (ρ)| = 1.

Above, Γ(s, ρ) is a product of Ds/2 (for some D, don’t worry about it) as well as factors of

ΓR(s) := π−s/2Γ
(s
2

)
ΓR(s+ 1)

ΓC(s) := 2(2π)−sΓ(s).

Theorem 3.1.3 (Artin reciprocity). If K/Q is abelian and ρ is one-dimensional ( ⇐⇒ irreducible),
then there exists a Dirichlet character χ s.t. L(s, ρ) = L(s, χ).

(In particular, Artin’s conjecture holds if K/Q is abelian, by the corresponding fact for Dirichlet
characters)

Question 3.1.4. What if ρ is not 1-dimensional? What will Artin L-functions correspond to then?

Answer (Langland’s idea). If ρ is an irreducible n-dimensional Galois representation, then L(s, ρ) should
match an L-function ‘coming from Harmonic analysis on GLn’. ⋆

We’ll say more about what ‘harmonic analysis on GLn’ means in the coming lecture. The rough
version is that the L-function should be attached to a cuspidal automorphic representation on GLn.

To say a bit about this, let’s look at the Hilbert space

L2
(
R×Γ\GLn(R)

)
with Γ ≤ GLn(Z) of finite index (so L2-functions invariant under scaling and some finite index subgroup
Γ). Part of the difficulty lies in this invariance (or rather, in the combination of invariance and L2?).

Example (Later). We’ll see (next time?) that classical modular forms live in this space when n = 2.
Think that classical (cuspidal) modular forms have a Petersson inner product, so they’re kind of L2 type
of objects. △

Note that GLn(R) acts on this space via the right regular representation, i.e. if f ∈ L2(blah), then so
is

(g · f)(x) := f(xg) for any g ∈ GLn(R).

Definition 3.1.5. An automorphic representation π is an irreducible subspace. ⋄ Question:
Are we say-
ing subspace
instead of
subquotient
because of
some spec-
tral decomp
theorem?

Answer: I
think it’s
probably
simpler than
that. It’s
just that L2

is a Hilbert
space.
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The adjective ‘cuspidal’ will refer to a growth property for the functions in π.

Warning 3.1.6. The definition of automorphic given above is not the one everyone uses (not necessarily
even the one we’ll see in other courses here), but we’ll say a bit about it’s relation to other defintions in
later lectures. •

By the theory of automorphic forms, attached to π will be some sort of L-function L(s, π) (see Aaron’s
lectures). If π on GLn is cuspidal, then

(1) it can be expressed as an Euler product

L(s, π) =
∏
p

(
degree ≤ n polynomial in p−s

)−1

At almost all p, you get degree = n.

(2) it has analytic continuation and functional equation. In particular, it is entire.

Goal (Langlands’ idea).
L(s, ρ) = L(s, π)

where LHS comes from arithmetic, and the RHS comes from harmonic analysis on GLn.

Warning 3.1.7. There are “more π’s than ρ’s.” Many π’s are “transcendental.” •

Langlands’ vision goes further than this. In particular, he imagines that this sort of matching allows one
to learn in both directions (not just from analysis to arithmetic).

Slogan. Harmonic analysis on algebraic groups is guided by arithmetic.

There are many natural constructions on the algebraic side. Langlands conjectures that they should
extend to all (cuspidal) automorphic representations on the harmonic analysis side.

Example. Suppose V,W are two f.dim C-vector spaces, and that we have some homomorphism σ :

GL(V ) ! GL(W ) (e.g. σ = Symm : GL(V ) ! GL(Symm V )). On the Galois side, starting with
ρ : Gal(K/Q)! GL(V ), we can simply compose

σ ◦ ρ : Gal(K/Q)! GL(W ).

Langlands predicts a corresponding map

A(GLV )! A(GLW ),

where A is the space of cuspidal automorphic representations. That is, we get a relation between Harmonic
analysis on two different groups. This map should satisfy (amongst other things)

L(s, σ ◦ ρ) = L(s,Π)

if π 7! Π and L(s, ρ) = L(s, π). △
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Remark 3.1.8. It is quite difficult to relate harmonic analysis on

R×Γ\GLn(R)

(n = dimV ) to harmonic analysis on
R×Γ′\GLN (R)

(N = dimW ). It’s really hard to get the invariance by a discrete subgroup necessary to make these
automorphic representations. ◦

This sort of functoriality is known in only a few cases.

Remark 3.1.9. If we write

L(s, ρ) =
∏′

p

det
(
IV −App

−s
)−1 where Ap = ρ(Frp),

(the ′ on the
∏

is just meant to indicate that the factor is different at finitely many primes) then

L(s, σ ◦ ρ) =
∏′

p

det
(
IW − σ(Ap)p

−s
)−1

. ◦

So, Langlands predicts that if π is an automorphic rep of GLn (possibly transcendental) with

L(s, π) =
∏′

p

(In −App
−s)−1,

then
L(s, π, σ) =

∏′

p

(
IN − σ(Ap)p

−s
)−1

must have analytic continuation and functional equation (since it should correspond to the L-function
attached to a cuspidal automorphic representation on GLN ).

Warning 3.1.10. Even this weaker statement (AC + FE w/o explicit reference to another automorphic
rep) is hard in general. •

If one could prove this is general just for n = 2 and σ = Symm (m ≥ 2), then one would prove
Ramanujan’s conjecture for Maass forms (which is currently open).

Remark 3.1.11 (Assuming I heard correctly). Sounds like this is known for classical modular forms. ◦

Example. Other operations from algebra should have analytic counterparts.

• Given ρi : Gal(K/Q)! GL(Vi) for i = 1, . . . , k, then one can get

ρ1 ⊗ · · · ⊗ ρk : Gal(K/Q)! GL(V1 ⊗ · · · ⊗ Vk).

Hence, we should get a map

A(GL(V1))× . . .×A(GL(Vk)) −! A(GL(V1 ⊗ · · · ⊗ Vk)).

Even controlling and L-function like L(s, π1 ⊗ · · · ⊗ πk) is difficult, especially if k > 2.
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• Can do induction and restriction of representations (needs a tower of field extension). △

Question 3.1.12 (Audience). Is the map from automorphic forms to L-functions injective?

Answer (Paraphrase). At least for fixed GLn, you should think the answer is basically yes. The key
phrase here is ‘(strong) multiplicity one’. ⋆

Let’s end with some questions and remarks.

(1) What about other algebraic groups? Say Sp2n, O2n, Un, . . . Can we do harmonic analysis on them?
Also, given ρ : Gal(K/Q)! G(C), what should we expect?

(2) There are lots of automorphic representations π. Which come from arithmetic?

(3) What is the relation between classical modular forms and harmonic analysis on GL2?

(4) How do you get L(s, π) from π?

(5) If K is a number field, then K ↪! AK is discrete. We’ll replace Z ⊂ R by K ⊂ AK . In particular,
we’ll look at

L2
(
A× GLn(K)\GLn(A), ω

)
=

f : GLn(AK)! C

∣∣∣∣∣∣∣∣
f(zγg) = ω(z)f(g)∫

A×
K GLn(K)\GL(AK)

|f(g)|2 dg <∞

 ,

where ω : A×
K ! C× is a character.

3.2 Lecture 2 (7/26)

The goal for today’s talk is to unpack the idea of doing harmonic analysis on GLn. In particular, we
wanna think a bit about what it includes beyond the holomorphic stuff we’re used to. Ideally, we can
define an automorphic form in a way that makes sense.

3.2.1 Maass forms (weight 0)

Definition 3.2.1. The (hyperbolic?) Laplacian is the differential operator

∆ = −y2
(
∂2

∂x2
+

∂2

∂y2

)
on the upper half plane. ⋄

Fact. (∆f)|γ = ∆(f |γ) where

f |γ(z) = f

(
az + b

cz + d

)
if γ =

(
a b

c d

)
.

Definition 3.2.2. f : H ! C is a Maass form (of weight 0, level Γ0(N), and character χ) if it is a
smooth function such that
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(1) f |γ(z) = χ(d)f(z) for all γ =

(
a b

c d

)
∈ Γ0(N) for some Dirichlet character χ : (Z/NZ)× ! C×

(2) ∆f = λf (i.e. f is an eigenvalue for ∆)

(3) Growth property (cusp forms have a stronger growth property) ⋄

“It took Maass to take us out of the ghetto of holomorphic functions” - Weil (but he said it in French)

Remark 3.2.3.

(1) Using Stoke’s theorem, one can show that ∆ is a positive definite operator, so any eigenvalue λ is
≥ 0

(2) Selberg conjectured that λ ≥ 1/4 for f on Γ0(N) and any N .

(3) For N = 1, these are all expected to be transcendental.

If λ = 1
4 + r2, for N = 1, the first r ≈ 9.5337 . . . . Sounds like Selberg’s conjecture is true for N = 1

(i.e. r always real when N = 1).

(4) # {λ ≤ X} ∼ cX for some c ̸= 0 as X !∞.

In particular, there are infinitely many Maass forms of a fixed level and weight, by letting λ vary. ◦

Fourier Expansion Write λ = 1
4 + r2. Note that a Maass form f(z) is still invariant under z 7! z+1,

so it will have a Fourier expansion

f(z) = a(0, y) +
∑
n ̸=0

an
√
yKir(2π |n| y)e2πinx

with the particular form above derived using it’s growth condition and that it’s a ∆-eigenvector. Above,
K is the K-Bessel function

Ks(y) =
1

2

∫ ∞

0

e−y(t+t−1)ts
dt

t

(note that Ks = K−s).
Maass forms can be split into the even ones where an = a−n and the odd ones where an = −a−n.

Question 3.2.4 (Audience). For each λ, how many Maass forms do you get?

Answer. It’s conjectured that you get only one (up to scaling), but this is still open. We do know they
form a f.dim space. ⋆

(Sounds like this conjecture is for any fixed level N)

AC + FE We’ll look at the case N = 1 to simplify things a bit. Let ε = 0 if f is an even Mass form,
and let ε = −1 if f is odd. The completed L-function attached to a Maass form is

Λ(s, f) = π−sΓ

(
s+ ε+ ir

2

)
Γ

(
s+ ε− ir

2

)∑
n≥1

ann
−s.
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Theorem 3.2.5. Λ(s, f) has an analytic continuation to s ∈ C and satisfies

Λ(s, f) = (−1)εΛ(1− s, f).

Remark 3.2.6. If λ > 1
4 , then r is real. Then these Γ-factors involve a shift by something pure imaginary.

This is not something you typically see in the world of arithmetic/algebraic geometry. Hence, we expect
these to be transcendental objects. ◦

Open Question 3.2.7. If f is a normalized (a1 = 1) Maass cusp form (with λ > 1/4), is an transcen-
dental for some (all?) n > 1.

Remark 3.2.8. If λ = 1/4, then r = 0. In this case, the Γ factors match those of a 2-dimensional Galois
representation ρ with

det ρ(cx conj) = +1

(i.e. of even Galois reps). ◦

Conjecture 3.2.9. If f(z) is a Maass form with λ = 1
4 , then an ∈ Q.

Slogan. Whenever the Γ-factors look like they come from arithmetic, then we expect to be in the world
of automorphic forms which are arithmetic/cohomological.

Question 3.2.10 (Audience). Can you get this Λ(s, f) as some sort of transform of the Maass form?

Answer. Yes. When it’s even, a Mellin transform still works. When it’s odd, you do something else,
but things still work. ⋆

3.2.2 From H to GL+
2 (R)

Given f either a holomorphic modular form or a Maass form of weight k, can construct an associated
function

F : GL+
2 (R) −! C

s.t.

(1) F (γg) = χ(d)F (g) for all γ =

(
a b

c d

)
∈ Γ0(N)

(2) F (gκθ) = e2πikθF (g) for all

κθ =

(
cos θ sin θ

− sin θ cos θ

)
∈ SO2(R),

where we recall that k is the weight of f .

Remark 3.2.11. In particular, the weight shows up in the right action of SO2(R), a maximal compact
subgroup of GL+

2 (R). ◦

(3) F

((
a

a

)
g

)
= ω(a)F (g) where ω(a) = sign(a)k.
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(See section 5.1.2 for some more details on constructing F ).
Can also move ∆ to (functions on) GL+

2 (R). It can be described using the universal envoloping algebra
U(g) of g = Lie(GL+

2 (R)). More precisely, it corresponds to the Casimir operator in the center Z(U(g))

of the universal envoloping algebra.

3.2.3 From GL+
2 (R) to GL2(A)

We again follow the recipe from Aaron’s lecture. In this way, we create a function

φ : GL2(A) −! C

using F .

Remark 3.2.12. That fact that you can do this is related to strong approximation. ◦

We get (from f on Γ0(N))

(1) φ(γg) = φ(g) for all γ ∈ GL2(Q)

Remark 3.2.13. Have left-invariance under a discrete group. ◦

(2) Let

K0(N) :=
∏
p<∞

K0(N)p where K0(N)p :=


GL2(Zp) if p ∤ N

 a b

Nc d

 ⊂ GL2(Zp) if p | N

That is K0(N)p is a maximal compact subgroup at almost all primes, but we tweak it at the primes
dividing the level. Then,

φ(gk) = χ(k)φ(g) for all k ∈ K0(N)× SO2(R),

where χ is some character of K0(N)× SO2(R)

Remark 3.2.14. The level and the weight have both moved to the right, to the way the function
behaves under a compact subgroup. In particular, the weight is reflected in the action of SO2(R),
the real maximal compact subgroup. Note that maximal compacts in other groups are non-abelian,
so the ‘weights’ for them can be higher dimensional representations. ◦

(3) φ is Z(U(g))-finite under right action, i.e. the Z(U(g))-translates of φ span a f.dim vector space.

Remark 3.2.15. This captures the differential equation satisfied by f (Cauchy-Riemann or being a
Laplace eigenvector) ◦

(4)

φ

((
a

a

)
g

)
= ω(a)φ(g)

(the character ω here comes from χ from (2))

Remark 3.2.16. I think this ω is related to the χ in Definition 3.2.2. ◦

(5) Growth condition
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Definition 3.2.17. Let F be a number field (or any global field?) with adeles A. An automorphic
form on G(A) (G an algebraic group) is a function

φ : G(A) −! C

satisfying

(1) φ(γg) = φ(g) for all γ ∈ G(F )

(2) φ is right K-finite where K is a maximal compact subgroup of G(A), i.e. the right K-translates
of φ span a f.dim vector space.

(3) φ is right Z(U(g))-finite (g = LieG)

(4) φ(zg) = ω(z)φ(g) for all z ∈ Z(G(A)) (ω some character)

(5) Growth condition ⋄

Recall 3.2.18. We had an alternative version last time where we looked at L2(G(F)\G(A), ω). ⊙

Let’s consider its cuspidal subspace L2
0(G(F )\G(A), ω). For G = GLn, the cuspidal condition is

∫
φ

((
Ir X

0 In−r

)
g

)
dX = 0 for r = 1, . . . , n− 1

(for any g?).
Let ρ be the right regular representation of G(A) on L2

0.

Theorem 3.2.19. L2
0(GLn(F )\GLn(A), ω) is a Hilbert direct sum of irreducible ρ-invariant subspaces.

For GL2, these spaces are generated by Maass forms and holomorphic cusp forms which are Hecke
eigenforms.

3.3 Lecture 3 (7/27)

Let’s continue thinking about automorphic forms. Recall that if we have some φ ∈ A(GLn), then it is,
among other things, K-finite for K =

∏
p GLn(Zp)× SOn(R) a maximal compact subgroup of GLn(A).

Definition 3.3.1. φ being K-finite means that

dimC spank∈K {g 7! φ(gk)} <∞. ⋄

How is this possible?

• For almost all p, φ is fixed by GLn(Zp).

• For the remaining finite primes p, φ is fixed by a congruence subgroup of GLn(Zp) (which, in
particular, has finite index).

Remark 3.3.2. Note K-finiteness captures level information. ◦
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• For the archimedean place, K∞ := SOn(R) acts by a representation of a compact Lie group (note:
irreps of compact Lie groups are finite dimensional).

Idea (Profound idea). Create a vector space of φ’s with a group action.

For the group action, try right translation:

g 7! φ(gh) with h ∈ GLn(A).

This works in the L2-world, but for automorphic forms, things are more subtle.

• If p <∞ and h ∈ GLn(Zp), get something K-finite.

• If p <∞ in general, φ will be fixed by some K1. Our translate will be fixed by

h−1K1h ∩K1,

which is still a finite index subgroup in GLn(Zp). This still preserves K-finiteness.

• At an archimedean place, we run into trouble.

Example. (
1 1

0 1

)
SO2(R)

(
1 −1

0 1

)
∩ SO2(R) =

{(
1

1

)}
. △

In summary, we get an action by GLn(Af ), but one does not get a GLn(A)-action on the space of
automorphic forms (you would over a function field, but not over a number field). Instead, at the
archimedean places, we introduce a different structure, that of a (g,K∞)-module, where g = LieGLn(R).

Definition 3.3.3. An automorphic representation is a subquotient of A(G) which carries this struc-
ture.7 ⋄

Definition 3.3.4. An automorphic representation in L2-sense is an (irreducible) subspace of

L2
0(A× GLn(Q)\GLn(AQ), ω)

under the right regular representation of GLn(AQ). ⋄

(only considering cuspidal representations above)

Theorem 3.3.5. Let (π, V ) be an automorphic representation in L2-sense. Let

V∞ = {φ ∈ V : φ is K-finite} .

Then, V∞ is an automorphic representation.

Remark 3.3.6. Key advantage if π is an irreducible automorphic rep of GLn(A), then

π =
⊗′

v

πv,

where πp is a representation of GLn(Qp), and π∞ is a (g,K∞)-module. Almost all πp are unramified. ◦
7A G(Af )-action and a (g,K∞)-module structure
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Remark 3.3.7.

• Local Langlands correspondence is roughly a parametrization of representations of GLn(Qp) via
Galois theory.

• Given π, get {πv}, but what about turning it around? The converse is hard, i.e. given {πv}, it is
difficult to show there is an automorphic representation π ∼=

⊗′
πv.

Sounds like we know much about the LLC at almost all places, and one of the big obstructions to
deducing information about GLC is putting local information together. ◦

Last time Aaron explained some aspects of Hecke theory. If π is an (irred) automorphic representation
of G(A), then at unramified places, one can attach a semisimple conjugacy class Cp (think: diagonal
matrix) in a group Ĝ(C), the Langlands dual group.

Example. For G = GLn, Ĝ(C) = GLn(C). △

Example. We want to show that G and Ĝ are not always the same. Start with a modular form
f ∈ Sk(γ0(N), 1) with trivial Dirichlet character. If p ∤ N , its local L-factor classically is

(
1− app

−s + pk−1−2s
)−1

.

Translating to the automorphic normalization, this becomes

L(s, (πf )p) =

(
1− ap

p
k−1
2

p−s + p−2s

)−1

=
(
1− αpp

−s
)−1 (

1− βpp
−s
)−1

(πf is the automorphic representation attached to f). Note above that αpβp = 1. Here, the diagonal Question:
The one
generated
by φf?

Answer: yes

matrix/semisimple conjugacy class is

Cp =

(
αp

βp

)
.

Note here that
πf ↔ L2

0(A× GL2(F )\GL2(A)),

i.e. πf is something on PGL2. But Hecke theory gave Cp ∈ SL2(C). Note P̂GL2 = SL2(C). △

If π is automorphic on G(A), then Hecke theory will give Cp ∈ Ĝ(C) for unramified p. See Table 1
for examples of groups and their duals. Note there is a Lie theoretic description for getting from a group
to its Langlands dual.

Let’s continue with Langlands idea. Suppose we have ρ : Gal(K/Q) ! Ĝ(C). Then, there is an
automorphic representation π (sounds like π should be cuspidal if ρ doesn’t contain the trivial rep) on
G(A) s.t.

L(s, ρ) = L(s, π, Std)

(Standard representation I guess makes sense for one of these classical matrix groups).
One consequence of this is what’s called Endoscopic lifting. Suppose we have

ρ : Gal(K/Q) −! Sp2n(C) ⊂ GL2n(C).
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G Ĝ(C)
GLn GLn(C)
PGLn SLn(C)
SLn PGLn(C)

SO2n+1 Sp2n(C)
Sp2n SO2n+1(C)
SO2n SO2n(C)

Table 1: Some groups and their Langlands duals

Then, ρ should have two attached automorphic representations for different groups! It should give an
automorphic representation π ⊂ A(SO2n+1) as well as a π′ ⊂ A(GL2n). For both of these, we should
have

L(s, π, Std) = L(s, ρ) = L(s, π′, Std).

Slogan. If you can do it on the Galois side, you should be able to do it in general.

This suggests that there is a lifting

A(SO2n+1) −! A(GL2n)

which preserves (standard) L-functions. This map is called an endoscopic lift.

Remark 3.3.8. Locally, it’s easy to start with π and write down (π1)v for almost all v (where π 7! π1

under this lifting). This is because we know almost all the local L-factors (or something). The hard part
here is to show that

⊗′
(π1)v (including the bad places) is automorphic. ◦

Such a lift has been proven to exist by Arthur using the trace formula. There is an alternative
approach using L-functions and the Rankin-Selberg method (involving work of Cogdell-P.S.-Kim-Shakidi
(spelling?) and Cai-F.-Givzburg-Kaylan (spelling?)).

3.4 Lecture 4 (7/28)

Note 2. Last lecture. Sol has to take a taxi to the airport at the end, so at most 1 question when it’s
over.

Let’s continue our discussion of endoscopy.

Recall 3.4.1. If π =
⊗′

πv ∈ A(G) is an irreducible automorphic representation of G, then at places p

s.t. πp is unramified, Hecke theory gives an assignment πp ⇝ Cp, a semi-simple conjugacy class in Ĝ(C).
Recall Table 1 (and also Table 2).

We saw last time that Langlands used this to predict a map (coming from ̂SO2n+1 = Sp2n ↪! GL2n)

A(SO2n+1)! A(GL2n).

This exists, but there’s no known simple way to product this map. ⊙

Similarly, other maps (functorial lifts), e.g.

A(SO2n) −! A(GL2n)
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A(Sp2n) −! A(GL2n+1)

Question 3.4.2. Given π ∈ A(GL2n), how can one tell if is a lift e.g. from SO2n+1 or SO2n?

The answer will be to look at Langlands L-functions.

Warning 3.4.3. We’re implicitly thinking of A(−) as the set of (irreducible) automorphic representa-
tions, not as the space of forms. We’re implicitly identifying a form with the representation it gener-
ates. •

Consider ∧2
: GLN (C) −! GL(N2 )

(C).

Note that if N = 2, then
∧2

= det.

Example. With a suitable choice of bases

∧2


α

β

γ

δ

 =



αβ

αγ

αδ

βγ

βδ

γδ


△

Given π =
⊗′

πv ∈ A(GLN ), the partial Λ2 L-function is

L
(
s, π,Λ2

)
=

∏
unram p

Lp

(
s, πp,

∧2
)
,

where

Lp

(
s, πp,

∧2
)

= det

(
I(N2 )

−
∧2

(Cp)p
−s

)−1

(see also Construction 5.2.5).
Let’s suppose that π ∈ A(SO2n+1) comes from a Galois representation

ρ : Gal(K/Q) −! ̂SO2n+1(C) = Sp2n(C).

Then, we can form ∧2
◦ρ : Gal(K/Q) −! GLN (C) where N =

(
2n

2

)
.

By linear algebra, this composition has a fixed vector8 (it’s not irreducible). That is, it contains the
trivial representation, so

L

(
s,
∧2

◦ρ
)

= ζ(s) · (remaining part),

8If n = 1, then Sp2(C) = SL2(C), so the composition itself is trivial.
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with Riemann zeta coming from the trivial rep. Hence, L(s,
∧2 ◦ρ) will have a pole at s = 1 (you have

to be a little careful to show that the pole doesn’t get cancelled out by the remaining side). Langlands
tells us that what’s true on the Galois side ought to be true in general.

Heuristic 3.4.4. We predict π ∈ A(GL2n) should be a lift from A(SO2n+1) iff L(s, π,
∧2

) has a pole at Question:
Is it clear
that if

∧2 ◦ρ
has a copy
of the trivial
representa-
tion, then
ρ must fac-
tor through
Sp2n?

s = 1.

Heuristic 3.4.5 (by a similar argument). π ∈ A(GL2n) is a lift from A(SO2n) iff L(s, π,Sym2) has a
pole at s = 1.

3.4.1 General Langlands functoriality

(for split reductive algebraic groups)

Conjecture 3.4.6 (Langlands functoriality, Version 1). If φ : Ĥ1(C)! Ĥ2(C) is a complex analytic
homomorphism of dual groups, then there exists a map

A(H1) −! A(H2)

π 7−! Π

such that if πp ↔ Cp, then Πp ↔ φ(Cp).

(we’re ignoring both the archimedean and the ramified places in the above conjecture)
This conjecture is based on the usual heuristic of looking at the Galois side, where you can simply

compose
Gal(K/Q)

ρ
−! Ĥ1(C)

φ
−! Ĥ2(C).

Warning 3.4.7. Conjecture 3.4.6 is mostly unproved. •

Question 3.4.8. Can we include Artin L-functions in the picture directly?

The answer is yes, and we’ll do it in such a way that gives Langlands original conjecture as a special
case of functoriality.

Answer. The L-group of a split reductive algebraic group G/F over a number field F is

LG = Ĝ(C)×Gal(F/F ).

Remark 3.4.9. For non-split groups, this direct product becomes a semi-direct product, and it’s a little
more technical to define. ◦

Given an unramified πp, we associate to it the pair (Cp,Frp), a conjugacy class in LG.

Definition 3.4.10. An L-homomorphism φ : LH1 ! LH2 is a continuous homomorphism (of topological
groups) such that

Ĥ1(C)×Gal(F/F ) Ĥ2(C)×Gal(F/F )

Gal(F/F )
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commutes, and such that it restricts to a complex analytic homomorphism

Ĥ1(C)× e −! Ĥ2(C)× e.

⋄

(Note above that H1, H2 are defined over the same ground field)

Conjecture 3.4.11 (Laglands functoriality, Version 2). If φ : LH1 ! LH2 is an L-homomorphism,
then there is a corresponding map

A(H1) −! A(H2)

(usually cuspidal goes to cuspidal, but not always). Note this is required to respect semisimple conjugacy
classes in the expected way.

Example. Take H1 = {e} so LH1 = e × Gal(F/F ), and let H2 = GL(V ). Then, an L-homomorphism
is a continuous map

Gal(F/F ) −! GLn(C)×Gal(F/F )

(whose composition with projection onto Gal(F/F ) is the identity). Since it is continuous, it will factor
through Gal(K/F ) for K/F some finite Galois extension (by the ‘no small subgroup argument’). Thus,
such a map is equivalent to the data of a representation

ρ : Gal(K/F ) −! GLn(C) where n = dimC V

(+ the choice of finite Galois extension K/F ). Lifting the trivial function in A(H1) = A(e), Conjecture
3.4.11 predicts an automorphic representation π ∈ A(GLn) with

Cp = ρ(Frp)

for almost all p. That is, we predict L(s, π, Std) = L(s, ρ). △

From the above example, we see that this more general version of Langlands functoriality recovers
the correspondence between Galois reps and automorphic reps we began with. ⋆
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4 Elena Mantovan: Introduction to Shimura Varieties

4.1 Lecture 1 (7/25)

Today we’ll focus on Shimura curves (and their theory of canonical models?).

Proposition 4.1.1. Let X be a complex manifold. Let Γ ↷ X be a free action by a discrete group.
Then, the quotient Γ\X has the structure of a complex manifold.

Notation 4.1.2. We let H := {z ∈ C : Im z > 0} denote the upper half plane. This has an action by
SL2(R) via (

a b

c d

)
· z = az + b

cz + d
.

Remark 4.1.3. Im z > 0 and det γ > 0 =⇒ Im(γz) > 0 (while det γ < 0 =⇒ Im(γz) < 0 if
Im z > 0). ◦

Fact. Hol(H) ≃ SL2(R)/ {±I}

To apply this proposition from complex geometry, we need a discrete group. First think about

SL2(Z) ↪! SL2(Q) ↪! SL2(R).

Note that Γ(1) := SL2(Z) is discrete, as is any finite index Γ ⊂ Γ(1). We’ll focus on the examples of

Γ(m) := ker(SL2(Z)! SL2(Z/mZ)) = {A ∈ SL2(Z) : A ≡ I (mod m)} .

Fact. SL2(Z) is generated by the matrices S, T where

S =

(
0 1

−1 0

)
and T =

(
1 1

0 1

)
.

Note that S2 = −I has finite order while Tn =

(
1 n

0 1

)
. Furthermore,

ST =

(
0 1

−1 1

)

has order 6 (in particular, (ST )3 = −I). For the action SL2(Z) ↷ H, one has

StabΓ(1)(z) =


{±I} if z ̸∈ Γ(1)i ∪ Γ(1)ρ

⟨S⟩ if z ∈ Γ(1)i

⟨ST ⟩ if z ∈ Γ(1)ρ

where ρ = e2πi/3.

Corollary 4.1.4. For m ≥ 3, the group Γ(m) acts freely on H. Hence,

Y (M)an = Γ(m)\H
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is a complex manifold.

If m = 2, still have ±1 acting everywhere, but that’s not too bad (imagine acting by the image of
Γ(2) is PSL2(Z) instead), so Y (2)an = Γ(2)\H also has a complex structure. If m = 1, one has to do
more work, but can still give Y (1)an := Γ(1)\H the structure of a complex manifold.

Exercise. If m | n, we get an inclusion Γ(n) ⊂ Γ(m) and a corresponding holomorphic map

Y (n)an ↠ Y (m)an.

Question 4.1.5. Are these algebraic?

Fact. Every compact Riemann surface is algebraic.

Hence, the easiest thing to do would be to compactify these. Let D∗ := D ⊔ P1(Q) which inherits an
action of SL2(Z). The quotient

X(m)an := Γ(m)\D∗

is now a compact Riemann surface (= algebraic curve over C) which contains Y (m)an as an open.

Question 4.1.6. Does X(m)an have a model over a number field?

Answering this will be related to the theory of modular forms. Say f : H ! C is a modular form of
weight 2k and level Γ = Γ(m). In particular,

f(γz) = (cz + d)2kf(z)

for all γ =

(
a b

c d

)
∈ Γ. If you fix k,Γ and take a bunch of modular forms f0, . . . , fN , they will define a

map
[f0, . . . , fN ] : Y (m)an −! PN

C .

Hence, if you have some notion of algebracity for modular forms, you’ll get some algebraicity result for
Y (m)an. Note that if k ≫ 0, you can get a projective embedding like this.

Remark 4.1.7.

Tm =

(
1 m

0 1

)
∈ Γ(m).

Hence, letting q = qm = e2πiz/m, any modular form f for Γ(m) has a Fourier expansion f(q) ∈ CJqK. We
will say that f is algebraic if f(q) ∈ QJqK. ◦

Fact. For cusp forms of level Γ(m) and weight k ≫ 0, there exists a basis fi with fi ∈ Q(ζm)JqK for all
i. This gives a (canonical) model of Y (m) defined over Q(ζm).

Note we have done all this so far without needing to mention the connection to moduli of elliptic
curves.

Example. Say m = 1 and 2k = 12. We get an embedding Y (1)an ! P1
C via

[
E3

4 , E
2
6

]
. These Eisenstein

series have rational coefficients, so X(1) ∼= P1
Q. Note that we have a rational parameter given by j = I guess you

know this
is P1

Q (i.e.
that it has
a rational
point) since
the cusp is
unique and
so must be
defined over
the ground
field

E3
4/(4E

3
4 − 27E2

6). △
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Let’s try and consider other discrete groups acting on H. These will need to be related to SL2(R) is
some way.

Example. Say B/Q is a quaternion algebra which is indefinite at ∞ (i.e. B splits over R).9 Attached
to this is an algebraic group GB/Q defined by

GB(A)
{
γ ∈ (B ⊗Q A)

×
: Nm(γ) = 1

}
for A any Q-algebra. This is an inner form of SL2 (which is split over R). Let OB ⊂ B be a maximal
order. This gives an integral model GOB defined similarly. In particular,

GOB (Z) = ONm=1
B = ΓB(1) ⊃ ΓB(m).

This give other discrete groups acting on H (via ΓB(1) ⊂ G(R) ≃ SL2(R)). For m ≫ 0, the action will
be free, and if B is not split over Q, then the quotient XB(m) := Γ̃(m)\H will already be compact (and
so is obviously an algebraic curve over C). △

If I heard correctly, for these, the best way to get nice models over number fields is to go through to
modular interpretation.

4.1.1 modular interpretation

We start by looking at Y (1)an = SL2(Z)\H. For any z ∈ H, one can consider the lattice Λz = ⟨z, 1⟩ ⊂ C.
This gives an elliptic curve Ez = C/Λz. This correspondence actually gives an interpretation of SL2(Z)\H
as the (coarse) moduli space of elliptic curves E/C.

If you were looking at Y (m)an instead, this would parameterize elliptic curves Ez with a fixed iso-
morphism Ez[m] ∼= (Z/mZ)2. This isn’t quite right (I believe since we really only want symplectic
isomorphisms Ez[m] ∼= (Z/mZ)2 and not just any isos).

The point of this modular interpretation is that if we let Y (1) be the moduli space of elliptic curves
over Q, this it gives a rational model for Y (1)an. You can similarly define a Y (m)/Q as the moduli space
of elliptic curves with full level m-structure (i.e. with iso αm : (Z/mZ)2 ∼= E[m]).

Warning 4.1.8. Y (m)C ̸∼= Y (m)an since the former space is not connected. This is because elliptic
curves have a Weil pairing

E[m]× E[m] −! µm,

so one gets a decomposition
Y (m)Q(ζm) =

⊔
ζ

Y (m)ζ

with ζ ranging over primitive mth roots of unity. Each Y (m)ζ above is geometrically connected, and is
isomorphic to Y (m)an over C. •

Theorem 4.1.9 (Shimura (+ Taniyama?)). Let A/C be a simple abelian variety w/ CM by (K,Φ) with Question:
What’s Φ?K a CM field and K ⊂ End0(A) = End(A)⊗Q. If dimA = g, we require [K : Q] = 2g. Then, A can be

defined over Q.
9We want (inner) forms of SL2(R)

48



(You can be more precise with the field of definition. Maybe the right answer is A defined over the
Hilbert class field of K?)

Remark 4.1.10. An elliptic curve Ez (corresponding to z ∈ H) is CM iff z satisfies some quadratic equation
(one can check this explicitly), i.e. [Q(z) : Q] = 2. ◦

Shimura suggested calling a modular form f algebraic if f(τ) ∈ Q for all quadratic τ ∈ H. This
definition turns out to be equivalent to the one given earlier, but no longer uses the q-expansion. Hence, it’s
a definition which can be adapted to other settings (e.g. to the algebraic curves coming from quaternion
algebras).

Example. The XB(m) from before roughly parameterize abelian surfaces with action by OB .10 △

What if we want more quotients? Note we got discrete subgroups via a chain like

GOB (Z) ⊂ GB(Q) ⊂ GB(R)
∼
−! SL2(R).

However, we don’t really need the last map to be an isomorphism. We only need a surjective with compact
kernel.

Example. Say B/F a quaternion algebra over a totally real field F . Say that B is indefinite over one
place τ1 : F ↪! R (this will give a copy of SL2(R)), but is definite at all other real places τi : F ↪! R (get
something compact here) for i ≥ 2. Note that we will get a decomposition

GB(R) =
∏

τi:F↪!R
GB(R)τi

coming from the decomposition B ⊗Q R ≃
∏

τi:F↪!RB ⊗F R. △

Remark 4.1.11 (Albert’s classification).

End0(A) =


totally real field if

B/F0 quaternion algebra over totally real field which is
indefinite at all real places or definite at all of them if

B/F division algebra over CM field otherwise.

◦

I think maybe Elena said something about the moduli interpretation of the curves arising from the
previous example, but if she did, I did not follow. Based on audience questions, it sounds like the point
was that the example given before will give some compact Riemann surface, but it won’t be a moduli
space of abelian varieties (since to B in that example don’t show up as endomorphism algebras of abelian
varieties). I think she said something about Shimura getting around this issue somehow (do you get
moduli space of certain complex torii?), but I didn’t quite hear it.

4.2 Lecture 2 (7/27)

Note 3. Roughly 9 minutes late

Missed what appears to be some amount of recap of last time.
10It seems the correspondence here sends z ∈ H to the quotient of C2 by the OB-lattice generated by (z, 1) ∈ C2
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4.2.1 Unitary Shimura Curves

Consider SU(1, 1) as a real Lie group. There is an isomorphism SU(1, 1) ≃ SL2(R). This map is(
α β

β∗ α∗

)
7!

(
a b

c d

)

where

α = x+ iy

β = z + iw

a = x+ w

b = z − y

c = x+ y

d = x− w

Fix E/Q a quadratic imaginary field (e.g. E = Q(i)). Let V be a 2-dimensional E-vector space. Consider
a Hermitian form (−,−) on V . If you choose a nice base, can take

(x, y) = x1y1 − x2y2.

This leads to the group SU(V, ( , )).
Can also put a skew-Hermitian11 form on V by taking something like TrE/Q(i(x, y)), this satisfies

⟨bx, y⟩ = ⟨x, b∗y⟩. Can replace i with any β ∈ E for which β∗ = −β. Let Λ ⊂ V be an OE-lattice (so
Λ ∼= O2

E). From this, can get an integral model GE of GE = SU(V, ( , )).
Now say F is a CM field, so have F/F0 quadratic imaginary extension of a totally real F0. Let ∗ be

complex conjugation on F (so F0 is the fixed field of ∗). Let V be a 2-dim F -vector space. Consider

(x, y) = x1u1y1 + x2u2y2

for some u1, u2 ∈ F×
0 . This will be a Hermitian form. We want to set things up so that

GF (R) ≃ SU(1, 1)×
∏

τi:F0↪!R|i≥2

SU(2)

(right factors are compact, while left factor is SL2(R)). The condition to achieve this is that

τ1(u1u2) < 0 while τj(u1u2) > 0 for j > 1.

Let Λ be an OF -lattice in V . Choose u1, u1 ∈ U×
F0

, and let β be a generator of the different of F (we’ll Question:
What is U?want certain traces to have integral values). We can use these choices to get an integral model GF , and

then consider
ΓF (1) = GF (Z) ⊂ GF (Q) ⊂ G(R)

π
↠ SL2(R)

11alternating + ⟨bx, y⟩ = ⟨x, b∗y⟩
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(π above will have compact kernel). This leads to the construction of quotients

ΓF (m)\H.

Sounds like these are compact if [F : Q] > 2. They will also have a moduli interpretation.
Say z ∈ H. We’ll want to produce an abelian variety Az with a polarization λz, and an action iz of

OF . This will be the moduli problem associated to ΓF (1).12 Recall we had a 2-dim F -vector space V
previously fixed (as well as an OF lattice Λ). The abelian variety is

Az = Λ\VR

which has real dimension 4d. Once we give it a complex structure (depending on z), it will be a complex
torus of dimension 2d. Note that13

VR = V ⊗Q R =
∏

τ:F0↪!R
V ⊗F0,τ R︸ ︷︷ ︸

Vτ

.

Let e, f be an isotopic basis of Vτ1
, so (e, e) = 0 = (f, f) and (e, f) ̸= 0.14 If z ∈ H, can consider the line

⟨e+ zf⟩ ⊂ Vτ1

which is negative in the sense that (ωz, ωz) < 0 (here, ωz = e+ zf). Write Vτ1 = ωz ⊕ω⊥
z . We now want

to define a complex structure, which we do via (a ∈ C)

a ·z v :=



av if v ∈ ω

av if v ∈ ω⊥

av if v ∈ Vτi
with signature (2, 0)

av if v ∈ Vτi with signature (0, 2)

These choices force ⟨i ·z x, x⟩ > 0 to be positive definite, so Az will be an abelian variety, not just a
complex torus.

Notation 4.2.1. Instead of writing a ·z v, we may write hz : C! End(VR) and then write hz(a)v = a ·z v.

Remark 4.2.2. The OF -action is it’s original action on V/Λ. The polarization (via generalities on complex
torii) comes from ⟨h(i)−,−⟩ being positive definite. ◦

Remark 4.2.3. Note that the parameter on the upper half plane is only used to give a choice of complex
structure. ◦

4.2.2 Something

Sounds like if X is a connected symmetric hermitian domain, and Γ is a discrete group acting freely
( ⇐= Γ torsion-free), then Γ\X has a unique structure as a q.proj algebraic variety over C. Maybe such

12This a PEL-type Shimura variety, P = polarization, E = endormorphism, L = level structure
13Also note F ⊗Q R ≃

∏
τ C

14e.g. e =

(
1
1

)
and f =

(
1
−1

)
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X satisfy Hol(X)+ = semisimple real Lie group (which acts transitively on X)?

Example. The Siegal upper half space

Hg =
{
z ∈Mg(C) : tz = z and Im z > 0

}
.

This has an action of Sp2g(R) which looks like an action by linear fraction transformations if you write
elements of Sp2g(R) has 2 × 2 block matrices. The quotient is the moduli sace of principally polarized
abelian varieties. △

Part of the utility of this is to be able to write X ≃ G(R)/K∞ for G(R) some real Lie group with
G(R)↠ Hol(X)+.

Example.
GL2(R)/ SO2(R)R× ∼

−! H

△

We want G(R)/K∞ to parameterize complex structures h : C ! End(VR) (and something about
‘conjugacy classes’?).15

In the language of Deligne, a Shimura data is a pair (G/Q, X) with G a reductive algebraic group, Maybe I
should read
Deligne’s
“Traveux de
Shimura”?

and X is a conjugacy class of h’s?

Recall 4.2.4 (from Aaron’s lectures?).

Γ(1)\H ≃ GL2(Q)\GL2(R)×GL2(Af )/K,

where K = GL2(Ẑ) · R× · SO2(R). ⊙

Choose K ⊂ G(Af ) compact. Can consider

WK := G(Q)\X ×G(Af )/Kf .

These will be q.proj algebraic varieties over C. They will not be connected in general. It will be defined
over some number field E = E(G,X).

Recall 4.2.5. Y (m)C =
⊔
Y(m)γ ⊙

4.3 Lecture 3 (7/28)

Let’s try today to give an algebraic definition of Shimura varieties. Last time we mentioned Deligne’s
definition in terms of pairs (G,X) with G/Q a reductive algebraic group, and X some G(R)-conjugacy
class of maps h : S1 ! G(R).16 Under certain conditions, X should be a complex manifold. Deline has
certain axioms. Under them, for any K ⊂ G(Af ) a compact open, the space

MK := G(A)\X ×G(Af )/K

15Maybe you implicitly fix an embedding G ↪! GLV , choose one complex structure h : C ! End(VR), and then look at
the orbit of this h under G(R)?

16I think S1 = ResC/R Gm is the Deligne torus, and you can think of h as a algebraic group homomorphism S1 ! GR.
Alternatively, S1 is the unit circle and you really want G(R) on the RHS
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becomes a q.proj algebraic variety (in a unique way?) defined over a number field E(G,X)/Q (note E
independent of K). This perspective makes two aspects of the theory very natural

(1) As K varies, these form a projective system. For K ⊂ K ′, we get

MK
π
−!MK′ .

(2) This system {MK}K has an action of G(Af ). In particular, for g ∈ G(Af ), we get

g : MK −!MgKg−1

(via multiplication on the right). This is compatible with changing level, e.g. have commutative
squares

MK′ MgK′g−1

MK MgKg−1 .

g

π π

g

Remark 4.3.1. Think of as analogue of Hecke operators, e.g. Tp ↔

(
p

1

)
. ◦

Note you can get correspondences of the form

Mg−1Kg∩K

MK MK

π g

if you want to think of actions at a single level. However, G(Af ) really does act on the whole
system, so no need to restrict to a single level.

Theorem 4.3.2 (Deligne?). If you have a map (G,X)
φ
−! (G′, X ′) of Shimura data, then you get a

corresponding map
MK(G,X) −!MK′(G′, X ′)

of systems. φ in particular includes the data of a group homomorphism φ : G ! G′ so for any open
compact K, you can find some open compact K ′ ⊃ φ(K) and then get a map as above. Again, best to
think of this as a map

{MK(G,X)} fφ−−! {MK′(G,X ′)}

of projective systems. Furthermore, if φ is injective, then fφ is a closed embedding.

Warning 4.3.3. To have a closed embedding at a single level, you’ll need to take K ′ so that K =

φ−1(K ′). •

A morphism of Shimura data is a group homomorphism φ : G! G′ such that

(h : S1 ! G(R)) ∈ X =⇒ (S1 h
−! G(R) φ

−! G′(R)) ∈ X ′.

53



4.3.1 Siegel varieties?

Consider Shimura data (G0, X0) with G0 = GSp2g (V, ⟨ , ⟩) /Q. We can describe the h ∈ X0 as certain
R-algebra maps h : C ! EndR(VR). To get something satisfying Deligne’s axioms (which we have not
specified here), we’ll need

• h(z) = h(z)∗ (with ∗ denoting adjoint, i.e. ⟨fv, w⟩ = ⟨v, f∗w⟩)

• The induced pairing ⟨h(i)−,−⟩ should be positive definite. This should
give po-
larization
showing that
you’re get-
ting a mod-
uli space of
abelian va-
rieties, not
just tori

Given such an h, we’ll get a decomposition Vh,C = V +
h ⊕ V −

h (where z ∈ C acts as z on V + and as z on
V −) with V + a g-dimensional complex vector space.

Fact. If h ∼ h′ (conjugate under G(R)) ⇐⇒ V +
h

∼= V +
h′ as C-vector spaces (i.e. have same C-dimension).

If I am hearing/following correctly, all the h’s with the two given properties form one big conjugacy
class.

This gives (G0, X0). Let Λ ⊂ V be the standard lattice. Then, M(G0, X0)K will be the moduli space
of g-dimensional abelian varieties (w/ principal polarization?).

Note 4. I keep on getting distracted for a few seconds, and then missing stuff...

Looks like now we want to consider starting with data F, ∗, V, ⟨−,−⟩ with ∗ some sort of involution
on F and ⟨a, b⟩ = TrF/Q(β(a, b)) for some β ∈ F× with β∗ = −β. Note this satisfies ⟨bx, y⟩ = ⟨x, b∗y⟩.
One often denotes the resulting group G = GUF (V, ⟨−,−⟩) and calls it a fake unitary group. This group
embeds into G0 by forgetting the F -action. To define a Shimura data on G, consider the h of the form

h : C −! EndFR(VR) ⊂ End(VR)

(composition a map of R-algebras) satisfying

• h(z) = h(z)∗

• ⟨h(i)−,−⟩ positive definite.

In this way, we get a natural morphism (G,X) ↪! (G0, X0) of Shimura data. Almost, anyways. We first
need to show X0 is a single conjugacy class under G0(R), I think. Note h factoring through EndFR(VR)

will cause the decomposition Vh,C = V +
h ⊕ V −

h to be F -linear, i.e. to be a decomp of (F ⊗ C)-vector
spaces. Note LHS has decomposition ∏

τ:F↪!C
Vτ = Vh,C

with each factor of the same dimension (call it n). One gets

Vτ = (V +
τ ⊕ V −

τ ).

Before, we have V + dual to V −. Here, I think V +
τ will be dual to V −

τ . Define f(τ) = dimV +
τ . Note the

iso. type of Vh,C as an (F ⊗C)-vector space is equivalent to the data of the decomp V + =
⊕
V +
τ which is

equivalent to the data of the partition f (note g =
∑
f(τ)). Note f(τ) + f(τ∗) = n since dim−

τ = f(τ∗),
I think (I’m getting behind). Something above the pairs (f(τ), f(τ∗)).
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Fact (Upshot?). h ∼ h′ under G(R) ⇐⇒ V +
h

∼= V +
h′ as (F ⊗ C)-modules.

One one unpacks what was supposed to happen above, you can apparently see that MK(G,X) is the
moduli space of abelian varieties A of dimension nd (where n = dimF X and d = [F0 : Q]) with

• an OF -action OF ! End(A); and

• LieAC ∼= V +
X as (F ⊗ C)-modules

Note there’s a decomposition LieAC =
⊕

(LieA)(τ) (mirroring F ⊗ C =
∏

τ F ), and the condition
here is equivalent to dim(LieA)(τ) = f(τ).

A maybe more algebraic way to write this is to say

char(b,LieA) =
∏
τ

(x− τ(b))f(τ)

for any b ∈ F . Note that this polynomial will be defined by a number field, generated by all these
τ(b)’s, and the variety will be defined over this number field. You can do even better than that if
you’re more careful (e.g. imagine something like (x − i)(x + i) which is defined over Q, not just
Q(i)).

Note you can think of this G naively as G = GLF ∩G0 ⊂ G0. Let B be a central simple Q-algebra (so
Z(B) = F ). Then can consider

G := GLB ∩G0 ⊂ G0.

Say we have a positive involution17 ∗ on B as well as a free B-module V with pairing ⟨−,−⟩ s.t.
⟨bx, y⟩ = ⟨x, b∗y⟩. Consider the h : C! EndBR(VR) with same two properties from before.

Remark 4.3.4. Apparently B has a positive involution ⇐⇒ VR has a positive definite form (which is
required by the second of our two conditions from before). ◦

What are the GUB(V, ⟨−,−⟩) conjugacy classes of these h? As before, VC = V + ⊕ V − as (B ⊗ C)-
modules. The conjugacy classes will correspond to those with V + lying in a fixed isom class of (B ⊗C)-
modules. Sounds like you get a moduli space MK(G,X) of abelian varieties of dimension nd (n = dimQ V

and d = dimQB) equipped with

• OB ! End(A)

• LieAC ∼= V +
h as (B ⊗ C)-modules.

Something about traces... Tr(b,LieA) = Tr(b, V +) ∈ E for all b ∈ OB . Note sure if this is a
separate, additional condition, or a rephrasing of the above...

Sounds like this sort of construction only gives rise to PEL-type Shimura varieties.
What other groups are there? Fix some t ∈ T ∗(V ), and let G be any reductive group sitting inside

G0? Consider
T ∗(V ) =

⊕
m,n

V ⊗m ⊗ (V ∗)⊗n.

17i.e. (xy)∗ = y∗x∗, x∗∗ = x, and TrBR/R(xx
∗) > 0 for all x ̸= 0
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Since G is reductive, it’ll turn out that G = StabG
(
T ∗(V )G

)
. Something something Hodge type some-

thing something. Note that a choice of b ∈ End(V ) is a choice of tb ∈ V ⊗ V ∗. I’m not so sure what’s
happening right now...

Something about looking at (F = Z(B), ∗) and breaking into cases

• F totally real: symplectic or orthogonal

• F CM (with ∗ complex conjugation): unitary

4.4 Lecture 4 (7/29)

Recall 4.4.1. Say (G,X) is a Shimura datum. Then we get a projective system {MK(G,X)}K⊂G(Af )

indexed by compact opens. Each variety in this system is quasi-projective and smooth over some number
field E(G,X)/Q independent of K. ⊙

Consider the étale cohomology groups

H1
ét

(
MK,E ,Qℓ

)
.

This will live in a system, so we can take a limit

Hi := lim−!
K

Hi
(
MK,E ,Qℓ

)
.

Since G(Af ) acts naturally on the projective system for the Shimura data, these limit cohomology groups
obtain a action of G(Af )×Gal(E/E).

Remark 4.4.2. G(Af ) will act smoothly, i.e. everything is fixed by some open compact. In particular,
the part of Hi fixed by K will exactly recover Hi

ét(MK,E ,Qℓ) apparently. ◦

Assumption. Assume MK is projective for all K. In particular, get iso

Hi
ét(MK,E ,Qℓ)⊗ C ∼

−! Hi
sing(MK ,C)

This cohomology group having actions by both G(Af ) and Gal(E/E) give you a way of corresponding
some automorphic reps to some Galois reps. That is, one can use this to product something like{

some algebraic
auto reps of G

}
⇝

{
Some (f.dim, a.e. unram) ℓ-adic

Galois reps

}
.

To get such a correspondence, one needs to fix an isomorphism Q̂ℓ ≃ C of abstract fields. This corre-
spondence will also satisfy L(π, s) = L(ρ, s) if π 7! ρ.

Remark 4.4.3. There was something about a ‘component at ∞’ Lω that I missed...
Apparently Lω is some lisse étale sheaf attached to certain data at infinity? ◦

To get correspondence, write π = πf ⊗ π∞ and then consider the Galois rep (the data of π∞ is
absorbed by the choice of Lω)

HomG(Af ) (πf ,H
∗(M(G,X),Lω))
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Remark 4.4.4. Think of H∗ =
∑

(−1)i Hi in the Grothendieck group of representations ◦

This give a Galois rep attached to π; it may not always be the Galois rep attached to π, but it should
often be ‘close enough’ in some way.

Question 4.4.5. How could you prove something like L(π, s) = L(ρπ, s) for a correspondence coming
out of this?

Write π =
⊗′

p
πp. Recall each unramified πp gets some s.s. conjugacy class Cp which is meant to

be ρ(Frobp) (which would give Lp(πp, s) = Lp(ρπ, s) if I’m following), at least if ρ is unramified by p. We
have unramifiedness almost everywhere on both sides. Using Chebeotarev one the Galois side and strong
multiplicity one on the automorphic side, matching these up at the jointly unramified places suffices to
win (I think).

Recall 4.4.6. πp is unramified if πKp
p ̸= 0, where Kp = G(Zp) (choose a nice integral model) is

a maximal compact (something something hyperspecial something something). This is equivalent to
πKpK

p ̸= 0 for the global π for some Kp ⊂ G(A ̸p
f ). ⊙

This suggests that ρ should arise in the cohomology of MK(G,X) for some K of the form K = KpK
p.

We want the reps in this cohomology group to be unramified, and for this we use a theorem of Deligne.

Theorem 4.4.7 (Deligne). If MK(G,X) has good reduction at p, then Hi
ét(MK ,L ) is an unramified This is com-

ing from
smooth base
change? I
can never re-
member

Galois representation at p.18

This still leaves showing that the constructed correspondence satisfies Cp = ρ(Frobp) (but at least we
now know both sides are unramified at the same places).

4.4.1 Something else?

Fix dimA = n[F0 : Q] as well as OF
i
↪! End(A) satisfying i(α∗) = i(α)†. There was also the trace

condition
Tr(b,LieA) = Tr(b, V +) ∈ E ⊂ C for all b ∈ OF .

This condition is no good in char p for reasons I did not catch. In general, one replaces this with a certain
determinant condition:

det(b,LieA) = det(b, V +) ∈ E[x] where b =
∑

xibi.

This will lead to a model over OE,(p). We also want to the model to be smooth.

Theorem 4.4.8. Assume p is unramified in F , B is split at (all primes above) p, the chosen order OB

is maximal in B ⊗ Op, and for the OB-lattice Λ, the restricted pairing

⟨−,−⟩ : Λ× Λ −! Z

is perfect at p. These conditions are satisfied at all but finitely many primes.
Now, if K = KpK

p ⊂ G(Qp)×G(Ap
f ) (with Kp = Stab(Λ)), then the constructed model MK/OE,(p)

is smooth (note OE,(p) ⊂ OEp
).

18Note Hi
ét(ME ,Qℓ) ∼= Hi

ét(MEp
,Qℓ)
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Apparently you should be able to predict from the Langlands correspondence which primes are smooth
for your model (I guess by looking at where your rep is unramified). Something something canonical
models something something.

Remark 4.4.9. Sounds like automorphic forms can be realized in some cohomology groups H0(MK , ω
κ)

with ωκ a vector bundle depending on a weight κ. Sounds like this ω is still the Hodge bundle ω = π∗Ω
1
A/X

in the case of PEL-type Shimura varieties. ◦

Theorem 4.4.10. The line bundle detω is ample.

Remark 4.4.11. As the above shows, étale cohomology is not the only way to realize automorphic forms
algebraically.

You can also, for example, look at étale p-adic cohomology (or better yet complete cohomology).
Consider a system like {MKKp}K⊂Kp

with Kp fixed, and then look at

lim −
m

lim−!
K

Hi
ét(MK ,Z/pmZ)

which has a G(Qp)-action. ◦

What if we’re interested in ramified primes? There should be a local Langlands correspondence where
if π ⇝ ρ via GLC, then πp ⇝ ρp via LLC. However, since ρ was defined globally, it’s not even clear that
ρp depends only on πp (as it should if the two correspond via local Langlands). Sounds like studying
these sorts of questions leads to the notion of local Shimura varieties.

Say (G,X) is a Shimura datum over a number field, and say p is unramified (in the sense that it
satisfies hypotheses of Theorem 4.4.8). Think of X as a set of h : ResC/R Gm ! GR. From this, can get
data (

G/Qp, µh : Gm −! GQp

)
which should be a ‘local Shimura datum’. In analogy with what Deligne did, should exact to be able to
construct a projective system G(Qp) ↷ {MK}K⊂G(Qp)

with each space q.proj var. defined over the same
finite extension E(G,µh)/Qp. This sort of idea is exactly how Harris-Taylor proved local Langlands.

Warning 4.4.12. Sounds like such spaces are not known to be defined for arbitrary G. Harris-Taylor
worked with G = GLn /Qp. •

There was more said that I did not write down...
For examples where such spaces have been constructed, look at [Rapoport-Zink] (PEL type), [W.

Kim] (Hodge type), [Scholze-Weinstein], [Lubin-Tate], ...
Also, the definition of local Shimura datum we gave is apparently insufficient. Need also some b ∈

B(G,µ), but don’t ask me what B is. The spaces also inherit an action of some other algebraic group
depending on b.

Even more stuff I did not write down...
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5 Aaron Pollack: The Rankin-Selberg method

5.1 Lecture 1 (7/25)

Note 5.

(1) Notes by Aaron on his website.

(2) Series of lectures about computing w/ L-functions

(3) Loosely connected to Friedberg’s lectures.

Lecture series is about the Rankin-Selberg method. This is related to integral representations of L-
functions.19 Suppose f is a modular form (or a generalization). Let L(f, s) be some L-function associated
to f . Typically, we can define L(f, s) for Re(s) ≫ 0. However, we may not know if it has a meromorphic
continuation (in s) to all of C, if it satisfies a functional equation, or of the significance of its special
values (values at special points).

Example. One expects that L(f, s) having a pole at some s = s0 =⇒ f is special in a precise sense. △

We also typically do not know an expression of L(f, s) in terms of ‘Fourier coefficients’ of f .
When the Rankin-Selberg method applies, it can help answer all these questions. We likely won’t

actually give a precise definition of this method until lecture 2.

5.1.1 Hecke’s integral

Suppose f ∈ Sk(C) is a normalized Hecke eigenform (H.E.F) of level one and weight k, so

f(z) =
∑
n≥1

anq
n

with an ∈ C and q = e2πiz. Note that a1 = 1 since f is normalized.

Question 5.1.1 (Audience). Are special values also interesting for transcendental L-functions?

Answer. The answer should usually be yes. For example, you can sometimes tell if the L-function of
an automorphic form on a big group is a lifted from one on a small group by checking if it has certain
poles. ⋆

Example. The classical L-function associated to a modular form f is

Lclass(f, s) :=
∑
n≥1

ann
−s

and converges for Re(s) ≫ 0. This has an associated completed L-function

Λclass(f, s) = ΓC(s)Lclass(f, s) where ΓC(s) = 2(2π)−sΓ(s). △

Theorem 5.1.2 (Hecke).
19Think, for example, writing the L-function of a modular form as an integral via taking a Mellin transformation (I

think).
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(1) Analytic continuation: Λclass(f, s) has analytic continuation to s ∈ C

(2) Functional equation: Λclass(f, s) = (−1)k/2Λclass(f, k − s)

(note k is even since f is of level 1)

(3) Euler product:
Lclass(f, s) =

∏
p

(
1− app

−s + pk−1−2s
)−1

.

Remark 5.1.3. In the theory of automorphic forms, one usually normalizes L-functions so as to get a
functional equation relating s↔ 1− s. This is why we call the one above ‘classical’. ◦

We will prove Hecke’s theorem, but not using the usual proof.20 We’ll see a proof that generalizes
better to other situations. The way we have defined things, it would be relative easy to prove (1),(2),
but a lot of work to prove (3). More often, you define an L-function as an Euler product, and then
proving AC + FE is hard.

Proof of (1),(2) of Theorem 5.1.2. Consider the function21

I(f, s) =

∫ ∞

0

f(iy)ys
dy

y
.

Since f(iy) =
∑

n≥1 ane
−2πny is rapidly converging, one can integrate the above term-by-term. First

note that ∫ ∞

0

e−2πnyys
dy

y

u=2πny
= (2πn)−s

∫ ∞

0

e−uus
du

u
= n−s(2π)−sΓ(s).

Hence,

I(f, s) =
1

2

∑
n≥1

ann
−sΓC(s) =

1

2
Λclass(f, s).

Since f is a modular form, f(−1/z) = zkf(z), so f(i/y) = (−1)k/2ykf(iy). Hence,∫ 1

0

ysf(iy)
dy

y

y=1/y
=

∫ ∞

1

y−sf(i/y)
dy

y
= (−1)k/2

∫ ∞

1

yk−sf(iy)
dy

y
.

Thus,

I(f, s) =

∫ ∞

1

(
ys + (−1)k/2yk−s

)
f(iy)

dy

y
.

In particular, we have an integral representation starting at s = 1 instead of s = 0. Since f(iy) decays
∼ e−2πy as y !∞, the above expression actually defined a holomorphic function on all of C (giving the
desired analytic continuation). Furthermore, by staring at this expression, we immediately get a functional
equation I(f, k−s) = (−1)k/2I(f, s). These imply the corresponding properties for Λclass(f, s) = 2I(f, s).

■

This wasn’t too bad. One way of saying way is that we’ve proved some function has an analytic
continuation and functional equation, but because we haven’t shown it has an Euler product, we haven’t
prove that it’s the right function to be looking at. We’ll obtain the Euler product next time.

20I think the phrase ‘usual proof’ here refers to the usual proof of (3) by Hecke theory?
21This is the Mellin transform of f if I’m not too mistaken
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Thus far, we’ve assumed we all know what ‘Hecke eigenforms’ are. Let’s actually go ahead and talk
about/define these just to make sure we’re all on the same page. We’ll take a group theoretic approach
to this.

5.1.2 Group Theory and Hecke Eigenforms

We’ll transition to adele groups and representations.
“There are two reasons. These are the definitions I remember, and these are the definitions that help

you, in practice, prove things.”

(Step 1) Given f ∈ Sk(C), we will (with some work) product a function on GL2(A). We will then define
Hecke eigenforms in terms of that associated function on GL2(A). We first define a function on
positive determinant real matrices, i.e. we define

φf : GL+
2 (R) −! C

as follows. Let j(g, z) = cz + d if g =

(
a b

c d

)
. Then, we set

φf (g) := det(g)k/2j(g, i)−kf(g · i) where g · i = ai+ b

ci+ d

(note that g · i ∈ H since det(g) > 0). The point is that φf satisfies an easier functional equation
(partially because it incorporates the factor of automorphy into the definition):

φf (γg) = φf (g) for all γ ∈ GL+
2 (Z) = SL2(Z)

φf

((
z

z

)
g

)
= φf (g) for all z ∈ R×.

We want a function of GL2(A).

Proposition 5.1.4. The inclusion

SL2(Z)\GL+
2 (R) ↪−! GL2(Q)\GL2(A)/

∏
p<∞

GL2(Zp)

is a bijection.

Thus, for free, we get a function φ : GL2(Z)\GL( A) −! C corresponding to φf using this propo-
sition. Note that φ is right invariant under GL2(Zp) for all p.

We can now define Hecke eigenforms.

Remark 5.1.5. GL2(Af ) ↷ C∞ (GL2(Q)\GL2(A)) via the right regular representation, i.e.

(g · ξ)(x) = ξ(xg)

(this is a left action). ◦
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Warning 5.1.6. We are being a little sloppy by writing C∞. Usually people look at L2 or at smooth
functions with some growth property. We don’t wanna get too into the weeds, so we ignore this growth
property. For what we want to say (today), it shouldn’t make a difference. •

Definition 5.1.7. We set

Hp := C∞
c (GL2(Zp)\GL2(Qp)/GL2(Zp),C) ,

compactly supported complex valued functions on GL2(Qp) which are GL2(Zp)-invariant on both sides.
If η ∈ Hp and ξ is a function on GL2(A) or GL2(Qp), then we define

(η ∗ ξ)(x) =
∫
GL2(Qp)

ξ(xg)η(g)dg.

If ξ is invariant under some discrete subgroup, then this integral will just be a finite sum. We call Hp

the local Hecke algebra at p. ⋄

Theorem 5.1.8. Let πφ be the GL2(Af )-submodule of C∞(GL2(Q)\GL2(A)) generated by φ (with φ

coming from a modular form f as before). Then, TFAE

(1) πφ is irreducible as a GL2(Af )-module

(2) For all finite primes p and all η ∈ Hp, there exists some λp(η) ∈ C s.t.

η ∗ φ = λp(η)φ.

If φ satisfies these equivalent conditions, we say φ (or f) is a Hecke eigenform.

Question 5.1.9 (Audience). What happens if we replace that GL2(Zp) by a larger or smaller group?

Answer. Everything goes away. Hp is an algebra under convolution. By taking GL2(Zp), this algebra
is actually commutative. If you take another group, you can lose commutativity and then you wouldn’t
expect to be able to find such simultaneous eigenvectors. The important thing is that GL2(Zp) is a
maximal compact subgroup. ⋆

Remark 5.1.10 (Response to audience question, didn’t hear the question). Let Tp be the characteristic

polynomial of GL2(Zp)

(
p

1

)
GL2(Zp). Then, up to making the appropriate normalization, you get a

“commuative square”
f φ

f ′ φ′

T class
p Tp

This gives relation to classical theory. ◦

Hecke’s integral, group-theoretically Let φ be associated to f as above. Consider the integral

I(φ, s) =

∫
GL1(Q)\GL1(A)

|t|s φ

(
t

1

)
dt

62



(using a Haar measure).

Proposition 5.1.11.

I(φ, s) = I

(
f, s+

k

2

)
.

Proof. One can write
GL1(A) = GL1(Q)×

∏
p<∞

GL1(Zp)×GL+
1 (R)

(using that Q has class number one). If t ∈ GL1(A), we may write

t = tQ

(∏
p

tp

)
t∞.

Now,

φ

(
t

1

)
= φ

(
t∞

1

)
= det

(
t∞

1

)k/2

j

((
t∞

1

)
, i

)−k

f(t∞i) = tk/2∞ f(t∞i).

The first equality is since φ is left invariant under GL1(Q) and right invariant under GL2(Zp) for all p
(+ GL1 being commutative I guess), while the second is by definition. Finally we choose Haar measure
dt whose restriction to GL+

1 (R) is dt∞
t∞

, and then we win. ■

Note this proposition does not require f to be a Hecke eigenform. That is only needed for the Euler
product.

5.2 Lecture 2 (7/26)

Recall 5.2.1 (Automorphic forms, see Definition 3.2.17). Let G/Q be a split reductive algebraic group.22

The set of automorphic forms
A(G) ⊂ C∞(G(Q)\G(A))

is the set of left G(Q)-invariant functions φ : G(A) −! C that are

(1) K =
∏

vKv-finite

Here, Kv ⊂ G(Qv) is a maximal compact.

Question 5.2.2 (Audience). Should we really allow K to be finite index in a maximal compact?

Answer. Doesn’t make a difference. If you’re finite for a finite-index subgroup, then you’re finite
for K itself maximal compact. ⋆

(2) Z(U(g))-finite

(3) of moderate growth

The space of cusp forms A0(G) ⊂ A(G) is defined as those with certain Fourier coefficients (= ‘constant
terms’) equal to 0. ⊙

22Being split implies that it can be defined over Z
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Remark 5.2.3. For our purposes in the next couple lectures, can assume G = GLn or even G = GL2. ◦

Goal.

(1) Define Langlands L-functions

(2) Hecke’s integral:

I(f, s) =

∫ ∞

0

ysf(iy)
dy

y

We proved AC + FE last time. We still need to prove that it has an Euler product.

Recall 5.2.4. Associated to a Hecke eigenform f , we obtained a function φ ∈ C∞(GL2(Q)\GL2(A)).
From this, we wrote down the integral

I(φ, s) =

∫
GL1(Q)\GL1(A)

|t|s φ

(
t

1

)
dt,

and showed that
I(φ, s) = I(f, s+

k

2
). ⊙

5.2.1 L-functions

Let (π, Vπ) ⊂ A0(G) be an irreducible representation (I think G(Af )-rep, ignoring infinite places).

Fact. π =
⊗′

v
πv, where πv is an irreducible representation of G(Qv).

Let Kp := G(Zp), and let Vp be the space of πp (for p <∞).

Fact.

• V
Kp
p ̸= 0 for almost all p. When this happens, we say πp is unramified.

• dimV
Kp
p ≤ 1 for all p.

Fact. Associated to G, there exists a complex Lie group Ĝ(C) s.t. associated to an unramified represen-
tation πp of G(Qp) is a conjugacy class cp ⊂ Ĝ(C). See Table 2 for some examples.

G Ĝ
GLn GLn(C)
Sp2n SO2n+1(C)

SO2n+1 Sp2n(C)
SO2n SO2n(C)

Table 2: A table of some groups with their Langlands duals

This last fact in particular is what we need to define L-functions.

Construction 5.2.5 (due to Langlands). Suppose r : Ĝ(C) −! GLN (C) is a representation. Let π =⊗′

v
πv be a cuspidal automorphic representation. We define the local L-function associated to πp

to be
L(πp, r, s) = det

(
1N − r(c(πp))p

−s
)−1

if πp is unramified. Note that this is the reciprocal of a degree N polynomial in p−s.
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Warning 5.2.6. Defining the local L-factor for ramified πp is much more difficult. In particular, we only
asserted the existence of the associated conjugacy class c(πp) when πp is unramified. •

Suppose π is as above, and let S be a finite set of places (including the archimedean places) such that
p ̸∈ S =⇒ πp unramified. We then define the partial L-function associated to π to be

LS(π, r, s) :=
∏
p ̸∈S

L(πp, r, s).

This converges to a holomorphic function for Re(s) ≫ 0.

Conjecture 5.2.7. LS(π, r, s) has meromorphic continuation and functional equation relating s↔ 1−s.

You may worry that we can’t product an L-function with the right local factors since we never
explicitly said how to get the conjugacy classes c(πp).

Suppose G as above and that (πp, Vp) is unramified. Choose some nonzero v0 ∈ V
Kp
p , so Cv0 = V

Kp
p .

For v ∈ Vp and
η ∈ Hp = C∞

c (Kp\G(Qp)/Kp) ,

we define
η ∗ v :=

∫
G(Qp)

η(g)πp(g)vdg.

In essence, we’ve extended the action πp of G(Qp) ↷ Vp to one of the group algebra Hp ↷ Vp.

Claim 5.2.8. η ∗ v ∈ V
Kp
p

Proof.

πp(k) · (η ∗ v) =
∫
G(Qp)

η(g)πp(kg) · vdg

=

∫
G(Qp)

η(k−1g)πp(g) · vdg

= η ∗ v ■

Consequently, η ∗ v0 = λ(η)v0 for some λ(η) ∈ C.

Proposition 5.2.9. Let G and r : Ĝ(C) −! GLN (C) be as above. Then, This sorta
sounds like
some Tate’s
thesis L-
function is
a gcd of ζ-
functions
type of
thing?

∃!∆s
r ∈ C∞ (Kp\G(Qp)/Kp)

s.t. for Re(s) ≫πp
0, one has

∆s
r ∗ v0 =

∫
G(Qp)

∆s
r(g)πp(g) · v0dg = L(πp, r, s)v0

for all unramified πp.

(In particular, you use the same ∆s
r for all unramified πp)

Example. Say G = GL2 and r = Std : GL2(C)
=
−! GL2(C) the standard rep. Then, Here,

char(E)

denote the
characteris-
tic function
of member-
ship in some
set E

Seems like
also here
we’re taking
p-adic ab-
solute value
| · | = | · |p
everywhere
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∆s
r(g) = char (g ∈M2(Zp)) |det(g)|s+

1
2 .

Set
Tpn := char (g ∈M2(Zp) : |det(g)| = |pn|) ,

so Tpn ∈ Hp = C∞
c (GL2(Zp)\GL2(Qp)/GL2(Zp)). Furthermore,

∆s
r(g) =

∑
n≥0

Tpn(g) |pn|s+
1
2 .

Thus,∫
GL2(Qp)

∆s
r(g)πp(g)v0dg =

∑
n≥0

|pn|s+
1
2 (Tpn ∗ v0) =

∑
n≥0

|pn|s+
1
2 λ(Tpn)v0 = L(πp, Std, s)v0. △

5.2.2 Hecke’s integral again

Goal. Suppose f ∈ Sk(C) is a weight k normalized Hecke eigenform (or even a Maass form if you want,
see Definition 3.2.2). Let φ ∈ C∞(GL2(Q)\GL2(A)) be the function associated to f as in section 5.1.2.
Then,

I(φ, s) :=

∫
GL1(Q)\GL1(A)

|t|s φ

(
t

1

)
dt = Λ(π, Std, s+ 1/2) = (Γ-factors)L(π, Std, s+ 1/2).

Above,
L(π, Std, s+ 1/2) =

∏
p

L(πp, Std, s+ 1/2).

Note that since f is level 1, there are no ramified p.

(Step 1) The Fourier Expansion of φ adellically.

Let ψ : Q\A! C× be the standard additive character, i.e.

ψ(x) =
∏
v

ψv(xv),

where ψ∞(x∞) = e2πix∞ . Furthermore, if xp = x0p + x1p with x0p ∈ Zp and x1p = m
pr (m ∈ Z), then,

ψp(xp) = ψp(x
1
p) = e−2πim/pr

.

For µ ∈ Q, we define the µth Fourier coefficient of φ to be

φµ(g) :=

∫
Q\A

ψ−1(µx)φ

((
1 x

0 1

)
g

)
dx.

Then,
φ(g) =

∑
µ∈Q

φµ(g)

(we will not prove this).
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Remark 5.2.10. In the case of GL2, φ cuspidal ⇐⇒ φ0(g) = 0 for all g. ◦

Define

Wφ(g) := φ1(g) =

∫
Q\A

ψ−1(x)φ

((
1 x

1

)
g

)
dx,

the Whittaker function of φ.

Lemma 5.2.11. If µ ∈ Q×, then

φµ(g) =Wφ

((
µ

1

)
g

)
.

Proof. Perform a change of variables:

Wφ

((
µ

1

)
g

)
=

∫
Q\A

ψ−1(x)φ

((
1 x

1

)(
µ

1

)
g

)
dx

=

∫
Q\A

ψ−1(x)φ

(µ
1

)−1(
1 x

1

)(
µ

1

)
g

 dx by left-invariance of φ under GL2(Q)

=

∫
Q\A

ψ−1(x)φ

((
1 µ−1x

1

)
g

)
dx

=

∫
Q\A

ψ−1(µx)φ

((
1 x

1

)
g

)
dx

= φµ(g) ■

Corollary 5.2.12. If φ is a cusp form, then

φ(g) =
∑

µ∈Q×

φµ(g) =
∑

µ∈Q×

Wφ

((
µ

1

)
g

)
.

5.3 Lecture 3 (7/28)

Recall 5.3.1.

• f ∈ Sk(C) level one cuspidal Hecke eigenform

• f ⇝ φ ∈ A0(GL2), a cuspidal automorphic form on GL2(A)

• φ generates an irreducible representation π =
⊗′

v
πv. This is a GL2(Af )× (gl2, O(2))-module

πv is a GL2(Qv)-representation

• Let Vπ denote the space of π, and Vp the space of πp.

• V
GL2(Zp)
p = Cvp0 . v

p
0 is called a spherical vector.

(π unramified everywhere since f was level one) ⊙

Question 5.3.2 (Audience). Is it clear that Vp is infinite dimensional?

Answer. It’s true and not a difficult fact, but not easy enough to come up with a proof on the spot. ⋆
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5.3.1 L-functions

Recall
L(π, Std, s) =

∏
p

L(πp, Std, s).

The completed L-function is

Λ(π, Std, s) = ΓC

(
s+

k − 1

2

)
L(π, Std, s).

To access the local L-functions, we appeal to∫
GL2(Qp)

char(g ∈M2(Zp)) |det(g)|s+
1
2 πp(g)v

p
0dg = L(πp, Std, s)v

p
0 .

We note that the LHS above is ∑
n≥0

p−n(s+ 1
2 )Tpn · vp0

where Tpn ∈ Hp is
Tpn = char(g ∈M2(Zp) : |det(g)| = |pn|).

That is, the LHS is a power series in p−s with coefficients that are Hecke eigenvalues of the representation
(πp, Vp). The Hecke eigenvalues come up here since Tpn · vp0 = λ(pn)vp0 .

Recall 5.3.3. In classical theory, the coefficients of the L-function of a modular form are its ap’s, it’s
Hecke eigenvalues for Tp. ⊙

Question 5.3.4 (Audience). Are these Hecke eigenvalues the same ones that appear in the classical
situation?

Answer. Up to some normalization factor (possibly depending on p), they are. ⋆

Recall that we are trying to evaluate

I(φ, s) =

∫
GL1(Q)\GL1(A)

|t|s φ

(
t

1

)
dt.

Last time we had started understanding the Fourier expansion of φ adelically. We obtained (the Whittaker
expansion of φ)

φ(g) =
∑

µ∈Q×

φµ(g) =
∑

µ∈Q×

Wφ

((
u

1

)
g

)
,

where

φµ(g) :=

∫
Q\A

ψ−1(µx)φ

((
1 x

0 1

)
g

)
dx and Wφ(g) = φ1(g).

Note φ0 = 0 since φ is cuspidal. Above, ψ : Q\A! C× is the standard additive character from last time.
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Now,

I(φ, s) =

∫
GL1(Q)\GL1(A)

|t|s
 ∑

µ∈Q×

Wφ

((
µ

1

)(
t

1

)) dt

=

∫
GL1(Q)\GL1(A)

∑
µ∈Q×

(
|µt|sWφ

(
µt

1

))
dt product formula =⇒ |µ| = 1

=

∫
GL1(A)

|t|sWφ

(
t

1

)
dt.

We’ve said that we will evaluate Hecke’s integral in a non-standard way. What’s the standard way?

Remark 5.3.5 (standard argument, quickly). First appeal to the following fact

Fact. Wφ(g) is itself an Euler product, i.e. for all places v, there exists Wv : GL2(Qv)! C s.t.

(1) Wφ(g ∈ GL2(A)) =
∏

vWv(gv).

(2) In above infinite product, almost all factors are = 1.

This will cause the whole integral to split up as a product

I(φ, s) =
∏
v

Iv(s) where Iv(s) =

∫
GL1(Qv)

|tv|sWv

(
tv

1

)
dtv.

Note that Wv depends (only) on the representation πv even though this isn’t indicated in the notation.
To continue along this line, to evaluate the global I in terms of L-functions, one would need to evaluate

the Iv’s in terms of local L-functions. ◦

In what way will we evaluate this integral? For µ ∈ Q×, consider Lµ : Vπ ! C given as

Lµ(φ
v) = φv

µ(1) =

∫
Q\A

ψ−1(µx)φv

(
1 x

0 1

)
dx,

where v ∈ Vπ, φv is the automorphic form associated to v.

Warning 5.3.6. We’re really using the smooth notation of automorphic forms in order to be able to
evaluate at 1 and get a number. You can’t do this with an L2 ‘function’. •

Note (recall group element acting by right regular representation)

Lµ

((
1 x

1

)
v

)
=

((
1 x

1

)
φv

)
µ

(1)

=

∫
Q\A

ψ−1(µx′)φv

((
1 x′

1

)(
1 x

1

))
dx′

x′⇝x′−x
= ψ(µx)

∫
Q\A

ψ−1(µx′)φv

(
1 x′

1

)
dx′

= ψ(µx)Lµ(v).
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We want to use these linear functionals to rewrite our global integral:

I(φ, s) =

∫
GL1(A)

Wφ

(
t

1

)
|t|s dt =

∫
GL1(A)

L1

((
t

1

)
φ

)
|t|s dt

“Here comes the leap of faith”
Imagine we can prove the following proposition.

Proposition 5.3.7. Suppose ℓ : Vp ! C is a linear functional satisfying

ℓ

((
1 x

1

)
v

)
= ψ(x)ℓ(v) for all x ∈ Qp, v ∈ Vp.

Then, ∫
GL1(Qp)

ℓ

((
t

1

)
vp0

)
|t|s dt = L

(
πp, Std, s+

1

2

)
ℓ(vp0).

Claim 5.3.8. Such a proposition will imply

I(φ, s) =
af (1)

2
Λ

(
π, Std, s+

1

2

)
(af (1) is the first Fourier coefficient of the original form)

Proof. If Ω is a finite set of places of Q, let AΩ =
∏

v∈Ω Qv, and define

I(Ω, φ, s) :=

∫
GL1(AΩ)

|t|s L1

((
t

1

)
φ

)
dt.

Basically by definition,
I(φ, s) = lim−!

Ω

I(Ω, φ, s).

(Step 1) I({∞}, φ, s) = af (1)
2 ΓC

(
s+ k

2

)
.

(Step 2) Use Proposition 5.3.7 to induct on the size of Ω:

I(Ω ∪ {p}, φ, s) = L(πp, Std, s+ 1/2)I(Ω, φ, s).

These two steps imply the desired result:

I(φ, s) =
af (1)

2
Λ

(
π, Std, s+

1

2

)
. ■

We will prove the above steps in reverse order (and prove the prop next time).

Proof of (Step 2) of Claim 5.3.8. By definition

I(Ω ∪ {p}, ψ, s) =
∫
GL1(AΩ)

|tΩ|s
∫
GL1(Qp)

|tp|s L1

((
tΩ

1

)(
tp

1

)
φ

)
dtpdtΩ.
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Define a linear function ℓ = ℓtΩ : Vp ! C via

ℓ(v) := L1

((
tΩ

1

)
φv

)
.

Remark 5.3.9. We should say what we mean by this. Given v ∈ Vp, since we are unramified eveywhere,
we can form

v ⊗
⊗
q ̸=p

vq0 ⊗ v∞ =: v ∈ Vπ

(accept there’s a canonical choice of v∞). The φv above is the automorphic form associated to v. ◦

Note that this linear functional depends upon tΩ. Then, we may write

I(Ω ∪ {p}, ψ, s) =
∫
GL1(AΩ)

|tΩ|s
∫
GL1(Qp)

|tp|s L1

((
tΩ

1

)(
tp

1

)
φ

)
dtpdtΩ

=

∫
GL1(A)

|tΩ|s
(∫

GL1(Q)

ℓ

((
tp

1

)
vp0

)
|tp|s dtp

)
dtΩ

=

∫
GL1(AΩ)

|tΩ|s
(
ℓ(vp0)L(πp, Std, s+ 1/2)

)
dtΩ by Proposition 5.3.7

= L(πp, Std, s+ 1/2)

∫
GL1(AΩ)

|tΩ|s L1

((
tΩ

1

)
φ

)
dtΩ

= L(πp, Std, s+ 1/2)I(Ω, φ, s). ■

To get the induction off the ground, we still need to understand the archimedean piece.

Proof of (Step 1) of Claim 5.3.8. We’ll get the actually use the classical Fourier expansion of φ here. Say
g ∈ GL2(R). Then,

L1(gφ) =

∫
Q\A

ψ−1(x)φ

((
1 x

1

)
g

)
dx =

∫
Z\R

e−2πixφ

((
1 x

1

)
g

)
dx.

The last equality above should not be immediately obvious. To see it, first observe that

Z\R ∼
−! Q\A/

∏
p

Zp.

Furthermore, φ is right invariant under the matrices This is true
since φ is
of level 1.
Sounds like
it really only
requires φ
being of
level Γ ⊃(
1 Z

1

)
. In

the level one
case, recall
Proposition
5.1.4

(
1 Zp

0 1

)
∈ GL2(Zp) ⊂ GL2(Qp),

which allows you to compute this adelic integral at just the real place. By definition of φ in terms of f ,
we have

φ

((
1 x

0 1

)(
t

1

))
= tk/2f(x+ it) for x ∈ R, t ∈ R×

>0.
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The upshot is that

L1

((
t

1

)
φ

)
= af (1)t

k/2e−2πt if t ∈ R×
>0.

Exercise. If t < 0, then L1

((
t

1

)
φ

)
= 0.

Thus,

I({∞}, φ, s) = af (1)

∫
R×

>0

ts+
k
2 e−2πt dt

t
=
af (1)

2
ΓC

(
s+

k

2

)
as desired. ■

5.4 Lecture 4 (7/29)

Recall we have been trying to evaluate Hecke’s integral

I(φ, s) =

∫
GL1(Q)\GL1(A)

φ

(
t

1

)
|t|s dt.

We used the functional equation of φ to rewrite this as

∫
GL1(A)

Wφ

(
t

1

)
|t|s dt.

We mentioned (without proof) that this Whittaker function is an Euler product, which can be used to
deduce the same for this integral. However, we decided to take a different approach to arrive at this same
result.

Theorem 5.4.1 (Our Goal).

I(φ, s) =
af (1)

2
Λ(π, Std, s+ 1/2).

Last time we reduced the proof of this statement to the following purely local result.

Proposition 5.4.2 (Proposition 5.3.7). Write π =
⊗′

v
πv for the representation generated by φ, and

let Vp be the (infinite-dimensional) space associated to πp. Suppose ℓ : Vp ! C is linear and satisfies

ℓ

((
1 x

1

)
v

)
= ψp(x)ℓ(v) for all x ∈ Qp, v ∈ Vp.

Then,

Ip(ℓ, v
p
0 , s) :=

∫
GL1(Qp)

ℓ

((
t

1

)
vp0

)
|t|s dt = L(πp, Std, s+ 1/2)ℓ(vp0),

where vp0 is a spherical vector for πp, i.e. Cvp0 = V
GL2(Zp)
p .

Remark 5.4.3. Note that vp0 is only well-defined up to scalar multiple. With this in mind, the above
formula is at least reasonable since both sides scale when vp0 scales. ◦
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Recall 5.4.4. We know that∫
GL2(Qp)

char (g ∈M2(Zp)) |det g|s+1
πp(g)v

p
0dg = L

(
πp, Std, s+

1

2

)
vp0 .

Also, the above integral is a power series in p−s with coefficients that are Hecke eigenvalues. ⊙

This implies that∫
GL2(Qp)

char(g ∈M2(Zp)) |det(g)|s+1
ℓ(g · vp0)dg = L(πp, Std, s+ 1/2)ℓ(vp0),

which is the RHS of the desired equality in Proposition 5.4.2. Hence, we only need to know that the LHS
above is also the LHS of the desired equality in Proposition 5.4.2.

5.4.1 Short Digression: Iwasawa decomposition

This is a useful tool for computing integrals over GL2(Qp) (or other groups). Set

N =

{(
1 x

1

)}
⊂ GL2(Qp) upper triangular unipotent matrices

T =

{(
t1

t2

)}
⊂ GL2(Qp) diagonal matrices

K = GL2(Zp) ⊂ GL2(Qp)

Then,
GL2(Qp) = NTK.

Moreover, if f ∈ C∞(GL2(Qp)) is integrable, then

∫
GL2(Qp)

f(g)dg =

∫
T

∫
N

∫
K

f(ntk)

∣∣∣∣ t1t2
∣∣∣∣−1

dkdndt.

Question 5.4.5 (Audience). Does the order of integration matter?

Answer. The factors inside of f must be in that order, e.g. it must be ntk, not tkn. However, if you
keep the insidemost integrand and change the order of the integrals, this will be the same by Fubini. ⋆

Question 5.4.6 (Audience). Do we have to be careful about choosing measure in a consistent way?

Answer. Yes. Above, we never specified which Haar measures on each group we’re taking. To be more
careful, choose

• dn such that

(
1 Zp

1

)
has measure 1

• dk such that GL2(Zp) has measure 1

• dt such that

(
Z×
p

Z×
p

)
has measure 1

Once these are chosen, dg is pinned down by the desired equality. ⋆
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5.4.2 Back to evaluating Hecke’s integral

By the above digression, we have∫
GL2(Qp)

char(g ∈M2(Zp)) |det(g)|s+1
ℓ(g · vp0)dg

g=ntk
=

∫
T

∫
N

∫
K

|t1t2|s+1
char

((
1 x

1

)(
t1

t2

)
k ∈M2(Zp)

)
ℓ

((
1 x

1

)(
t1

t2

)
kvp0

)∣∣∣∣ t1t2
∣∣∣∣−1

dkdxdt

=

∫
T

∫
N

∫
K

|t1t2|s+1
char

((
t1 xt2

t2

)
∈M2(Zp)

)
ψp(x)ℓ

((
t1

t2

)
vp0

)∣∣∣∣ t1t2
∣∣∣∣−1

dkdxdt

=

∫
T

∫
N

|t1|s |t2|s+2
char

((
t1 xt2

t2

)
∈M2(Zp)

)
ψp(x)ℓ

((
t1

t2

)
vp0

)∣∣∣∣ t1t2
∣∣∣∣−1

dxdt.

Now we’re in good shape. The inner integral above is simply (assuming t2 ∈ Zp b/c of bottom left corner
of the matrix)

∫
Qp

char(xt2 ∈ Zp)ψp(x)dx =

0 if t2 ̸∈ Z×
p

1 otherwise.

(usual trick of integrating a character over t−1
2 Zp = p−vp(t2)Zp. Note ψp|Zp = 1). Plugging this in above,

we arrive at∫
GL2(Qp)

char(g ∈M2(Zp)) |det(g)|s+1
ℓ(g · vp0)dg

=

∫
t1∈Zp

∫
t2∈Z×

p

|t1|s |t2|s+1
ℓ

((
t1

t2

)
vp0

)
dt2dt1

=

∫
t1∈Zp

|t1|s ℓ

((
t1

1

)
vp0

)
dt1 use vp0 invariant under matrix

(
1

t2

)
∈ GL2(Zp)

?
=

∫
t1∈Q×

p

|t1|s ℓ

((
t1

1

)
vp0

)
dt1

= Ip(ℓ, v
p
0 , s).

Lemma 5.4.7. If t ∈ Q×
p \ Zp, then

ℓ

((
t

1

)
vp0

)
= 0.

Proof. See Aaron’s notes or work it out yourself. ■

This completes the proof of Proposition 5.4.2 which in turn completes the proof of Theorem 5.1.2 (see
Claim 5.3.8). We did this by computing the simplest example of a ‘Rankin-Selberg integral’.
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5.4.3 More Examples of Rankin-Selberg Integrals

Let’s suppose K/Q is a quadratic field, and let H/Q be the algebraic group with functor of points

H(A) = {(λ, g) ∈ GL1(A)×GL2(K ⊗A) : λ = det(g)}

(subset of ResK/Q GL2 with determinant landing in Gm (instead of ResK/Q Gm)).
Let E(h, s) be an Eisenstein series on H(A). We won’t specify this completely precisely, but we’ll say

a bit about it.

• s ∈ C is a complex variable

•

E(h, s) =
∑

γ∈BH(Q)\H(Q)

f(γh, s) where BH(Q) = H ∩

{(
∗ ∗

∗

)}
,

and f(−, s) : H(A)! C is some function which satisfies

f

((
a b

d

)
h, s

)
=
∣∣∣a
d

∣∣∣s/2
K

f(h, s) for all

(
a b

d

)
∈ H(A), h ∈ H(A).

Proposition 5.4.8. f can be chosen so that E(h, s) has meromorphic continuation in s with simple poles
at s = 0, 2 and so that it satisfies E(h, s) = E(h, 2− s).

We’ll use this Eisenstein series to write down a couple more integrals which represent L-functions.
Suppose π ⊂ A0(GL2) and choose some nonzero φ ∈ Vπ. Consider

I(φ, s) =

∫
GL2(Q)Z(A)\GL2(A)

φ(g)E(g, s)dg,

where we’ve used the naturally embedding GL2,Q ↪! H.

Theorem 5.4.9.
I(φ, s) ≈ LS

(
π, Std, s− 1

2

)
.

(Have a partial L-function on the RHS)

(note RHS depends on bothK,E in ways which have been absorbed into the ≈ and into the unspecified
finite set S of places)

Remark 5.4.10. The finite set S comes e.g. from ramification in K and from ramification in π. ◦

The Rankin-Selberg method, roughly Suppose G/Q is a reductive group, and suppose π ⊂ A0(G)

is a cuspidal automorphic representation. Say H ⊂ G is an algebraic subgroup. Say we also have H ⊂ G′

along with an Eisenstein series E(g′, s) on G′(A).

Remark 5.4.11. Frequently in practice, one will take H = G ⊂ G′ or H = G′ ⊂ G. ◦

If φ ∈ Vπ, can consider the integral∫
H(Q)Z(A)\H(A)

E(h, s)φ(h)dh =: I(φ, s)
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(Above, Z = Z(G) ∩ H ∩ Z(G′)). In very special circumstances, this integral will give some partial
Langlands L-function

I(φ, s) ≈ LS(π, r, s− s0)

for some s0 ∈ C and some r : Ĝ(C)! GLN (C). When this happens, one calls

I(−, s) : A0(G) −! C

a Rankin-Selberg integral.

Warning 5.4.12. It’s unclear which L-functions you can get in this way. It’s also hard in general to tell
when such an integral is a R-S integral. •

Remark 5.4.13. Part of the utility of these things is that, from general facts about Eisenstein series, you
know that these integral have meromorphic continuations in s (and so you can get the same conclusion
for L-series). ◦

Example. Hecke’s integral comes from G′ = H = GL1 ⊂ GL2 = G. △

Example. The example above was H = G = GL2 ⊂ G′ with G′ this subgroup of ResK/Q GL2 (the thing
we previously called H). △
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6 List of Marginal Comments

o Question: Should this say irreducible? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
o Answer: No, See e.g. proof of Lemma 1.1.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
o Remember: A is a quotient of Cl(F ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
o I guess Eisenstein series are eigenforms since cusp forms span a codim 1 subspace . . . . . . . . 4
o TODO: Work this out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
o TODO: Finish definition, look at slides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
o Question: What is d? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
o Answer: The degree of the totally real field, i.e. n . . . . . . . . . . . . . . . . . . . . . . . . . 14
o Apparently doing/did his postdoc with Dasgupta . . . . . . . . . . . . . . . . . . . . . . . . . . 15
o It’s possible one of the 1’s below was supposed to be a 2. . . . . . . . . . . . . . . . . . . . . . 18
o Question: Is it clear that M is finitely generated? . . . . . . . . . . . . . . . . . . . . . . . . . . 18
o Answer: G compact, so it will have bounded image. I think this is the key . . . . . . . . . . . . 18
o Question: Is it obvious that this implies GF

∼= G′
F
? . . . . . . . . . . . . . . . . . . . . . . . . . 20

o Question: Where does the word inner come into play? . . . . . . . . . . . . . . . . . . . . . . . 20
o Question: Presumably this is coming from a map PGL2 ! AutGSp2g (landing in inner auto-

morphisms). What is this map? Presumably it’s coming from some map GSp2 ! GSp2g I
guess? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

o I may have messed up some of the expressions in this proof below this point . . . . . . . . . . . 21
o Question: Why does B contain an unramified quadratic extension? . . . . . . . . . . . . . . . . 23
o Question: Why? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
o I think actually Lassina claimed this is an equality, but I don’t see why . . . . . . . . . . . . . 26
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