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1 Lecture 1 (2/17)

1.1 Administrative/Course stuff

Office hours (listed on webpage)

• Wed 5-6pm

• Sat 1-2pm

• Sun 2-3pm

When doing problems, list the sources you’ve consulted. The first problem set is on Canvas right now,
and is due this Sunday on Gradescope.

1.2 Content

The goal of this course is to classify algebraic groups (at least, to try to).
Terminology:

• If X is a k-scheme and L ⊃ k, the base change is XL := X ×spec k specL

• specA = {prime ideals of A} with its sheaf of rings. Milne uses
max spec
instead

• A k-variety is a separated, finite type k-scheme.

Milne re-
quires k-
varieties to
also be ge-
ometrically
reduced

For reduced varieties over k = k

• a subvariety Y of a given (reduced) X is determined by the subset Y (k) ⊂ X(k)

• morphisms are also determined by what they do on k-points

More generally, each k-scheme X gives rise to its functor of points

hX : {k-algebras} −! Set

R 7−! X(R) := HomSch /k(specR,X)

Warning 1.1. We’re ignoring some set-theoretic issues here (e.g. there’s no ‘set’ of k-algebras). Milne
worries about these in the beginning of his book, but we won’t stress them in lecture.

This functor of points determines the schemes X,Y (think, Yoneda).

Definition 1.2. A k-group scheme is a group object in the category of k-schemes. That is, it is a
k-scheme G together with morphisms

(multiplication) m : G×G! G (note G×G = G×k G, product as k-schemes)

(inverse) i : G! G

(identity) e : spec k ! G

1



satisfying the usual group axioms. By Yoneda, an equivalent definition is that a k-group scheme is a
k-scheme G together with a factorization

{k-algs} Grp Set

hG

Example. Consider the functor
{k-algs} −! Set

R 7−! GL2(R)

It is representable by the scheme

GL2 := spec k[a, b, c, d]

[
1

ad− bc

]
We claim this is a group scheme. One way to show this would be to write down the multiplication map
GL2×GL2 ! GL2 (as well as inversion/identity), but it’s easier to just note that GL2(R) is always a
group (functorially in R), and then conclude that GL2 is a group scheme by Yoneda.

Example. The multiplicative group is the functor Gm(R) := R×. This is representable by Gm =

spec k[t, 1/t]. Note that Gm = GL1.

Example. There’s the group of nth roots of unity µn(R) := {r ∈ R : rn = 1} which is representable by
µn = spec k[t]/(tn − 1). Note this is not the trivial group even if char k | n.

Example. Say char k = p > 0. We can consider the group functor

αp(R) := {r ∈ R : rp = 0}

(under addition). This is represented by αp = spec k[x]/(xp). Notice that this example is not reduced.

Definition 1.3. A k-algebraic group is (separated) finite type k-group scheme, i.e. a group object in
the category of k-varieties.

Remark 1.4. Above, separated is in parentheses since it follows automatically from the other conditions.
This is because the diagonal ∆ ⊂ G×G is closed since it is cut out by the equation gh−1 = e. So group
schemes are always separated.

1.3 Review of two notions of nonsingularity

Regular

Recall 1.5. Let A be a noetherian local ring with maximal ideal m, and let κ := A/m be the residue
field. Then,

dimκm/m
2 ≥ dimA.

We say A is a regular local ring if we have equality above.

Definition 1.6. Let X be a variety with a point x ∈ X. We say X is regular at x if OX,x is regular
local. We say X is regular if it is regular at every x.

2



For regularity, it is enough to check at closed points only.

Smooth

Definition 1.7. Fix r ≥ 0. An arbitrary morphism f : X ! S of schemes is smooth at x (x ∈ X) if

(1) Suppose that f is

spec
A[t1, . . . , tn]

(gr+1, . . . , gn)
! specA.

We say f is obviously smooth of relative dimension r at x if(
∂

∂gi
tj(x)

)
∈M(n−r)×n(κ(x))

has rank n− r (i.e. maximal rank).

(2) In general, f is smooth of relative dimension r at x if it looks locally like above near x. That
is, we can find open affine neighborhoods X ′ ⊂ X of x and S′ ⊂ S of f(x) such that f restricts to
a map X ′ ! S′ which is obviously smooth of relative dimension r at x.

Notation 1.8. We let Xsm := {x ∈ X : X ! S is smooth at x} denote the smooth locus of X.

1.3.1 Relating the Notions over Varieties

“My general philosophy for this class is that if I feel like using some facts from algebraic geometry, I’ll
just use them. And I’ll pretend that y’all learned them in your algebraic geometry class.”

Consider a k-variety X ! spec k.

Fact (smoothness for k-varieties).

(1) smooth at x =⇒ regular at x. Conversely, regular at x =⇒ smooth at x if κ(x)/k is separable.

Corollary 1.9. If k is perfect, then regular = smooth.

(2) regularity can be lost upon inseparable field extension.

(3) smoothness is unchanged by field extension.

Corollary 1.10. geometrically regular = geometrically smooth = smooth.

In fact, this is how Milne defines smooth.

(4) Xsm is open in X (holds for any morphism, defined by non-vanishing of minors of a matrix)

(5) If X is geometrically reduced, then Xsm is dense in X.

Example. Say k = Fp(t). Then, X : y2 = xp − t is regular, but not smooth.

Proposition 1.11. For an algebraic group G, G is smooth ⇐⇒ G is geometrically reduced.

Proof. WLOG k = k. Then, smooth = geometrically regular =⇒ geometrically reduced =⇒ some
open dense subset is smooth =⇒ smooth at one k-point =⇒ smooth at all k-points (via translation)
=⇒ smooth (G is quasi-compact2). We’ve come full circle. �

2every (closed subset of a) quasi-compact scheme contains a closed point.
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1.4 Galois Theory according to Grothendieck

Definition 1.12. An étale k-algebra is a k-algebra of the form L1 × . . . × Ln where each Li/k is a
finite separable field extension. This are exactly the k-algebras A such that A⊗k ks ' (ks)n for some n,
as ks-algebras.

Let g := Gal(ks/k). Poonen did
not actually
use math-
frak, but
this is the
closest I
could get to
the g he did
write down

Theorem 1.13. There is an equivalence of categories{
étale
k-algs

}op

 !

{
fin. étale
k-schemes

}
 !

{
finite sets w/

continuous g-action

}
Above, étale = smooth of rel dim 0 (note finite =⇒ affine). The assignments above are via

O(Z)  − [ Z 7−! Z(ks)

A  − [ specA 7−! Homk-alg(A, k
s)

2 Lecture 2 (2/19)

2.1 Last time

A k-group scheme is the data of

• a k-scheme G; and

• a group structure on the set G(R) for each k-algebra R s.t. for each k-algebra homomorphism
R! R′, the map G(R)! G(R′) is a group homomorphism

A k-subscheme N ⊂ G is a subgroup scheme if for each k-algebra R, the subset N(R) of G(R) is a
subgroup. A subgroup scheme N is normal in G if N(R) is normal in G(R) for each R.

Remark 2.1. smooth =⇒ regular. The converse holds at any x with κ(x)/k separable.

Remark 2.2. Algebraic groups in characteristic 0 are automatically smooth (proved by Cartier).

Theorem 2.3. There is an equivalence of categories{
étale
k-algs

}op

 !

{
fin. étale
k-schemes

}
 !

{
finite sets w/

continuous g-action

}
Above, étale = smooth of rel dim 0 (note finite =⇒ affine). The assignments above are via

O(Z)  − [ Z 7−! Z(ks)

A  − [ specA 7−! Homk-alg(A, k
s)

2.2 This time

Say X is a k-variety (separated scheme of finite type). We can base change it to a separable closure Xks ,
and consider its connected components. Note that this set of components is a finite set with (continuous)
Gal(ks/k)-action. By Grothendieck’s formulation of Galois theory, this corresponds to some finite étale
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k-scheme which we denote π0(X). It also corresponds to some étale k-algebra, which will be the maximal
étale k-algebra in O(X). Including this étale k-algebra into O(X) gives a map

X ! π0(X)

whose fibers are the connected components of X (not of Xks).

Example. Take X = spec Q[x,y]
(x+3)(x2−2) over Q. This looks like the line x = −3 unioned with the “pair

of lines” x = ±
√

2. Hence, π0(X)(Q) has three points, one for each geometric component, and there’s a
Galois action interchanging the lines x = ±

√
2. As a Q-scheme, we have

π0(X) = specQ t spec
Q[x]

(x2 − 2)
.

The correspond étale algebra is the affine coordinate ring of π0(X), i.e. it is Q×Q(
√

2).

Let G be an algebraic group over k. Let G0 denote the connected component of G containing the
identity e ∈ G(k). This component will be stable under the Galois group (since e is), so G0 will be defined
over k. Here are some facts in this case...

• {connected comps of Gks} is a finite group with Gal(ks/k)-action. Hence, π0(G) is a finite étale
group scheme over k.

We’ll later show that there’s actually an exact sequence 1! G0 ! G! π0(G)! 1, but we haven’t
even defined exact sequence yet.

• (GL)0 = (G0)L for any field extension L ⊃ k. Hence, G0 is geometrically connected.

• The connected components of G = the irreducible components of G. This is because every point
has to look the same.

Corollary 2.4. For an algebraic group, G is geometrically irreducible ⇐⇒ G is geometrically connected
⇐⇒ G0 = G ⇐⇒ G is connected⇐⇒ G is irreducible.

2.3 Kernels

Proposition 2.5. Let ϕ : G ! H be a homomorphism of group schemes. Then, there exists a unique
normal subgroup scheme K / G such that

K(R) = ker(G(R)! H(R))

functorially in R.

Proof. Take the fiber product
K G

spec k H

ϕ

e

�
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Definition 2.6. K above is called the kernel and denote K =: kerϕ.

Warning 2.7. Although Gred is a closed subscheme of G, it is not necessarily a subgroup scheme.
However, it will be one if Gred is geometrically reduced.

Example. Consider k = F2(t), and let G = ker

(
Ga

x 7!x4−tx2

−−−−−−−! Ga
)
. As a scheme, G is x2(x2 − t) =

x4 − tx2 = 0 in A1. Hence, Gred is x(x2 − t) = 0 in A1 (point at origin no longer fat). This is not a
subgroup scheme.3

2.4 Closures

Let G be a k-group with k = k, and set |G| = G(k).

Lemma 2.8. Let U, V be dense open subsets of |G|. Then, UV = |G| (pairwise product on LHS).

Proof. Given g ∈ |G|, need u ∈ U and v ∈ V such that uv = g. This is the same as solving u = gv−1.
This is solvable since U ∩ gV −1 6= ∅ since these are both dense and open (inversion and translation are
both homeomorphisms). �

Lemma 2.9. Let H be a subgroup of |G|. Let H be the Zariski closure of H in G. Then, H is an
algebraic subgroup of G.

Proof. Let x ∈ |G|. Left-translation by x is a homeomorphism G ! G, so it commutes with taking
closures: xH = xH. For each x ∈ H, we see that xH = xH = H. Thus, HH = H. For each y ∈

∣∣H∣∣,
we know Hy ⊂ H. Taking closures gives Hy = Hy ⊂ H. Thus, H

∣∣H∣∣ ⊂ H as well. Since H is reduced
over an algebraically closed field, it is determined by its k-points, so HH ⊂ H. Similarly, H

−1
= H and

e ∈ H are easy. �

Remark 2.10. When we take the Zariski closure of some set of points, we’ll always give it its reduced
closed subscheme structure.

Warning 2.11. Say H is a subgroup of |G|, let Y be Zariski closure of H in G, just as a topological This came
up as an
audience
question,
so maybe
I should
have written
this using
question/an-
swer blocks,
but oh well.
Too late to
change it
now

space, and let IY be its associated ideal sheaf, so

IY (U) = {f ∈ OG(U) : f(y) = 0 ∈ κ(y) for all y ∈ Y ∩ U} .

Let i : Y ↪! G be the inclusion, and let Yn = (Y, i−1(OG/I n
Y )) be the ring space structure on Y with

structure sheaf OYn = i−1(OG/I n
Y ). Then, Yn is a closed subscheme of G, and Y1 = H is the closed

subscheme considered in the previous lemma. It is tempting to think that Yn will be an algebraic subgroup
of G for all n, but this is not the case in general, e.g. because Cartier showed that algebraic groups in
characteristic 0 are always smooth (hence reduced).

Lemma 2.12. Let G be an algebraic group over k = k, and let H be a subgroup of |G|. If H contains a
dense open subset U of

∣∣H∣∣, then H is closed in |G|.

Proof. We know H = HH ⊃ UU =
∣∣H∣∣ (by first lemma). �

3G has ‘order’ 4 since its coordinate ring is rank 4 over k, but Gred has ‘order’ 3, and 3 - 4, so should not exact Gred to
be a subgroup scheme.
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2.5 Images

Assumption. Again assume k = k.

Recall 2.13. If ϕ : X ! Y is a morphism of k-varieties, then ϕ(|X|) need not be open or closed inside
Y . However, Chevalley’s theorem tells us that ϕ(|X|) will be constructible, a boolean combination of
varieties (union of locally closed subsets).

Corollary 2.14. ϕ(|X|) contains a dense open subset of its closure.

Proposition 2.15. Let ϕ : G! G′ be a homomorphism of k-groups. Then, ϕ(|G|) is closed in |G′|.

Proof. Apply previous lemma to the subgroup ϕ(|G|) ⊂ |G′|. �

Corollary 2.16. Any algebraic subgroup of an algebraic group is closed (true even if k 6= k since can
check closeness after base extension).

3 Lecture 3 (2/22)

Problem set 2 due on Sunday. Next office hours Wednesday 4 – 5pm.

3.1 Last time

• For an algebraic group, connected = irreducible = geometrically connected = geometrically irre-
ducible

• Every algebraic group G fits into an exact sequence

1 −! G0 −! G −! π0(G) −! 1

with π0(G) finite étale over ground field.

• The kernel K of a homomorphism G ! H is characterized by K(R) = ker(G(R) ! H(R)) for all
R.

• Any algebraic subgroup of an algebraic group is a closed subscheme.

3.2 Exactness

Definition 3.1. Let 1 ! A
i
−! B

s
−! C be a sequence of homomorphisms of algebraic groups. This is

called exact if i is an isomorphism of A onto ker s.

Definition 3.2. We say 1 ! A
i
−! B

s
−! C ! 1 is exact if in addition s is surjective and flat, i.e.

faithfully flat. Question: Is
this equiv-
alent to
B ! C

being an
epimorphism
of sheaves
(on the fppf
site)?

Answer: If
B ! C is
faithfully
flat, then it
is an fppf
cover (recall
B,C finite
type), so
B ! C

will be an
epimorphism
of sheaves
on the fppf
site.

Example. Say char k = p. Consider {1} ↪! µp. This is surjective (on underlying sets), but 1! µp ! 1

should not be considered exact.

Note 1. Apparently, we’re supposed to be reading the text book ahead of lecture...
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Theorem 3.3 (Homomorphism theorem). Every homomorphism of algebraic groups ϕ : G ! H

factors uniquely into homomorphisms
G� I ↪! H

with G� I faithfully flat, and I ↪! H a closed immersion. We call I the image of ϕ.

Proof. Later. �

3.3 Group actions

Let G be a k-group (algebraic group over k), and let X be a k-variety.

Definition 3.4. A (left) action of G on X is a morphism a : G×X ! X satisfying the usual axioms.
By Yoneda, this is just saying we have functorial group actions a(R) : G(R) ×X(R) ! X(R), of G(R)

acting on the set X(R), for each k-algebra R.

Definition 3.5. Given x ∈ X(k), get (here, g ∈ G(R) for some k-algebra R)

ϕ∗ : G −! X

g 7−! gx

The orbit of x, sometimes denotes G · x or Gx, is the image ϕ∗(G) of this morphism.

Proposition 3.6. G.x is a locally closed subset of X.

Proof. WLOG can assume k = k. Chevalley’s theorem tells us that G.x is a constructible set, so it
contains a dense open subset U of G.x. Then,

G.x =
⋃

g∈G(k)

gU,

so G.x is open in G.x since it’s a union of opens in G.x. �

Theorem 3.7 (Borel’s Orbit Lemma). Assume k = k. Every orbit of minimum dimension is closed.

Proof. Let O be an orbit of minimal dimension. Then, O is a dense open in O, so O \ O is a proper,
closed subset of O, and so has strictly lower dimension. Since G preserves O and O, it also preserves
O \O, so O \O is a union of orbits of smaller dimension than O, a contradiction to O’s minimality. �

Example. Gm ×Gm y A2 by scaling coordinates. The orbits are {0}, X \ 0, Y \ 0,A2 \ (X ∪ Y ∪ {0})
where X = x-axis and Y = y-axis. Most orbits not closed, but the smallest one {0} is.

3.4 Stabilizer, normalizer, centralizer, center

Let G be an algebraic group acting on a k-variety X. Let Y, Z be two closed subschemes of X. The
question is, which group elements map Y into Z.

Proposition 3.8. There is a closed subscheme T = TG(Y,Z) ⊂ G, called the transporter, whose functor
of points is

T (R) = {g ∈ G(R) : gYR ⊂ ZR} .
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Proof. Skipped. “Not especially hard, just annoying.” �

Corollary 3.9. There exists a subgroup scheme S = StabG(Y ) ≤ G such that

S(R) = {g ∈ G(R) : gYR = YR} .

This is the stabilizer of Y .

Proof. S = TG(Y, Y ) ∩ inv (TG(Y, Y )). �

Corollary 3.10. Let G be an algebraic group with H ≤ G a subgroup. Then, there exists a subgroup
N = NG(H) ≤ G such that

N(R) =
{
g ∈ G(R) : gHg−1 = H

}
=
{
g ∈ G(R) : gH(R′)g−1 = H(R′) for all R-algs. R′

}
.

This is the normalizer of H in G.

Proof. N = StabG(H) where G acts by conjugation on G. � Note H ⊂
G is closed
since it’s a
subgroup

Corollary 3.11. Again let H ≤ G. Then there is a subgroup C = CG(H) ≤ G such that

C(R) = {g ∈ G(R) : g commutes with every h ∈ H(R′) for all R-algs. R′}

This is the centralizer of H in G.

Proof. Let G y G ×G via g(x, y) := (x, gyg−1). Then, C = StabG(∆H) where ∆H ⊂ H ×H ⊂ G ×G
is the diagonal of H. This is closed since algebraic groups are varieties, and varietes are separated. �

Definition 3.12. The center Z ≤ G of an algebraic group G is the centralizer

Z = CG(G)

of the whole group. Note that Z(R) ⊂ center of G(R) for all k-algebras R.

Definition 3.13. We say G is a torus if Gks ' (Gm,ks)n for some n ≥ 0.

3.5 Some subgroups of GLn

Example. We let B ⊂ GLn denote the subgroup of upper triangular matrices. This is an example of a
Borel subgroup.

Example. We let T ⊂ GLn denote the subgroup of diagonal matrices. Note that T ' Gnm is a (maximal)
torus, and also T ⊂ B.

Example. We let U ⊂ GLn denote the subgroup of upper triangular matrices with 1’s along the diagonal.
This is an example of a unipotent group. Note that U ⊂ B.

Notation 3.14. Milne uses the notation B = Tn, T = Dn, and U = Un.

Remark 3.15. One can define semi-direct products (split short exact sequences), and B = U o T .
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Note that T is composed of copies of Gm while U is composed of copies of Ga. One can try to
understand the interactions between T,U combinatorially, and working this out recovers the usual fact
that every matrix is a product of elementary matrices (or something like this). Can get a similar sort of
statement for reductive groups, more generally.

3.6 The split classical groups (up to isogeny)

Example. There’s SLn+1 := ker(GLn+1
det
−−! Gm).

Example (SO2n+1). GL2n+1 acts on A(2n+2
2 ), the space of quadratic forms via (T ◦q)(x, y) = q(T ·(x, y)).

Let q := x2
0 + x1y1 + · · ·+ xnyn (not the sum of squares quadratic form4). We define

O2n+1 := StabGL2n+1
(q) and SO2n+1 := ker

(
O2n+1

det
−−! {±1}

)
(note definition of SO above only makes sense when char 6= 2). This gives the odd (split) orthogonal
group.

Example (Sp2n). There’s Sp2n := StabGL2n
(ϕ) where ϕ is the alternating bilinear form represented by

the matrix

(
In

−In

)
=: S. Hence,

Sp2n =
{
g ∈ GL2n : gtSg = S

}
.

This is the symplectic group.

Example (SO2n). We get SO2n the same way we got SO2n+1, but using the form q := x1y1 + · · ·+xnyn.

Fact. These are all connected.

4 Lecture 4 (2/24)

4.1 Last time

We introduced the split classical groups (up to isogeny)

• (An) SLn+1

• (Bn) SO2n+1. Let GL2n+1 act on quadratic forms, and let q = x2
0 + x1y1 + · · ·+ xnyn. Define

O2n+1 := StabGL2n+1
(q) and SO2n+1 := ker(O2n+1

det
−−! µ2).

• (Cn) Sp2n. Let S =

(
In

−In

)
. Define the bilinear form ϕ(x,y) = xtSy. This ϕ is skew-

symmetric and alternating with diagonal entries 0. Define

Sp2n := StabGL2n(ϕ) =
{
g ∈ GL2n : gtSg = S

}
.

4they agree over an algebraically closed field
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• (Dn) SO2n. Let q = x1y1 + · · ·+ xnyn. Let O2n = StabGL2n
(q). If char k 6= 2, let

SO2n := ker
(
O2n

det
−−! µ2

)
.

(if char k = 2, replace det with the “Dickson homomorphism” O2n � (Z/2Z)k)

Each is connected, and indexed so that the maximal torus is Gnm.
You can get coordinate-free versions of these

• Let V be a f.d. k-vector space. Gives rise to GLV with

GLV (R) := AutR(V ⊗k R).

• Suppose q : V ! k is a nondegenerate quadratic form, i.e. if V is identified with kn, q is a
degree 2 homogeneous polynomial that defines a smooth quadric in PV . Then, (V, q) gives rise to
SO(q) ≤ O(q) ≤ GLV .

4.2 More algebraic group definitions

Definition 4.1. An algebraic group G is finite if G! spec k is a finite morphism, so G = specA where
A is a f.d. k-vector space. For finite G, its order is defined to be #G := dimk A.

Example. µn is finite with order #µn = n. The affine coordinate ring is k[x]/(xn − 1).

Example. αp is order p

Example. Let H be an abstract finite group. The constant group scheme Hk over k has order #H.
Here, the affine coordinate ring is

∏
h∈H k.

Example. If E is an elliptic curve, then #E[p] = p2, even in characteristic p.

Definition 4.2. Say G,H are smooth, connected algebraic groups. An isogeny ϕ : G! H is a surjective Remember:
for alge-
braic groups,
smooth =
geomet-
rically re-
duced, and
connected
= geomet-
rically irre-
ducible

homomorphism with finite kernel.5 We also define the degree of ϕ to be degϕ := # kerϕ (order as a
group scheme).

Remark 4.3. For any faithfully flat homomorphism ϕ : G ! H, ϕ is étale ⇐⇒ kerϕ is étale as a
k-scheme. Similarly, ϕ is smooth of relative dimension r ⇐⇒ kerϕ is smooth of relative dimension r
over k.

Definition 4.4. An abelian variety is a a smooth, connected algebraic group which is proper over k.

Some people
use ‘com-
plete’ to
mean proper
over a field

Example. Elliptic curves are 1-dimensional abelian varieties. The trivial group scheme is a 0-dimensional
abelian variety.

Theorem 4.5. Any abelian variety is commutative and projective.

We won’t talk too much about abelian varieties in this class. If you want to know more about them,
there’s Silverman’s ‘Arithmetic of elliptic curves’ and Mumford’s ‘Abelian varieties’.

5Note: H smooth =⇒ H reduced =⇒ ϕ flat above some dense open in H (generic flatness) =⇒ ϕ is flat everywhere
(H a group)
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4.3 Frobenius

Recall 4.6. Let i : k ↪! L be a field map. Given a k-scheme X, you can form the base change

XL X

specL spec k.

In conrete terms, given X, apply i to all coefficients of the equations defining X in order to get equations
for XL.

Now let k be a field of characteristic p > 0, and let X be a k-scheme.

Definition 4.7. The absolute Frobenius morphism σX : X ! X is the morphism given by the
identity on topological spaces, and Frobenius on the OX , i.e. f 7! fp on each OX(U).

Warning 4.8. Absolute Frobenius is a morphism of schemes, but not a morphism of k-schemes. It
belongs is a (non-Cartesian) commutative square

X X

spec k spec k

σX

σspec k

with σspec k induced by the pth power map k ! k.

Definition 4.9. The actual fiber product in the above diagram is defined X(p), i.e. it is the pullback

X(p) X

spec k spec k
σspec k

The induced k-morphism FX : X ! X(p) is called the relative Frobenius morphism. This is a
morphism of k-schemes.

Remark 4.10. Say X =affine. What do these maps do on rings?

• X(p) ! X raising constants to the pth power.

• X ! X(p) raises variables to the pth power.

• σX : X ! X raises everything to the pth power.

If G is an algebraic group, FG is a homomorphism.

Proposition 4.11. If G is smooth and connected of dimension n, then FG is an isogeny of degree pn.

Proof. WLOG k = k, so k is perfect. Hence, σspec k : spec k ! spec k is an isomorphism, so X(p) ! X

is an isomorphism (of abstract schemes). Hence, FG : G ! G(p) is a bijection. In particular, FG is
surjective (and flat), and kerFG is {e} as a set. Thus, FG is an isogeny.
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To compute the degree, we can work with the local rings, and even with the completed local rings.
We have a k-algebra morphism ÔG(p),e ! ÔG,e. Since G is smooth, these are power series rings. Say
ÔG,e ' k Jt1, . . . , tnK and ÔG(p),e ' k Ju1, . . . , unK. The induced map between them is simply ui 7! tpi .
Hence, the fiber above e ∈ G(p) is simply

spec
k Jt1, . . . , tnK
(tp1, . . . , t

p
n)

which is visibly of dimension pn as a k-vector space. �

Given ϕ : X ! G with X = k-variety and G = k-algebraic group. What is the algebraic subgroup
generated by X? We want to say there is a smallest subgroup containing the image of X. By Yoneda, ϕ
factors through a closed subgroup H ≤ G iff ϕ(X(R)) ⊂ H(R) for all R. Hence, the algebraic subgroup
generated by ϕ is the intersection of all such H.

4.4 Restriction of scalars

Example. Take L = Q(
√

2) over k = Q. Let X : xy+(5+7
√

2) = 0 in A2
L. How do we make a Q-variety

Y s.t. Y (Q) = X(L)?
Substitute x = x1 + x2

√
2 and y = y1 + y2

√
2 to get now

(x1y1 + 2x2y2 + 5) + (x1y2 + x2y2 + 7)
√

2 = 0.

Define Y to be the Q-variety cut out by the two equations

Y :

x1y1 + 2x2y2 + 5 = 0

x1y2 + x2y1 + 7 = 0
in A4

Q

Then, Y (Q) ' X(L). More generally, Y (R) ' X(R⊗Q L) for any Q-algebra R.

Definition 4.12. Given a finite extension of fields k ⊂ L, and a quasi-projective L-variety X, then the
restriction of scalars Y = ResL/kX is characterized by

Y (R) = X(R⊗k L)

for all k-algebras R.

Remark 4.13. If X is affine, the construction proceeds in the same way as in the example. If X is not
affine, apply the construction to each open affine, and glue them together. There is some difficulty in
doing this, but it’s always possible when X quasi-projective. It’s not always possible for general schemes.

Example. If L/k is separable, then the k-variety Y = ResL/kX satisfies

Yks '
∏

σ∈Homk(L,ks)

σX

To show this, use Yoneda and use L⊗k ks
∼
−!
∏
σ k

s.
In particular, note that dimY = [L : k] dimX in this context (i.e. when L/k separable).
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If G is an algebraic group over L, then ResL/kG is also an algebraic group (now over k), by Yoneda.

4.5 (right) Torsors

Let’s start with a warm-up.
Say G is an abstract group. The trivial G-torsor is G := G equipped with right G-action given by

translation. In general, a G-torsor (or principal homogeneous space) will be a right G-set X which is
abstractly isomorphic to G. Note that we have not specified an isomorphism, so there is no identity/base-
point in X. If you choose a point x ∈ X, then this determines a specific (right) G-set iso G ∼

−! X via
g 7! xg.

Now let’s do the definition for real.

Definition 4.14. let G be an algebraic group over k. The trivial torsor is G := G with right (algebraic)
G-action by translation. A general (right) G-torsor is a k-variety X with a right G-action such that
Xk ' Gk as k-varieties with right Gk-action.

As before, if you have a rational point x ∈ X(k), then you get an iso G ∼
−! X via g 7! xg.

Remark 4.15. A G-torsor does not need to be isomorphic to G over k.

Torsors can be defined more generally.

Definition 4.16. Say G! S is an fppf6 group scheme. In this setting, a G-torsor is an fppf S-scheme
X ! S with a right G-action (over S) such that there exists some fppf base change T ! S such that
XT ' GT as T -schemes with right GT -action. It turns out this is equivalent to XX ' GX as X-schemes
with right GX -action.

Another reference for torsors is Poonen’s ‘Rational Points on Varieties’.

5 Lecture 5 (2/26)

5.1 Last time
TODO: Fill
this section
out• If char k = p, and X is a k-variety, we get

5.2 Geometry-algebra dictionary

“I don’t really like Hopf algebras very much.”

Definition 5.1. AHopf algebra over k is a k-algebra A with maps ∆ : A! A⊗kA (comultiplication),
S : A! A (antipode), ε : A! A (co-identity) satisfying whatever axioms are needed for A to represent
a group-valued functor.

6faithfully flat and (locally) of finite presentation
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Geometry Algebra
affine k-variety X = specA f.g. k-algebra A = O(X)
closed subscheme spec(A/I) ideal I of A
affine algebraic group G/k f.g. (commutative) Hopf algebra over k
closed subgroup H = specA/I (e.g. triv-
ial subgroup {e})

Hopf ideal I (e.g. augmentation ideal
ker ε)

group homomorphism G
ϕ
−! G′ A

f
 − A′ Hopf algebra homomorphism

factorization G fp
−! imϕ

closed
↪! G′ factorization A ↩ A′/I � A′ where I :=

ker f is a Hopf ideal

Table 1: Geometry-algebra dictionary

5.3 Cartier’s Theorem

Theorem 5.2 (Cartier’s Theorem). If char k = 0, any k-algebraic group G is smooth.

Proof. WLOG k = k. Hence, Gred is a closed subgroup of G. We would like to show Gred = G. If G
is not smooth, there exists a closed subscheme Z = spec k[t]/(t2) ↪! G supported at the identity, and a
“function” f ∈ OG,e vanishing along Gred (hence nilpotent, so fn = 0 for some n), but not on Z. WLOG
we can assume Think of Z

as a tangent
vector (at
the identity)
with nonzero
image in
LieG/LieGred.

OG,e −! k[t]/(t2)

f 7−! t

Consider the multiplication map G×G× . . .×G! G with n factors on the LHS. Consider the embedding
G ↪! G×G× . . .×G of G into the ith slot. Restrict this to

Z
ith
↪! Z × Z × . . .× Z ! G.

What’s happening at the level of rings? We have

k[t]

(t2)

t [ti
0 [tj
�

k[t1, . . . , tn]

(t21, . . . , t
2
n)
 OG,e.

Where does f ∈ OG,e go under these maps? Note that the composition Z ↪! Z ×Z × . . .×Z ! G is the
natural inclusion, so f ends up at t ∈ k[t]/(t2). This is true for any i which means

f 7! (t1 + · · ·+ tn) + (higher order terms) ∈ k[t1, . . . , tn]

(t21, . . . , t
2
n)
.

This is an issue since now
0 = fn 7! n! · t1t2 . . . tn 6= 0 ∈ k[t1, . . . , tn]

(t21, . . . , t
2
n)
.

This is a contradiction. �

Proposition 5.3. Say char k = p, and let G be an affine algebraic group over k. Then the image of
F r : G! G(pr) is smooth (= geometrically reduced) for r � 0.

Remark 5.4. The kernel of F r will be a finite group scheme, so even in positive characteristic, every
(affine) algebraic group is close to being smooth.
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Proof. WLOG assume k = k. Write G = specA. Then, F r : G ! G(pr) corresponds to A  A ⊗k k
(with k y k via prth power map) taking

A 3 ap
r

c [ a⊗ c ∈ A⊗k k.

The image of this is Ap
r

since k = k is perfect (so c ∈ kpr ). We want this image to be a reduced ring.
Choose r such that nil(A)p

r

= 0, and then Ap
r

is reduced, so we win. �

5.4 Nonabelian group cohomology

(Reference: Serre, ‘Galois cohomology’)
Let G be an abstract group (e.g. a Galois group). Let A be a G-group, so A is a (not-necessarily-

abelian) group A equipped with a left G-action; each σ ∈ A acts as a group automorphism of A. We say
a ∈ A is G-invariant if σa = a for all σ ∈ G.

Notation 5.5. We let
H0(G,A) = AG := {G-invariant elts. of A} ≤ A.

To define H1, we will define cocycles.

Definition 5.6. A 1-cocycle of G in A is a map G! A, σ 7! fσ of sets such that

fστ = fσ · σ(fτ) ∈ A.

Remark 5.7. The set {1-cocycles} has a right action of A,

(gσ), b 7!
(
b−1gσ

σb
)
,

(thinking of 1-cocycle as a tuple, and choosing b ∈ A).

Definition 5.8. Two 1-cocycles f and g are called cohomologous if f, g are in the same orbit of this
right A-action, i.e. ∃b ∈ A s.t. fσ = b−1gσ

σb for all σ ∈ G. We first f ∼ g when they are cohomologous.

Notation 5.9. We let
H1(G,A) := {1-cocycles} / ∼

with is a pointed set, with distinguished/neutral element being the class of the trivial cocycle

G −! A

σ 7−! 1.

Example. If g y A trivially, then 1-cocyles = homomorphisms, and

H1(G,A) = Hom(G,A)/conjugation by elts. of A.

If G is a profinite group, G = lim −Gα (with Gα finite), then recall its topologized by saying that
Uα = ker(G ! Gα) form a basis of nbhds of 1. We require A to have the discrete topology, and we
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require G×A! A be continuous (⇐⇒ each a ∈ A fixed by some Uα). We also require 1-cocycles to be
continuous. With these requirements in place, we define H0,H1 as before, and they satisfy

Hi(G,A) = lim−!
α

Hi(Gα, A
Uα) for i = 0, 1.

Example. Say L/k is a (possibly infinite) Galois extension. Then, L =
⋃
kα/k fin,Gal kα and

Gal(L/k)︸ ︷︷ ︸
G

= lim −
kα

Gal(kα/k)︸ ︷︷ ︸
Gα

.

Note that G acts continuously on L× (each ` ∈ L× lies in some kα and hence is fixed by Uα). One can
compute

H0(G,L×) = k× and H1(G,L×) = {1}︸ ︷︷ ︸
Hilbert’s Theorem 90

.

‘Hilbert’s Theorem 90’ was proved by Hilbert when G cyclic and by Emmy Noether when G finite.

6 Lecture 6 (3/1)

6.1 Last time

We introduced nonabelian Galois cohomology. Let G = lim −Gα be a profinite group. A G-group A is a
discrete gorup with continuous left G-action. For such a thing, we define

H0(G,A) := AG

and
H1(G,A) :=

{continuous f : G! A | fστ = fσ · σfτ for all σ, τ ∈ G}
(fσ) ∼ (b−1fσσb) for b ∈ A

.

If 1 ! A ! B ! C ! 1 is an exact sequence of G-groups, there is a “not-so-long exact sequence” of
pointed sets

1! H0(G,A)! H0(G,B)! H0(G,C)! H1(G,A)! H1(G,B)! H1(G,C).

6.2 Galois descent

(Reference: Poonen, Rational points on varieties, Sections 1.3.4, 4.4, 4.5)
Let L ⊃ k be a finite Galois extension with Galois group G.

Theorem 6.1 (Descent theorem for vector spaces). There are equivalences of categories Don’t have
to assume
vector
spaces are
finite dimen-
sional

{k-vector spaces} ! {L-vector spaces with semilinear G-action}

via V 7! V ⊗k L and WG  [ W .

17



Definition 6.2. A semilinear G-action means that

σ(`v) = σ`σv

(instead of ` · σv) for all ` ∈ L and v ∈W .

Corollary 6.3. There are equivalences of categories

(1)
{k-algebras} ! {L-algebras with G-action compatible with action on L} .

(2)
{affine k-schemes} ! {affine L-scheme with right G-action compatible with specL} .

(3)

{quasi-proj k-schemes} ! {quasi-proj L-schemes with right G-action compatible specL} .

Remark 6.4. There’s some subtelty in going from (2) to (3). Need to know that every quasi-projective
L scheme with G-action is a union of affine L-schemes with G-action (i.e. with G-invariant affine L-
subschemes). So want something like the orbit of every point is contained in an affine. For finite group
acting on a quasi-projective scheme, we’re in luck since every finite subset of a quasi-proj scheme is
contained in any affine.

Note that giving the action (in (3)) on Y/L amounts to giving, for each σ ∈ G, a morphism σ̃ : Y ! Y

over σ : specL ! specL, such that σ̃τ = σ̃τ̃ always. Note in particular that σ̃ : Y ! Y is not an L-
morphism (unless σ = 1). To get an L-morphism instead, consider the diagram

Y

σY Y

στY τY Y

specL specL specL

σ̃fσ

τ̃

∼σfτ

fστ

fτ

σ∗ τ∗

The upshot is that giving the σ̃ : Y ! Y is equivalent to instead giving fσ : σY
∼
−! Y for all σ ∈ G. The

group compatibility condition now becomes to cocycle condition

fστ = fσ · σ(fτ)

always.
Now saw you have two such data, so you have Y with action given by fσ and Z with action given by

18



gσ. An isomorphism of such that is an iso b : Y
∼
−! Z such that

Y Z

σY σZ

b

fσ gσ

σb

commutes for all σ, i.e. fσ = b−1gσ
σb.

Consider the special case Y = XL for some quasi-projective X/k. Then Y descends to a k-scheme,
but in how many ways?

Definition 6.5. A k-scheme X ′ such that (X ′)L ' XL is call an L/k-twist of X.

Theorem 6.6. For quasi-projective X/k,

{L/k-twists of X}/k-isom ↔ H1(Gal(L/k),AutXL).

Proof. Descending XL to a k-scheme amounts to giving a Galois action which we saw above amounts to
giving fσ : σXL

∼
−! XL satisfying the cocycle condition fστ = fσ · σfτ. Note that σXL = XL since X

is defined over k, so these fσ live in AutXL, and the cocycle condition says exactly that (fσ)σ∈Gal(L/k)

gives a 1-cocycle with values in AutXL. Finally, we saw above that two such pieces of descent data are
isomorphic exactly when they are cohomologous. �

Explicitly, if X ′ is an L/k-twist of X, choose an iso ϕ : XL
∼
−! (X ′)L, and let fσ = ϕ−1◦σϕ ∈ AutXL.

The 1-cocycle (fσ)σ has a class in H1(Gal(L/k),AutXL) (changing ϕ gives a cohomologous cocycle, so
this class is well-defined).

Some remarks

• All of descent theory works for infinite Galois extensions too (say continuous in the right places).

• Also, one can consider varieties with extra structure

Example. G could be a (quasi-projective) algebraic groups over k. A twist of G will be another We’ll later
see alge-
braic groups
are always
quasi-proj

algebraic group H/k s.t. Hks
∼= Gks (as algebraic groups over ks). Then,

{twists of G}/isom ↔ H1(Gal(ks/k),AutGks).

Example. Let G be a (q-proj) algebraic group (let’s assume k perfect or G smooth). Then, a right
Remember:
Nonempty
smooth va-
rieties will
always have
some point
over a sepa-
rable closure

G-torsor is simply a twist of the trivial right G-torsor G (by definition). Since AutGks = G(ks)

(acting by multiplication on the left7), we get that

{right G-torsors}/k-isom  ! H1(Gal(ks/k), G(ks)) =: H1(k,G).

6.3 Affine algebraic groups sit in GLn

We want to eventually (soon?) prove that all affine algebraic groups can be realized as closed subgroups
of GLn. To build up to this, we need some more results.

7Note that any automorphism is determined by where the identity goes, and it can go anywhere
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Proposition 6.7. Say f : X ! Y is a morphism of finite type k-schemes. If X(R)! Y (R) is injective
for all k-algebras, and f is faithfully flat, then f is an isomorphism.

Proof. You can check whether something is an isomorphism after fpqc8 base change. Consider the
basechange

X ×Y X X

X Y

Note that

(X×YX)(R) = X(R)×Y (R)X(R) = {(x1, x2) ∈ X(R)×X(R) : f(x1) = f(x2) ∈ Y (R)} = {(x, x) : x ∈ X(R)} ∼−! X(R)

(third equality coming from X ! Y being monic). Thus, X ×RX ! X is an isomorphism, so X ! Y is
as well. �

Corollary 6.8. Let ϕ : G ! H be a homomorphism of affine algebraic groups over k. If kerϕ = {e},
then ϕ is a closed immersion.

(It’s not a priori obvious that ϕ is an immersion)

Example. Say C is a nodal cubic with unique node p ∈ C. Let ϕ : C̃ ! C be the normalization, and
let q ∈ C̃ be one of the two points above C. Then, C̃ \ {q} ϕ

−! C is not an immersion, but is injective.

Proof. By homomorphism theorem, we know ϕ factors as

G! I ↪! H

with I ↪! H the scheme-theoretic image (and in particular a closed immersion). We now only need
to show that G ! I is faithfully flat (since ker(G ! I) = {e} by assumption), but this is part of the
homomorphism theorem? �

Example (Example of “generic point”). SL2 = specA, where A = k[a, b, c, d]/(ad − bc − 1) 3 a, b, c, d.
Then,

η =

(
a b

c d

)
∈ SL2(A).

Also, SL2(A⊗k A) has two independent “generic points” η, η′.

In general, if G = specA, then G(A) = Homk-schemes(specA,G) = Homk-schemes(G,G) has a “generic
element” η corresponding to the identity id : G = G. Then, any g ∈ G(R) = Homk-alg(A,R) gives a map
G(A)! G(R) satisfying η 7! g.

7 Lecture 7 (3/3)

Pset 3 due next Tuesday. Last time, we obtained
8fidelment plat et quasi-compact
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Corollary 7.1. Let ϕ : G! H be a homomorphism of (affine) algebraic groups over k. If kerϕ = {e},
then ϕ is a closed immersion.

We also discussed the generic/universal element η ∈ G(A) of G = specA.

7.1 Representations

Let V be a k-vector space (possibly infinite dimensional). Get functor

GLV : {k-algs} −! Grp

R 7−! AutR-modules(V ⊗k R)

If V is finite dimensional, then GLV is represented by an algebraic group (though it’s not when dimV =

∞).

Definition 7.2. Let G be an algebraic group. A representation of G is a k-vector space V equipped
with a homomorphism of group-valued functors

r : G! GLV

(i.e. a compatible system of group homomorphisms G(R)! GLV (R))

Definition 7.3. A morphisms of representations V ! W is a k-linear map T : V ! W such that
for all k-algebras R, the induced map

TR : V ⊗R!W ⊗R

is G(R)-equivariant.

Remark 7.4. For a fixed G, reps of G forms an abelian category (e.g. have kernels, cokernels, sim-
ple=irreducible objects, semisimple objects, Jordan-Hölder theorem, etc.). It’s even better than just an
abelian category; it also has a tensor product, so it’s what’s called a tensor category. The subcat of finite
dimensional representations is also an abelian category.

Definition 7.5. A representation r is called faithful if ker r = {e} is trivial, i.e. G(R) ↪! GLV (R) is
always injective.

If V is finite dimensional, can associate to it an affine space V (satisfying V(R) = V ⊗R), and we get spec(Sym∗ V ),
I believean induced action G× V! V. If W ⊂ V is a subspace, get closed subgroup

StabG(W ) := StabG(W)

Assumption. Now suppose G = specA, so A is some Hopf algebra.

In this case, r is determined by its value r(η) ∈ GLV (A) on the generic element η ∈ G(A). Note that
r(η) is an A-linear automorphism V ⊗A ∼

−! V ⊗A, so it’s determined by a k-linear map ρ : V ! V ⊗A,
v 7! ηv. In order for r to be a homomorphism, ρ needs to satisfy certain axioms which are written down
in the book. When ρ satisfies these axioms, we call (V, ρ) an A-comodule and ρ is called the co-action.
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Remark 7.6. A subrepresentations corresponds to a subcomodule. Other rep theory notions translate to
those of comodules.

Proposition 7.7. Every representation of G = specA is a filtered9 union of finite dimensional repre-
sentations.

Proof Sketch. Given v ∈ V , we need to find a f. dim subrep containing it. This will suffice. Let (ai) be
a k-basis of A. Write

ηv = ρ(v) =
∑
finite

vi ⊗ ai ∈ V ⊗A.

Since the sum is finite, ηv lives inW⊗A, whereW = span {v, all vi’s appear above} is finite-dimensional.
Note that specializing η to any g ∈ G(R) gives gv ∈ W ⊗ R. Let η′ be an independent generic element
in G(A⊗A). We compute

η′ηv = (η′η)︸ ︷︷ ︸
∈G(A⊗A)

v ∈W ⊗ (A⊗A)

= η′(ηv) =
∑
finite

(η′vi)⊗ ai

Since the ai’s form a basis for the last A, the only way to have
∑

(η′vi) ⊗ ai ∈ W ⊗ A ⊗ A is to have
η′(vi) ∈W ⊗A for all i. Since a generic element maps all vi’s into W (and maps v into W ), we see that
W must be a subrepresentation. �

Because of this, we’ll mostly focus on finite dimensional reps.

Remark 7.8. Apparently any representation of G will factor through some affine quotient. Question:
Why?

Answer:
GLV is
affine, so
G ! GLV

factors
through
spec O(G)

Theorem 7.9. Let G be an algebraic group. Then, G is affine ⇐⇒ G is isomorphic to a closed subgroup
of GLn for some n. When G is a closed subgroup of GLn, people also say that G is a linear algebraic
group (this term is more common than ‘affine algebraic group’)

Proof. ( ) Closed subschemes of affines are always affine.
(!) Suppose G = specA. We need a faithful representation of G. The right translation of G on G

induces a faithful left action of G on the vector space V := A (acting by k-algebra homomorphisms). Let
V0 be a finite set of generators for the k-algebra V . By previous prop, there exists a finite dimensional

Remember:
algebraic
groups are
finite type

subrep W ≤ V containing V0. We claim that G acts faithfully on W .
If g ∈ G(R) acts trivially on W ⊗R, then is an R-algebra homomorphism preserving V0 (pointwise),

so g acts trivially on R[V0] = V ⊗R, so g = 1 as G acts faithfully on V .
Thus, G ↪! GLW ' GLdimW is an injection on R-valued points for all R, and so is a closed immersion.

�

7.2 Isotypic components and characters

Let G be an algebraic group, V be a representation of G, and r be an irrep of G.

Definition 7.10. The isotypic component Vr := sum of all subreps of V which are isomorphic to r.
9any f. number of them is contained in a larger one (e.g. their sum)
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Proposition 7.11.

(1) Vr is a direct sum of copies of r.

(2) The Vr are independent of each other as subspaces, i.e.⊕
irred r

Vr ↪! V.

Above, equality holds ⇐⇒ V is semisimple.

Proof. Abelian category stuff. �

Definition 7.12. A character of G is a 1-dimensional representation χ : G! Gm. If G = specA, this
is equivalently a choice of a ∈ A× such that ∆(a) = a⊗ a (this a is called a grouplike element).10

The χ-isotypic component Vχ of a G-rep V is also called the χ-eigenspace of V .
We say G acts on V through χ if Vχ = V , i.e. gv = χ(g)v always. When G = specA, this amounts

to saying that ηv = χ(η)v for all v ∈ V (⇐⇒ ρ(v) = v ⊗ aχ ∈ V ⊗A for all v ∈ V ).

8 Lecture 8 (3/5): Constructing G/H

No class on Monday. Instead, class on Tuesday at 10am (‘Monday Schedule’). Problem set 3 due Tuesday
night.

8.1 Last time

Let G be an algebraic group. A representation of G is a vector space V equipped with a homomorphism
of functors r : G! GLV .

Proposition 8.1. Every rep of G is a filtered union of finite-dimensional reps

Theorem 8.2. An algebraic group G is affine iff it is linear (i.e. iso to a closed subgroup of GLn for
some n)

Open Question 8.3. Does the same theorem hold for finite, flat group schemes over k[ε]/(ε2)?

8.2 Chevalley’s stabilizer theorem

Our goal is to construct quotients G/H. The idea is to use the orbit-stabilizer theorem, G/Stab(x) =

Orbit(x). The question the becomes: can every subgroup H be realized as a stabilizer?

Theorem 8.4 (Chevalley’s Theorem). Let G be a linear (i.e. affine) algebraic group with (closed)
subgroup H ≤ G. Then, there exists a finite dimensional representation V of G, and a 1-dimensional
subspace (not a subrep) L ≤ V such that H = StabG(L).

Proof. Write G = specA and H = specA/I (I a Hopf ideal).
10χ χ(η) ∈ A× is grouplike
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(Attempt 1) We now G acts by right translation on itself, and H = StabG(H). Can we translate
this into Hopf land and get some vector spaces? G acts on the left on A, and H = StabG(I).11 If
A were finite-dimensional (and I was 1-dimensional), we could take (V,L) = (A, I).

(Attempt 2) Let V ≤ A be a finite dimensional subrep containing a (finite) set ideal generators I0
of I. Let W = I ∩ V , a subspace (but not subrep since G does not preserve I).

We claim that StabG(W ) = H. For g ∈ G(k), we know

g ∈ StabG(W )(k) ⇐⇒ gW = W ⇐⇒ gW ⊂W ⇐⇒ gW ⊂ I =⇒ gI0 ⊂ I =⇒ gI = I =⇒ gW ⊂ I

(above, keep in mind that dimV < ∞ and that g acts via algebra automorphism of A). Thus,
g ∈ StabG(W )(k) ⇐⇒ gI ⊂ I ⇐⇒ g ∈ H(k). What about R-points? Do the same argument
with more cumbersome notation (tensor all vector spaces with R).

If dimW = 1, then we could take (V,L) = (V,W ), so close, but no cigar.

(Attempt 3) Let r = dimW . Replace V by
∧r

V and W by
∧r

W (which is now 1-dimensional).
Linear algebra says StabG (

∧r
W ) = StabG(W ) = H. Now we win. � Same idea

as showing
Grassma-
nians are
projective

Before constructing quotients, we will need a tool from descent theory.

Theorem 8.5 (fpqc descent for morphisms). Given an fpqc morphism S′ ! S and another scheme
Y , in the diagram

S′ ×S S′ S′ Y

S,

pr1

pr2

g

f

giving f is the same as giving g such that g ◦ pr1 = g ◦ pr2.

Example. Let {Ui} be an open cover of S, and let S′ =
⊔
i Ui. Then, S′ ! S is fpqc, and giving

g : S′ =
⊔
i Ui ! Y s.t. g ◦ pr1 = g ◦ pr2 is simply giving morphisms gi : Ui ! Y which agree on overlaps

Ui ×S Uj = Ui ∩ Uj ⊂ S.

Example. Say S′ = SL for some finite Galois extension L/k. Giving S ! Y is equivalent to giving
SL ! Y that is Gal(L/k)-invariant.

8.3 Quotients

Definition 8.6. Let H ≤ G be a closed subgroup of an algebraic group over k.

(1) We say q : G! X (X a k-scheme) is H-invariant if the two compositions in

G×H
m
⇒
pr1

G
q
−! X

agree (above, m is multiplication).
11If you have something outside H, it’ll translate H to a different closed subscheme, so translate I to a different (regular)

ideal
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(2) We say q : G! X is a quotient of G by H if

(1) q is faithfully flat

(2) q is H-invariant

(3) The map G×H ! G×X G,(g, h) 7! (g, gh) is an isomorphism of k-schemes. G! X is an
H-torsor

In this situation, we write G/H := X.

Remark 8.7. If H y Y , some scheme, can define the quotient in the same way.

Proposition 8.8 (Universal property of G/H). Given

G Y

X = G/H

H-invariant

quotient ∃!

Proof. We have a diagram

(g, h) G×H G Y

(g, gh) G×X G G Y

X = G/H

∈
pr1

m
∼

∈
pr1

pr2
fpqc

The dashed arrow above exists precisely because of fpqc descent. The compositions agree becase G! Y

is H-invariant. �

Corollary 8.9. G/H is unique, if it exists.

Corollary 8.10. If H is normal in G, then G/H is an algebraic group, and G ! G/H is a group
homomorphism with kernel H.

Proof. Consider
G×G G

G/H ×G/H G/H

m

One can check that the left vertical map is a quotient by H ×H, and that the composition G × G m
−!

G ! G/H is (H × H)-invariant (using H is normal). Hence, the universal property gives the bottom
arrow G/H ×G/H ! G/H, and it inherits the group axioms from m. Similarly get an inverse map. �

Theorem 8.11 (Existence and properties of quotients). Let H ≤ G be a closed subgroup of G,
over k. We assume that G is smooth and linear. Then, These hy-

potheses are
not neces-
sary, but
make the
proof easier

(1) A quotient G/H exists.

(2) G/H is a quasi-projective variety.
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(3) (G/H)(L) = G(L)/H(L) for algebraically closed fields L = L.

(4) G/H is smooth (even if H is not smooth).

Example. If char k = p, there is an exact sequence

1 −! µp −! Gm
(−)p

−! Gm −! 1.

The quotient Gm is smooth even though the kernel µp is not smooth.

We’ll prove this next time (on Tuesday).

9 Lecture 9 (3/9): Existence and properties of quotients

9.1 Last time: quotients

Setup. Let

• G be an algebraic group over k

• H ≤ G be a (not necessarily normal) closed subgroup scheme

• X be a k-variety

Recall 9.1.

• q : G! X is H-invariant if the two compositions in

G×H
m

⇒
pr1

G
q
−! X

are equal, i.e. q(gh) = q(g).

• q : G! X is called a quotient of G by H if q is faithfully flat and H-invariant, and

G×H −! G×X G

(g, h) 7−! (g, gh)

is an isomorphism. Then we write G/H := X.

Recall 9.2 (Univ. Prop of G/H). Every H-invariant morphism from G to a k-scheme Y factors uniquely
through G! G/H.

9.2 Today: Existence and properties of quotients

Theorem 9.3 (Existence and properties of quotients). Let H be a closed subgroup scheme of a
smooth linear algebraic group G. Then,

(1) A quotient G/H exists (so any G! X satisfying the univ property is a quotient)

(2) G/H is a quasi-projective variety
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(3) (G/H)(L) = G(L)/H(L) for any algebraically closed field L ⊃ k

(4) G/H is smooth (even if H is not).

Remark 9.4. The smooth and linear hypotheses are not necessary for above result (except need smoothness
for (4)), but we include them to make the proof easier.

Proof. (1) Chevalley’s stabilizer theorem provides a finite-dimensional representation V of G along with a
1-dimensional subspace L ⊂ V such that H = StabG(L). Note that G acts on P(V ) and H = StabG([L]). Remember:

We use the
convention
that P(V )

parametrizes
“lines in V ”

Let X := orbit of [L] in PV , a locally closed12 subset of PV ; we make it a scheme by giving it the reduced
scheme structure. The morphism G ! PV, g 7! g[L] factors though a morphism q : G ! X (since G is
reduced).

We want to show that q is a quotient. By definition, q is surjective. Furthermore, q is flat via generic
flatness + homogeneity. Next, q is H-invariant since H = Stab[L]. This just leaves showing that G q

−! X

is an H-torsor. For g, g′ ∈ G(R), if q(g) = q(g′) ∈ X(R), then g[L] = g′[L] (definition of q), so gL = g′L

as submodules of V ⊗ R. Hence, L = g−1g′L so g−1g′ ∈ StabG(L)(R) = H(R) which exactly says
∃!h ∈ H(R) s.t. (g, g′) = (g, gh). Hence, G×H ! G×X G, (g, h) 7! (g, gh) is an isomorphism.

(2) G/H being quasi-projective follows from the construction. We constructed X as a locally closed
subscheme of PV , so it is quasi-projective.

(3) If x ∈ X(L), then q−1(x) is a nonempty L-variety (recall L = L), so it has an L-point. By definition
of quotient, two points g, g′ ∈ G(L) have the same iamge in X(L) iff g′ = gh for some h ∈ H(L). Thus,
G(L)/H(L)

∼
−! X(L).

(4) WLOG k = k (does not affect smoothness). Note that X is reduced, by the construction in (1).
Since k = k, X is in fact geometrically reduced. Thus, it has a dense open subscheme U which is smooth.
Finally, we use homogeneity (the G-action on X) to see that X =

⋃
g∈G(k) gU is smooth. �

Remark 9.5. Above, if had W ⊂ V with StabG(W ) = H, but dimW > 1, then we could run the same
argument with a Grassmannian in place of PV . However, to show the quotient is quasi-projective, you
need to know Grassmannians are projective which is shown via the same top wedge power trick.

Fact. Theorem holds even for nonsmooth G.

Corollary 9.6.

• The algebraic groups satisfy isomorphism theorems (e.g. G/ kerϕ ' imϕ). Also get Jordan-Hölder
theorem, etc. [see Wyler paper cited in Milne’s errata list]

• The category of {commutative algebraic groups} is abelian.

Question 9.7. If H ≤ G are both affine, is G/H also affine?

There are two answers.
12See Proposition 3.6.
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Answer (No). No, in general. For example, consider G := GLn acting on Pn−1, and let H := StabG(1 :

0 : · · · : 0) consisting of matrices of the form 
∗ ∗ ∗
... ∗ ∗
0 ∗ ∗


(first column vector a multiple of (1, 0, . . . , 0). Everything else arbitrary). The G action is transitive, so
G/H = Pn−1 which is not affine if n ≥ 2.

Answer (Yes). However, if H is normal in G, then G/H is affine. For example, PGLn := GLn /Gm is
affine. As varieties GLn = An2 \ {det = 0} and PGLn = Pn2−1 \ {det = 0}, but the complement of a
hypersurface in any PN is automatically affine.

Proof of Yes(assuming G smooth). 13 WLOG k = k since affineness is unchanged by base field extension.
Also, WLOG we may assume G is connected.14

Choose L ≤ V a 1-dim subspace of a f.d. G-rep V s.t. H = StabG L (via Chevalley). WLOG
shrink V to span {gL : g ∈ G(k)} (the subrep generated by L). Now, V = g1L ⊕ · · · ⊕ gnL for some
g1, . . . , gn ∈ G(k). For each g ∈ G,

Stab(gL) = g Stab(L)g−1 = gHg−1 = H

with last equality coming from normality of H. Choosing a basis of V compatible with V =
⊕n

i=1 giL,
we see that H maps into Gnm ↪! GLV . Therefore,

V =
⊕

chars χ of H

Vχ as H-reps

(V as an H-rep is given by putting n characters along the diagonal). A calculation shows each g ∈ G(k)

maps Vχ to Vχ◦inng−1 |H so G(k) acts on the finite set {nonzero Vχ}. We make two claims about the
action.

(1) This action is transitive.

Pf: each nonzero Vχ contains some giL and G acts transitively on the set of giL.

(2) This action is trivial.

Pf: G is a connected group, and we have map G(k)! Aut {nonzero Vχ} ' Sn to a discrete group.
It must land in the identity. Question:

Is this map
obviously
continuous?

Taken together, this means there can only be one nonzero Vχ, so H acts by a single character. To finish
we claim that

H = ker (G! GLV � PGLV ) .

Each h ∈ H acts as a scalar on Vχ = V , so it maps to 1 in PGLV . On the other hand, anything in the
kernel acts as a scalar on V , so gL = L so g ∈ H. �

13Don’t need G to be smooth, but simplifies proof
14In general, G0 is of finite index in G. WE can take the images of the components in G/H to see that G0/(H ∩G0) is

of finite index in G/H, so it’s affine iff G0/(H ∩G0) is.
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Corollary 9.8. G/H is the image of G! PGLV , a closed subgroup of the affine PGLV .

Remark 9.9. Should be able to prove this via Hopf algebras as well (without smoothness assumption).
There was some discussion of this during lecture, but the details weren’t worked out fully.

Let’s end with a potential research project. We mentioned a paper of Wyler before. It axiomatizes
what one needs about the category of groups to prove the isom theoerems, jordan-hölder, etc.

Open Question 9.10. If you start with the category of all algebraic groups, you can pass to the category
of algebraic groups up to isogeny15 by inverting isogenies. Does this new category satisfy Wyler’s axioms?
You get one such category for each ground field, but is it invariant under separable field extension?

10 Lecture 10 (3/10)

Pset 4 out, due next Thursday (not tomorrow).

10.1 Last time

Theorem 10.1. Let H be a closed subgroup scheme of a smooth (only needed for (4)) linear (only needed
for (5)) algebraic group G. Then,

(1) A quotient G/H exists

(2) G/H is a quasi-projective variety

(3) (G/H)(L) = G(L)/H(L) for any algebraically closed field L ⊃ k

(4) G/H is smooth (even if H is not)

(5) If G is affine and H is normal, then G/H is affine.

Definition 10.2. Let ϕ : G ! G′ be a homomorphism between any algebraic groups. Then, ϕ is an
isogeny if kerϕ and G′/ imϕ are finite.

Definition 10.3. We say G is isogenous to G′ if there exists a zig-zag of isogenies from G to G′, i.e.
something like

G! G1  G2 ! G3  · · ·! Gn  G′

10.2 This time: group theory

Definition 10.4. Let G be an algebraic group. A subnormal series or filtration is a sequence of
normal subgroups

G = G0 . G1 . G2 . · · · . Gs = {1}.

This gives quotients G0/G1, G1/G2, . . . Gs−1/Gs.
We call such a series a normal series if furthermore Gi / G.

15A paper by Michel Brion does this in commutative case, but no reason can’t do it in non-commutative case as well
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Remark 10.5. If you have such a filtration and H ≤ G is any subgroup, you get a filtration Hi := Gi ∩H
of H. Here, the quotients are Hi−1/Hi ↪! Gi−1/Gi.

If G� Q is a quotient map (so faithfully flat homomorphism), get a filtration Qi := im(Gi ! Q) on
Q. Here, the quotients are Gi−1/Gi � Qi−1/Qi.

In finite group theory, you like to find filtrations which are as long as possible. This won’t always be
possible for algebraic groups.

Example.
Gm . µ`n . µ`n−1 . · · · . µ` . {1}

can be arbitrarily long.

The solution to this problem is to just ignore all the finite quotients.

Definition 10.6. A composition series is a filtration with

dimG0 > dimG1 > · · · > dimGs,

and in which you cannot insert another subgroup while keeping this property.

Theorem 10.7 (Jordan-Hölder Theorem, up to isogeny). If (Gi)
s
i=0 and (Hj)

t
j=0 are composition

series for G = G0 = H0, then the quotients G0/G1, . . . , Gs−1/Gs are isogenous to H0/H1, . . . ,Ht−1/Ht

after reordering. In particular, s = t.

Example. One composition series of GLn is GLn .SLn .{1}. Another one is GLn .Gm . {1}. The first
one has quotients

Gm,SLn .

The second one has quotients
PGLn,Gm.

We have Gm = Gm and an isogeny SLn � PGLn with kernel SLn ∩Gm = µn.

Definition 10.8. Given subgroups H1, H2 ≤ G, their commutator [H1, H2] is the algebraic subgroup
generated by

H1 ×H2 −! G

(a, b) 7−! [a, b] := aba−1b−1

Definition 10.9. Note that [G,G] is the smallest normal subgroup N s.t. G/N is commutative. This
is sometimes denoted DG := [G,G] and called the derived group (or commutator subgroup) of G.
The Quotient Gab := G/DG is called the abelianization of G.

Definition 10.10. The derived series of G is

G .DG .DDG . · · · .DnG . . . .

Assumption. Say G is a linear algebraic group.

Definition 10.11. We say G is solvable if there exists a subnormal series (Gi) with commutative
quotients Gi−1/Gi. Equivalently, DnG = {1} for some n.
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Definition 10.12. We say G is unipotent if every nonzero representation of G has a nonzero fixed
vector. Equivalently, every finite dimensional representation G! GLV has image in16

Un =


1 ∗

. . .

1


after choosing a suitable basis for V . Get this equivalence by quotienting by the subreg generated by the
fixed vector (so it’s linear span) and then repeating.

Remark 10.13. Equivalent to require nonzero fixed vectors only for finite representations.

Remark 10.14. We’ll later prove this is the same as saying G is isomorphic to some closed subgroup of
Un for some n.

Definition 10.15. Let G be a smooth, connected linear algebraic group. Its radical R(G) is the largest
smooth connected solvable normal subgroup. Its unipotent radical Ru(G) ≤ R(G) is the largest smooth
connected unipotent normal subgroup (of G).

Warning 10.16. These notions do not respect inseparable base field extensions.

Definition 10.17. We call G semisimple ⇐⇒ R(Gk) = 1 is trivial. We call G reductive ⇐⇒
Ru(Gk) = 1 is trivial.

Note semisimple =⇒ reductive.

Example. Let G = GLn. GLn has lots of solvable subgroups, e.g. the upper triangle matrices (but
this isn’t normal so not contained in R(G)). It turns out that R(G) = Gm (see this later). Gm is not
unipotent and indeed Ru(G) = 1. Hence, G = GLn is reductive, but not semisimple.

Example. Let G = SLn. Then R(G) = 1 (can’t be e.g. µn since it has to be connected and smooth).
Hence, SLn is semisimple.

Remark 10.18. Bjorn drew a picture of various algebraic groups. Maybe I’ll come back and add it at
some point...

10.3 Results we’re skipping over

We’re skiping chapters 7 and 8 of the text, but we’ll need some results from there.
Let G be a smooth connected algebraic group. Can always define Gaffine, the largest smooth connected

affine normal subgroup.

Theorem 10.19 (Barsotti-Chevalley Theorem). Let k be a perfect field. Then, G/Gaffine is an
abelian variety. Equivalently, every G fits into an exact sequence

1 −! affine −! G −! ab. var −! 1.

(proof in chapter 8)
161’s along the diagonal. Anything above the diagonal.
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10.3.1 Structure of algebraic groups over a perfect field k

“I’ll continue to assume that the field is perfect because things get a little more complicated if you don’t
assume that. Actually, they get a lot more complicated.”

Let G be an algebraic group over k. We get a lattice of (normal, characteristic) subgroups labels on
arrows give
properties of
quotients

TODO:
Make this
look nice

G

G0 Gred

G0
red

Gaffine

Gsolv = R(Gaffine)

Gunip = Ru(Gaffine)

{1}

f.étale
infinitesimal

finite

proper

inf. f.étale

ab.variety

semisimplereductive

torus

unipotent

Figure 1: A lattice of various pieces of an algebraic group over a perfect field

(Above, infitesimal means supported on one point)
The focus for the rest of the class will be on the piece below Gaffine. Classifying semisimple groups

and torii will be doable. Classifying unipotent groups is much harder.

10.4 Tannakian formalism

Let G be a linear algebraic group over k. Let Rep(G) denote its representation category so objects
are f. dim reps of G and the morphisms are G-equivariant linear maps.

What kind of category is this? It’s an abelian category, but even better, it’s a k-linear category,
i.e. Hom-sets are k-vector spaces and composition is k-bilinear (+ kernels, cokernels, etc. from being
abelian). It’s even more than this. It supports tensor products, so it’s also a tensor category (can tensor
any number of objects together). It’s also a rigid category which means you can talk about dual objects.
So it’s a rigid k-linear tensor category.

It has a few other properties. It satisfies End1 = k, where 1 is the trivial representation (tensor of
0 objects). It also has a fiber functor ω : Rep(G) ! Vectk given by forgetting the G-action which is an
exact, faithful, k-linear tensor functor (such a thing is called a (k-valued) fiber functor).

A rigid k-linear tensor category with the extra properties of the last paragraph is what’s called a
neutral Tannakian category over k.

Question 10.20. Can you recover G from Rep(G) with all this extra structure?
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11 Lecture 11 (3/12)

Daylight savings on Sunday. Don’t be late on Monday.

11.1 More Tannakian formalism, Rep(G)

Definition 11.1. Fix a field k.

• An abelian category is a category enriched with some extra structure

– each Hom(A,B) is an abelian group with composition bi-additve

– kerels and cokernels exist and satisfy some axioms;

• A k-linear category is an abelian category s.t.

– each Hom(A,B) is a k-vector space with composition bilinear

• A tensor category is a category equipped with a functor ⊗ : C ×C ! C, an object 1, and other
structure allowing one to define A1 ⊗ · · · ⊗An for any n ≥ 0

• A tensor category is rigid if every object has a dual (staisfying some axioms)

Example. Both Rep(G) and Vect are rigid k-linear tensor categories.

Definition 11.2. A k-valued fiber functor on a k-linear tensor category C is an exact faithful k-linear
tensor functor ω : C ! Vect.

Example. The forgetful functor ω : Rep(G)! Vect is a fiber functor

Definition 11.3. A neutral Tannakian category is a rigid k-linear tensor category such that

• End1 = k; and

• there exists a k-valued fiber functor ω

Example. Rep(G) is a neutral Tannakian category.

Theorem 11.4 (Reconstruction theorem). A linear algebraic group G can be recovered from (Rep(G),⊗, ω).

Proof Sketch. Given g, you get a whole system (g|V )V ∈Rep(G) of k-linear maps on each representation.
So, we have a map from G(k) to systems of k-linear isos17 (λV : V

∼
−! V )V ∈Rep(G) such that

(a) for all maps of reps ϕ : V !W , the square

V V

W W

λV

ϕ ϕ

λW

commutes.

(b) λV⊗W = λV ⊗ λW .
17It would suffice to just consider systems of maps
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(c) In particular λ1 = id.

We claim this map is actually a bijection.
Idea: Given such a system, can build λV for every ∞-dimensional V too (since they’re all unions of

finite representations). In particular, if G = specA, then you get λA : A
∼
−! A. This is suppose to be the

action of some group element, check that it defines G = specA  specA = G compatible with the left
G-action (use λ respects tensor products) and so is a right multiplication by some element of G(k).

Note that these compatible systems are precisely the elements of the group Aut⊗(ω) of automorphisms
of the k-linear tensor functor ω. We’ve seen these recover the k-points G(k). What about the R-points for
R a k-algebra? These are precisely the elements of Aut⊗(ω)(R), i.e. systems (λV : VR

∼
−! VR) satisfying

(a),(b),(c) from before. Here, Aut⊗(ω) is a functor {k-algs.}! Grp and G ∼
−! Aut⊗(ω) as group-valued

functors.
Thus, given (Rep(G),⊗, ω), the group-valued functor Aut⊗(ω) turns out to be the functor of points

of G. �

This argument generalizes to projective limits of linear algebraic groups (certain pro-algebraic groups)
G = lim −Gi with each Gi an algebraic group. On the level of Hopf algebras, A = lim−!Ai, each Ai a f.g.
commutative Hopf algebra. So G = specA is some (non-finite type) group scheme. All affine k-group
schemes are of this form G = lim −Gi. Every finite-dimensional rep of G will factor through some Gi, so
RepG = lim−!Rep(Gi).

Theorem 11.5.

{affine k-group schemes} −!
{

neutral Tannakian category
equipped with a k-valued fiber functor ω

}
via G 7! (Rep(G),⊗, forget) is an equivalence of categories. The functor in the other direction is
Aut⊗(ω) [ (C,⊗, ω)

Example.

Gm  !
{
f.dim Z-graded k-vector spaces

V =
⊕

n∈Z Vn

}
λ ∈ Gm acts as λn on Vn, so the decomp of V is just the isotypic decomposition of V into its characters.

Example.
The Deligne torus S := ResC/R(Gm) ! {R-Hodge structure}

These are f.dim C-vector spaces which are Z× Z-graded, i.e. V =
⊕

(p,q)∈Z2 V p,q, s.t. V pq = V qp.

Example.
? ! {Q-Hodge structure}

“If you try to think about the group that corresponds to it, it’ll make your head hurt.”

Definition 11.6. Say V is a f.dim k-vector space. Let a ∈ EndV be some endomorphism of V .

• a is diagonalizable ⇐⇒ V has a basis consisting of eigenvectors for a.

• a is semisimple ⇐⇒ a becomes diagonalizable after field extension.
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• a is nilpotent ⇐⇒ as = 0 for some s ≥ 1 ⇐⇒ all its eigenvalues are 0.

• a is unipotent ⇐⇒ a− 1 is nilpotent ⇐⇒ all eigenvalues are 1.

Example. The matrix

2 1

2

5 1

5 1

5

5


=



2

2

5

5

5

5


+



0 1

0

0 1

0 1

0

0


can be decomposed as a semisimple matrix + a nilpotent matrix (and the two commute).

12 Lecture 12 (3/15)

12.1 Last time: Tannakian formalism, Rep(G)

Theorem 12.1 (Reconstruction Theorem). Given an affine k-group scheme G, consider (Rep(G),⊗, forgetful).
Then, G ' Aut⊗(forgetful).

Characterization of reprsentation categories TODO: Go
over this
slide and fill
things in

12.2 Today: Jordan decomposition

Assumption. From now on k is a perfect field.

Recall 12.2. Say V is a f.dim k-vector space. Let a ∈ EndV be some endomorphism of V .

• a is diagonalizable ⇐⇒ V has a basis consisting of eigenvectors for a.

• a is semisimple ⇐⇒ a becomes diagonalizable after field extension.

• a is nilpotent ⇐⇒ as = 0 for some s ≥ 1 ⇐⇒ all its eigenvalues are 0.

• a is unipotent ⇐⇒ a− 1 is nilpotent ⇐⇒ all eigenvalues are 1.

Theorem 12.3 (additive Jordan decomposition, in EndV ). Given a ∈ EndV , there exists a unique
decomposition a = as + an with as semisimple, an nilpotent, and asan = anas. Moreover, as, an ∈ k[a] ⊂
EndV .

Proof. Case 1 (k = k). For existence, we use structure theorem of modules over a PID. Note that

k[a]
∼
 −

k[T ]

(min. poly of a)

∼
−!

k[T ]

(T − λ1)e1
× . . .× k[T ]

(T − λr)er

with RHS coming from factoring the minimal polynomial of a. On the RHS, we have

T ↔ (T, . . . , T ) = (λ1, . . . , λr)︸ ︷︷ ︸
as

+ (T − λ1, . . . , T − λr)︸ ︷︷ ︸
an

.
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This finishes existence. as above acts diagonally while an is nilpotent, and they commute since they do
use factorwise.

Now let’s do uniqueness. If a = bs + bn is another decomposition, then bs commutes with bs and with
bn, hence with a. Since as, an ∈ k[a] are polynomials in a, bs will also commute with them. Now, since
as, bs are commuting and semisimple, they have a simultaneous basis of eigenvectors, so their difference
bs−as is semisimple. At the same time, bs−as = an− bn which is nilpotent (an, bn commute + binomial
expansion). Thus, bs − as = an − bn = 0 since this is the only nilpotent, semisimple endomorphism. The
finishes the algebraically closed case. This leaves the general case.

Case 2 (k any perfect field). The as, an over k are Gal(k/k)-invariant by uniqueness, so they’re defined
over k. �

Here are some nice properties of the Jordan decomp.

• If W ≤ V is an a-stable subspace (i.e. a(W ) ⊂W ), then the Jordan decomp of a on V induces the
Jordan decomp of a|W on W and of a on V/W .

• Given linear maps
V W

V W,

ϕ

a b

ϕ

the J.D. of a is compatible with that of b, i.e. there are two more squares with a, b replaced by
as, bs or an, bn.

Recall our running assumption that k is perfect.

Theorem 12.4 (Multiplicative Jordan decomposition, in alg. gps). There is a unique way to
define, for every linear algebraic group G/k and g ∈ G(k), a factorization into commuting elements
g = gsgu = gugs ∈ G(k) such that

(1) If G = GLV , then gs is semisimple and gu is unipotent.

(2) For any homomorphism ϕ : G! G′ and g ∈ G(k), one has

ϕ(gs) = ϕ(g)s and ϕ(g)u = ϕ(gu).

Proof. (Existence) We first give the definition for g ∈ GLV (k) = GL(V ). Write g = gs + gn using the
additive Jordan decomposition (note gs invertible since it has same eigenvalues as g), so g = gs(1+g−1

s gn).
Now, g−1

s gn is nilpotent (since they commute), so 1 + g−1
s gn is unipotent, so we just set gu = 1 + g−1

s gn

to get our decomposition.
Now let’s show existence for g ∈ G(k) where G is any linear algebraic group. Consider the system

(r(g)s)r∈Rep(G) of semisimple parts of all representations of g. By second nice property of Jordan decom-
positions, this is a compatible system, so the reconstruction theorem tells us there must exist a unique
element gs ∈ G(k) so that r(gs) = r(g)s for all reps r ∈ Rep(G). Can define gu in the same way. Then,
g = gsgu = gugs (can check using any faithful18 representation r : G ↪! GLV ). Note that when G = GLV

these two definitions agree since r(gs) = r(g)s and r(gu) = r(g)u e.g. for r = id : GLV = GLV .
18In fact, one faithful representation already tells you what the decomposition has to be
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(Compatibility) Let ϕ : G! G′ be a homomorphism of linear algebraic groups, and fix some g ∈ G(k).
For each r : G′ ! GLV , get G

ϕ
−! G′

r
−! GLV , a rep of G. Observe that r(ϕ(gs)) = r(ϕ(g))s. Thus,

ϕ(gs) satisfies the defining property of ϕ(g)s, so ϕ(gs) = ϕ(g)s as desired. Similar argument shows
ϕ(gu) = ϕ(g)u.

(Uniqueness) Follows from stuff above. �

Definition 12.5. We call g ∈ G(K) a semisimple element if g = gs, and we call it a unipotent
element if g = gu.

12.3 Review of Lie algebras and Lie groups

Definition 12.6. A Lie algebra if a vector space g equipped with a bilinear map [−,−] : g × g ! g,
the Lie bracket, satisfying

• [x, x] = 0.

• [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity).

Example. Let V be any vector space. Then, EndV with Lie bracket given by the commutator [A,B] =

AB −BA is a Lie algebra.

Definition 12.7. Let A be a k-algebra. A derivation of A is a k-linear map D : A! A such that

D(fg) = D(f)g + fD(g)

(Liebniz rule).

Example. Let M be a C∞ manifold. Then, there’s a bijection

{vector fields on M} ∼−! {derivations of C∞(M)} ⊂ End(C∞(M)).

Recall the commutator bracket on End(C∞(M)). It is a fact that this preserves the space of derivations,
i.e. [D,E] = DE−ED is a derivation if D,E are, so the set of derivations of C∞(M) is also a Lie algebra
(hence, vector fields on M form a Lie algebra too).

Example. Now say G is a Lie group (C∞-manifold with group law). Then the tangent space at the
identity, via (right) translations, is identified

TeG
∼
−! {left-invariant vector fields on F} ∼−! {left-invariant derivations on C∞(G)}

with the space of left-invariant vector fields. This space is preserved by the Lie bracket, so TeG inherits
the structure of a Lie algebra. This is the Lie algebra of G.

Next time we’ll talk about an algebraic version of this.
Let X be a k-variety. For x ∈ X(k) the Zariski cotangent space at x is mx/m

2
x and the Zariski

tangent space is the dual TxX := Homk(mx/m
2
x, k). Equivalently, the tangent space is the preimage of

x under X(k[ε]/ε2)! X(k).
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13 Lecture 13 (3/17)

Note 2. *a minute or two late*

13.1 Lie algebras of an algebraic group

Fix a k-variety X and some x ∈ X(k).

• The Zariski cotangent space at x is T ∗xX := mx/m
2
x

• The Zariski tangent space at x is TxX := Homk(mx/m
2
x, k)

• Let I be the ideal sheaf of the diagonal X
∆
↪! X ×X. Then view the OX×X/I module I/I2 as an

OX -module ΩX , the cotangent bundle.

Slogan. The diagonal is sort of like the family over X that parameterizes points on X.

• A derivation on OX is a homomorphism of sheaves D : OX ! OX (not OX -linear) such that for
every open U ⊂ X, the map D(U) : OX(U)! OX(U) is a derivation.

Proposition 13.1. Der(OX) ' HomOX (ΩX ,OX) ' Γ(X, TX) (with last iso if X is smooth19 (so ΩX

locally free))

Proof. There’s the natural, universal differential d : OX ! ΩX . Any derivation D : OX ! OX will factor
through a unique OX -linear map ΩX ! OX . �

Proposition 13.2. Let G be an algebraic group. Then, ΩG ' me/m
2
e ⊗k OG is a free OG-module.

Proof. There’s an automorphism G×G ∼
−! G×G, (x, y) 7! (xy−1, y) sending the diagonal to the vertical

axis {e} ×G. Hence, the ideal sheaf I of the diagonal will get mapped to me ⊗k OG, the ideal sheaf of
the vertical axis. Hence,

ΩG = I /I 2 ↔
me
m2
e

⊗k OG.

�

Corollary 13.3. Der(OG) = TeG⊗ O(G).

Corollary 13.4. Derleft-inv(OG) = TeG = ker (G(k[ε])! G(k)).

The left-invariant functions in O(G) are the constant functions.
As before, there is a Lie bracket on the space of derivations, so we get a corresponding bracket on

TeG, giving it the structure of a Lie algebra. We call this Lie algebra LieG.

Example. gln := Lie GLn = ker (GLn(k[ε])! GLn(k)). These will be the matrices20

{1 +Xε : X ∈Mn(k)} 'Mn(k)

(multiplication on the LHS and addition and the RHS). The bracket on this Lie algebra is [X,Y ] =

XY − Y X.
19Usually don’t define tangent bundle when X is not smooth
201 +Xε invertible iff it’s determinant is a unit after reducing mod ε
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Example. glV = EndV if you wanna be coordinate-free

Fact (on homework). Any homomorphism ϕ : G ! H of algebraic groups induces a homomorphism
dϕ : LieG! LieH of Lie algebras.

Definition 13.5. A representation of a Lie algebra g is a Lie algebra homomorphism

g −! glV

for some vector space V .

13.2 Adjoint representation

Let G be an algebraic group with Lie algebra g := LieG.
There is a conjugation action of G on G which induces an action of G on g and hence a represen-

tation Ad : G ! GLg called the Adjoint representation. You can take is derivative to get another
representation ad : g! glg = End g (now of Lie algebras) called the adjoint representation.

Fact. Tracing through the definitions shows that

adx(y) = [x, y]

for all x, y ∈ g.

Motivation. Given a finite abelian group G, can form the dual/character group G∨ := Hom(G,C×). Is
there a group scheme analogue of this?

Theorem 13.6 (Cartier duality). Consider the (abelian) category C = {commutative finite group schemes/k}.
Then there exists an exact equivalence of categories C! Cop, G 7! G∨ which is its own essential inverse
(i.e. there’s a functorial iso G ∼

−! G∨∨).

Here are two constructions of G∨

• G is finite, so G = specA for some A with A a Hopf algebra which is f.d. as a k-vector space. We
have k-linear maps

A⊗A µ
−! A, k

i
−! A, A

∆
−! A⊗A, and A

ε
−! k.

If you take k-linear duals everywhere, then we get

A∨ ! A∨ ⊗A∨, A∨ ! k, A∨ ⊗A∨ ! A∨, and k ! A∨,

so A∨ is also a f.dim k-Hopf algebra! Let G∨ = specA∨.

• There is a group scheme G∨ := Hom(G,Gm) whose functor of points is

G∨(R) = HomR-gp schemes(GR, (Gm)R).

Note there’s a natural pairing G×G∨ ! Gm.

Example. Z/nZ↔ µn (always, even if n = p = char k for example)
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Example. αp ↔ αp

Example. For an elliptic curve E, E[n]↔ E[n]. For an abelian variety, A[n]↔ A∨[n] with A∨ the dual
abelian variety (different notion of duality). The pairing in these examples is the Weil pairing.

13.3 Diagonalizable groups

Recall 13.7. Let G = specA be an affine algebraic group. Then, an element a ∈ A× is called group-like
iff ∆(a) = a⊗ a ⇐⇒ G

a
−! Gm is a character (i.e. homomorphism).

Definition 13.8. G is diagonalizable if A is the k-span of its group-like elements.

Fact. The group-like elements are always k-linearly independent.

Example. For G = Gm, A = k[t, t−1]. The group-likes are tn (n ∈ Z), and they do span the coordinate
ring.

Proposition 13.9. There exists an exact equivalence of categories

{f.g. abelian groups}op  ! {diagonalizable algebraic groups/k}

Secretly, the functor in both directions is Hom(−,Gm). Other notation is

M 7! D(M) and X(G) [ G.

Above, X(G) is the character group of G, i.e. X(G) = Hom(G,Gm), and the functor of points of
D(M) is D(M)(R) = Hom(M,R×).

Proof Sketch. Let’s first show D(M) is representable. If M = Z, then D(M) = Gm. If M = Z/nZ, then
D(M) = µn. In the general case, you get products of these. Alternatively, D(M) = spec k[M ] where
k[M ] is the group algebra ofM .21 By construction, D(M) is diagonalizable since the group-likes em span
k[M ]. �

14 Lecture 14 (3/19)

No class Monday/Tuesday next week for ‘Spring break’
Next homework due on Sunday (not in two days, I hope)

14.1 Last time: Diagonalizable groups

For a linear algebraic group G = specA

{characters χ : G! Gm} !
{
group-like elements a ∈ A×

}
Recall 14.1. G is diagonalizable if A is the k-span of its group-like elements.

21The comulitplication sends a basis element em (m ∈ M) to em 7! em ⊗ em. The coidentity sends em 7! 1 and the
coinverse is em 7! em−1
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Theorem 14.2. Fix a field k. There exists an exact equivalence of categories

{f.g. abelian groups}op  ! {diagonalizable algebraic groups/k}

sending M 7! D(M) and X(G) [ G.

Three equivalent desriptions of D(M):

• Explicitly construction: D(Z⊕ Z⊕ Z/3Z) = Gm ×Gm × µ3 ↪! GL3, etc.

• Its functor points is R 7! Hom(M,R×)

• It is spec k[M ], where k[M ] is the group algebra.

14.2 Some things we didn’t get to last time

Let’s mention a few more things about the proof.

• If G = specA is diagonalizable, then G ' D(M) for some M :

Let M be the set of group-like elements in A. They are automatically independent. Hence, if they
span, then k[M ]

∼
−! A. Check that this is an iso of Hopf algebras.

• Homk-group scheme(D(M), D(M ′)) ' Homgroups(M
′,M)

Suffices to check the cases when each of M,M ′ is either Z or Z/nZ. Let’s do the case where
M = M ′ = Z, so D(M) = D(M ′) = Gm.

Remark 14.3. A better version of this theorem computes Hom after any base change, so you get a
Hom-functor

Hom (D(M), D(M ′)) ' Hom(M ′,M)

(LHS is functor whose R points is R-group scheme homomorphisms D(M)R ! D(M ′)R while the
RHS is the constant group scheme over k).

We’ll prove that version here, i.e. we’ll show

Hom(Gm,R,Gm,R) = Z(R).

For simplicity, suppose the following equivalent conditions hold:

– specR is connected

– the solutions to a2 = a in R are 0 and 1 Remember:
A scheme is
connected
iff its global
sections has
no nontrivial
idempotents

– Z(R) = Z

Any homomorphism Gm,R ! Gm,R is of the form t 7! f(t) =
∑
n∈Z ant

n for some f ∈ R[t, 1/t]×

such that f(x)f(y) = f(xy) in R[x, 1/x, y, 1/y]. Equate coefficients of xnym:

anam =

an if n = m

0 otherwise.
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Thus each an is an idempotent, so each an ∈ {0, 1}. Furthermore, the product of any two is 0, so
at most one of them is 1. Finally, f = 0 is not a unit, so they can’t all be 0. Hence, f = tn for
some n ∈ Z. Thus, Hom(Gm,R,Gm,R) = Z as desired.

Proposition 14.4. Subgroups and quotient groups of diagonalizable groups are diagonalizable.

Proof. (subgroups) Say H ≤ G with G diagonalizable. Then, H is a closed subscheme, so have some
surjection O(G) � O(H). The group-likes in G span O(G), so their images span O(H) and are still
group-like, so O(H) is diagonalizable.

(quotients) Say 1 ! H ! G ! Q ! 1 with G diagonalizable. By the previous case, we can
write G = D(M) and H = D(M ′′). The map H ↪! G corresponds to a map M � M ′′, so let
M ′ := ker(M !M ′′). Then exactness of the functor gives an exact sequence

1! D(M ′′)! D(M)! D(M ′)! 1,

so we conclude Q = D(M ′). �

Corollary 14.5. G is diagonalizable ⇐⇒ G ≤ Gnm (think of as diagonal n × n matrices) for some
n ≥ 0.

14.3 Representations, groups of multiplicative type

Theorem 14.6. Let G be diagonalizable, and let V be a representation of G. Then,

(1) V is a direct sum of 1-dimensional representations

(like reps of a finite abelian group G with char k - #G)

(2) V =
⊕

χ∈X(G) Vχ is a sum of its isotypic components.

Definition 14.7. The χ for which Vχ 6= 0 are called the weights of V . Vχ is also called the
χ-eigenspace or χ-weight space.

(3) Under Tannakian formalism

D(M) = G ! (Rep(G),⊗, forgetful)

with Rep(G) the category of M -graded vector spaces. (Note M = X(G))

Recall 14.8. G is a torus ⇐⇒ Gk ' Gn
m,k

for some n ≥ 0.

Definition 14.9. More generally, we say G is of multiplicative type ⇐⇒ Gk is diagonalizable. G is
split ⇐⇒ G is diagonalizable over k.

Proposition 14.10. If Gk ' D(M)k, then Gks ' D(M)ks .

Proof. Inseparable descent.22 Can reduce to showing that for L = k[x]/(xp − a), if GL
∼
−! D(M)L, then

G
∼
−! D(M).

22The intuition comes from showing that a morphism over L is defined over k by showing that it is Gal(L/k)-invariant
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Let S′ = specL and S = spec k. Let S′′ = S′ ×S S′. Consider the diagram

S′

S′′

S′ S′

S

∆

p1

p2

Note that L ⊗k L ' k[x,y]
(xp−a,yp−a) '

L[ε]
(εp) where x − y  [ ε. How do we do the descent now? We need

“agreement on the overlap,” i.e. we need the two isomorphisms

GL⊗L
p∗1ϕ

⇒
p∗2ϕ

D(M)L⊗L

to coincide.
Consider their difference (p∗1ϕ)(p∗2ϕ)−1 ∈ AutD(M)L⊗L ' AutM (since L ⊗ L is connected). If we

pull back along the diagonal ∆, then we get ϕϕ−1 ∈ AutD(M)L = AutM (this is “reduce mod ε”).
Thus, we have a square

AutD(M)L⊗L AutM

AutD(M)L AutM

=

∆∗ =

=

where (p∗1ϕ)(p∗2ϕ)−1 ∈ AutD(M)L⊗L gets mapped to id = ϕϕ−1 ∈ AutD(M)L. Thus, it must have been
the identity all along, so we win. �

Remark 14.11. specL! spec k in the previous proof is not étale but it is fpqc.

Corollary 14.12. For each finite Galois extension k′/k, there exists an exact equivalence of categories{
algebraic groups G/k

s.t. Gk′ is diagonalizable

}
 !

{
diagonal groups /k′

with semilinear Gal(k′/k)-action

}
 !

{
f.g. ab groups equipped
with a Gal(k′/k)-action

}
G 7−! Gk′ 7−! X(Gk′)

Take a direct limit over all k′ ⊂ ks.

Corollary 14.13. There exists an exact equivalence of categories

{groups of mult. type/k} ∼
−!

{
f.g. ab groups equipped w/

a continuous Gal(ks/k)-action

}
via G 7! X(Gks) =: X∗(G) (also called the character group of G).
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15 Lecture 15 (3/24)

15.1 Last time

Recall 15.1. G is a torus ⇐⇒ Gk ' Gn
m,k

for some n ≥ 0.
G is of multiplicative type ⇐⇒ Gk ' D(M)k for some f.g. abelian group M .

Inseparable descent allows one to replace k with ks above.

Theorem 15.2. Fix a field k. Then there is an exact equivalence of categories

{groups of mult. type/k} ! {f.g. abelian groups with cts. Gal(ks/k)-actions}

via G 7! X∗(G). Here, X∗(G) := Hom(Gks ,Gm,ks) is the character group, and X∗(G) := Hom(Gm,ks , Gks) =

HomZ(X∗(G),Z) is the cocharacter group.

Remark 15.3. Above, HomZ(X∗(G),Z) = HomZ(X∗(G), X∗(Gm,ks)).

15.2 Representations of these

Theorem 15.4. Let G be a group of multiplicative type over k. Then, there’s an equivalence of categories

{k-reps of G}  !

{
k-vector spaces V equipped with decomp
Vks =

⊕
χ∈X∗(G) Vχ that is Gal-compatible

}

(each Vχ some ks-vector space). Above being Galois-compatible means that

σ(Vχ) = Vσχ for all σ ∈ Gal(ks/k).

(think of the M -graded vector spaces from before).

Corollary 15.5.

{f.dim k-reps of G}/' ↔
{

formal finite sums
∑
χ∈X∗(G) nχχ

with nχ ∈ Z+ and nσχ = nχ for all χ and σ ∈ Gal

}
.

Corollary 15.6.
{irred. reps}/' ↔ {Gal -orbits in X∗(G)} .

Definition 15.7. A linear algebraic group G is linearly reductive iff every f.dim rep is semisimple
(i.e. a direct sum of irreps).

Warning 15.8. This is not quite the same as the definition of reductive we gave earlier.

Example. Any group of multiplicative type is linearly reductive (by theorem(s) at beginning of section)

Fact. If char k = 0, G is linearly reductive ⇐⇒ G0 is reductive (i.e. unipotent radical trivial)

Fact. If char k = p and G smooth, then G linearly reductive ⇐⇒ G0 is a torus and p - (G : G0).

Remark 15.9. If G is linearly reductive, any representation (f.dim or not) is a direct sum of irreps. Also,
any short exact sequence of representations automatically splits.
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Theorem 15.10 (Theorem 7.1 in the text). Let X be a variety, and let G be an algebraic group acting
on X. Then,

• There exists a largest closed subscheme XG ⊂ X on which G acts trivially.

• XG(R) = {x ∈ X(R) : gx = x for all g ∈ X(R′) for all R! R′}

• If x ∈ XG(k), then Tx(XG) = (TxX)G.

• If G is smooth and k = ks, then
XG =

⋂
g∈G(ks)

Xg,

descended to k, where A priori
this inter-
section is a
ks-scheme,
but it’s Gal-
invariant so
it descends

Xg(R) = {x ∈ X(R) : gx = x} .

Theorem 15.11. Let X be a smooth variety, and let G be a linearly reductive group acting on X. Then,
XG is smooth.

Proof Sketch. (Affine case) First suppose X is the affine space associated to a representation V of G.
Then, XG is the affine space associated to V G (= V G(k)).

(General case) WLOG assume k = k since this doesn’t affect smoothness or linear reductiveness.
Choose some x ∈ XG(k). Get local ring OX,x ⊃ mx =: m. Consider the short exact sequence

0! m2 ! m! m/m2 ! 0.

Note that, since G fixes x, it acts on everything here. Every exact sequence of G-reps splits, so we get a
G-equivariant splitting m/m2 ! m. In particular, a basis t1, . . . , tn ∈ m/m2 will lift to local coordinates
f1, . . . , fn ∈ m.23 These define a rational map

(f1, . . . , fn) : X 99K An

which is (defined and) étale at x. We also have G-actions on both sides for which this map is equivariant. Question:
Why is G
acting on
An?

Answer:
This An is
given by the
representa-
tion that is
the span of
those fi’s

Note that (An)G is some affine subspace. Since X ! An is étale at x, we conclude that XG is smooth at
x.24 �

Corollary 15.12. Say T ≤ G with T of multiplicative type and G a smooth algebraic group. Then, (a)
CG(T ) and (b) NG(T ), the centralizer and normalizer, are smooth.

Proof. (a) CG(T ) = GT where T acts by conjugation, so win by thm (T linearly reductive).
(b) DefineNG(T )

ϕ
−! Aut(T ) via g 7! inng |T . Since T is of multiplicative type, Aut(T ) = Aut(X∗(T ))

(think of as an étale group scheme), so {1} is an open subgroup. Then, kerϕ is open in NG(T ). By
definition kerϕ = CG(T ). Since CG(T ) is smooth, NG(T ) is as well (by translation). �

This also
shows
CG(T ) ≤
NG(T ) of
finite index

23By Nakyama, they give a minimal set of generators for the maximal ideal
24Sounds like we’re saying XG ! (An)G is étale at x, so XG ! (An)G ! spec k is smooth at x
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15.3 Limits

Suppose we have ϕ : Gm ! X with X a k-variety (in particular, X is separated). Since X is separated,
there is at most one extension of ϕ to ϕ̂ : A1 ! X. If such an extension exists, then we define the limit

lim
t!0

ϕ(t) := ϕ̃(0) ∈ X(k).

Can make the same definition for R-schemes Gm,R ! X (with X a separated R-scheme).
Suppose that Gm acts on an affine variety X = specB, so Gm acts on B as well. Then we get a

decomposition
B =

⊕
n∈Z

Bn

as Gm-reps. Given, f =
∑
n fn ∈ B and t ∈ Gm, then

t.f =
∑
n

tnfn.

For x ∈ X(R), TFAE

• lim
t!0

t · x exists

• lim
t!0

f(t.x) exists for all f ∈ B. f(t.x) =

(t.f)(x)
• lim
t!0

∑
n t

nfn(x) exists for all f =
∑
fn ∈ B.

• In the last bullet point, we now have some polynomial, so the condition is equivalent to: for all
n < 0 and fn ∈ Bn, fn(x) = 0 (no negative exponents appearing in previous expression).

Note that this is a closed condition (given by common zero set of the f ∈ B<0).

Corollary 15.13.

(1) The functor
F 7!

{
x ∈ X(R) : lim

t!0
t.x exists

}
is represented by a closed subscheme P of X.

(2) There’s a morphism P ! XGm ⊂ X given by x 7! lim
t!0

t.x.

The usual set up for us using this will be the following. Let G be a linear algebrac group, and let
λ : Gm ! G (homomorphism) be a co-character/1 parameter subgroup. Then we get a Gm-action
on G: t.g := λ(t)gλ(t)−1. We can now define 3 groups:

• P (λ) :=
{
g ∈ G : lim

t!0
t.g exists

}
• U(λ) :=

{
g ∈ G : lim

t!0
t.g = e

}
• Z(λ) := {g ∈ G : t.g = g for all t ∈ Gm} = CG(λ(Gm)).
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16 Lecture 16 (3/26)

Warning 16.1 (Correction to something from long ago). Even over an algebraically closed field, Gred

is not necessarily normal in G (Example: if G = αp2 oGm, then Gred = Gm). It is always preserved by
conjugation by elements of G(k), but not always by conjugation by elements of G(R). Remember:

Apparently
Gred doesn’t
even have to
be a group
if k is not
perfect

16.1 Last time: limits

Let G be a linear algebraic group. Let λ : Gm ! G be a homomorphism. Get conjugation Gm-action on
G via t.g := λ(t)gλ(t)−1.

Recall 16.2.

• P (λ) :=
{
g ∈ G : lim

t!0
t.g exists

}
• U(λ) :=

{
g ∈ G : lim

t!0
t.g = e

}
• Z(λ) := {g ∈ G : t.g = g for all t ∈ Gm} = CG(λ(Gm)).

16.2 Properties of P (λ), U(λ), Z(λ)

Example. Let G = GL3, and define λ : Gm ! G by λ(t) :=

t
7

t7

t2

. Each t ∈ Gm acts on a

matrix G by multiplying entries as follows ·1 ·1 ·t5

·1 ·1 ·t5

·t−5 ·t−5 ·1

 .

One sees that

P (λ) =

∗ ∗ ∗∗ ∗ ∗
∗

 , Z(λ) =

∗ ∗∗ ∗
∗

 , U(λ) =

1 ∗
1 ∗

1

 , and U(−λ) =

1

1

∗ ∗ 1


(Above −λ really means λ−1, but we tend to think of characters additively).

Proposition 16.3. Say G,λ as above. Then,

(1) P (λ), U(λ), Z(λ) are closed subgroups of G. If G is smooth (resp. connected), then so are they.

(2) P (λ) ∩ P (−λ) = Z(λ)

(3) P (λ) = Z(λ) n U(λ)

(4) U(−λ)× P (λ)! G is an open immersion.
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(5) U(λ) is isomorphic to a subgroup of

Un :=


1 ∗

. . .

1


(6) The Gm-action on G induces a Gm-action on LieG =

⊕
n∈Z gn. Using this decomposition, one has

LieZ(λ) = g0

LieU(λ) =
⊕
n≥1

gn

LieP (λ) =
⊕
n≥0

gn

LieU(−λ) =
⊕
n≤−1

gn

Proof. (1) One can check from the definition that these are group subfunctors of G. We showed last time
(Corollary 15.13) that P (λ) is a closed subscheme. We’ll finish (1) later...

(2) If x ∈ (P (λ) ∩ P (−λ))(R), then Gm,R ! GR, t 7! t.x extends to a morphism P1
R ! GR. Note

that P1
R is projective (so proper) while GR is affine. This factors through specR (so is constant), so the

original map on Gm,R also factors through specR. Hence, x ∈ Z(λ)(R). This proves (2).
(3) Consider the homomorphism

P (λ) −! Z(λ)

x 7−! lim
t!0

t.x

The inclusion Z(λ) ↪! P (λ) is a section of this homomorphism, so we get a split exact sequence The map
below is
faithfully
flat since it’s
split. It’s
surjective
on R-valued
points for
every R so
a epimor-
phism of
fppf sheaves

1! U(λ)! P (λ)! Z(λ)! 1.

This tells us that U(λ) is a closed subgroup, and that we have a semi-direct product. Hence we finish
(3) and the first part of (1).

Remark 16.4. If G ↪! G′, then PG(λ) = PG′(λ) ∩G.

Pick a faithful representation G ↪! GLV , and diagonal the action of Gm on V given by Gm
λ
−! G ↪!

GLV , with weights in decreasing order. By explicit calculation (as in the example), (4),(5) hold for GLV ,
so they hold also for any subgroup of GLV (e.g. V ).

If G is smooth, then U(−λ) × P (λ) is smooth (4), so U(−λ), P (λ) are smooth. Also, P (λ) =

Z(λ) × U(λ) as varieties. Since P (λ) is smooth, Z(λ) is too. If G is connected, go through the same
argument. This finishes (1).

(6) For g ∈ g ⊂ G(k[ε]/(ε2)), how do we get g ∈ LieP (λ)? By definition,

g ∈ LieP (λ) ⇐⇒ lim
t!0

t.c exists in G(k[ε]) ⇐⇒ g ∈
⊕
n≥0

g.

The rest of the cases are done similarly. �
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16.3 Unipotent Groups and Representations

Recall 16.5 (Theorem 4.14 in the book). Let G be a linear algebraic group, and let V be a faithful f.dim
rep. Then, every f.dim rep of G can be obtained from V by taking ⊗,⊕, (−)

∨
, subreps, quotients. Sounds like

every rep
generator V
like this is
automati-
cally faith-
ful, so the
existence of
such a thing
gives a check
for a neutral
Tannakian
category to
be associ-
ated to an
algebraic
group

Definition 16.6. Let V be a f.dim G-rep (G = linear algebraic group). We say V is a unipotent
representation if ∃ subreps

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V with Vi/Vi−1 ' 1 for all i,

i.e. the successive quotients are the trivial reps. Equivalently, all Jordan-Hölder factors for this rep are
trivial.

If you choose a basis compatible with the filtration above, then every element of g acts by an upper
triangular matrix with 1’s along the diagonal.

Remark 16.7. Unipotent representations are preserved by all of the operations in Recall 16.5.

Recall 16.8. We say a linear algebraic group G is unipotent if every nonzero representation has a nonzero
fixed vector.

Theorem 16.9. For a linear algebraic group G, TFAE

(1) G is unipotent.

(2) Every f.dim representation of G is unipotent.

(3) G has some faithful unipotent representation, i.e. G is isomorphic to a closed subgroup of Un.

(4) (When G smooth) Every g ∈ G(k) is unipotent.

Proof of some parts. ((3) =⇒ (2)) Uses Recall 16.5. Every rep of G is built from a unipotent one, so
they’re all unipotent.

((4) =⇒ (1)) WLOG k = k (since dimV G unchanged by field extension). Let V be a nonzero
representation. WLOG V is irreducible. We may replace G by its image in GLV . We now make use of
the following:

Theorem 16.10 (Burnside’s theorem). If V is an irrep over k = k, then the elements h ∈ G(k) span
EndV as a k-vector space.

If g ∈ G(k), then Tr(g) = 1 + 1 + · · · + 1 = n := dimV since it is unipotent. Hence, Tr((1 − g)h) =

Tr(h) − Tr(gh) = n − n = 0 for all h ∈ G(k). Thus, Burnside tells us that Tr((1 − g)a) = 0 for all
a ∈ EndV . Thus forces 1− g = 0, so g = 1. Thus, after all our reductions, we arrived at G = {1} (since
G smooth and k = k, G(k) = 1 =⇒ G = 1) which almost certainly has a nonzero fixed vector. �

Corollary 16.11. The property “G is unipotent” is unchanged by field extension (e.g. by (3) + (1)).

Corollary 16.12. Subgroups and quotient groups of unipotent groups are unipotent (e.g. by (1) + (3))

Example. Ga = U2 =

(
1 ∗

1

)
is unipotent.

Example. If char k = p, then Z/pZ, αp,W2 (the Witt ring scheme with W2(R) being the length 2
Witt vectors in R) are all unipotent.
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17 Lecture 17 (3/29)

Last time, we talked about unipotent groups.

Recall 17.1. For a linear algebraic group G, TFAE

(1) G is unipotent, i.e. every nonzero rep has a nonzero fixed vector

(2) Every f.d. rep is unipotent, i.e. all Jordan-Hölder factors are 1 (trivial rep)

(3) G has a faithful unipotent representation, i.e. G ↪! Un

(4) (when G smooth) every g ∈ G(k) is unipotent (in the sense of Jordan decomposition)

Corollary 17.2. The property “G is unipotent” is unchanged by field extension. Also subgroups, quo-
tients, and extensions of unipotent groups are unipotent.

Example. Un, powers of Ga, and (in char p) Z/pZ, αpn ,25 Wn are all unipotent groups.

17.1 More on unipotent groups

Proposition 17.3. If G is unipotent (in particular, linear algebraic) and of multiplicative type, then
G = {1}.

Proof. WLOG k = k. Since it’s diagonalizable, every representation is a direct sum of 1-dim reps. Since
it is unipotent, each 1-dim rep is trivial, so every rep of G is trivial. Hence, G = {1}. �

Corollary 17.4. Any homomorphism U ! M or M ! U (with U unipotent and M of multiplicative
type) is trivial.

Proof. The image is a quotient/subgroup of a unipotent/multiplicative type group so it is both unipotent
and of multiplicative type. �

Proposition 17.5. Let G be a smooth, connected unipotent group over a perfect field k. Then, G has
a filtration (Gi) with quotients Gi−1/Gi ' Ga. Moreover, it can be chosen to be a central series, i.e.
Gi=1/Gi ⊂ Z(G/Gi) for all i.

Proof. Embed G ↪! Un (upper triangular matrices with 1’s along the diagonal). We know (some home-
work) that Un has a central series with quotients Ga. Intersecting with G gives an induced filtration

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {1}

with Gi−1/Gi ≤ Ga. Since k is perfect, we can form Hi = (G0
i )red which is now smooth and connected.26

This gives a new filtration If A is nor-
mal in B,
then Ared is
normal in
Bred (con-
sider the
conjugation
action mor-
phism)

G = H0 ⊃ H1 ⊃ · · · ⊃ Hn = {1}.

We still have Hi / G, and one can verify that Hi−1/Hi ⊂ Z(G/Hi), and Hi−1/Hi is smooth, connected
(since Hi−1 is) and unipotent of dimension ≤ 1. You can classify all smooth, connected, unipotent groups
of dimension ≤ 1 (homework); the only ones are Ga or {1}. �

25Wn is length n Witt vectors, e.g. Wn(Fp) = Z/pnZ
26Want to avoid Gi−1/Gi = αp or Z/pZ or something like that
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Definition 17.6. We say G is split unipotent if it has a filtration whose successive quotients are all
Ga.

Remark 17.7. If char k = 0, things are even better.

• {unipotent algebraic groups/k} ! {f.dim nilpotent Lie algebra/k} is an equiv of cats.

Remark 17.8. Cartier’s theorem says algebraic groups in characteristic 0 are automatically smooth.
Unipotent algebraic groups are also automatically connected (since π0(G) is finite and unipotent in
characteristic 0)

This equivalence is given by G 7! LieG in one direction. In the other direction it sends (affine space
assoc. to g) [ g with group law given by the Baker-Campbell-Hausdorff formula.27

• {commutative unipotent alg. gps./k}  ! {f.dim vector spaces/k} is an equiv of cats. The equiv-
alence is given by Gna ↔ kn.

Non-example. In char p, the Witt group scheme Wn is commutative but not Gna (it’s not even
p-torsion).

17.2 Commutative (linear) algebraic groups

Lemma 17.9. Let k = k, and let V be a f.dim k-vector space. Let S ⊂ EndV be a set of pairwise
commuting endomorphisms. There, there exists a basis of V w.r.t which every s ∈ S is upper triangular,
and also every semisimple s ∈ S is diagonal.

Proof. If all s ∈ S act as scalars, we’re done.
If there is some semisimple non-scalar s ∈ S, then any other t ∈ S must preserve the eigenspaces of s

(which span all of V since s semisimple). Then apply induction to these eigenspaces.
If there is a non-scalar s, choose one eigenspace W and apply induction to both W and V/W . This

gives something block upper-triangular with upper triangular blocks on the diagonal (so it is upper
triangular). �

Theorem 17.10. Let k be perfect. Let G be a commutative, smooth linear algebraic group over k. Then, Can relax
this assump-
tion

(1) The semisimple elements in G(k) are the k-points of a unique, smooth, closed subgroup Gs ≤ G of
multiplicative type.

(2) The unipotent elements in G(k) are the k-points of a unique, smooth, unipotent, closed subgroup
Gu ≤ G.

(3) Multiplication gives an isomorphism Gs ×Gu
∼
−! G.

(4) If G is connected, then Gs, Gu are connected too.

Proof. WLOG k = k (uniqueness let’s us apply Galois descent). Choose a faithful representation G ↪!

GLV . Choose a basis of V as in Lemma 17.9 (so semisimple elements are all diagonal). We define
Gs := (G∩ Tn)red (where Tn is the diagonal torus). It is a group of multiplicative type (contained in Tn)

27If g ≤ gln, then G(k) = {exp(v) : v ∈ g} and the only question is how to multiply two exponentials
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which is smooth and closed with the right k-points (by definition28), so this gives (1). For (2), similarly
define Gu := (G ∩ Un)red.

(3) For injectivity, the kernel is Gs ∩ Gu ⊂ Tn ∩ Un = {1}. Let’s do surjectivity first on k-points.
This is true by Jordan decomposition (every matrix is a product of something semisimple and something
unipotent). Since G is smooth (and k = k), surjectivity on k-points is enough to conclude that Gs×Gu !
G is faithfully flat.

(4) The maps G ' Gs ×Gu � Gs, Gu show that G connected =⇒ Gs, Gu connected. �

Remark 17.11. Every smooth connected nilpotent algebraic group G over a perfect field k also has the
form U × T with U unipotent and T a torus.

(Compare: A finite group is nilpotent ⇐⇒ it is a product of its Sylow p-groups)

17.3 Trigonalizable

We’re skipping chapter 15 and going to chapter 16.
“I never heard [the word ‘trigonalizable’] before I saw it in this book” (paraphrase)

Principal Example.

Bn :=



∗ ∗

. . .

∗


 ⊂ GLn

is the subgroup of (invertible) upper triangular matrices.

Definition 17.12. A f.dim rep V is trigonalizable ⇐⇒ G ! GLV has image in Bn, for a suitable
choice of basis. Equivalently, there exists a full flag

0 = V0 ⊂ · · · ⊂ Vn = V

of subreps with dimVi = i. Equivalently, the Jordan-Hölder factors of the representation V are all
1-dimensional.29

Theorem 17.13. For a linear algebraic group G, TFAE

(1) Every irrep of G is 1-dimensional.

(2) Every f.dim rep of G is trigonalizable.

(3) G has a faithful trigonalizable representation, i.e. G is isomorphic to a subgroup of some Bn.

(4) There exists an exact sequence
1 −! U −! G −! D −! 1

with U unipotent and D diagonalizable.

If any (all) of these equivalent conditions hold, we call G trigonalizable.
28Taking the reduction doesn’t affect k-points since k is itself reduced
29The entries along the diagonal give characters of G. These are the Jordan-Hölder factors which will appear
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Proof. (1) ⇐⇒ (2) ⇐⇒ (3) Same proof as for unipotent representations (using Recall 16.5).
(3) =⇒ (4) Take the standard filtration Bn . Un . 1 (with quotients Tn and Un), and intersect it

with G.
(4) =⇒ (1) Let V be an irrep of G. We want to show dimV = 1. Since U ≤ G is unipotent, V U 6= 0.

At the same time, V U is a nonzero rep of G/U = D. Since D is diagonalizable, V U is a direct sum of
characters, each of which can be viewed as a 1-dim rep W of G. Since V is irreducible, we conclude
W = V , so dimV = 1. �

18 Lecture 18 (3/31)

Always check Bjorn’s website for updates in office hours.

18.1 Last time: trigonalizable groups

Keep in mind the exact sequence

1 −! Un −! Bn −! Tn −! 1.

Recall 18.1. A representation V is trigonalizable if any of the following equivalent conditions hold:

(1) G! GLV has image in Bn for a suitable basis of V

(2) there is a full flag of G-equivariant subspace 0 = V0 < · · · < Vn = V

(3) the Jordan-Hölder factors of the rep V are all 1-dimensional

Recall 18.2. A linear algebraic group G is trigonalizable if any of the following equiv conditions hold

(1) Every irrep of G is 1-dimensional

(2) every f.dim rep of G is trigonalizable

(3) G has a faithful trigonalizable rep, i.e. G ↪! Bn for some n

(4) there is an exact sequence 1! U ! G! D ! 1 with U unipotent and D diagonalizable

Remark 18.3. In (4) above, every unipotent subgroup U ′ of G will be contained in U . This is simply
because the composition U ′ ↪! G� D is trivial (mapping from unipotent to multiplicative type, Corollary
17.4).

Notation 18.4. GU := U as in (4)

18.2 Splittings

Theorem 18.5. Say k = k.

(1) Any exact sequence
1 −! U −! G −! D −! 1

with U unipotent and D diagonalizable splits, so G ' U oD.
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(2) Any two splittings are conjugate an element u ∈ U(k). These first
two are
equivalent to
the vanish-
ing of some
non-abelian
cohomol-
ogy group,
I think.
This would
be true if
these were
abstract
groups;
probably
still true
here?

(3) The maximal diagonalizable subgroups of G are the groups s(D) as s varies over the splittings.

Compare the above to the following theorem in group theory.

Theorem 18.6 (Schur-Zassenhaus).

(1) Any exact sequence
1 −! N −! G −! Q −! 1

of finite groups with gcd(|N | , |Q|) = 1 (and N or Q solvable30) splits.

(2) Any two splittings are conjugate by an element of N .

(3) The maximal subgroups of G or order dividing |Q| are the groups s(Q).

In some sense, unipotent and diagonalizable groups are relatively prime; “one only divisible by Ga’s
and the other only divisible by Gm’s.”

Proof Sketch of Theorem 18.6, when N solvable. (a) We first do the case that N is abelian. The ob-
struction for a set-theoretic splitting to be a homomorphism is a 2-cocycle, so the class of the obstruction
lives in H2(Q,N). This group is killed by |Q| and by |N |, so it must be trivial. Similarly, splittings up Remember:

Extensions
of Q by N
are classified
by H2(Q,N)

to conjugacy are in bijection the cohomology group H1(Q,N) which vanishes for the same reason.
(b) If N is solvable, the last nontrivial term in its derived series is an abelian group A / G. Apply

induction to G/A to reduce to case (a). �

The proof of Theorem 18.5 is completely analogous to this. To find the right analogue for group
cohomology, see chapter 15 of the book (we skipped this).

Remark 18.7. If |Q| = pn, then S-Z is much easier: choosing a splitting in this case is the same as choosing
a Sylow p-subgroup of G.

Question 18.8. Do any of the proofs of the Sylow theorems adapt to alg. groups, to give a “Sylow
Gm-subgroup”?

That is, can you adapt of proof of Sylow to construct the splitting in Theorem 18.5?

Remark 18.9. Sounds like Bjorn was able to make one of them work at least if D is a torus. The tricky
part is that many proofs of Sylow use counting mod p, so how does one make sense of “counting mod
Gm”? Apparently, can reduce to finite field case and then count points mod qn (or q − 1 or qn − 1; I
don’t remember what he said) to get things to work out. However, less clear about what to do in “general
case.”

30This extra condition was in the original version of the theorem. However, this is automatic by the Feit-Thompson
Theorem which says any group of odd order is solvable
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18.3 Solvable groups

Keep in mind that “solvable” implicitly implies “linear” (e.g. elliptic curves are not “solvable”). This is
just a convention.

Proposition 18.10. Let G be a smooth, connected solvable group over k = k. Then, G has a filtration
with quotients isomorphic to Ga or Gm.

Proof. The derived series has smooth, connected commutative quotients. Every smooth connected com-
mutative quotient in this case is of the form T × U with T a torus and U unipotent. Since T = Gnm and
U has a filtration with quotients Ga, we can refine to win. �

Definition 18.11. Let k be a potentially non-algebraically closed field. A split solvable group is an
algebraic group G with a filtration whose quotients are isomorphic to Ga or Gm (over the ground field
k).

Theorem 18.12 (Borel fixed point theorem). Let G be a split solvable group. Let X be a proper
k-variety with a k-point x ∈ X(k). Say G acts on X. Then, there exists a G-fixed point z ∈ X(k).

Proof. As usual, we induct on the number of steps in the filtration (or equivalently on the dimension of
G).

(1) If G = Ga or G = Gm, let z = lim
t!∞

t.x. This limit exists since X is proper; the valuative criterion

tells us that Gm ! X or Ga ! X extends to P1 ! X. This limit will be fixed.
(2) If N /G is such that N and G/N are split solvable groups for which the result holds, then it also

holds for G. Indeed, N acts on X, so there is an N -fixed point y. Now G/N acts on G.y which is proper,
so there is a G/N -fixed point z ∈ G.y ⊂ X. Hence, z is fixed by G as well. �

Corollary 18.13 (Lie-Kolchin theorem). If G is a split solvable group, then G is trigonalizable.

Proof. Let V be a f.dim rep of G. We will show that V is trigonalizable. Let X be the flag variety of V ,
so X(k) = {full flags in V }. This variety is projective (so proper) since it embeds X ↪!

∏dimV
m=1 Gr(m,V ).

Thus, Borel says G fixes a full flag in V , so V is trigonalizable, so we win (since V arbitrary). �

Corollary 18.14. For a smooth, connected algebraic group over k = k, solvable = trigonalizable.

18.4 Borel subgroups

We’ve sort of done the easy part so far. In the next couple of weeks, we’ll move onto the hard part. We’ve
been talking about solvable groups, but let’s switch to more general smooth connected linear algebraic
groups.

Assumption. Always assume G is a smooth connected linear algebraic group over an arbitrary field k.
We won’t keep repeating this from now on.

Definition 18.15.

(1) If k = k, a Borel subgroup of G is a maximal [smooth connected solvable subgroup of G].

(2) For general k, B ≤ G is Borel if Bk ≤ Gk is Borel.
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Warning 18.16. Borel subgroups do not always exist over k.

Example. The upper triangular matrices Bn ≤ GLn is a Borel subgroup. (Every smooth connected
solvable group over k = k is trigonalizable).

Note that conjugating Bn will give another Borel subgroup (and all of them arise in this way).

Next time we’ll define parabolic subgroups.

19 Lecture 19 (4/2)

Last time talked about trigonalizable and solvable groups.

Recall 19.1 (Lie-Kolchin theorem). If G is a split solvable group, then G is trigonalizable (G ↪! Bn).

Corollary 19.2. For a smooth, connected group G over k = k, solvable = trigonalizable

Recall 19.3 (Borel fixed point theorem). If a split solvable group G acts on a proper k-variety X with
a k-point x, then there exists a G-fixed point in X(k).

Note 3. We’re halfway through the class

19.1 Borel subgroups

Assumption. Always assume G is a smooth connected linear algebraic group over an arbitrary field k.
We won’t keep repeating this from now on.

Recall 19.4.

(1) If k = k, a Borel subgroup of G is a maximal [smooth connected solvable subgroup of G].

(2) For general k, B ≤ G is Borel if Bk ≤ Gk is Borel.

Remark 19.5. The radical R(G) is the maximal normal smooth connected solvable subgroup, so the
radical is contained in any Borel subgroup.

Definition 19.6. A smooth subgroup P ≤ G is parabolic if the k-variety G/P is proper (we’ll late see
such P are automatically connected).

Remark 19.7. Borel and parabolic subgroups are usually not normal.

Example. Let GLn acts on Pn−1, and set P = Stab(1 : 0 : 0 : · · · : 0), so elements of P are block upper
triangular (

a b

D

)
with a a 1× 1 matrix, b a 1× (n− 1) matrix, and D a (n− 1)× (n− 1) matrix. Note that G/P ' orbit
= Pn−1, so P is parabolic.

Can do something similar by setting P = StabGLV (W ) for some W ≤ V . Even more generally, could
look at the stabilizer of some flag.

Remark 19.8. Let G be a smooth connected subgroup over k = k... TODO: Add
the picture
from Bjorn’s
notes
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Remark 19.9. Not every subgroup of G is solvable or parabolic. For example a product of a solvable
group with a parabolic groups is probably neither.

Theorem 19.10. (a) If B ≤ G is a Borel subgroup, then G/B is proper.

(Borel =⇒ parabolic)

(b) If k = k, then all Borel subgroups are G(k)-conjugate.

(c) If k = k, a smooth subgroup P ≤ G is parabolic ⇐⇒ P contains some Borel subgroup.

Proof. WLOG k = k since all properties here unchanged by field extension.

(Step 1) For any solvable subgroup B ≤ G, there exists a representation V of G and a full flag F in
V , i.e. a k-point of the flag variety X (parametrizing full flags), such that B = StabG(F ).

Proof. By Chevalley’s theorem, there’s a rep V of G and a 1-dim subspace L ≤ V s.t. B = StabL.
View V/L as a rep of B. Since B is solvable, Lie-Kolchin implies that it stabilizers some full flag
in V/L. Taking inverse images in V gives a full flag – F : 0 ≤ V1 ≤ V2 ≤ · · · ≤ Vn = V with V1 = L

– with B ⊂ Stab(F ) ⊂ Stab(L) = B, so B = Stab(F ). �

(Step 2) If B is a Borel of maximum dimension, G/B is proper.

Proof. Choose V, F as in step 1, so F a full flag with StabG(F ) = B. For any other flat F ′ ∈ X(k),
Stab(F ′) is trigonalizable = solvable, so dim Stab(F ′) ≤ dim Stab(F ) = dimB. Orbit stabilizer
then tells us that dim orbit(F ′) ≥ dim orbit(F ), so the orbit of F is the orbit of smallest dimension!
Our old friend Borel’s Orbit Lemma (Theorem 3.7) now shows that G/B ' orbit(F ) ↪! X is a
closed subvariety, so proper (projective even!) since the flag variety X is. �

(Step 3) If B′ is any other Borel, then B′ = gBg−1 for some g ∈ G(k).

Proof. Let B′ act by left multiplication on G/B. By Borel fixed point theorem, there is a B′-fixed
point x = gB for some g ∈ G(k). Then, B′ ≤ StabG(x) = gBg−1. Since gBg−1 is another Borel
(automorphisms preserve Borels), this inclusion must be an equality. �

(b) Follows from step 3. (a) follows from steps 2 + 3. This just leaves...
(c) (!) If P is parabolic, argue as in step 3 to get B′ ⊂ gPg−1 for some g, so P ⊃ g−1B′g which is a

Borel. ( ) If P contains a Borel subgroup B′, then G/B′ � G/P with G/B′ proper, so G/P is proper
as well. �

Remark 19.11. Above, we could replace proper with projective. Remember:
(Quotients
of) alge-
braic groups
are al-
ways quasi-
projective
(Theorem
9.3)

Theorem 19.12. Say k = k. All maximal tori in G are G(k)-conjugate.

Proof. Every maximal torus T of G is solvable, so also a maximal torus of some Borel B. Since all Borels
are conjugate, it suffices to show that all maximal tori within a given B are B(k)-conjugate. This follows
from the algebraic group analogue of Schur-Zassenhaus (maximal tori in B are the same as splittings of
the relevant exact sequence). �
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This proof shows a little more: it shows the pairs (B, T ) of a Borel with a maximal torus inside of it
are all conjugate.

Definition 19.13. For now, if k 6= k, a k-torus in G is called maximal if Tk is maximal among k-tori
in G.

(Later: above ⇐⇒ maximal among k-tori). From now on,

Assumption. G ≥ B ≥ T with

• G a smooth connected linear algebraic group

• B a (fixed) Borel in G

• T a (fixed) maximal torus

We’ll fix this notation for the next few lectures. Upcoming is an “army of lemmas.”

Lemma 19.14. Let C := CG(B) be the centralizer of B. Then, Z(B) ⊂ C = Z(G).

Proof. The only nontrivial piece above is C ⊂ Z(G). Consider the commutator map C × G [−,−]
−−−! G.

First note that this in fact factors through a morphism C ×G/B ! G since C centralizes B. Now G/B

is proper (and smooth, connected) while G is affine, so any map G/B ! G is constant. From this, one
can show that C × G/B ! G factors through a map C ! G. At the same time (c, 1) 7! 1, so this map Rigidity

lemma? I
guess even
simpler than
that since
the target is
affine. All
the restric-
tions {c} ×
(G/B) ! G

(for c a
scheme-
theoretic
point) must
be constant
since map-
ping from
proper to
affine

C ! G must be trivial, so we win. �

Lemma 19.15. TFAE

(1) Gk has only one maximal torus

(2) B is nilpotent

(3) G is nilpotent

(4) T ≤ Z(G).

Moreover, when these hold, G = B.

Proof of (1) =⇒ (2). WLOG k = k. If g ∈ G(k), then gTg−1 = T . Thus, NG(T ) contains all k-points
of G, so NG(T ) = G, so T /G. We have B = U o T ; since T is normal, we conclude B = U × T which is
nilpotent. �

20 Lecture 20 (4/5)

20.1 Last time: Borel subgroups

Recall 20.1. A Borel subgroup over k = k is a maximal smooth, connected solvable subgroup. We’ve
fixed a choice

G︸︷︷︸
smooth connected linear

≥ B︸︷︷︸
Borel

≥ T︸︷︷︸
maximal torus

Recall 20.2. We’ve shown the following.

58



• B = U o T for some smooth connected unipotent U / B (if k = k)

(consequence of the structure of solvable/trigonalizable groups)

• G/B is proper (‘B is parabolic’)

• All pairs (B, T ) are G(k)-conjugate (if k = k)

• Z(B) ≤ CG(B) = Z(G) (we’ll later show Z(B) = Z(G))

• For any torus S ≤ G, then centralizer CG(S) is smooth, and NG(S)/CG(S) is finite étale. Question:
When did
we prove
this last bul-
let point?

Answer:
Fixed point
of torus
action al-
ways smooth
(Corollary
15.12), so
centralizer
smooth. The
normalizer
acts on S
and so on
the discrete,
f.g. charac-
ter group.
Hence its
action has
finite im-
age/this
quotient is
finite. Ar-
gument is
something
like this

20.2 More about G,B, T

We were in the middle of proving the following criteria for nilpotency last time.

Lemma 20.3. TFAE

(1) Gk has only one maximal torus

(2) B is nilpotent

(3) G is nilpotent

(4) T ≤ Z(G).

Moreover, when these hold, G = B.

Proof. We showed (1) =⇒ (2) at the end of last lecture. Recall we may assume k = k.
((2) =⇒ (3)) We’ll prove G = B by induction on dimB. If dimB = 0, then G = G/B is affine

and proper, so G = {1}. Now suppose dimB > 0. Then, dimZ(B) > 0 (last step in central series). We
know Z(B) ≤ Z(G) (Lemma 19.14) and that B/Z(B) is Borel in G/Z(B). Now, B/Z(B) is nilpotent of
smaller dimension, so B/Z(B) = G/Z(B) by inductive hypothesis. Hence, B = G.

((3) =⇒ (4)) Now assume G nilpotent, so G = U × T with U unipotent and T a maximal torus.

Prove this
using induc-
tion on the
central se-
ries.

T commutes with U since it is a direct product, and also T commutes with T since it’s commutative, so
T ≤ Z(G).

((4) =⇒ (1)) The maximal tori are all conjugate to each other, but conjugation does nothing since
T ≤ Z(G), so there’s only one maximal torus. �

Corollary 20.4. If the only smooth connected unipotent subgroup is {1}, then G is a torus.

Proof. In general, B = U o T is a semidirect product, but U trivial by assumption, so B = T . Then, B
is nilpotent, so T = B = G by above. �

Corollary 20.5. If dimG ≤ 2, then G is solvable.

Proof. If dimB ≤ 1, then B is commutative so nilpotent (B = Ga or B = Gm or B = {1}). So G is
nilpotent, hence solvable. If dimB = 2, then G = B and B is solvable. �

Non-example. This is false in higher dimensions. e.g. SL2 is non-solvable of dimension 3.

Theorem 20.6. Let S ≤ G be a torus. Then, CG(S) is smooth and connected.
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Proof. We’ve seen before that it’s smooth. WLOG k = k.

• If S = Gm, let λ : Gm ↪! G be the inclusion. Then, CG(S) = ZG(λ) which we showed before was
connected.

• If S = S1 × S2 × . . . × Sn with Si ' Gm. Consider G ≥ G1 ≥ G2 ≥ · · · ≥ Gn = CG(S) with
G1 = CG(S1) and Gi+1 = CGi(Si+1). There are smooth connected all the way down by induction.

�

Definition 20.7. Let C := CG(T ). We call this a Cartan subgroup. Also let N := NG(T ).

Proposition 20.8. C is nilpotent with unique maximal torus T .

Proof. T ≤ Z(C) by definition of C. Apply (4) =⇒ (3) of theorem at beginning of section to C. �

Proposition 20.9. We have the following general picture (i.e. below inclusions and inequalities):

G

B = N(B)

N = N(C)

C = N0

T Z(G) = Z(B)

The (finite étale) quotient N/C is called the Weyl group W (G,T ).

Warning 20.10. The center Z(G) = Z(B) is not necessarily smooth.

Non-example. If G = SLn, then Z(G) = µn which is not smooth if char k | n.

Proof of Picture. Might as well assume k = k. We prove the nontrivial parts.

(C = N0) This is because C is smooth, connected, and N/C is finite étale.

(C ≤ B) We’ve shown C is nilpotent, so solvable. Hence C is a smooth, connected solvable subgroup
so it’s contained in some Borel B′. Conjugate (B′, T ) to (B, T ). Since C is the centralizer of T ,
and T is getting conjugated to itself, C must also get conjugated to itself, so C ≤ B.

(Z(G) = Z(B)) We’ve already shown Z(B) ≤ Z(G). On the other hand, Z(G) ≤ C ≤ B, so
Z(G) ≤ Z(B).

(N = N(C)) Any (inner) automorphism ofGR preserving TR also preserves CR (CR is the normalizer
of TR). Similarly, any (inner) automorphism of GR preserving CR = TR × UR also preserves TR
(since Hom(TR, UR) = {1}).
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(N = N(B)) This is to be proved later. Apparently everything else should be easy after this. �

Corollary 20.11. The set {Borels B′ containing T} is finite.

Proof. WLOG k = k. Any (B′, T ) is conjugate to (B, T ), so N(k) acts transitively on this set. At the
same time, C(k) stabilizes the element B since C ≤ B. Thus, # {B′ ⊃ T} ≤ #N(k)/C(k) <∞. �

20.3 Union of conjugates of a subgroup

Setup. k = k, and H ≤ G are both smooth connected linear algebraic groups. Let N := N(H) be the
normalizer of H, and let

X :=
⋃

g∈G(k)

gH(k)g−1 ⊂ G(k).

Recall 20.12. By some counting argument, for a finite group G with proper subgroup H < G, the union
of conjugates of H never covers G.

Lemma 20.13.

(a) X is a constructible subset of G(k).

(b) If G/H is proper, then X is closed.

(c) If N/H is finite and ∃h ∈ H(k) belong to only finitely many conjugates of H, then X contains a
dense open subset of G(k).

Proof. Let V := G/N . This variety parametrizes the conjugates of H.31 Above this variety is the univer-
sal family H ! V whose fibers are the conjugates themselves. Here, H := {(H ′, g) : H ′ ∈ V, g ∈ H ′} ⊂
V ×G. Now consider the diagram

H

V G

pr1 pr2

(a) We have X = pr2(H) so is constructible.
(b) Assume in addition that G/H is proper. Then so its G/N , so V is proper. Hence, V ×G� G is

a proper morphism. Since H
closed
⊂ V ×G, it has closed image in G. This exactly says that X is closed.

(c) Let’s compute dimensions. First dimV = dimG−dimN = dimG−dimH (second equality using
N/H finite). Since H! V with fibers conjugates of H, we also know dimH = dimV + dimH = dimG.
The second condition says that pr2 : H! G is generically finite to its image, so dimX = dimH = dimG.
Now, X is a constructible subset of G of the same dimension, so it better contain a dense open. �

I realized I’m not sure if we ever defined nilpotent algebraic groups in lecture (the definition was
contained in an assigned reading at some point I imagine).

Definition 20.14. An algebraic group G is nilpotent if it admits a central subnormal series, i.e. a
normal series

G = G0 ⊃ G1 ⊃ · · · ⊃ Gt = {1}
31This is basically orbit-stabilizer
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such that each quotient Gi/Gi+1 is contained in the center of G/Gi+1 (these are also called nilpotent
series).

21 Lecture 21 (4/7)

21.1 Last time

Notation 21.1.
G︸︷︷︸

smooth connected linear

≥ B︸︷︷︸
Borel

≥ C︸︷︷︸
Cartan

≥ T︸︷︷︸
maximal torus

C := CG(T ), N := NG(T ), and W = W (G/T ) := N/C is the Weyl group, a finite étale group.

If k = k, then W acts transitively on {Borels containing T} by conjugation (we’ll later see W acts
simply transitively). We showed this when showing this set is finite.

Example. If G = GLn and T = Gnm, then C = T , N = T o Sn, and the Weyl group is N/C = Sn.

21.2 Union of conjugates of a subgroup, continued

Recall 21.2 (Lemma 20.13). Suppose k = k, that H ≤ G is smooth connected, and N := NG(H).
Then,

(a) X is a constructible subset of G(k).

(b) If G/H is proper, then X is closed.

(c) If N/H is finite and ∃h ∈ H(k) belong to only finitely many conjugates of H, then X contains a
dense open subset of G(k).

Lemma 21.3.

(1) There exists some t ∈ T (k) with CG(t) = C (:= CG(T )).

(2) The only conjugate C ′ of C containing t is C itself.32

Proof. Embed G ↪! GLn. WLOG T ↪! G ↪! GLn lands in Gnm, i.e. this composition is

x 7! diag (χ1(x), . . . , χ1(x), χ2(x), . . . , χ2(x), . . . , χr(x)) .

So we have blocks on which x acts by the scalar χi(x). A matrix calculation shows that CGLn(T ) consists
of block-diagonal matrices. Similarly, CGLn(t) is the same provided that χi(t) 6= χj(t) for all i 6= j. Each
condition χi(t) 6= χj(t) is telling you to avoid f.many subvarieties, so you can always find some k = k

point lying outside all of them. Now note that CG(T ) = CGLn(T )∩G = CGLn(t)∩G = CG(t) so we have
(1). For (2), suppose t ∈ C ′, a conjugate of C. Keep in mind that the maximal torii are in bijection with
the Cartan subgroups {T ′} ↔ {C ′} (take torus to centralizer and centralizer to unique maximal torus).
If t ∈ C ′, then t ∈ T ′ and so is semisimple. Thus, T ′ ≤ CG(t) = C so C ′ = C by the bijection between
maximal tori and Cartan subgroups. �

32verifies hypothesis of Lemma 20.13 part (c)
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Theorem 21.4. Assume k = k.

(1) The union of the conjugates of C contains a dense open subset of G.

Example. When G = GLn, C = Gnm and the union of conjugates of C is the set of diagonalizable
matrices.

(2) Every element of G(k) is contained in some Borel subgroup.

Example. When G = GLn, every matrix can be conjugated into something upper triangular (e.g.
using Jordan canonical form)

(3) Every semisimple element of G(k) is contained in some maximal torus.

Example. When G = GLn, since k = k, semisimple = diagonalizable.

Proof. (1) NG(C) = N , Lemma 21.3 part (2) + Lemma 20.13 (c).
(2)

⋃
B′ contains

⋃
C ′ which is dense. Lemma 20.13 part (b) says

⋃
B′ is closed (since G/B proper),

so
⋃
B′ = G(k).

(3) Let g ∈ G(k) be a semisimple element. Consider the Zariski closure of the group is generates 〈g〉.
This group is diagonalizable (compare with GLn case) subgroup of some Borel B. We have B = T o U

for some unipotent U , so all its diagonalizable subgroups are contained in T . �

We’re working towards the ‘normalizer theorem,’ that the normalizer of a Borel is equal to itself.

Theorem 21.5. Assume k = k. Let S be a torus in G, and let C := CG(S) be its centralizer. Then,{
Borel subgroups of G

containing S

}
−! {Borel subgroups of C}

B 7−! C ∩B = CB(S)

defines a surjection.

Proof. Let’s first show this is well-defined, i.e. that C ∩ B is a Borel of C. Note that C = CG(S) is
automatically smooth connected, and that C ∩B = CB(S) is smooth, connected, and solvable (contained
in B).

Remark 21.6. Note we have some maximal torus T so that S ≤ T ≤ C. Similarly, we know the Borel
B fits into a short exact sequence 1 ! U ! B ! T ! 1. We can pull this back along S ↪! T to get
1! U ! SU ! S ! 1.

We want this intersection C ∩B = CB(S) to be a Borel. Let’s restate this; TFAE

• C ∩B is a Borel of C

• C ∩B is parabolic in C

• C/(C ∩B) ' CB/B is proper

• CB/B is closed in G/B

• CB is closed in G
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• C\CB is closed in C\G

Remark 21.7. C\G ↪! Hom(S,G) via g 7! [s 7! g−1sg]. Also,

C\CB = C\CU = (image of U in C\G)
∼
−! {sections σ of SU � S} .

(last iso by “Schur-Zassenhaus,” all splittings are conjugate)

What’s the point of all of this? The set of g ∈ G (thought of as an element of Hom(S,G)) such that
inng−1 maps S into SU and defines a section of SU � S is closed in G (think ‘transporters’). By the
remark above, this is saying that C\CB is closed in C\G and so C ∩B is Borel.

Now let’s show the map we defined is surjective. C acts by conjugation on both sides, and the RHS
{Borel subgroups of C} is a single orbit, so it must be surjective (the image is a union of orbits). �

We need one for lemma before getting to the normalizer theorem. Part of its proof will be checking
that N(B) = B on k-points, but this won’t be enough since N(B) might not be smooth. For that, we’ll
also need to understand the Lie algebra of N(B).

Lemma 21.8. Fix any smooth H with C ≤ H ≤ G (so H contains a Cartan subgroup). Let C := NG(H).
Then, N 0 = H0, so N is smooth.

Proof. C is the centralizer of the maximal torus, so C = GT where T y G by conjugation. Similarly,
N/H = (G/H)H with H also acting by conjugation. Checking what this says on k[ε]/(ε2)-points tells
us that

c := LieC = gT .

Note that c ≤ h ≤ g; taking T -invariants shows gT = (gT )T ≤ hT ≤ gT , so gT = hT . Now note that

n/h = (g/h)H ≤ (g/h)T = gT /hT = 0

(above, used that T is of multiplicative type so linearly reductive, so all T -reps split and taking T -fixed
points behaves with quotients and whatnot). Thus, n = h. Now we do a little dimension counting:

dim h = dimH ≤ dimN ≤ dim n = dim h.

This forces dimN = dim n = dim h, so N is smooth and we conclude that N 0 = H0. �

Next time we prove the normalizer theorem: NG(B) = B.

22 Lecture 22 (4/9)

22.1 Last time

Notation 22.1.
G︸︷︷︸

smooth connected linear

≥ B︸︷︷︸
Borel

≥ C︸︷︷︸
Cartan

≥ T︸︷︷︸
maximal torus

C := CG(T ), N := NG(T ), and W = W (G/T ) := N/C is the Weyl group, a finite étale group.
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Recall 22.2. If k = k, all Borels are conjugate, all maximal tori are conjugate, and B = U o T with U
unipotent and T a maximal torus.

Recall 22.3. Suppose that k = k, and S ≤ G is a torus. Set C = CG(S). Then there is a surjection

{Borels of G containing S} −! {Borels of C}
B 7−! C ∩B

Lemma 22.4. If C ≤ H ≤ G with H smooth, and N = NG(H), then N 0 = H0, so N is smooth too.

22.2 Normalizer theorem

Theorem 22.5 (Normalizer theorem). NG(B) = B.

Proof. WLOG k = k. Since B ⊃ C, the Lemma 21.8 tells us that NG(B) is smooth, so ti suffices to check
k-points. It’s obvious that B ⊂ NG(B), so only need other direction. Pick some k-point n ∈ NG(B)(k).
We’ll show n ∈ B by induction on dimG.

Note that T and nTn−1 are both maximal tori in B. All maximal tori are conjugate, so nTn−1 =

bTb−1 for some b ∈ B (really, b ∈ B(k) but we’ll drop the (k)’s). We may replace n by b−1n to assume
that nTn−1 = T . The morphism ϕ : T ! T, t 7! ntn−1t−1 is a homomorphism (since T commutative).
Note that kerϕ = CT (n). This is not necessarily a torus, but S = (kerϕ)0

red is a subtorus of T .

(Case 1) First suppose 1 6= S ≤ Z(G). Apply induction to B/S, a Borel inside G/S. This shows
n ∈ B/S from which we see that n ∈ B.

(Case 2) Now suppose 1 6= S 6≤ Z(G). Apply induction to the Borel CG(S) ∩B in CG(S) 6= G. We
know n ∈ CG(S) by definition of ϕ and S so induction says n ∈ CG(S) ∩B ⊂ B.

(Case 3) Finally suppose S = 1. Then, dim kerϕ = 0, so ϕ(T ) = T (since dimϕ(T ) = dimT and
T smooth, connected). By Chevalley (Theorem 8.4), NG(B) = Stab(L) for some 1-dim L = 〈v〉
in a G-rep V . Since n ∈ NG(B) and T ⊂ NG(B), they both act by scalars on L. Hence, by the
definition of ϕ, we see that T = ϕ(T ) fixes v. Recalling B = U o T ; since L is 1-dim rep of U ≤ B,
it must be trivial (unipotents always have some fixed vector). Thus, we see that B = U o T fixes
v. Now we look at the orbit map

G/B −! V

g 7−! gv

Note that G/B is proper, smooth, and connected; and that V (= spec Sym(V )) is affine, so this
orbit map must be constant. Hence, G fixes v, so we have

B
open
⊂ NG(B) = Stab(L) = G,

which means B
open
⊂ G. Thus, B is clopen in the connected space G, so B = G. In particular,

B = NG(B).

�

Corollary 22.6. If P is parabolic in G, then P is connected and N(P ) = P .
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(use that parabolics contain Borels and all Borels are conjugates and stuff like this)
Over k = k, all Borels are conjugate (one orbit under conjugation action), so orbit-stabilizer says that

they are parameterized by G/StabG(B) = G/NG(B) = G/B =: B. We call this a flag variety.

Example. If G = GLn, then B is the stabilizer of the standard full flag, so G/B parameterizes all full
flags.

If k 6= k, but k is perfect, can use Galois descent to say that this variety descends to a k-variety B,
but B(k) might be empty (even when k = ks)!

Fact (Miracle, due to Grothendieck). On the other hand, every (smooth, connected linear algebraic
group) G contains a (torus) T over k such that Tk is a maximal torus.

Can’t always find Borels, but can always find maximal tori.
Recall the picture (Proposition 20.9)

G

B

N = N(C)

C = N0

T

Proposition 22.7. N ∩B = C

Proof. In any semidirect product B = U o T with T commutative, NB(T ) = CB(T ). In our situation,
we have NB(T ) = N ∩B and CB(T ) = C ∩B = C (since C ⊂ B). �

Corollary 22.8. If k = k, then W acts simply transitively on {Borels containing T}.

Proof. N acts transitively by conjugation with stabilizer StabN (B) = N ∩ N(B) = N ∩ B = C, where
we used to Normalizer theorem N(B) = B. Thus, W = N/C acts simply transitively. �

(Compare with Corollary 20.11)

Recall 22.9. For any torus S ≤ G, we showed that CG(S) is smooth, connected. This must
have been in
a reading at
some point,
because I
have no rec-
ollection of
seeing this
in lecture.

Update: See
Theorem
20.6

Update 2:
See also
Corollary
15.12

We can generalize this to other actions.

Proposition 22.10. If S is a torus acting on G, then GS is smooth connected.

(if S y G by conjugation, this is just the previous statement).

Proof. Form the semidirect product G o S using the given action of S on G. Then, one can directly
compute that CGoS(S) = GS × S is smooth connected, so GS must be. �
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Notation 22.11 (Not Standard). Recall that Ru(G) denoted the unipotent radical. To make things less
cluttered, we instead use Gu := Ru(G), the largest smooth, connected unipotent normal subgroup of G.

Theorem 22.12 (Chevalley’s formula for the unipotent radical). Assume k = k and fix a maximal
torus T , but vary B = Bu o T . Then,

Gu · T =

( ⋂
B⊃T

B

)0

red

with intersection taken over Borels containing T . Similarly,

Gu =

( ⋂
B⊃T

Bu

)0

red

.

Proof. Skipped. �

Remark 22.13. The second part of Chevalley’s formula follows from the first.

Corollary 22.14. Still assuming k = k. If C is the centralizer of some torus S ≤ G, then Cu = Gu ∩ C.

Proof. (≥) The torus S acts on Gu by conjugation (since Gu /G normal by definition), so Gu∩C = (Gu)S

is smooth connected. It’s also unipotent since it’s contained in a unipotent group. Since Gu is normal in
G, this will also be normal in C. All together, this exactly says Gu ∩ C ≤ Cu.

(≤) Choose a maximal torus T with S ≤ T ≤ B. We apply Chevalley’s formula:

Cu · T =

 ⋂
B′⊃T
in C

B′


0

red

≤

( ⋂
B′′⊃T

B′′

)0

red

= Gu · T

since the B′’s are precisely the B′′∩C’s. Thus, Cu ≤ Gu ·T . Since Cu is unipotent, we must actually have
Cu ≤ Gu. �

Corollary 22.15. If G is reductive (i.e. Ru(Gk) = Gk,u = 1), then so is C.

67



Corollary 22.16. In a reductive group G, we have

G

B

C = T

Z(G) mult. type

R(G) Z(G)0
red

Ru(G) 1

finite

We’ll show this next time.
Plan for next few lectures is to cover much of chapter 17, and then quickly go through chapter 18.

Then we want to get to root data.

23 Lecture 23 (4/12)

23.1 Last time

Notation 23.1.
G︸︷︷︸

smooth connected linear

≥ B︸︷︷︸
Borel

≥ C︸︷︷︸
Cartan

≥ T︸︷︷︸
maximal torus

C := CG(T ), N := NG(T ), and W = W (G/T ) := N/C is the Weyl group, a finite étale group.

Recall 23.2. If k = k, all Borels are conjugate, all maximal tori are conjugate, and B = U o T (since
solvable over k = trigonalizable) with U unipotent and T a maximal torus.

Recall 23.3. If k = k, then
⋃
g∈G(k) gCg

−1 contains a dense open subset of G(k).

Recall 23.4. The radical is R(G) := largest smooth connected, solvable normal subgroup
The unipotent radical is Ru(G) := largest smooth connected unipotent normal subgroup.

Recall 23.5. If k = k, then

• G is semisimple if R(G) = 1 (e.g. G = SLn)

• G is reductive if Ru(G) = 1 (e.g. G = GLn)

If k 6= k, check after base extension to k (e.g. semisimple ⇐⇒ R(Gk) = 1)

Proposition 23.6. If G is reductive, then the centralizer of any torus in G is reductive.
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23.2 Reductive Groups, I think

We ended last time with the following statement.

Corollary 23.7 (of Theorem 22.12). In a reductive group G, we have

G

B

C = T

Z(G) mult. type

R(G) Z(G)0
red largest torus in Z(G)

Ru(G) 1

finite

Furthermore, the quotient Gad := G/Z(G) is adjoint (i.e. trivial center) and semisimple.

Example. G = GLn is reductive. We can take B = Bn, C = T = Tn (the diagonal torus). We have
Z(G) = Gm which is already connected and reduced, so R(G) = Gm as well. Finally, since G reductive,
Ru(G) = 1. We see in this case that Gad = PGLn = GLn /Gm.

Remark 23.8. Everything in Corollary 23.7 respects (arbitrary) field extension.

Warning 23.9. In general, (unipotent) radicals do not respect field extensions. However, in the case of a
reductive group, Ru(G) = 1 so we’re good there, and R(G) = largest torus in Z(G) has a nice alternative
description (the center does respect field extensions).

Proof of Corollary 23.7. WLOG assume k = k.

(C = T ) C is nilpotent over k = k, so we can write C = T × U . Since C is reductive (by Corollary
22.15), the unipotent part must be trivial, so C = T .

Fact (Bonus fact).
⋂

max tori T ′ T
′ has the same k-points as Z(G)

Let’s prove this real quick. Since T ′ contains the center, one inclusion is obvious. For the other,
pick some k-point g ∈

⋂
T ′. Then, g commutes with every Cartan subgroup C ′. These cover a

dense subset of G(k), so CG(g) must be closed and dense, so g ∈ Z(G).

(R(G) is a torus) R(G) is smooth, connected solvable, so R(G) = U o T for some unipotent U and
torus T . Furthermore, U will be normal in G, so U ⊂ Ru(G) = 1, so R(G) = T is a torus.
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(R(G) ≤ Z(G)) Consider conjugation action of G on R(G). Since R(G) is a torus, AutR(G) is
discrete (automorphisms same as automorphisms of character group); since G is connected, this
forces the conjugation action to be trivial, so R(G) ≤ Z(G).

(Z(G/Z(G)) = 1) The inverse image of Z(G/Z(G)) in G is some normal subgroup Z ′ /G containing
Z(G). The conjugation actions of G on Z(G), Z ′/Z(G) are both trivial, so G acts on Z ′ through
Hom(Z ′/Z(G), Z(G)). These are both groups of multiplicative type, so this Hom is discrete. Since
G is connected, the image must be trivial, so the conjugation action of G on Z ′ is trivial, so Z ′ = Z.

�

Go back to k being an arbitrary field.

Definition 23.10. We say G is quasi-split if ∃ Borel B ≤ G defined over k.

Warning 23.11. If k 6= k, there exists non-quasi-split groups over k.

Definition 23.12. We say (a smooth, connected, linear algebraic group) G is split if there exists a Borel
B ≤ G which is a split solvable group over k.

Recall 23.13. A solvable group is called split if it has a subnormal series whose factors are all Ga or
Gm.

Fact.

• G split =⇒ G has a split maximal torus.

The converse holds if G is reductive (later).

Corollary 23.14. A reductive group becomes split after a separable extension. Remember:
In general,
it takes an
inseparable
extension
to split a
unipotent
group

• Quotients of split groups are split

Warning 23.15. Subgroups of split groups may not be split.

Example. Take G = GL2 /Q. This is split since B2 = Ga o Gm is split. Let [L : Q] = 2 be a
quadratic extension. Then you get an embedding L× ↪! AutQ(L) = GL2(Q). Can upgrade this
to ResL/Q Gm ↪! GL2. This is a 2-dim torus, so maximal. However, it is not split (e.g. since
Gal(Q/Q) acts nontrivially on its character group).

• All split Borel subgroups are G(k)-conjugate.

• Every split solvable subgroup is contained in a split Borel.

• If G is split, all split maximal tori are G(k)-conjugate.

As long as you restrict to split Borel subgroups, things behave a lot like they do over k.
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23.3 Simply connected groups

Motivation. Let X be a connected manifold with base point x ∈ X. Then one says that X is simply con-
nected if its only connected covering space is itself. In general, there always exist some simply connected
cover X̃ ! X, and the fundamental group π1(X,x) is the group of deck transformations (automorphisms
of the covering). X̃ is called the universal cover. If X is a Lie group, then X̃ will be as well.

We want an analogue of this for algebraic groups. Before getting to that, let’s talk about how one
usually generalizes this to algebraic varieties.

Motivation. Say k = ks, and let X be a connected k-variety with basepoint spec k
x
−! X. Then, one says

X is simply connected if the only connected, f.étale cover of X is X itself. In this situation, universal
covers do not always exist (since we only talk about finite covers), but there is a projective system of
finite covers and so can use this to build a profinite étale fundamental group.

Example. If char k = 0 and X = Gm, the nth power map Gm
xn
−−! Gm is finite étale. Each one has

covering group Z/nZ, and one sees that π1(Gm, 1) = lim −Z/nZ = Ẑ. Fun fact:
there ex-
ist (infi-
nite) groups
whose pro-
finite com-
pletions are
trivial

For algebraic groups, we won’t use either of the these two settings. There’s a third setup that works
well for (semisimple) algebraic groups (wanna avoid things like Gm with their ‘infinite covers’).

Setup. Say G is a semisimple algebraic group over k = ks.

Let’s start with examples.

Example. There’s a natural homomorphism Gm × SLn ! GLn. This is surjective33 (and automatically
flat since GLn smooth). It is not injective, e.g. since µn ↪! Gm∩SLn ⊂ GLn (in fact this µn is the whole
intersection). So this is some nontrivial isogeny Gm × SLn � GLn. We can mod out by Gm to get an
isogeny

SLn � PGLn

with kernel µn. Is this a cover? Well, µn is not always étale (e.g. imagine n = p = char k) so it’s not an
étale cover. However, we do want it to be a ‘cover’ in the current setting.

The upshot is we want to allow non-étale covers. However, we should not allow any isogney to count
as a ‘cover’. This would prevent anything from being simply connected, e.g. we always have Frobenius
SLn ! Fr SLn. Hence, Frobenius should not count as a cover.

Definition 23.16. Let G,G′ be smooth connected groups. An isogeny ϕ : G′ ! G is central if
kerϕ ≤ Z(G′). It is multiplicative if kerϕ is of multiplicative type (recall this means it’s diagonalizable
over k, i.e. a product of copies of34 µn over k).

Remark 23.17. Most people in the literature talk about central isogenies, but Milne uses multiplicative
ones.

Remark 23.18. multiplicative =⇒ central. The conjugation action of G′ on kerϕ is trivial by the same
argument as before (the character group is discrete).

When G′ is reductive, the converse holds as well (since Z(G′) is of multiplicative type).

Remark 23.19. In characteristic 0, all isogenies are étale (since all finite groups are étale), multiplicative, Remember:
algebraic
groups in
char 0 are
automagi-
cally smooth
(by Theorem
5.2)

and central.
33fppf locally, can form (detA)−1/nA ∈ SLn
34Could be some Gm’s too except the kernel of an isogeny is finite
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24 Lecture 24 (4/14)

24.1 Last time

Due date for pset moved to Sunday April 25.

Notation 24.1.
G︸︷︷︸

smooth connected linear

≥ B︸︷︷︸
Borel

≥ C︸︷︷︸
Cartan

≥ T︸︷︷︸
maximal torus

C := CG(T ), N := NG(T ), and W = W (G/T ) := N/C is the Weyl group, a finite étale group.

Recall 24.2. The radical is R(G) := largest smooth connected, solvable normal subgroup
The unipotent radical is Ru(G) := largest smooth connected unipotent normal subgroup.

Recall 24.3. If k = k, then

• G is semisimple if R(G) = 1 (e.g. G = SLn)

• G is reductive if Ru(G) = 1 (e.g. G = GLn)

If k 6= k, check after base extension to k (e.g. semisimple ⇐⇒ R(Gk) = 1)

Recall 24.4. Let ϕ : G′ ! G be an isogeny between smooth connected groups. We call ϕ central if
kerϕ ≤ Z(G′) and multiplicative if kerϕ is of multiplicative type.

In general, multiplicative =⇒ central. The converse holds if G′ is reductive. In char 0, all isogenies
are étale, multiplicative, and central.

We only use multiplicative isogenies from now on.

24.2 Fundamental Groups and Stuff about Semisimple/Reductive Groups

Definition 24.5. A smooth, connected, semisimple35 G is simply connected if every multiplicative
isogeny G′ ! G (so G′ smooth, connected) is an isomorphism.

Recall 24.6. G (as above) is adjoint if Z(G) = 1.

Theorem 24.7. For G semisimple / k = ks, Remember:
semisim-
ple includes
‘smooth con-
nected’ in its
definition

(1) There exists a simply connected G̃ fitting into a diagram

G̃

G

Gad G/Z(G)

(2) Every multiplicative isogeny G′ ! G is dominated by G̃ in the sense that G̃! G uniquely factors
as G̃ ∃!

−! G′ ! G.
35Wanna avoid something like G = Gm. This won’t be simply connected, and won’t have a universal cover.
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(3) We define the fundamental group of G to be π1(G) := ker
(
G̃! G

)
, a finite group of multiplica-

tive type (so diagonal36 since k = ks). Furthermore, the Picard group of G is PicG ' X∗(π1(G)), I think the
intuition
here is that
X∗(π1(G))

is like
H1(G,Gm)

the character group of the fundamental group (in particular, PicG finite abelian).

Example. Consider G = SOn. In this case, one gets π1(G) ' µ2 so PicG = Z/2Z. The universal cover
is a µ2 algebra called the Spin group G̃ = Spinn. Furthermore, the center is

Z(G) =

 1 if n odd

µ2 if n even

Hence, Gad = PSOn if n even. Furthermore,

Z(G̃) = π1(Gad) =


µ2 if n odd

µ4 if n ≡ 2 (mod 4)

µ2 × µ2 if n ≡ 0 (mod 4)

We’ll be able to calculate this stuff once we have root data.

Remark 24.8. If Gad ! H is a multiplicative isogeny, then ker(Gad ! H) ⊂ Z(Gad) = 1, so this map is
an isomorphism.

Remark 24.9. If you want to understand things over non-separably closed fields, draw the picture over
the separable closure, and then keep track of all the Galois actions.

Proposition 24.10. Let k ≤ L be fields. Let G be a smooth connected linear algebraic group over k.
Then, G is semisimple ⇐⇒ GL is semisimple.

Proof. WLOG k = k and L = L (because semisimple means R(Gk) = 1). That is, the interesting case is
in moving between algebraically closed fields (e.g. k = Q and L = C).

(!) Suppose that H ≤ GL is a nontrivial smooth connected normal solvable subgroup. Consider the
k-algebra

A := k

[
all the f.many coeffs involved in defining H
and in checking it has the right properties

]
⊂ L.

This is a f.g. k-algebra over which H is defined, i.e. H = HL for some subgroup scheme H ≤ GA. We
now want a subgroup over k, so let’s reduce mod some maximal ideal. Let m be a maximal ideal of A.
Then, A/m is a finite extension of k (by weak Nullstellensatz), so A/m ' k. Hence, HA/m is a nontrivial
smooth connected normal solvable subgroup of G. �

Fact.

• R(G) respects separable field extensions (by Galois descent).

• Ru(G) also respects separable field extensions.

• If G is known to be reductive (i.e. Ru(Gk) = 1), then R(G) respects arbitrary field extensions
(since R(G) = max torus in Z(G).37), and G/R(G) is semisimple.

36i.e. (since it’s finite) it’ll be a copy of µm’s (possibly with p | m)
37In a group of multiplicative type, can canonically recover maximal torus from torsion-free quotient of character group
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• Quotients of semisimple/reductive groups are semisimple/reductive

• Being semisimple/reductive preserved under multiplicative isogenies

• If G is semisimple, then Z(G) is finite and G is perfect (i.e. Gder := [G,G] = G).38

Pf. Z(G)0
red = R(G) = 1 (so Z(G) finite). The proof of perfect is something we’ll do later; the

main point is that G is generated by images of SL2, which are all perfect.

• More properties in chapter 19 of the book

Example. Gm · SLn = GLn and Gm ∩ SLn = Z(SLn) = µn.

We want to generalize this to arbitrary reductive groups.

Theorem 24.11. Let G be reductive.

(a) Z(G) ·Gder = G

(b) Z(G) ∩Gder = Z(Gder).

(c) Above, Z(G) is of multiplicative type, Gder is semisimple, and Z(Gder) is a finite group of mult.
type.

Proof, assuming semisimple groups are perfect. (a) We’ll show this generate G by quotient by both of
them (note they’re both normal).

Gab := G/Gder

G
G

Z(G) ·Gder

Gad := G/Z(G)

Note that Gab is commutative while Gad is semisimple (by Corollary 23.7) so perfect. Thus, G/Z(G)·Gder

is commutative and perfect, but this forces it to be 0.
(b) Z(Gder) ≤ Z(G) follows from (a).
(c) We already know Z(G) is of multiplicative type.
Let’s show that Z(Gder) = Z(G) ∩ Gder is finite (we know it’s of multiplicative type). For this, we

may assume k = k. Choose a faithful representation V of G. Decompose into characters of the center:
V =

⊕
χ∈X∗(Z(G)) Vχ. Each Vχ is a G-rep (by homework problem), so im(G ↪! GLV ) consists of block-

diagonal matrices (lands in
⊕

GLVχ ⊂ GLV ). On each Vχ, Z(G) acts by a character, so the image of
Z(G) in GLV looks like blocks of diagonal matrices

⊕
χGm. For Gder, can take commutator block-by-

block so lands in
⊕

χ SLVχ . Thus, the intersection lands in
⊕

χ(Gm ∩ SLV χ) =
⊕

χ µdimVχ which is
finite.

Now, we know Gder � G/Z(G) = Gad is a multiplicative isogeny (kernel is Z(G) ∩ Gder) to a
semisimple group. Thus, Gder must itself be semisimple (one of the facts stated before). �

38Poonen uses Gder instead of Gder, but I already have a command for the latter, so I’m sticking with a supersciprt
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Remark 24.12 (Audience). Here’s another proof that Gder is semisimple. We know it is reductive since
it is normal in G. Then, R(Gder) = Z(Gder)0

red = 1 since Z(Gder) is finite multiplicative type.

Remark 24.13. There’s a variant of the above where you use the radical R(G) = Z(G)0
red in place of the

center Z(G).

Corollary 24.14. Reductive groups are those of the form

torus× semisimple
finite

.

In particular, they are always isogeneous to a product of a torus and a semisimple group. Furthermore,
WLOG, the finite piece in the quotient can be taken to be to graph of an isomorphism between central
finite subgroups of the torus and the semisimple factors.

Up next, let’s try and classify semisimple groups.

25 Lecture 25 (4/16)

No lecture on Monday. Problem set due Sunday (not in two days).

25.1 Last time

Notation 25.1.
G︸︷︷︸

smooth connected linear

≥ B︸︷︷︸
Borel

≥ C︸︷︷︸
Cartan

≥ T︸︷︷︸
maximal torus

C := CG(T ), N := NG(T ), and W = W (G/T ) := N/C is the Weyl group, a finite étale group.

Recall 25.2. The radical is R(G) := largest smooth connected, solvable normal subgroup
The unipotent radical is Ru(G) := largest smooth connected unipotent normal subgroup.

Recall 25.3.

• G is semisimple if R(Gk) = 1 (e.g. G = SLn)

• G is reductive if Ru(Gk) = 1 (e.g. G = GLn)

• If G semisimple, then Z(G) finite and G is perfect (haven’t proved the perfect part ye)

• If G is reductive, then R(G) is a torus, Z(G) is of multiplicative type, Gder = [G,G], and Gad =

G/Z(G) and G/R(G) are semisimple

•
reductive =

torus× semisimple
finite

where the torus R(G) and semisimple group Gder are subgroups generating G, and their intersection
is a finite group contained in the center of both.
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25.2 Classifying split semisimple groups of rank ≤ 1

Definition 25.4. Let G be some smooth, connected linear algebraic group, and fix a maximal torus
T ≤ G.

• If k = k, the rank of G is rankG := dimT .

• If k 6= k, the (geometric) rank of G is rankG := rank(Gk). The k-rank of G is the dimension of
the largest split torus of G.

Remark 25.5. We claimed earlier that Gk always has a maximal torus defined over k, so rankG = dimT

always.

Definition 25.6. If G is reductive over k, we define its semisimple rank to be rank(G/R(G)). For
general k, its semisimple rank is s.s.rank(Gk), while its semisimple k-rank is the k-rank of G/R(G).

Remark 25.7. These are all invariant under isogeny.

“Let’s play a game. I give you a group, and you tell me what the rank is. It’s not a very fun game,
but what do you expect” (paraphrased)

Example. rank(GLn) = n, rank(SLn) = n− 1, s.s.rank(GLn) = rank(PGLn) = n− 1 (PGLn isogeneous
to SLn)

Theorem 25.8.

• rank 0 ⇐⇒ unipotent (contains no nontrivial torus).

• s.s.rank 0 ⇐⇒ solvable (R(G) and G/R(G) both solvable).

• reductive and s.s. rank 0 ⇐⇒ torus (G = R(G) torus).

Let’s do rank one next.

Lemma 25.9. Say k = k. Suppose Gm acts linearly on a f.dim k-vector space V . Let Y ⊂ PV be a
Gm-stable subvariety of dimension d. Then,

#Y Gm(k) ≥ d+ 1.

This is an improvement on Borel’s fixed point theorem (which gives at least 1 fixed point) in this case.

Proof. We induct on d = dimY . WLOG can assume PV = Pn with each t ∈ Gm acting as (x0 : · · · :

xn) 7! (tm0x0 : · · · : tmnxn) with m0 ≤ · · · ≤ mn in Z. Also, we may as well scale to assume that
m0 = 0. Finally, we can assume that Y is irreducible (Gm must preserve the irred components since Gm
connected39).

Write Pn = Pn−1 t An (with the Pn−1 where x0 = 0). If Y ⊂ Pn−1, can start over with smaller V .
Otherwise, Y has ≥ d fixed points in Pn−1 (by inductive hypothesis applied to Y ∩ Pn−1). Hence, we Use projec-

tive dimen-
sion theorem

only need to show it has ≥ 1 fixed point in An. For this, choose some y = (1 : a1 : · · · : an) ∈ Y ∩ An,
and take the limit lim

t!0
t.y (exists since all exponents are positive); this lies in An and is fixed by Gm. �

39have homomorphism from Gm into permutation group of components. Alternatively, if you have a point of y, its orbit
is connected/irreducible.
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Theorem 25.10. Let G be semisimple with split maximal torus T ≤ G. If rankG = 1, then G ' SL2 or
PGL2.

Proof.

(Step 1) If k = k,40 then dimG/B = 1.

Proof. G acts on G/B by left translation. Note that our split maximal torus is isomorphic to
T ' Gm (since rank 1), and recall thatG/B is in bijection with the set {Borels inG} (gB ↔ gBg−1),
as a consequence of the normalizer theorem. Note that dimG/B > 0 (otherwise, G = B is solvable
and semisimple so G = R(G) = 1, a contradiction). Hence,

2 ≤ dimG/B + 1 ≤ # {T -fixed points in G/B} = # {Borels containing T} = #W ≤ 2.

For second inequality, embed G/B in some PV using Chevalley41 and use Lemma 25.9. For the
first equality, T fixes gB ⇐⇒ T ≤ gBg−1 (B is stabilizer of B). For the last inequality, W =

N/C ≤ AutT = AutGm = GL1(Z) = {±1}. Since the same number is at both ends, equality holds
everywhere; in particular, dimG/B = 1. �

(Step 2) If k = k, then G/B ' P1 (WLOG the T -fixed points are 0 and ∞).

Proof. We have a torus acting on it with only 2 fixed points. Hence, we have a nonconstant
morphism Gm ' T ! G/B (orbit of non-fixed points). Hence, G/B is dominated by a rational
curve, so it must be rational. Since it’s smooth, projective over k, it must be P1. �

(Step 3) If k = k, then the resulting homomorphism For last
iso below,
check that
Aut(P1

R) =

PGL2(R)

for all k-
algebras R.
There’s a
section of
the book
that does
this.

ϕ : G! Aut(G/B) = Aut(P1) ' PGL2

has finite kernel.

Proof. The kernel kerϕ ≤
⋂
g∈G(k) gBg

−1 is contained in all the stabilizers of points of G/B.
Furthermore,  ⋂

g∈G(k)

gBg−1

0

red

= R(G) = 1,

so kerϕ must be finite. �

(Step 4) Define the co-character λ : Gm ' T ↪! G. Then, PG(λ) (points whose limit exists42) is a
Borel in G. Note that we are over k, not k in this step.

Proof. WLOG k = k. In general, for an isogeny ϕ : G! G′ and H ≤ G, all smooth connected, H
is solvable (resp. parabolic, resp. Borel) ⇐⇒ ϕ(H) is solvable (resp. parabolic, resp. Borel). For
solvable, look at the derived series.

40We don’t know yet that G has a Borel over k
41Theorem 8.4
42See Proposition 16.3 for a reminder of this stuff
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The upshot is that it suffices to check that ϕ(PG(λ)) is a Borel in PGL2. We know ϕ(PG(λ)) =

PPGL2
(λ′) where λ′ = ϕ ◦ λ is nontrivial. We know what the cocharacters of PGL look like. Since

T = Gm fixes 0,∞ ∈ P1, we get

λ′ : Gm −! PGL2

t 7−!

(
tr

1

)

for some r 6= 0 ∈ Z. At this point, one can just calculate that

PPGL2
(λ′) =

(
∗ ∗
∗

)
or

(
∗
∗ ∗

)
in PGL2,

and these are both Borel. �

(Step 4’) Same for PG(−λ).

(Step 5) Let B = PG(λ). Then, G/B ' P1 over k.

Proof. This quotient is a genus 0 curve with a k-point (since B defined over k), so it must be P1. �

(Step 6) Get ϕ : G! PGL2 over k. This is a multiplicative isogeny.

Proof. WLOG k = k. Note

kerϕ ≤
⋂
gBg−1 ≤ PG(λ) ∩ PG(−λ) = ZG(λ) = CG(T ) = T

(last equality using G reductive). �

(Step 7) G ' SL2 or PGL2.

Proof. SL2 is the universal cover of PGL2 with π1(PGL2) = µ2.43 �

That finishes the proof. �

Question 25.11 (Audience). How to show that SL2 is the universal cover.

Answer. Can use fact that the character group of the fundamental group is always the Picard group,
and then try to compute the Picard group instead. That is, show that Pic SL2 = 0. One way to do this
is to show that SL2×Gm = GL2 as varieties, and GL2

open
⊂ An2

, so these all have trivial Picard group.
Once you know this, we know π1(PGL2) = ker(SL2 ! PGL2) = Z(SL2) = µ2.

43Only talked above universal covers over separably closed fields. Can first prove this over ks and then use Galois descent
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26 Lecture 26 (4/21)

26.1 Last time

Notation 26.1.
G︸︷︷︸

smooth connected linear

≥ B︸︷︷︸
Borel

≥ C︸︷︷︸
Cartan

≥ T︸︷︷︸
maximal torus

C := CG(T ), N := NG(T ), and W = W (G/T ) := N/C is the Weyl group, a finite étale group.

Recall 26.2. The radical is R(G) := largest smooth connected, solvable normal subgroup
The unipotent radical is Ru(G) := largest smooth connected unipotent normal subgroup.

Recall 26.3.

• G is semisimple if R(Gk) = 1 (e.g. G = SLn)

• G is reductive if Ru(Gk) = 1 (e.g. G = GLn)

• If G semisimple, then Z(G) finite and G is perfect, i.e. [G,G] = G

• If G is reductive, then R(G) is a torus, Z(G) is of multiplicative type, and the groups Gder = [G,G],
Gad = G/Z(G), and G/R(G) are semisimple

•
reductive =

torus× semisimple
finite

where the torus R(G) and semisimple group Gder are subgroups generating G, and their intersection
is a finite group contained in the center of both.

Recall 26.4. If G is a semisimple group of rank 1 with a split maximal torus T , then G ' SL2 or PGL2.

Definition 26.5. A split reductive group is a pair (G,T ) with G reductive and T a split maximal
torus

Fact (Next week’s homework). Every split reductive group of semisimple rank 1 is one of

Gr−1
m × SL2 , Gr−1

m × PGL2, and Gr−2
m ×GL2 .

26.2 Forms of GL2, SL2 and PGL2

Warning 26.6. In the book, there’s a theorem saying what all the (non-split) reductive groups of
semisimple rank 1 are, but it’s incorrect as currently stated.

Recall 26.7. Let k be a field with separable closure K := ks and Galois group Gal := Gal(ks/k). Then,

{k-forms of G}  ! H1(Gal,AutGK)

{k-forms of M2(k)}  ! H1(Gal,AutK-alg(M2(K)))

Above, a k-form of M2(k) is a k-algebra A s.t. A ⊗k K ' M2(K) (these are also called quaternion
algebras over k).
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Theorem 26.8 (Skolem-Noether Theorem). Every automorphism of a central simple algebra (over
a field?) is inner.

Corollary 26.9.

AutK-algM2(K) =
M2(K)×

Z(M2(K))
=

GL2(K)

K×
' PGL2(K).

Proposition 26.10. Every automorphism of GL2,SL2,PGL2 over K is inner. Hence,

Aut GL2 = GL2(K)/center = PGL2(K)

Aut SL2 = SL2(K)/center = PGL2(K)

Aut PGL2 = PGL2(K)/center = PGL2(K)

Corollary 26.11. There are natural bijections

{k-forms of GL2}

{quaternion algebras/k} {k-forms of SL2}

{k-forms of PGL2}

You can make this explicit. Given a quaternion algebra A/k, can form the algebraic groups

GA(R) = (A⊗R)
× , SA(R) = ker

(
(A⊗R)

× reduced norm
−−−−−−−−−! R×

)
, and PA := GA/Gm.

26.3 Root data and (split) reductive groups

Let (G,T ) be a split reductive group of rank r, and let X = X∗(T ) = X(T ) = Zr be the character group.
There is also the cocharacter group X∨ = Hom(Gm, T ) = HomZ(X,Z) = Zr. We let

〈−,−〉 : X ×X∨ ! Z

denote the natural perfect pairing, i.e. 〈α, λ〉 = α ◦ λ ∈ EndGm = Z.
Recall the adjoint action Gy g := LieG. We can restrict this action to T to get a decomposition

g =
⊕

α∈X(T )

gα where gα = α-eigenspace

as T -reps. We can easily describe the 0-eigenspace:

g0 = (LieG)T = Lie(GT ) = LieC = LieT =: t.

Definition 26.12. The nonzero α ∈ X such that gα 6= 0 are called the roots. We use Φ to denote the
set of all roots, a finite subset of X.
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We write
g = t⊕

⊕
α∈Φ

gα.

Recall 26.13. There’s the Weyl group W = N/C which acts by conjugation on (G,T ). Hence, it acts
on X,X∨,Φ, . . . as well.

Example. Consider G = GL2 and T = G2
m with character group X = Z2 spanned by

χi

(
t1

t2

)
:= ti.

Bjorn drew a picture of the weight lattice for the adjoint rep, but I’m too lazy to reproduce it in real
time... There are two roots in this example: ±α where α = χ1 − χ2.

What about the Weyl group? Need to find a matrix which normalizes T but does not centralize

it. Turns out W is generated by sα =

[
nα :=

(
−1

1

)]
. This acts on X as χ1 7! χ2 and χ2 7! χ1

(reflection across line x = y in the character lattice).

Example. Consider G = SL2 with T =

{(
t

t−1

)}
and character group X = Z spanned by

χ

(
t

t−1

)
:= t.

The roots in this case are −2χ and 2χ.
The Weyl group here acts as −1. The matrix nα from before was chosen to work for all 3 of these

cases.

Example. Now say G = PGL2 with T =

{(
t

1

)}
whose character group X = Z is spanned by

χ

(
t

1

)
:= t.

The roots in this case are ±χ.
The Weyl group here acts as −1.

Let’s take a look at a more involved situation.

Example. Take G = GL3 with T = G3
m the diagonal torus. Let α be a root; in fact, let’s consider

α = χ1 − χ2 : T ! Gm, i.e.

α

t1 t2

t3

 =
t1
t2
.

Let

Sα =


t t

t3



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whose centralizer is

Gα =


∗ ∗∗ ∗

∗


 = GL2×Gm.

What do things look like in general? Consider any root α, and define the subtorus Remember:
If G is a of
multiplica-
tive type,
then G0

red is
an algebraic
group (and a
torus)

Sα := (kerα)t := (kerα)0
red ≤ T︸︷︷︸

dim r

(the t subscript is taking the ‘toric part’). In addition, we define Gα := CG(Sα), the centralizer of Sα.

Proposition 26.14. (Gα, T ) is a split reductive group of semisimple rank 1.

Proof. We already know that the centralizer of a torus (in a reductive group) is itself reductive. We also
know that T ≤ C(Sα) = Gα is a maximal torus, and Sα ≤ Z(Gα) ≤ T (note Z(Gα) ≤ CGα(T ) = T )).44

We can look at Lie algebras:

LieGα = gSα =
⊕

β∈Qα∩X
gβ = t⊕ gα⊕?

Since there’s a gα above, T acts nontrivially on LieGα, so T 6≤ Z(Gα). Hence,

R(Gα) = Z(Gα)t = Sα.

Thus, Gα/R(Gα) has maximal torus T/R(Gα) = T/Sα of dimension 1, so G has semisimple rank 1. �

Corollary 26.15. LieGα = t⊕ gα ⊕ g−α with dim g±α = 1.

This is because we know all the split semisimple groups of rank 1. There are basically 3 examples,
and we computed things for them earlier.

Example. If you have G = Gnm×GL2, then X = Zn⊕XGL2
and the roots are the same as those for GL2.

Adding this Gnm just makes the torus bigger, but does not really add much to the conjugation action.

Choose a cocharacter λ : Gm ! T such that 〈α, λ〉 > 0. Define

Uα = UGα(λ)

(subgroup where limit equals identity).

Example (G = GL3). Take λ : Gm ! T given by t 7!

t 1

1

. Then,

Uα =


1 ∗

1

1


 .

44Note Z(Gα) is of multiplicative type, but not necessarily a torus
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Proposition 26.16. In general, there is an isomorphism uα : Ga
∼
−! Uα and LieUα = gα.

(Proof this by checking cases).
Can also define U−α = UGα(−λ). Get same conclusions: U−α ' Ga and LieU−α = g−α.
In fact, can construct a multiplicative isogeny

vα : SL2 ! Gα := Gder
α

mapping

(
1 ∗

1

)
to Uα and

(
1

∗ 1

)
to U−α.

Remark 26.17. This vα is uniquely determined by the choice of a nonidentity element of Uα (or equiva-
lently of gα).

27 Lecture 27 (4/23)

27.1 Last time

Say (G,T ) is a split reductive group of rank r.

Recall 27.1. X := Hom(T,Gm) ' Zr is the character group of T .
X∨ := Hom(Gm, T ) ' Zr is the cocharacter group of T .
〈−,−〉 : X ×X∨ ! Z is the perfect paring sending (α, λ) to α ◦ λ ∈ EndGm = Z.

Recall 27.2. G acts on G via conjugation, and on g via the adjoint action. As a T -rep, we can decompose

g = t⊕
⊕
α∈Φ

gα,

where Ψ = {roots} := {nonzero α ∈ X such that gα 6= 0}. Each gα is 1-dimensional.

Recall 27.3. The Weyl group W = N/C acts by conjugation on (G,T ), hence on X,X∨,Φ, etc.

For each root α, we define

• Sα := (kerα)t := (kerα)0
red, subtorus of rank r − 1 in T

• Gα := CG(Sα), a split reductive group of semisimple rank 1 with

LieGα = t⊕ gα ⊕ g−α.

• Gα := Gder
α , a split semisimple group of rank 1, isomorphic to SL2 or PGL2.

• vα : SL2 � Gα ↪! Gα ↪! G is the universal cover of Gα, chosen so that

– vα maps

(
1 ∗

1

)
' Ga isomorphically to a group Uα with Lie algebra gα; and

– vα maps

(
1

∗ 1

)
' Ga isomorphically to a group U−α with Lie algebra g−α.
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27.2 Weyl Groups and Root {Data, Systems}

Consider the Weyl group of Gα = CG(Sα) ⊂ G. We have

NSL2
(torus) vα−! NGα(T )�W (Gα, T ) ≤W (G,T ) =: W.

Recall 27.4. #W (Gα, T ) = 2

What’s the generator? An element of NSL2
(Gm) not contained in the diagonal torus is

(
−1

1

)
.

This maps to some nα ∈ NGα(T ) which then maps to a generator sα ∈W (Gα, T ).

Construction 27.5. Consider the composition

α∨ : Gm −! SL2
vα−! G

t 7−!

(
t

t−1

)
7−! ???,

called the coroot of α. This α∨ ∈ X∨ is characterized by the formula

sα : X −! X

x 7−! x− 〈x, α∨〉α.

Since sα(α) = −α, we see that 〈α, α∨〉 = 2. Note that sα fixes (and in fact is reflection across) the
hyperplane in XR = X ⊗Z R orthogonal to α∨.

Remark 27.6. We haven’t defined an inner product on this vector space XR. Sometimes people do this
(and then the hyperplane is orthogonal to α), but we have kept to space and its dual separate.

Proof that sα is given by the claimed formula. Reduces to doing a calculation in SL2 and PGL2, where
you can do everything explicitly. �

Question 27.7. What’s the group 〈Uα, U−α〉 generated by U±α?

The upper/lower triangular matrices generate SL2, so these will generate the image Gα = 〈Uα, U−α〉
of SL2. If you throw in the torus as well, then you get Gα = 〈T,Uα, U−α〉. This was for one α, but if
you take all of them, then you get all of G = 〈T,Uα : α ∈ Φ〉 since you get the whole Lie algebra (and G
smooth, connected).

Proposition 27.8. dimG = dimT + #Φ.

(since dim gα = 1 for all roots).
Let’s give a name to all this data we’ve defined.

Definition 27.9. A root datum (in the sense of SGA3) is R = (X,R,X∨, R∨, 〈−,−〉 , α 7! α∨). Here,

(1) X is a f.free Z-module

(2) X∨ is a f.free Z-module

(3) 〈 , 〉 : X ×X∨ ! Z is a perfect pairing
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(4) R ⊂ X is a finite subset (the roots)

(5) R∨ ⊂ X∨ is a finite subset (the coroots)

(6) α 7! α∨ is a bijection R! R∨.

We require these satisfy

(RD1) If α ∈ R, then 〈α, α∨〉 = 2.

(RD2) For each α ∈ R, the reflection

sα : X −! X

x 7−! x− 〈x, α∨〉α

preserves the set of roots, i.e. sα(R) = R. Similarly,

sα∨ : X∨ −! X∨

y 7−! y − 〈α, y〉α∨

preserves the set of coroots.

Remark 27.10. sα∨ is the transpose of sα:

〈sα(x), y〉 = 〈x, y〉 − 〈x, α∨〉α, y = 〈x, sα∨(y)〉

Remark 27.11. There’s an equivalent definition (what Milne calls a root datum not in the sense of SGA3)
where you just give (X,R,R ! X∨ := Hom(X,Z)) with the map R ! X∨ denoted α 7! α∨ and you
require

(rd1) (RD1) (α∨(α) = 2).

(rd2) First half of (RD2).

(rd3) The group generated by the sα’s is finite.

What happens if you forget the lattice and only remember the vector space V := R-span of R? Then
you get

Definition 27.12. A root system is (V,R) with V a f.dim R-vector space, and R ⊂ V a finite subset
(the ‘roots’) satisfying

(RS1) R spans V

(RS2) For each α ∈ R, there exists a α∨ ∈ V ∨ such that 〈α, α∨〉 = 2, sα(R) ⊂ R, and α∨(R) ⊂ Z.

We can use this new terminology to summarize what we know about split reductive groups.

Theorem 27.13. Each split reductive group (G,T ) gives rise to a reduced45 root datum.
45For each α ∈ R, the only real multiplies of α in R are ±α
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Definition 27.14. The Weyl group of a root system (V,R) is

W (R) := 〈sα : α ∈ R〉 ≤ AutX.

This is a finite group, and we’ll later see it agrees with the other definition of Weyl group when the root
system comes from a split reductive group.

Proposition 27.15.
Z(G) =

⋂
α∈Φ

kerα.

Proof. Recall G = 〈T, all the Uα’s〉. What commutes with all of these? First, C(T ) = T , so Z(G) ≤ T ,
and in fact

Z(G) =
⋂
CT (Uα) =

⋂
kerα

since conjugation by t ∈ T acts on Uα as α(t) on Uα (since LieUα = gα). �

Corollary 27.16. The character groups of

R(G) = Z(G)0
red ≤ Z(G) ≤ T

are
X/(ZΦ)sat � X/ZΦ� X.

Above, ZΦ is the Z-span of Φ, the subgroup generated by the roots. On the other hand, its saturation
is

(ZΦ)sat := {β : nβ ∈ ZΦ for some n ≥ 1} .

Example. When G = SL2×Gm, one sees ZΦ = 2Z × {0} so (ZΦ)sat = Z × {0}. Since the center is
diagonalizable, one sees from its character group that Z(G) ' µ2 ×Gm.

Proof of Corollary 27.16. We have an exact sequence

0 −! Z(G) −! T
∏
−!α∈Φ Gm

by the proposition. Taking character groups gives

0 X(Z(G)) X  
⊕
α∈Φ

Z.

Finally, R(G) = Z(G)t means that X(R(G)) = X(Z(G))/torsion and this finishes the proof. �

Corollary 27.17. TFAE

(1) G is semisimple

(2) Z(G) is finite

(3) ZΦ is of finite index in X
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28 Lecture 28 (4/26)

28.1 Last time

Say (G,T ) split reductive of rank r.
We can decompose the adjoint rep of T on g:

g = t⊕
⊕
α∈Φ

gα.

These are Lie algebras of G = 〈T,Uα for α ∈ Φ〉. Each Uα is a copy of Ga and dim gα = 1.
We can form the root datum

R(G,T ) :=

 X︸︷︷︸
character group

, Φ︸︷︷︸
roots

, X∨︸︷︷︸
cocharacter group

, Φ∨︸︷︷︸
coroots

, 〈−,−〉︸ ︷︷ ︸
X×X∨!Z

, α 7! α∨︸ ︷︷ ︸
bijection


If we forget X and X∨, but remember V := RΦ ≤ XR, then we get a root system (V,Φ).

The Weyl group W := N/C acts by conjugation on (G,T ) and so on X,X∨,Φ, etc. α ∈ Φ gives rise
to sα ∈W acting on X. The action of sα on V = RΦ is characterized by

• sα(α) = −α

• sα acts as the identity on some hyperplane in V , and These first
two condi-
tions tell
you it’s a
reflection

• sα preserves Φ

The element α∨ ∈ X∨ can be characterized by

sα(x) = x− 〈x, α∨〉α

so 〈α, α∨〉 = 2, and sα is the identity on the hyperplane (α∨)
⊥ ≤ XR.

28.2 Root systems (and stuff about relating groups to their algebras)

Say we are given the root system (V,Φ) of some (secret) split semisimple46 group.

Question 28.1. What are the possibilities for X?

There are natural choices for “lower/upper bounds” on X. On one hand, X contains all the roots,
so must contain the root lattice Q := ZΦ. On the other hand, 〈α, β∨〉 ∈ Z for any root α and coroot
β∨, so X must be contained in the weight lattice P := {x ∈ V : 〈x,Φ∨〉 ⊂ Z}, the lattice dual to ZΦ∨.
Note that Q is already a full rank lattice, so [P : Q] <∞. That is, we have X sandwiched

Q ⊂ X ⊂ P

between a finite index lattice inclusion, so there will only be finitely many possible choices for X. We’ll
see later all these choices are realizable (assuming I heard correctly). In particular, we’ll have a picture

46So X is a lattice in V

87



like
G̃ P

G X

Gad Q

π1(G)

Z(G)

P/X=PicG

X/Q

Above,
groups char. gp. of max. torus

−−−−−−−−−−−−−−−! lattices

kernels char. group
−−−−−−−! quotients

e.g. G̃ has max torus with character group P and X(ker(G̃� G)) = P/X.

Note 4. Distracted making up diagram and missed what he said we’re doing next.

Suppose H ≤ G is normalized by T . Get T -reps h ≤ g = t ⊕
⊕

α∈Φ gα. Since h is a subrep, it must
be a sum of some of these eigenspaces. That is,

h = th ⊕
⊕
α∈Ψ

gα for some th ≤ t and Ψ ⊂ Φ.

Can we reconstruct h from this Lie algebra?

Proposition 28.2 (Yes). Assume H ≤ G is a smooth subgroup such that T normalizes H (e.g. T ≤ H)
Then, for each root α ∈ Φ, H contains Uα ⇐⇒ h := LieH contains LieUα = gα.

Proof. (!) Easy.
( ) Suppose that h contains gα. WLOG replace G by Gα := CG(Sα) and H by Hα := CH(Sα) =

Gα ∩H.
Why is this ok? Centralizers of tori are smooth, so we have not lost smoothness doing this. The Lie

algebras of Gα, Hα contain gα, so the hypotheses are preserved. If Uα ≤ Hα then Uα ≤ H since Hα ≤ H,
so everything is fine.

The point of this reduction is that we now have a group of semisimple rank 1. The Lie algebra of
G = Gα now looks like t ⊕ gα ⊕ g−α. Choose a cocharacter λ s.t. 〈α, λ〉 > 0 so UG(λ) = Uα (this is
where47 we use that we reduced to G = Gα). We intersect with H to see that UH(λ) = H ∩ Uα ≤ Uα Remember:

This limit
stuff is ap-
parently
good for
picking out
pieces of the
Lie algebra
and finding
correspond-
ing groups

I will never
remember
what this
limit stuff is
off the top
of my head

is a smooth connected subgroup of Uα ∼= Ga; hence, it’s either trivial or everything. It’s Lie algebra is
h ∩ gα = gα is nontrivial, so UH(λ) = H ∩ Uα = Uα and we win. �

Corollary 28.3. If H is smooth connected and H ≥ T , then

H = 〈T, the Uα with gα ≤ h〉

Proof. Both are smooth connected with the RHS contained in the LHS and their Lie algebras agreeing. �

28.2.1 Weyl chambers

Fix a root system (V,Φ).
47Looking at the Lie algebra UG(λ), this is picking out the piece where λ positive, but that’s simply gα since there’s

nothing else
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Note 5. It would be nice if I were to draw pictures and add them here...

We have roots in V , and coroots in V ∨. Given a root α ∈ V , we can form a hyperplane α⊥ ⊂ V ∨.
These separate V ∨ into different pieces, called Weyl chambers.

Definition 28.4. A Weyl chamber is a connected component of

V ∨ −
⋃
α∈Φ

α⊥.

Definition 28.5. A λ ∈ V ∨ is called regular if it lies in some Weyl chamber, i.e. 〈α, λ〉 6= 0 for all
α ∈ Φ. In this case, we set

Φ+ := {α ∈ Φ : 〈α, λ〉 > 0} .

We call this a system of positive roots:

• For all α, exactly one of ±α is positive (i.e. is in Φ+)

• For all positive α, β, their sum α+ β is positive if it is a root.

Given such a system, we can pick out the “smallest” positive roots.

Definition 28.6. A base for (V,Φ) is a basis ∆ ⊂ Φ of V such that each α ∈ Φ is of the form
∑
s∈∆mss

with either all ms ∈ Z≥0 or all ms ∈ Z≤ 0. Elements of ∆ are called the simple roots.

Theorem 28.7. Say we have a root system (V,Φ) of some split reductive group (G,T ). Then,

(1) There exists bijections

{Borels in G containing T} {Weyl chambers in V ∨}

{systems of positive roots}

{bases}

{α:gα≤LieB}

P (λ) for λ∈chamber

{α:〈α,λ〉>0}

{positive roots not sum of 2 positive roots}Φ∩Z≥0∆

(2) The bijections are W -equivariant.

(3) W acts simply transitively on each set.

Next time we’ll explain some of the details of the proof of this.

29 Lecture 29 (4/28)

Note 6. *10 (5?) minutes late*

29.1 More Root Stuff

“The point of view of this class is that combinatorics is an easy subject that anyone can do, and the whole
of algebraic groups is all the hard stuff” (paraphrased)

Recall we had ended last time by stating the following theorem.
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Theorem 29.1. Say we have a root system (V,Φ) of some split reductive group (G,T ). Then,

(1) There exists bijections

{Borels in G containing T} {Weyl chambers in V ∨}

{systems of positive roots}

{bases}

{α:gα≤LieB}

P (λ) for λ∈chamber

{α:〈α,λ〉>0}

{positive roots not sum of 2 positive roots}Φ∩Z≥0∆

(2) The bijections are W -equivariant.

(3) W acts simply transitively on each set.

Proof Sketch of not-purely-combinatorial parts. ( arrow on top well-defined) Why is P (λ) a Borel? We
know it is smooth connected, and that it is a semidirect product P (λ) = Z(λ) n U(λ). We computed
the Lie algebras of these pieces earlier, so we know Z(λ) has Lie algebra t ( =⇒ Z(λ) = T is a maximal
torus). Furthermore, U(λ) is unipotent, so P (λ) is solvable. We claim it is maximal solvable. Suppose
P (λ) < H ≤ G with H smooth connected; we’ll show H is not solvable. Then, h := LieH contains t

(since T ≤ H), gα for all α with λ(α) > 0 (since U(λ) ≤ H), and g−α for some α with λ(α) > 0 (since
P (λ) ( H). Thus, H contains Uα and U−α, so H contains a copy of SL2 or PGL2. Neither of these are
solvable, so H is not solvable either. Thus, P (λ) is a maximal solvable smooth connected subgroup, i.e.
a Borel.

(the upper triangle commutes) This is by definition slash by Proposition 16.3 (6).
((2) + (3)) They are all W -equivariance basically since they’re all canonical. This is not hard to

check. We’ve shown before that W acts transitively on the Borels, so it does so too on each of the other
sets. �

Corollary 29.2. For each Borel B ⊃ T , ∃! Borel B−, the opposite Borel, such that B ∩ B− = T .
Furthermore, the variety morphism

B−u × T ×BU −! G

given by multiplication is an open immersion.

Remark 29.3. The image of this morphism contains both B = T ·Bu and B− = T ·B−u .

Proof. If B = P (λ), then define B− := P (−λ). Its unipotent radicual will be B−u = U(−λ). Recall
(Proposition 16.3 (4)), we showed before that U(−λ)× P (λ)! G is an open immersion. �

Definition 29.4. This open subset B−u × T ×Bu ↪! G is called the big cell.

Example. Take G = GLn and B = Bn the upper triangular matrices. Then, B− = lower triangular
matrices. This statement is saying almost every matrix is the product of a lower triangular matrix and
an upper triangular matrix (LU decomposition).

Corollary 29.5. For any cocharacter λ, regular or not (i.e. λ potentially on boundary of a Weyl cham-
ber), P (λ) is parabolic.
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Proof. Let λ′ be a regular cocharacter whose direction is sufficiently close to that of λ. Then, P (λ) ⊃ P (λ′)

contains a Borel, so is parabolic. �

Fact. Fix a Borel B (so also a Weyl chamber and also a system ∆ of simple roots). Then,{
parabolics

containing B

}
 ! {subsets of ∆}

P 7−! {α ∈ ∆ : g−α ≤ p}
P (λ) with λ ∈ chamber
s.t. {α : 〈α, λ〉 = 0} = I

 − [ I

Moreover, P (λ) = Z(λ) n U(λ) with U(λ) the unipotent radical of P (λ), and Z(λ) called the Levi
subgroup; it will be another reductive group (since centralizer of some subtorus).

Remark 29.6. Something something the Weyl chamber looks like Rr+ where r is the rank of your root
system. A point on the boundary lies on some subset of the r hyperplanes bounding your chamber. Each
hyperplane it lands on causing it to pick up an extra root.

Example. Take G = GL5 and λ(t) =

(
tI2

I3

)
. Then,

P (λ) =

(
∗2×2 ∗2×3

03×2 ∗3×3

)
, Z(λ) = GL2×GL3, and U(λ) =

(
I2 ∗2×3

I3

)
.

Corollary 29.7. In a reductive group with G ≥ B ≥ T , one has

dimB =
dimG+ dimT

2
.

Proof. Just look at the Lie algebras. We have dimG = dimT + #Φ while dimB = dimT + 1
2#Φ. �

Corollary 29.8. The Weyl group W is generated by the reflections {sα} coming from the roots.

Proof. 〈sα〉 corresponds to 〈sα∨〉 acting on V ∨ which acts transitively on {Weyl chambers}. since the
Weyl group acts simply transitively on the Weyl chambers, to show the sα’s generate the whole group,
it suffices to show they can be used to get from any Weyl chamber to another one.

We do this in steps. Just take a path from one Weyl chamber to another. Each time the path crosses
a wall, apply sα for α the root corresponding to that wall. This swaps the chambers adjacent to that
wall, so you get from one chamber to any other by a series of reflections along the path. �

Example. For GLn, the sα’s are the transpositions, while W = Sn. Hence, we recover the classical fact
that Sn is generated by transpositions.

Remark 29.9. The Weyl group W = N(T )/C(T ) is a priori a finite étale algebraic group, but even more
is true. It is always discrete. This is because N acts on the torus, giving N ! AutT = AutX = GLn(Z)

with kernel C, so W = N/C ↪! GLn(Z) and hence W is discrete.
Hence, (G,T ) is split reductive, W is furthermore a constant group (there’s no Galois action).

Recall 29.10. For a split reductive (G,T ), G = 〈T, all the Uα’s〉.
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Proposition 29.11. Let (G,T ) be a split semisimple group. Then,

(1) ZΦ is of f. index in X

(2) ZΦ∨ is of f. index in X∨

(3) G = 〈Gα : α ∈ Φ〉 where Gα = Gder
α is a copy of SL2 or PGL2

(4) G = 〈Uα : α ∈ Φ〉

(5) G is perfect, i.e. G = [G,G].

Prove this next time.

30 Lecture 30 (4/30)

30.1 Last time

Say (G,T ) split reductive group of rank r.

Notation 30.1. X := Hom(T,Gm) ' Zr is character group of T
X∨ := Hom(Gm, T ) ' Zr is cocharacter group of T .
〈 , 〉 : X ×X∨ ! Z the perfect pairing.

We decompose
g = t⊕

⊕
α∈Φ

gα so G = 〈T, all the Uα〉 .

For each root α, have SL2 � Gα = Gder
α restricting to(
∗
∗−1

)
' Gm

α∨
−−! T(

1 ∗
1

)
' Ga

∼
−! Uα(

1

∗ 1

)
' Ga

∼
−! U−α.

Set Φ∨ = {α∨ : α ∈ Φ} ⊂ X∨ as well as V = RΦ and V ∨ = RΦ∨.

30.2 Decomposition of semisimple groups

We ended last time with the statement of the following proposition.

Proposition 30.2. Let (G,T ) be a split semisimple group. Then,

(a) ZΦ is of f. index in X

(b) ZΦ∨ is of f. index in X∨

(c) G = 〈Gα : α ∈ Φ〉 where Gα = Gder
α is a copy of SL2 or PGL2
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(d) G = 〈Uα : α ∈ Φ〉

(e) G is perfect, i.e. G = [G,G].

Proof. (a) We’ve proved this before.
(b) Choose a positive definite inner product on V = RΦ. Average it over the finite group W to make

itW -invariant. This gives an identification V ∼
−! V ∨ withW acting as orthogonal transformations. Now,

sα ∈W is literally a(n) (orthogonal) reflection, sending α 7! −α. Its fixed hyperplane is (α∨)⊥, but also
now α⊥. Hence, α∨, viewed as an element of V , must be a nonzero real multiple of α. Thus, the coroots
span something of full rank since the roots do.

(c) By (b), there are r = dimT independent elements α∨, so the groups α∨(Gm) generate T . Hence,
〈all Gα〉 ⊃ T . It also contains all the Uα’s, so it must be everything.

(d) First note that

(
1 ∗

1

)
and

(
1

∗ 1

)
generate SL2, so Uα and U−α generate Gα. Thus, if you

take all the Uα’s they generate the same group as all the Gα’s, so we win by (c).
(e) By (c), G is generated by the perfect groups Gα (images of SL2 which is perfect). �

For later, we state a useful proposition.

Proposition 30.3. Let N / G be a smooth connected normal subgroup of a semsimple group G. Then,
N is semisimple too.

(same for reductive)

Definition 30.4. We say a semisimple group G is almost simple if its only nontrivial smooth connected
normal subgroup is G itself.

Example. SLn is (going to turn out to be) almost simple, but µn / SLn is a (non-connected) nontrivial
normal subgroup.

Example. In characteristic p, ker Frob is always some nontrivial normal subgroup scheme.

Theorem 30.5. Let G be a semisimple algebraic group.

(1) G has only f.many minimal nontrivial smooth connected normal subgroups, say G1, . . . , Gn.

(2) The Gi’s are almost simple.

(3) The Gi pairwise commute, i.e. gigj = gjgi if gi ∈ Gi and gj ∈ Gj and i 6= j.

(4) The multiplication map
G1 × . . .×Gn −! G

is an isogeny.

(5) The smooth connected normal subgroup of G are the groups

〈Gi : i ∈ I〉 for some I ⊂ {1, . . . , n} .

Proof sketch. WLOG k = ks (use descent, grouping factors into Galois orbits). Next, group theory +
Gi’s being perfect (since it’s semisimple) + the following lemma
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Lemma 30.6. If N / G is a smooth connected normal subgroup, there exists another smooth connected
normal N ′ / G such that multiplication N ×N ′ ! G is an isogeny.

Proof of Lemma. Choose a maximal torus TN of N , and then enlarge it to a maximal torus T of G.
Then, N ∩ CG(N) = Z(N) is finite since N semisimple.

Claim: each Uα of G belongs to exactly one of N , C(N).
(Then N = 〈Uα : Uα ≤ N〉 so can define N ′ := 〈Uα : Uα ≤ C(N)〉 = 〈Uα : Uα 6≤ N〉. These have finite

intersection and G = NN ′ = 〈Uα : all α〉.)
Let’s prove this claim now. First consider the commutator group [TN , Uα] ⊂ [T,Uα] ⊂ Uα (since Uα

normalized by T ). Since [TN , Uα] smooth connected and Uα ' Ga, we have two cases.

([TN , Uα] = Uα) Then, Uα = [TN , Uα] ≤ [N,G] ≤ N .

([TN , Uα] = 1) We know TN and Uα commute. We claim Uα normalizes Uβ for any root β of N .
Enough to check this for k-points,48 i.e. that each u ∈ Uα(k) normalizes Uβ . Conjugation by u
is the identity on TN (since [TN , Uα] = 1), so it maps TN n Uβ to some TN n Ga defined by the
same TN -action on Ga (since u acts by identity on TN ). There is only one Ga on which TN acts by
this particular character (since each root space 1-dimensional), so this Ga must be Uβ . Hence, Uα
normalizes Uβ .

This gives conjugation action Uα ! AutUβ = Gm (last equality since Uβ ' Ga). There are no
nontrivial homomorphisms Ga ! Gm, so this must be trivial, i.e. Uα centralizes Uβ . Since N is
generated by the Uβ ’s, we see Uα centralizes N , i.e. Uα ≤ CG(N).

This finishes the proof of the claim (and so of the lemma). �

With this lemma in hand, the rest of the theorem is basically just group theory. �

Fact. Decompositions of semisimple group up to isogeny  ! decompositions of root system.

Example. Say G = SL2× SL2

µ2
with µ2

∆
↪! µ2 × µ2 ↪! SL2×SL2 embedded diagonally. The root system

of G is pictured below in Figure 2.

Theorem 30.7. Let H be a smooth connected algebraic group with an action of a torus T . Choose
U1, . . . , Un ≤ H, each isom to Ga, preserved by T such that

h = u1 ⊕ · · · ⊕ un

and T acts by a different character on each ui. Then,

U1 × . . .× Un ! H

is an isomorphism of varieties (but not of algebraic groups since the Ui may not commute with each
other), and moreover H is split unipotent.

Application. Start with split reductive G ≥ B ≥ T . Take H = Bu, the unipotent radical of B, and
choose U1, . . . , Un to be the Uα’s contained in H (i.e. α ∈ Φ+).

48since they’re Zariski dense (everything smooth and k = ks) and everything reduced
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Figure 2: The root system of G = (SL2×SL2)/µ2.

Example. When G = GLn and H = Un, this is saying we can write any upper triangular unipotent
matrix as a product of elementary matrices with 1’s along the diagonal and at most one nonzero entry
elsewhere.

We’ll prove the theorem next time.

31 Lecture 31 (5/3)

31.1 Last time

We ended last time with the following statement.

Theorem 31.1 (Direct spanning theorem). Let H be a nilpotent49 smooth connected algebraic group
with an action by a torus T . Let U1, . . . , Un ≤ H be subgroups isomorphic to Ga, preserved by T , such
that

h = u1 ⊕ · · · ⊕ un.

Suppose that T acts by a different character on each ui. Then, the multiplication map

U1 × . . .× Un ! H

is an isomorphism of varieties, and H is split unipotent.

Application. For split reductive G ≥ B ≥ T , let H := Bu and let U1, . . . , Un be the Uα’s with α ∈ Φ+.
We conclude that Bu, B are split solvable groups, i.e. ∃ filtration with quotients Ga and Gm

49It’s possible this follows from the other hypotheses. Unclear

95



31.2 Direct Spanning

Proof of Theorem 31.1. We induct on dimH and split into cases.

(Case 1: H commutative) The multiplication map is a homomorphism

U1 × U2 × . . .× Un −! H.

It is injective since the kernel of the map on Lie algebras is trivial. It is surjective since the map of
Lie algebras is surjective + the fact that H is smooth and connected.

(Case 2: H non-comm) Form the descending central series

H > · · · > Z > 1

so Z ≤ Z(H). Each group is smooth connected, normalized by T . Form the quotient

1 −! Z −! H −! H/Z −! 1.

Since Z is normalized by T , LieZ will be a sum of characters of T , so we must have LieZ =
⊕

i∈I ui

for some I ( [n] = {1, . . . , n}. Let J = [n]\I, so also Lie(H/Z) =
⊕

j∈J uj . For j ∈ J , the quotient
map H ! H/Z sends Uj

∼
−! U j with LieU j = uj . By case 1,

∏
i∈I Ui

∼
−! Z (since Z commutative).

By the inductive hypothesis,
∏
j∈J U j

∼
−! H/Z as varieties. Now, the map

H ! H/Z
∼
 −

∏
j∈J

U j

of varieties has a splitting
∏
j∈J U j

∼
−!
∏
j∈J Uj ↪! H as varieties, so we conclude that∏

i∈I
Ui ×

∏
j∈J

Uj
∼
−! H

as varieties, with product taken in this order. This may not be the order 1, 2, . . . , n we wanted.
However, we have the Ui’s in Z ⊂ Z(H), so we can move them around to put them in the right
order (the Uj ’s are ordered among themselves by inductive hypothesis). Finally H split reductive
since Z and H/Z are.

�

Proposition 31.2. Let (G,T ) be split reductive. Fix uα : Gα
∼
−! Uα for each root α. Order the roots.

Then if α 6= ±β, one has
[uα(x), uβ(y)] =

∏
i,j∈Z>0

iα+jβ∈Φ

uiα+jβ

(
cα,β,i,jx

iyi
)

with product taken in the given ordering of the roots. The cα,β,i,j’s above are constants in k.

Proof. WLOG assume β < α < . . . (in the fixed ordering). Choose Φ+ containing both α, β and let B
be the associated Borel. First note that UαUβ ≤ Bu =

∏
γ∈Φ+ Uγ ' An (with last two equalities as a
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variety). Hence, the multiplication map is just some map An × An ! An, so we can write

uα(x)uβ(y) =
∏
γ

uγ(fγ(x, y)) for some fγ(x, y) ∈ k[x, y].

If we conjugation by t ∈ T , we get

uα(α(t)x)uβ(β(t)y) =
∏
γ

uγ(γ(t)fγ(x, y)).

Alternatively, we can substitute (x, y) 7! (α(t)x, β(t)y) to see

uα(α(t)x)uβ(β(t)y) =
∏
γ

uγ(fγ(α(t)x, β(t)y)).

We conclude that γ(t)fγ(x, y) = fγ(α(t)x, β(t)y). If you expand these into monomials and compare
coefficients and use that α, β are linearly independent, you see that one must have

fγ(x, y) =

cα,β,i,jxiyj if γ = iα+ jβ

0 otherwise.

Note above that i, j ≥ 0 (i.e. not necessarily positive yet). If we set y = 0, then we see fα(x, 0) = x and
we similarly see fβ(0, y) = y. The conclusion is (recall β < α)

uα(x)uβ(y) = uβ(y)uα(x)
∏

γ=iα+jβ∈Φ+

i,j>0

(blah).

�

Chevalley proved that you can arrange cα,β,i,j ∈ {±1,±2,±3} so you can use this to define G over Z.

31.3 Bruhat decomposition

Given A ∈ GLn(k), one can scale rows and add them to earlier rows, and scale columns and add columns
to later columns, to get a uniquely determined permutation matrix: U1AU2 = P with U1, U2 upper
triangular matrices and P a permutation matrix.

Theorem 31.3.
GLn =

⊔
P∈Sn

BnPBn

is a disjoint union of these double cosets (which are locally closed subschemes).

Remark 31.4. These double cosets have different dimensions. For example, B1B = B is closed in GLn.
On the other hand,

B


1

...

1

B
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is open in GLn (“generic” case of Gaussian elimination).

Theorem 31.5 (Bruhat Decomposition). Say G ≥ B ≥ T split reductive. Then,

G =
∏
w∈W

BwB.

Remark 31.6. Note wB is well-defined, independent of the choice of lift of w in N(T ).

Proof of Bruhat Decomposition. Skipped. “I can skip what I want to.” �

31.4 Representations of SL2

Let

T =

{(
t

t−1

)}
≤ SL2

and define
χ : T −! Gm(

t

t−1

)
7−! t,

so X ' Z generated by χ.
Let SL2 act on the left on A2 in the usual way. Hence, it acts on the right on k[x, y] as well as on

k[x, y]n =: Vn, the homogeneous polynomials of degree n.

Remark 31.7. Note that Vn = Symn(V1) and k[x, y] = Sym∗(V1).

Thus, Vn is an SL2-rep (with SL2 acting on the right).

Remark 31.8. If you want, you can turn this into a left action by letting g act on the left via g−1 on the
right.

How does the torus act?

(
t

t−1

)
∈ T acts as x 7! tx and y 7! t−1y. Thus it acts on xayb as

xayb 7! (a− b)xayb. Note that a− b ≡ n (mod 2) (where n := a + b) so the weights of T y Vn are the
integers

n, n− 2, n− 4, . . . , 0,−2,−4, . . . , 4− n, 2− n,−n

spaced by 2. Furthermore, each weight space is 1-dimensional.

Note 7. 6 lectures left. In the remaining time, we’ll try to go over chapter 22 of Milne, and at least state
the main theorems of chapter 23.

32 Lecture 32 (5/5)

Note 8. No class on Friday. Problem set due next Tuesday.

32.1 Last time

Let T =

{(
t

t−1

)}
≤ SL2 with character group X ' Z generated by χ

(
t

t−1

)
:= t.
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SL2 acts on A2 so acts on k[x, y], so acts on V := k[x, y]n = span
{
xn, xn−1y, . . . , yn

}
. We can restrict

this action to the torus to see

xn 7! tnxn weight n
xn−1y 7! tn−2xn−1y weight n− 2

...
...

yn 7! t−nyn weight − n

So, as a T -rep, V has weights n, n− 2, . . . ,−n.

32.2 Reps of SL2

Keep notation from the ‘Last time’ section.

Lemma 32.1. Any nonzero SL2-subrep W ≤ V contains xn.

Proof. W contains the monomials of any f ∈ W (because W is a T -rep, so a direct sum of weight

spaces). Therefore, W contains xiyj for some i + j = n. Let’s act by

(
1

1 1

)
∈ U−2. This sends

xiyj 7! xi(x + y)j = xn + . . . . W must contain any monomial of any of its elements, so W contains
xn. �

Lemma 32.2. If char k = 0, then V is irreducible.

Proof. Suppose W ≤ V is a nonzero subrep. Then, xn ∈ W . Now act by

(
1 1

1

)
. This sends xn 7!

(x + y)n ∈ W . Hence, all monomials in (x + y)n must be in W . In char 0, all binomial coefficients are
nonzero, so xn, xn−1y, . . . , yn ∈W which shows W = V . �

Example. If char k = p and n = p, then span {xp, yp} is a subrep, so V is not irreducible.

In any characteristic, there exists an irreducible representation with highest weight n.

Fact. {irreps of SL2}↔ Z≥0

32.3 Reps of other groups

Fix a split reductive G ≥ B ≥ T (with choice of Borel, i.e. choice of positive roots). We get X,X∨, and
Φ = Φ+ t Φ−. We also get a set ∆ ⊂ Φ+ of simple roots. Both B and the opposite Borel B− are split
solvable, so we get the usual exact sequences

1! U ! B ! T ! 1 and 1! U− ! B− ! T ! 1.

The subvariety UTU− is a dense open in G, i.e. U × T × U− ↪! G is an open immersion.
Now let’s do something new, we’ll define a partial order on X.

Definition 32.3. We say λ ≥ µ to mean λ− µ =
∑
α∈∆mαα for some mα ∈ Z≥0.

Definition 32.4. We say λ ∈ X is dominant ⇐⇒ 〈λ, α∨〉 ≥ 0 for all α ∈ Φ+ ⇐⇒ 〈λ, α∨〉 ≥ 0 for all
α ∈ ∆ ⇐⇒ λ ≥ µ for all µ ∈Wλ.
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Given a G-rep V , restriction action to T , and decompose into eigenspaces for T -action (‘weight
spaces’). The weights of V are the µ ∈ X such that Vµ 6= 0.

Definition 32.5. We say V has highest weight λ if λ ≥ µ for all weights µ of V .

(then λ must be dominant since set of weights closed under Weyl action).

Lemma 32.6. Let V be a G-rep. Then Uα maps Vλ into
⊕

i≥0 Vλ+iα. More precisely, uα(x) maps v to uα : Ga
∼
−!

Uα
v +

∑
i≥1

xivi where vi ∈ Vλ+iα is independent of x ∈ Ga(k).

Proof. Every morphism Ga ! V has the form x 7!
∑
xivi for some vi ∈ V (map of affine spaces). Let’s

apply this to the map x 7! uα(x).v. For t ∈ T , apply tuα(x) = uα(α(t)x)t (equality in G) to v ∈ Vλ:

t
∑

xivi = λ(t)
∑

(α(t)x)ivi.

Equate coefficients to see that t.vi = λ(t)α(t)ivi for all t, so vi ∈ Vλ+iα. This just leaves the constant
term. Set x = 0 to get v = 1.v = uα(0).v = v0. �

Corollary 32.7. If λ is a maximal weight of V , then Vλ ⊂ V U .

Proof. Each v ∈ Vλ must be fixed by Uα for all α ∈ Φ+ by the lemma (+ maximality of λ). These Uα’s
generate the unipotent radical U .50 �

Theorem 32.8 (Fundamental Theorem on Representations of Reductive Groups).

(a) Every irreducible representation has a highest weight, which is dominant.

(b) For each dominant λ ∈ X, there exists a unique irrep V = V (λ) of G with highest weight λ.

(c) dimV (λ)λ = 1.

(following Jantzen (2003) for proof)

Proof sketch of construction. Via λ as a character of B− via B− ! T
λ
−! Gm.51 Now we take the

induced representation

I := IndGB− λ =
{
f ∈ O(G) : f(xb) = λ(b)−1f(x) for all x ∈ G, b ∈ B−

}
= H0(G/B−,L (λ))

(with L (λ) some line bundle on G/B−), so we see I is finite dimensional. Furthermore, it has a G-action
via

(gf)(x) := f(g−1x).

We take V to be the unique irreducible G-subrep of I (also called the G-socle52 of I). �

Example. Say λ = 0. Then I = O(G)B
−

= O(G/B−) = k (since G/B− projective and geometrically
integral) with trivial G-action (constant functions invariant under translations). Hence, V (0) is the trivial
rep.

50They even directly span it, I think
51All characters of B− have this form since all homomorphisms B− ! Gm must kill the unipotent radical
52In general, this is the sum of all irreducible subreps
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Weights preserved by Weyl group. TODO: For-
mat thisInside G you have these elements nα representing sα. When you conjugate by these, it acts on

everything and acts on Weyl group by sα.

33 Lecture 33 (5/10)

What’s left?

• May 10/12: Prove fundamental theorem on representations

• May 14: Grothendieck group of representations, and statement of Weyl character formula

• May 17/19: Isogeny and existence theorems, mostly without proofs (chapter 23)

33.1 Last time: representations of a split reductive group

Let G ≥ B ≥ T be split reductive with a choice of Borel subgroup. Write B = U oT and B− = U−oT .
Then, UB− = UTU− ↪! G is dense and open. Also,

U =
〈
Uα : α ∈ Φ+

〉
and U− =

〈
Uα : α ∈ Φ−

〉
.

∆ = {simple roots} is the subset of Φ+ forming a basis for RΦ so that every root is
∑
α∈∆mαα with all

mα ∈ Z≥0 or all mα ∈ Z≤0.
λ ∈ X is dominant if 〈λ, α∨〉 ≥ 0 for all α ∈ Φ+ (⇐⇒ ∀α ∈ ∆)

Recall 33.1 (Fundamental Theorem on Representations of Reductive Groups, Theorem 32.8).

(a) Every irreducible representation has a highest weight, which is dominant.

(b) For each dominant λ ∈ X, there exists a unique irrep V = V (λ) of G with highest weight λ.

(c) dimV (λ)λ = 1.

33.2 This time: Rep theory

Let’s continue our discussion of Theorem 32.8.

Remark 33.2 (Recipe for going from λ to V ). View λ as a character of B− via B− � T
λ
−! Gm. Let

I := IndGB− λ :=
{
f ∈ O(G) : f(xg) = λ(b)−1f(x) for all x ∈ G, b ∈ B−

}
.

Then, I is a finite-dimensional G-representation. We define gf by (gf)(x) := f(g−1x). To finish, we let This may be
surprising
since we’re
inducing
from some-
thing of in-
finite index,
but G/B− is
proper (pro-
jective even)
and this is
almost as
good as be-
ing finite.
In particu-
lar, this I
turns out
to be global
sections of
a coherent
sheaf

V be the G-subrepresentation of I generated by the vector space IU .53

Here are some properties of I, V above, assuming I 6= 0:

(a) dim IU = 1.

(b) IU = Iλ, and all weights of I are ≤ λ.
53This is I itself in characteristic 0
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(c) Every nonzero subrep of I contains IU .

(d) V is the unique irreducible G-subrep of I.

(e) V has highest weight λ with V U = Vλ = IU = Iλ (1-dimensional)

Proof. (a) What is IU? Suppose f ∈ IU . If f(1) = 1, then

f(ub) = f(b) = λ(b)−1f(1) = λ(b)−1,

where u ∈ U and b ∈ B−. In general (without assuming f(1) = 1), f is a multiple of fλ(ub) := λ(b)−1

on UB− ⊂ G. A priori, this fλ is a rational function on G (i.e. regular on the dense open UB−. It may
not be regular on all of G). Thus,

IU =

{cfλ : c ∈ k} if fλ regular on G (no poles)

0 otherwise.

Hence, I 6= 0 ⇐⇒ IU 6= 0 (since U unipotent54) and this is the case iff fλ is regular in G. This proves
(a) (recall assuming I 6= 0).

(b) Suppose I 6= 0. For t ∈ T , observe that

(
tfλ
)

(1) = fλ(t−1) = λ(t) =⇒ tfλ = λ(t)fλ.

Thus, fλ ∈ Iλ and so IU ⊂ Iλ. We want to show this is the whole λ-eigenspace. Let µ be a maximal
weight of I. By Corollary 32.7, we must have Iµ ≤ IU ≤ Iλ, so µ = λ and IU = Iλ. This finishes (b).

(c) Let J ≤ I be a nonzero subrep. Then, JU is a nonzero vector space contained in IU . Since
dim IU = 1, we have JU = IU , so we win.

(d) This follows from (c). Any subrep contains the subrep V generated by IU .
(e) Follows from (b). �

Lemma 33.3. Each irreducible G-rep W is isomorphic to V (λ) for a unique λ such that I 6= 0.

Proof. Let λ be a maximal weight weight of W . Consider the maps (of T -reps)

W
projection
� Wλ � λ

(λ here a 1-dim quotient with torus acting via λ). And let’s go ahead and equiv Wλ, λ with the trivial
U−-action. The formula for the action of Uα for α ∈ Φ− shows that these maps respect the U−-actions
as well as the T -actions (i.e. uα(x) ·w acts as identity on Wλ part plus some stuff in lower weight spaces,
Lemma 32.6). Therefore, there is a nonzero B−-homomorphism W ! λ. By Frobenius reciprocity, there
exists a nonzero G-homomorphism W ! IndGB− λ = I. Since W is nonzero, the kernel is trivial. The
image of this map is an irreducible subrep of I; there’s only one of those, so W ∼

−! V ↪! I.
This just leaves uniqueness of λ. This is easy since V (λ) and V (µ) have different highest weights so

are pairwise non-isomorphic. �

54Theorem 16.9
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To finish the proof of the fundamental theorem (Theorem 32.8), we need to identify the λ that actually
arise, i.e. for which I 6= 0.

Proposition 33.4. For λ ∈ X, TFAE

(1) I 6= 0

(2) IU 6= 0

(3) The function fλ(ub) := λ(b) on UB− ⊂ G extends to a regular function on G.

(4) ∃ irred. representation with highest weight λ.

(5) λ is dominant.

Beginning of Proof. We’ve already shown (1) ⇐⇒ (2) ⇐⇒ (3) ⇐⇒ (4). Furthermore, if there is an
irrep with highest weight λ, it must be higher than everything in its orbit, so λ must be dominant, i.e.
(4) =⇒ (5). In other words, if

Λ := {λ : (1), (2), (3), (4) hold} ,

then Λ ⊂ {dominant weights}, and we claim this is an equality.
Let’s prove this. By (3), Λ is a submonoid of X. It’s even a saturated monoid (still by (3)). If nλ ∈ Λ

for some n ≥ 1, then λ ∈ Λ (if fnλ has no poles, then fλ has no poles55). Thus it suffices to construct
irreps whose highest weights generate a monoid containing a multiple of each dominant weight α. So,

• If ϕ : G! G′ is an isogeny, solving the problem for G′ also solves it for G (reps for G′ give reps of
G and they have basically the same cones of dominant weights)

• If G = G1 ×G2, solving the problem for G1, G2 also solves it for G.

Therefore, WLOG G is semisimple or a torus. �

34 Lecture 34 (5/12)

34.1 Last time: reps of a split reductive group

G ≥ B ≥ T split reductive with choice of Borel. We can write B = U o T and B− = U− o T . Then,
UB− = UTU− ↪! G is a dense open.

The choice of Borel gives positive roots Φ+ so that U = 〈Uα : α ∈ Φ+〉 and U− = 〈Uα : α ∈ Φ−〉. We
let ∆ = {simple roots} be the subset of Φ+ forming a basis for RΦ so that every root is

∑
α∈∆mαα with

all mα ∈ Z≥0 or all mα ∈ Z≤0.
We say λ ∈ X is dominant if 〈λ, α∨〉 ≥ 0 for all α ∈ Φ+ (or all α ∈ ∆).

Recall 34.1 (Fundamental theorem on representations of a reductive group:). Given G ≥ B ≥ T , there
is a bijection

{irreducible G-reps} highest weight
−−−−−−−−−! {dominant weights}

V = V (λ)  ! λ

55ring of regular functions integrally closed
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Also dimVλ = 1.

So far we’ve proven that every irreducible representation is isomorphic to V (λ) for a unique dominant
weight λ. Here λ is the highest weight of V .

We still need to show that every dominant weight arises as the highest weight of some irrep. We’ve
reduced this to

Given a split semisimple group or torus G, construct irreducible representations, enough so that their
highest weights generate a monoid containing a multiple of every dominant weight.

34.2 Finishing proof of fundamental theorem

Lemma 34.2. Let G be split semisimple with simple root α. Let ` be the line orthogonal to β∨ for all
simple roots β¬α. Then there exists a representations of G with highest weight λ 6= 0 on `.

Proving this lemma will give us enough irreps to deduce the fundamental theorem. The convex hull
of the (positive parts) of these lines contains all dominant weights, so having a weight on each of these
lines will give a monoid whose saturation contains all dominant weights.

Proof. Choose µ ∈ X∨ on the ray defined by 〈β, µ〉 = 0 for all β 6= α and 〈α, µ〉 > 0. Let P = P (µ), a
maximal parabolic subgroup. We see that P contains T,Uα and all U±β ’s (look at Lie algebra56). Hence, As always,

recall Propo-
sition 16.3

P contains B and all Gβ ’s. Inside the Gβ ’s are the elements nβ ∈ Gβ which normalize the torus and
induce the reflection sβ .

We need to do something to make a representation. We use Chevalley’s theorem (Theorem 8.4). It
provides a G-representation V and a 1-dimensional subspace L such that StabG(L) = P . WLOG we may
assume L generates the whole representation V . Since U ≤ B ≤ P , U preserves L and so acts trivially
on it. Similarly, T preserves L, so it acts via some character λ.

Claim 34.3. V has highest weight λ. In particular, λ is dominant. Also dimVλ = 1.

Proof. Recall L generates the representation G. Where does U−TU map L? U maps L to L, and T

maps L to L, but U− does not preserve L. It will move λ in a “negative direction,” i.e. it maps L to
L⊕

⊕
σ<λ Vσ. Since U

−TU is dense in G, we conclude that G maps L into L⊕
⊕

σ<λ Vσ which, since L
generates V , means that λ is the highest weight V , and that Vλ = L is 1-dimensional. �

Claim 34.4. λ ∈ `, i.e. 〈λ, β∨〉 = 0 for all β ( 6= α)

Proof. Fix simple β 6= α. Note that nβ ∈ Gβ ≤ P , so nβ preserves L = Vλ. Looking at conjugation by
nβ , we see that sβ fixes λ, i.e. λ = sβ(λ) = λ− 〈λ, β∨〉β which means 〈λ, β∨〉 = 0. �

Claim 34.5. λ 6= 0

Proof. Suppose λ = 0. Pick a nonzero v ∈ L. Then, T fixes v (acting via trivial rep). We already know
that U fixes v, so the whole Borel B fixes v. Hence, the orbit map G ! V, g 7! gv acts through the
proper (smooth, connected) quotient G/B. Since V is affine, this forces the orbit map to be constant!
Hence, G fixes v, so P = StabG(L) = G, a contradiction. �

56contains all roots pairing nonnegatively with µ
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We’re almost done. All that’s left is irreducibility.

Claim 34.6. There exists an irreducible G-rep W with the same highest weight λ.

Proof. Choose a Jordan-Hölder series for V (i.e. chain of subreps with each quotient irreducible). Since
dimVλ = 1, exactly one of the irreducible quotients W in this series will have dimWλ = 1. This W is
not an irrep with highest weight W (every weight of W is a weight of V ). �

�

34.3 Grothendieck Group of Representations

Definition 34.7. We say Rep(G) is semisimple when

{f.dim G-reps}/isom = N
[
{irred. reps}/isom

]
,

i.e. the monoid of f.dim G-reps is free abelian on the irreps, i.e. every f.dim representation is completely
reducible. Equivalently, one can require

{virtual reps}/isom = Z
[
{irred reps}/isom

]
,

where Z[−] above the the free abelian group, not the group ring.

Example. If G is a finite group, then

{virtual reps/C} ∼−! {class functions} :=
{
f : G! C : f(ghg−1) = f(h)

}
with isomorphism given by taking the character V 7! χV (g) = Tr ρV (g).

Definition 34.8. For any abelian category A (semisimple or not), one can forms its Grothendieck
group K(A) defined by

K(A) :=
Z[{objects}/isom]

〈[B] = [A] + [C] when ∃0! A! B ! C ! 0〉
.

Proposition 34.9. If every object in A has finite length, then K(A) ' Z[{irred. objects}].

Proof. The Jordan-Hölder theorem. �

This applies to Rep(G) (f.dim reps). Note that in this case, we really have a Grothendieck ring since
tensor products exist.

Example. Let T be a split torus with X = Hom(T,Gm). Then, K(Rep(T )) = Z[X] is the free abelian
group eχ for χ ∈ X. This notation is used to distinguish the formal sum eχ + eχ

′
from their sum in the

character group eχ+χ′ = eχeχ
′
. The map K(Rep(T ))

∼
−! Z[X] is given by [V ] 7!

∑
χ∈X(dimVχ)eχ =:

ch(V ).
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35 Lecture 35 (5/14)

Last problem set due on Wednesday.

35.1 Last time: Grothendieck group K(Rep(G))

Recall 35.1.

K(Rep(G)) :=
Z[f.dim G-reps]

〈[V ]− [V1]− [V2] : 0! V1 ! V ! V2 ! 0 exact〉
' Z[irreps].

Example. T split torus and X = Hom(T,Gm). Then there is a ring isomorphism

K(Rep(T )) ' Z[X] :=
⊕
χ∈X

Zeχ

sending [V ] 7! ch(V ) :=
∑
χ∈X(dimVχ)eχ.

35.2 K(Rep(G)) for split reductive (G, T )

Can consider the composition chG : RepG ! RepT
ch
−! Z[x]. This is like a formal character; think of it

as an ‘unevaluated trace.’

Remark 35.2. This composition may seem like it’s forgetting a lot of information, but as far as characters
are concerned, it isn’t. For reductive group, the torus is also the Cartan subgroup, and conjugates of
the Cartan subgroup contain an open dense subset of G. Characters (think: traces) are supposed to be
conjugation invariant, so we’re not really losing much information in considering this composition.

Theorem 35.3. K(RepG)! K(Rep(T )) is Z[X]W ↪! Z[X]. In particular, K(Rep(G))
∼
−! Z[X]W .

Proof. Totally order X by values of some linear functions 〈−, µ〉 taking distinct values on elements of X
(e.g. choose µ ∈ X∨R with Q-linearly independent coefficients), and by refining the partial ordering ≤ we
already had (e.g. choose µ so that 〈α, µ〉 > 0 for all α ∈ ∆). Note that, for any C > 0, the set {dominant
weights λ : |〈λ, µ〉| < C} is finite.

Now, K(Rep(G)) is the Z-span of [Vλ] as λ runs over dominant weights. Their characters ch(Vλ) will
be a basis for Z[X]W (note dominant weights are in bijection with W -orbits so Z[X]W ' Z[dominant
weights]). This is because λ appears in ch(Vλ) with multiplicity 1; if you start with some p ∈ Z[X]W can
kill the highest weight λ1 using a multiple of ch(Vλ1

), and then kill the next highest weight λ2 using a
multiple of ch(Vλ2

), and so on... �

For λ ∈ X, let L(λ) be the associated line bundle on G/B−. Note that L(λ) is effective (i.e. has a This is de-
scribed
somewhere
in Milne, I
think

nonzero global section) ⇐⇒ 〈λ, α∨〉 ≥ 0 for all α ∈ ∆ (i.e. λ dominant). We saw this when classifying
irreps.

It turns out that one can also say that

• L(λ) is ample ⇐⇒ 〈λ, α∨〉 > 0 for all α ∈ ∆ (λ in interior of dominant cone).

• Te(G/B
−) = LieG

LieB− =
⊕

α∈Φ+ gα as T -reps.
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• The tangent bundle of G/B− is

“L

(
LieG

LieB−

)
” :=

⊕
α∈Φ+

L (α)

• The cotangent bundle of G/B− is ⊕
α∈Φ+

L (−α).

• The canonical bundle is ⊗
α∈Φ+

L (−α) = L

(
−
∑
α∈Φ+

α

)
.

Example. For G = SL2, G/B− = P1. The canonical bundle is ω = O(−2) which is good since the root
for SL2 is 2.

Notation 35.4. Define
ρ :=

1

2

∑
α∈Φ+

α ∈ 1

2
X

(actually this is contained in X, if G is simply connected or more generally if PicG = 0). I think
probably
Pic(G)[2] =

0 is enough

Definition 35.5. We define the antisymmetry operator

J =
∑
w∈W

(detw)w ∈ Z[W ]

with Z[W ] the integral group ring.

Example. If λ ∈ X, then
J(eλ) =

∑
w∈W

(detw)ew(λ) ∈ Z[X].

Recall 35.6. These representations I from the past lecture or two are the global sections of these line
bundles L (λ).

Proposition 35.7 (Euler characteristic formula). For any λ ∈ X,

∑
i≥0

(−1)i chG Hi
(
G/B−,L (λ)

)
=
J(eλ+ρ)

J(eρ)
∈ Z[X]

(that this fraction lands in Z[X] is part of the claim)

(think of this as an equivariant Riemann-Roch, keeping track of the torus action instead of just dimen-
sions)

We won’t be proving this. We will use it to understand the character of H0 though. The other
ingredient we will need is

Theorem 35.8 (Kempf’s vanishing theorem). If λ is dominant, then L (λ) is acyclic, i.e. Hi(G/B−,L (λ)) =

0 for all i > 0.
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Proof in char 0. Define a character A ∈ X by

λ = −
∑
α∈Φ+

α+A ∈ X

(A measure difference between L (λ) and the canonical bundle ω). For any β ∈ ∆, note that
∑
α∈Φ+ α

is strictly
greater than
any element
of its Weyl
orbit. This
gives that
the ‘2’ be-
low will be
a number
> 0. To
know that
it’s actually
2, use that∑
α∈Φ+ α =

2
∑
β∈∆ ωβ

where {ωβ}
is the dual
basis to
{β∨}. To
see this, use
that a sim-
ple reflect
sβ permutes
Φ+ \ {β}
and sends
β 7! −β,
and then
compute
sβ(
∑
α)

〈A, β∨〉 = 〈λ, β∨〉+
∑
α∈Φ+

〈α, β∨〉 ≥ 0 + 2 > 0.

Hence, L (A) is ample. We now bring in the big guns...

Theorem 35.9 (Kodaira vanishing (char 0 only)). If L = ω⊗L ′ with L ′ ample (and ω the canonical
bundle), then L is acyclic.

We just apply this to L (λ) = ω ⊗L (A) and then win. �

Corollary 35.10 (Weyl character formula). If λ is dominant character, and we let I = indGB− λ =

H0(G/B−,L (λ)), then

chG(I) =
J(eλ+ρ)

J(eρ)
∈ Z[X].

Last two lectures next week. We’ll talk about isogeny and existence theorems for split reductive
groups.

36 Lecture 36 (5/17)

36.1 Review of notation: (G, T ) a split reductive group

We decompose the adjoint rep of T on g:

g = t⊕
⊕
α∈Φ

gα.

These are the Lie algebras of
G = 〈T, the Uα for all α ∈ Φ〉 .

This gives rise to a root datum

R(G,T )︸ ︷︷ ︸
root datum

:=

 X︸︷︷︸
character group

, Φ︸︷︷︸
roots

, X∨︸︷︷︸
cocharacter group

, Φ∨︸︷︷︸
coroots

, 〈−,−〉︸ ︷︷ ︸
X×X∨!Z

, α 7! α∨︸ ︷︷ ︸
bijection

 .

For each root α ∈ Φ, we define

• Sα := (kerα)t, a subtorus of rank r − 1 in T

• Gα := CG(Sα), a split reductive group of semisimple rank 1, with

LieGα = t⊕ gα ⊕ g−α.
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• Gα := Gder
α , a split semisimple group of rank 1, isomorphic to SL2 or PGL2

Recall 36.1 (Weyl character formula). If λ ∈ X is dominant and I := indGB− λ = H0(G/B−,L (λ)),
then

chG(I) =
J(eλ+ρ)

J(eρ)
∈ Z[X] where J(eλ) =

∑
w∈W

(detw)ew(λ).

Note that this we can get the dimension from the character by applying the homomorphism Z[X] ! Z
sending eχ 7! 1 (i.e. by remembering that each character is 1-dimensional).

Open Question 36.2. Find a formula for dimV (λ) in characteristic p.

36.2 Isogenies

Let ϕ : G! G′ be an isogeny between smooth connected algebraic groups.

Recall 36.3. For smooth connected groups, ‘isogeny’ ⇐⇒ surjective homomorphism with finite kernel.

Example. If G is a split torus T , then G′ will be another split torus T ′. Can understanding everything
in terms of the character groups. ϕ here corresponds to an injective homomorphism f : X ′ ! X with
finite cokernel.

Example. If G = Ga, then also G′ ' Ga and ϕ is of the form x 7! cnx
pn + · · · + c1x

p + c0x where
p = char k > 0 (otherwise just have c0x). For this to be surjective, just require that some ci is nonzero.

Notation 36.4. We let p = char k. We define the notation

pN :=

{pn : n ≥ 0} if char k = p

{1} if char k = 0.

(set of ‘possible degrees of isogenies of Ga)

Example. Consider G = T nα Ga with T a split torus with T y Ga via the nontrivial character
α : T ! Gm = Aut(Ga). Say ϕ : G ! G′ is an isogeny. Then, G′ = T ′ nα′ Ga with T ′ another split
torus and α′ : T ′ ! Gm a nontrivial character. Furthermore, ϕ will of the form

ϕ(t, x) = (ϕ(t), cxq) for some c ∈ k× and q ∈ pN.

To show this, would first want to classify finite subgroups of G. This gives that G′ must be a similar
semi-direct product. Then, to get the form of ϕ, use that ker (ϕ|Ga) is normalized by T ; hence it is
preserved by multiplication by any g ∈ Gm (since α nontrivial) which forces it to be supported at the
origin.57 Also, ϕ|T : T ! T ′ is given by some map f : X ′ ! X such that

f(α′) = qα ∈ X

(this is the condition that (t, x) 7! (ϕ(t), cxq) be a homomorphism).
57It has had support at any nonzero number, could move it around via Gm to get support everywhere, so it wouldn’t be

finite
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Definition 36.5. Fix some p ∈ {primes} ∪ {0}. An isogeny of root data (X,Φ, . . . ) ! (X ′,Φ′, . . . )

is an injective homomorphism f : X ′ ! X with finite cokernel such that ∃ bijection Φ ! Φ′, denoted
α↔ α′, and a function q : Φ! pN satisfying

f(α′) = qαα ∈ X for all α ∈ Φ

as well as (this really is an additional condition)

f∨(α∨) = qα (α′)
∨ ∈ (X ′)

∨ for all α ∈ Φ,

where f∨ : X∨ ! (X ′)
∨ is the dual homomorphism to f .

Here’s the big result (not to be proved here)

Theorem 36.6 (Isogeny theorem). Fix split reductive groups (G,T ) and (G′, T ′) over k of character-
istic p. Let (X,Φ, . . . ) and (X ′,Φ′, . . . ) be their corresponding root data. Then, there is a bijection

(T ′/Z′)(k)\

{
isogenies

(G,T )! (G′, T ′)

}
 !

{
isogenies of root data

(X,Φ, . . . )! (X ′,Φ′, . . . )

}
.

On the LHS, Z ′ = Z(G′) and t ∈ (T ′/Z ′)(k) acts on {isogenies} as ϕ 7! innt ◦ϕ (this restricts to the
same morphism T ! T ′).

Remark 36.7. There’s a variant of the theorem that removes the quotient on the left by choosing pinnings:
on LHS, give a base ∆ and isos Gα

∼
−! Uα for each α ∈ ∆; on RHS, give ∆. For isogenies of pinned

{reductive groups, root data}, one gets a bijection no the nose.

Example. In char p > 0, consider isogenies from SL2. There’s, e.g. SL2 ! PGL2 and also Frobenius
F : SL2 ! SL2. Can fit these into

. . . SL2 SL2 . . .

. . . PGL2 PGL2 . . .

F

F

What do these look like on the root datum side? For SL2 ! PGL2, both character groups are rank 1,
and one has X ′ ↪! X included as an index 2 sublattice. For Frobenius F : SL2 ! SL2, the action on the
character group is multiplication by p.

Let’s end with some general comments

• ϕ is multiplicative/central ⇐⇒ qα = 1 for all α.

• ϕ is an isomorphism ⇐⇒ qα = 1 for all α, and f is an isomorphism.

• For (G,T ) over Fp, the Frobenius isogeny (G,T )
F
−! (G,T ) corresponds to f = p Id with Φ

∼
−! Φ

the identity and qα = p for all α.
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37 Lecture 37 (5/19): Last class

37.1 Last time: the isogeny theorem

Recall 37.1. For p ∈ {primes} ∪ {0}. As isogeny of root data

(X,Φ, . . . )! (X ′,Φ′, . . . )

is an injective homomorphism f : X ′ ! X with finite cokernel such that there exists

• a bijection Φ! Φ′, written α 7! α′, and

• a function q : Φ! pN (if p = 0, interpret pN as {1})

satisfying f(α′) = qαα and f∨(α∨) = qα (α′)
∨ for all α ∈ Φ.

37.2 Some ideas from the proof

The hard part is going from an isogeny of root data to an isogeny of reductive groups.

• First construct Gα ! (G′)α for each α ∈ ∆.

Recall Gα is SL2 or PGL2. This isogeny is one that can, more-or-less, be constructed by hand.

• Next construct Gα ! (G′)α

Recall Gα = (Gα × T )/Z with T a torus and Z a finite central subgroup of the product. This is
still explicit enough that you can construct the corresponding isogeny, more-or-less, by hand.

• These Gα’s (along with the split maximal torus T ) generate G. We need to make sure the maps on
the Gα’s are all compatible.

Intuition. Think of G as the ‘free product’ of {Gα : α ∈ ∆} modulo various relations, e.g. you
need to identify the copies of T in each Gα and you need [Uα, U−β ] = 1 for all α 6= β in ∆.

These relations turn out to be all of them. That is, to give ϕ : G! G′ is to give ϕα : Gα ! G′ for
all α ∈ ∆ such that ϕα|T = ϕβ |T always and also the commutator relation holds.58

These steps give the proof of the isogeny thoerem.

37.3 Existence theorem

Theorem 37.2 (Existence theorem). Given k and a (reduced) root datum R, there exists a split
reductive group (G,T ) over k with root datum R.

Remark 37.3. (G,T ) above is unique (up to isomorphism) by the isogeny theorem.

Remark 37.4. In fact, one can construct (G,T ) over Z (so over any base scheme)

Remark 37.5. There is a complete classification of root data.
58[ϕα(x), ϕ−β(y)] = 1 when α 6= ±β
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Theorem 37.6 (Isogeny + Existence theorem). Fix a field k. Then there exists an equivalence of
categories {

split reductive groups/k with

(T ′/Z′)(k)\Isog((G,T ), (G′, T ′))

}
 !

{
reduced root data with
isogenies of root data

}
Let’s give some ideas of the proof (following Lusztig 2017, Geck 2017)

• WLOG R is semisimple (essentially because tori are easy to build). In fact, since semisimple groups
exist in a tower with the universal cover at the top and the adjoint one at the bottom, it suffices to
construct any one of the groups in this tower (since then you get its universal cover and so get all See Milne

chpt. 18of them). Hence, we’ll only construct the adjoint form.

• All affine groups are linear, so we’ll try to construct G inside some GLn, i.e. find a faithful
representation. Since we want to construct the adjoint form, it’ll suffice to construct the adjoint
representation Ad : G! GLg (and we’ll do it over Z).

• To do this, first construct ad : g! glg and then “exponentiate”.

Note 9. Got distracted and missed some stuff.

• For i, j ∈ Φ with i 6= ±j, define mij to be the smallest m ∈ Z≥0 such that j − mi 6∈ Φ. Fix a
base ∆. Let M =

⊕
i∈∆ Cui ⊕

⊕
j∈Φ Cvj . This will become our Lie algebra g. Define elements

ei, hi ∈ EndM . These are given by (i ∈ ±∆)

ei(uj) = |〈i, j∨〉| vi and ei(vj) :=


mijvj+i if j + i ∈ Φ

ui if j + i = 0

0 otherwise.

as well as (i ∈ ∆)
hi(uj) = 0 and hi(vj) = 〈j, i∨〉 vj .

Let g be the Lie subalgebra of glN generated by all the ei’s and hi’s. One now checks

– span {ei, e−i, hi} is a copy of sl2

– g is semisimple

– g! glM is the adjoint representation

• Now we construct the group (over Z). View ei, hi ∈Mn(Z). Define

Ui = im

(
Ga −! GLn

t 7−! exp(tei)

)

Above, ei is nilpotent (so the matrix exponential is a finite sum), and even better than this, one
can check (from looking at the explicit matrices) that the entries of exp(tei) live in Z[t] (i.e are
integral, not rational). Similarly get

Gm −! GLn

τ = exp(t) 7−! exp(thi)
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Above, one sees that exp(thi) is block diagonal of dimensions (i+ j)× (i+ j) of the form

exp(thi) =

(
Ii

T

)
where T = diag

(
τ〈j,i

∨〉
)
.

Let T := im (Grm ! GLn) be the image of all these maps. Now check

– 〈T,Ui, U−i〉 is reductive of semsimple rank 1, and G := 〈T, all Ui〉 is semisimple with the right
root datum.

Since all the matrices involved had integral entries, we see this really gives a group over Z.

37.4 Some more words

This is not the end of the theory of algebraic groups. The construction in the existence theorem gives split
reductive groups. Might want to understand non-split reductive groups (forms/twists of split reductive
groups). Also, the classification of root data gives some exceptional root data not attached to classical
groups, so can try to understand the corresponding exceptional algebraic groups.

One can also study Kac-Moody algebras/groups, infinite-dimensional analogues of Lie algebras/-
groups. There are also things called quantum groups that some people study.59

We talked about representations of the algebraic group G. One can also study representations of
groups of points, e.g. representations of G(Fq) or G(Qp) or G(AK) or what have you.

59Something like starting with the (commutative) Hopf algebra of a linear algebraic group, and then deform it into a
non-commutative Hopf algebra
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38 List of Marginal Comments

o Milne uses max spec instead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
o Milne requires k-varieties to also be geometrically reduced . . . . . . . . . . . . . . . . . . . . . 1
o Poonen did not actually use mathfrak, but this is the closest I could get to the g he did write

down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
o This came up as an audience question, so maybe I should have written this using question/answer

blocks, but oh well. Too late to change it now . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
o Question: Is this equivalent to B ! C being an epimorphism of sheaves (on the fppf site)? . . 7
o Answer: If B ! C is faithfully flat, then it is an fppf cover (recall B,C finite type), so B ! C

will be an epimorphism of sheaves on the fppf site. . . . . . . . . . . . . . . . . . . . . . . . . 7
o Note H ⊂ G is closed since it’s a subgroup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
o Remember: for algebraic groups, smooth = geometrically reduced, and connected = geometri-

cally irreducible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
o Some people use ‘complete’ to mean proper over a field . . . . . . . . . . . . . . . . . . . . . . 11
o TODO: Fill this section out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
o Think of Z as a tangent vector (at the identity) with nonzero image in LieG/LieGred. . . . . . 15
o Don’t have to assume vector spaces are finite dimensional . . . . . . . . . . . . . . . . . . . . . 17
o We’ll later see algebraic groups are always quasi-proj . . . . . . . . . . . . . . . . . . . . . . . . 19
o Remember: Nonempty smooth varieties will always have some point over a separable closure . 19
o spec(Sym∗ V ), I believe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
o Question: Why? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
o Answer: GLV is affine, so G! GLV factors through spec O(G) . . . . . . . . . . . . . . . . . . 22
o Remember: algebraic groups are finite type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
o Same idea as showing Grassmanians are projective . . . . . . . . . . . . . . . . . . . . . . . . . 24
o G! X is an H-torsor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
o These hypotheses are not necessary, but make the proof easier . . . . . . . . . . . . . . . . . . 25
o Remember: We use the convention that P(V ) parametrizes “lines in V ” . . . . . . . . . . . . . 27
o Question: Is this map obviously continuous? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
o labels on arrows give properties of quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
o TODO: Make this look nice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
o TODO: Go over this slide and fill things in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
o Remember: A scheme is connected iff its global sections has no nontrivial idempotents . . . . . 41
o A priori this intersection is a ks-scheme, but it’s Gal-invariant so it descends . . . . . . . . . . 45
o Question: Why is G acting on An? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
o Answer: This An is given by the representation that is the span of those fi’s . . . . . . . . . . 45
o This also shows CG(T ) ≤ NG(T ) of finite index . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
o f(t.x) = (t.f)(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
o Remember: Apparently Gred doesn’t even have to be a group if k is not perfect . . . . . . . . . 47
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o The map below is faithfully flat since it’s split. It’s surjective on R-valued points for every R
so a epimorphism of fppf sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

o Sounds like every rep generator V like this is automatically faithful, so the existence of such a
thing gives a check for a neutral Tannakian category to be associated to an algebraic group . 49

o If A is normal in B, then Ared is normal in Bred (consider the conjugation action morphism) . 50
o Can relax this assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
o These first two are equivalent to the vanishing of some non-abelian cohomology group, I think.

This would be true if these were abstract groups; probably still true here? . . . . . . . . . . . 54
o Remember: Extensions of Q by N are classified by H2(Q,N) . . . . . . . . . . . . . . . . . . . 54
o TODO: Add the picture from Bjorn’s notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
o Remember: (Quotients of) algebraic groups are always quasi-projective (Theorem 9.3) . . . . . 57
o Rigidity lemma? I guess even simpler than that since the target is affine. All the restrictions
{c}×(G/B)! G (for c a scheme-theoretic point) must be constant since mapping from proper
to affine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

o Question: When did we prove this last bullet point? . . . . . . . . . . . . . . . . . . . . . . . . 59
o Answer: Fixed point of torus action always smooth (Corollary 15.12), so centralizer smooth.

The normalizer acts on S and so on the discrete, f.g. character group. Hence its action has
finite image/this quotient is finite. Argument is something like this . . . . . . . . . . . . . . . 59

o Prove this using induction on the central series. . . . . . . . . . . . . . . . . . . . . . . . . . . 59
o This must have been in a reading at some point, because I have no recollection of seeing this in

lecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
o Update: See Theorem 20.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
o Update 2: See also Corollary 15.12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
o Remember: In general, it takes an inseparable extension to split a unipotent group . . . . . . . 70
o Fun fact: there exist (infinite) groups whose pro-finite completions are trivial . . . . . . . . . . 71
o Remember: algebraic groups in char 0 are automagically smooth (by Theorem 5.2) . . . . . . . 71
o Remember: semisimple includes ‘smooth connected’ in its definition . . . . . . . . . . . . . . . 72
o I think the intuition here is that X∗(π1(G)) is like H1(G,Gm) . . . . . . . . . . . . . . . . . . . 73
o Use projective dimension theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
o For last iso below, check that Aut(P1

R) = PGL2(R) for all k-algebras R. There’s a section of
the book that does this. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

o Remember: If G is a of multiplicative type, then G0
red is an algebraic group (and a torus) . . . 82

o These first two conditions tell you it’s a reflection . . . . . . . . . . . . . . . . . . . . . . . . . . 87
o Remember: This limit stuff is apparently good for picking out pieces of the Lie algebra and

finding corresponding groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
o I will never remember what this limit stuff is off the top of my head . . . . . . . . . . . . . . . 88
o uα : Ga

∼
−! Uα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

o TODO: Format this . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
o This may be surprising since we’re inducing from something of infinite index, but G/B− is

proper (projective even) and this is almost as good as being finite. In particular, this I turns
out to be global sections of a coherent sheaf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

o As always, recall Proposition 16.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
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o This is described somewhere in Milne, I think . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
o I think probably Pic(G)[2] = 0 is enough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
o
∑
α∈Φ+ α is strictly greater than any element of its Weyl orbit. This gives that the ‘2’ below
will be a number > 0. To know that it’s actually 2, use that

∑
α∈Φ+ α = 2

∑
β∈∆ ωβ where

{ωβ} is the dual basis to {β∨}. To see this, use that a simple reflect sβ permutes Φ+ \ {β}
and sends β 7! −β, and then compute sβ(

∑
α) . . . . . . . . . . . . . . . . . . . . . . . . . . 108

o See Milne chpt. 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
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Feit-Thompson Theorem, 54
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rank, 76
Reconstruction Theorem, 35
Reconstruction theorem, 33
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representation category, 32
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stabilizer of Y , 9
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unipotent, 31, 35
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unipotent representation, 49
Universal property of G/H, 25
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weights of V , 42
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Weyl group of a root system, 86
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